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Abstract 

This paper explores the reliability of Data Envelope Analysis (DEA) within Agriculture.  

Particular interest is directed towards the impacts of using constant (CRS) or variable returns 

to scale (VRS) along with choices regarding data aggregation using a data set of Slovenian 

farms. Statistical inference is implemented by using the smoothed homogenous  bootstrap 

procedure introduced by SIMAR and WILSON (2000). The coefficient of separation (CoS), a 

statistic that indicates the degree of statistical differentiation within the sample, is used to 

demonstrate the findings. The CoS suggests a substantive dependency of the results on the 

methodology and assumptions that are employed. Accordingly, some observations are made 

about how to conduct DEA in order to get more reliable efficiency rankings, depending on the 

purpose for which they are to be used. In addition, attention is drawn to the ability of the 

SLICE MODEL, implemented in GAMS, to enable researchers to overcome the 

computational burdens of conducting DEA (with bootstrapping) in large samples.  

 

Keywords: Data Envelopment Analysis, DEA, bootstrapping, Agriculture, Technical 

Efficiency, Confidence Intervals, Slice DEA model, GAMS 
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1. Introduction 

Data Envelopment analysis is a potentially useful technique for measuring efficiency. 

However, some fundamental concerns need to be addressed before DEA can be accepted as a 

routine tool. In this paper we investigate the robustness of DEA efficiency subject to the 

assumption of returns to scale and data aggregation. Technical efficiency scores are calculated 

applying DEA to 69 decision making units (DMUs). Different assumptions regarding returns 

to scale and input aggregation are made. The purpose here is to show how heavily these 

assumptions influence the ranking of the DMUs. Because the underlying frontier model is 

nonparametric, bootstrapping is required to evaluate the statistical properties of the estimates. 

Thus, the SIMAR and WILSON smoothed homogeneous bootstrap procedure is used to 

calculate bias, variance and confidence intervals for the attained efficiency scores. Based on 

the confidence intervals for the efficiency scores, it is demonstrated how the choice of input 

aggregation and returns to scale lead to quite different DMU rankings. A Slovenian data set 

will serve as background upon which these issues will be discussed. 

  

The paper is structured as follows: DEA is compared with the stochastic frontier approach 

(SFA) to get deeper understanding why DEA is a real competitor. The literature on Data 

Envelopment Analysis applications in agriculture is then reviewed in order to highlight the 

heterogeneous specifications employed in previous studies. It is observed that little comment 

has been made concerning the sensitivity of the results to alternative specifications. In the 

next section, different model specifications for Slovenian farm data are calculated and the 

bootstrap procedure from SILMAR and WILSON (2000a) is applied in order to obtain 

confidence intervals. The findings are discussed and along with the implications for the 

practical implementation of DEA.  Conclusions are drawn and areas requiring further 

investigation are identified. 
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2 Defining Efficiency 

The concept of economic efficiency is generally assumed to consist of two components: 

technical efficiency and allocative efficiency. Broadly, the former is defined as the capacity 

and willingness of an economic unit to produce the maximum possible output from a given 

bundle of inputs and technology. The latter is defined as the ability and willingness of an 

economic unit to equate its specific marginal value product with its marginal cost. FARRELL 

developed an isoquant method in 1957 to measure efficiency in frontier models (FARRELL 

1957). He suggested either the use of a non-parametric piecewise–linear convex isoquant or 

the use of a parametric function fitted to the data in a way that no point should lie left or 

below the frontier. He illustrated his ideas by using a simple example involving firms which 

use two inputs (x1,x2) to produce a single output1. 

Figure 1 Technical and Allocative Efficiency 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The production function of the fully efficient firm is not known in practice. SS’ in Fig. 1 

represents the unknown isoquant. If a firm uses quantities of inputs, defined by point P, to 

produce a unit of output the technical efficiency of that firm is defined to be the ratio of 

OQ/OP. The point Q is technically efficient because it lies on the efficient isoquant2. By 

considering the input price ratio AA’, allocative efficiency may be calculated by OR/OQ. The 

total economic efficiency is then OR/OP. The perfect market, represented by the unknown 

isoquant, is the norm against which firm P is compared. A decision maker would be 

considered efficient only if he had perfect knowledge of the best technology, of the future 

action and reaction of other people and of future natural events (PASOUR 1981). The 

                                                 
1 Farrell assumed constant return to scale. 
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imperfect market itself is the foundation for inefficient behaviour of market participants. 

RÖDERS (1995) discussed the problem that farmers often behave sub-optimally and the one 

dimensional objective behaviour of profit maximisation does not reflect the true utility 

function of the farmer and stated that multidimensional objective functions are difficult to 

model and to estimate. COELLI (1995) discussed alternative dual forms of the production 

function technology, such as cost and profit function to reflect alternative behavioural 

objectives (such as cost minimization). Inefficiency implies entrepreneurial error in the sense 

that the entrepreneur fails to notice profit opportunities. PASOUR argued that performance 

standards derived on the assumption of profit maximisation should not be used to measure the 

performance of a farm, because other objective functions may exist. FARRELL (1957) stated 

that price efficiency3 is, in any case, a measure with rather limited usefulness, although the 

measurement of allocative and economic efficiency is not as controversial as the measurement 

of technical efficiency. The measurement of technical efficiency has proved difficult and 

complex and the literature provides a range of methods both at the firm level and the industry 

level (KALIRAJAN 1999). 

 

FARRELL (1957) introduced technical efficiency as a relative notion, relative to best-

observed praxis in the group. To get the “relative” technical efficiency of the ith firm we have 

to calculate the actual output divided by the maximum feasible observable output (though 

more generally with DEA the problem can be treated as input or output orientated). Because 

the actual output is observable, the maximum output must be estimated. To get the maximal 

output there are different methods. All these methods try to find a production frontier, which 

should represent the maximum possible observed output. There are two main approaches to 

estimate the frontier, the stochastic frontier approach and data envelopment analysis. The 

former uses statistical methods and the latter mathematical programming. To estimate the 

frontier and to obtain efficiency scores the following concepts are to be distinguished: The 

Deterministic4 parametric frontier approaches, the Deterministic statistic frontier approaches, 

the Stochastic frontier approaches, the Deterministic non parametric frontier approaches 

(DEA). 

 
 
 
                                                                                                                                                         
2 Farrell also discussed the extension to the case of more than two inputs and more than two outputs and non 
constant return to scale.   
3 FARRELL (1957) used the term price efficiency instead of allocative efficiency. 
4 The term deterministic is generally used to describe a group of methods that assume to have a strict one sided 
error term and the error term represents the inefficiency of the DMU (Decision Making Unit)  
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4 Data Envelopment Analyses: a real competitor to SFA 
 
The majority of early economists followed a parameteric approach. However, economists at 

Berkely advanced a programming approach for piecewise linear frontier production functions 

that went largely unnoticed by the research community (FØRSUND, SARAFOGLOU 2002). 

 

CHARNES et al. (1978) (CCR) showed that the FARRELL unit isoquant model was a special 

case of the ordinary linear programming problem. At first in the Operational research and 

management science, but later also within economics, CCR started a new active research 

field, popularly called DEA (Data Envelopment Analysis). For the applied economists the 

great advantage, compared with the aforementioned frontier approaches, was the possibility to 

use multiple outputs. DEA encompasses a variety of alternative related models for evaluating 

performance of Decision Making Unit (DMU). The basic DEA models are shown in the Table 

1. 

Table 1 Basic DEA models 
Model Return to scale Envelope Efficiency Type of 

efficiency 
Data 

     Input Output 
CCR 1-Output CRS Piecewise linear 0 - 1 TE Semi-p Free 

CCR-Input CRS Piecewise linear 0 - 1 TE Semi-p Free 

BCC 2 -Input VRS Piecewise linear 0 - 1 PTE,SE Free semi-p 

BCC-Input VRS Piecewise linear 0 - 1 PTE,SE Semi-p Free 

ADD 3 CRS, VRS Piecewise linear Free TE, AE Free Free 

VARMULT CRS (log linear) Piecewise log 
linear 

0 - 1 TE Free Free 

INVARMULT VRS (log linear) Piecewise Cobb 
Douglas 

0 - 8 TE Free Free 

 

 

 

 

 

 

 

 

 

 

1 CCR means CHARNES, COOPER and RHODES (1978) 
2 BCC means BANKER R.D., A. CHARNES, W.W. COOPER  (1984) 
3 Non oriented model 
 
Variable return to scale (VRS); Constant Return to Scale (CRS) 
Technical efficiency (TE) 
Allocative efficiency (AE) 
Economic efficiency (EE) 
Pure Technical Efficiency (PTE) 
Scale efficiency  (SE) 
Variante Multiplicative (VARMULT) 
Invariante Multiplicative  (INVARMULT) 
 
Source: Cooper et al. (1999) 
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 DEA and SFA use the concept of the frontier production function to define individual firm 

specific technical efficiency for a group of firms. The technical efficiency is calculated by 

comparing the firm’s efficiency with its potential. An advantage of the DEA approach is that 

it places no restrictions on the functional form of the frontier and it does not impose any 

(explicit) distributional assumption on the firm specific efficiency. DEA can accommodate 

multiple outputs and inputs but is extremely sensitive to variable selection and errors. The 

SFA has the advantage that it is a statistical approach and formal hypothesis tests can 

therefore be performed. However, SFA requires a functional form and needs assumptions 

about the distribution of the ‘random’ errors and the efficiencies. 

  

The comparison of Efficiency scores becomes problematic as soon as the model, the data or 

variables are changed. DEA focuses on deriving results for each DMU while within the SFA 

approach behavioural hypotheses can be tested. COELLI (1998) argues that SFA is likely to 

be more appropriate than DEA for applications in agriculture, particularly in developing 

countries where the data are heavily influenced by measurement errors and effects like 

weather, shocks and diseases. 

  

Several researchers have tried to compare results of applications of different estimation 

methods having the same set of data. BANKER et al. (1985), SHARAM et al. (1999) and 

PLESSMANN (2000) compared DEA with other estimation methods, whereby the structure 

of production was unknown. The common finding is that efficiency measurement depends on 

the choice of functional form of the SFA. GONG and SICKLES (1992) utilized Monte Carlo 

techniques to control the underlying technology and compared SFA and DEA. If the 

functional form is closed to the underlying technology, SFA outperforms DEA. If the 

functional form is closed to the underlying technology, SFA outperforms DEA and DEA 

seems to be more appropriate when the knowledge about the underlying technology is weak 

(KALIRAJAN, SHAND 1999). 

 

While the two approaches yield different results, DEA remains a competitor to stochastic 

frontier methods. Also, the use of more than one technique enables more robust inferences to 

be drawn. However, for DEA to be viewed as a true competitor, point estimates of 

efficiencies are not enough. In order to make inference on the DEA estimates, SIMAR and 

WILSON (1998) proposed a general methodology for bootstrapping in frontier models. 
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The bootstrap procedure for nonparametric frontier models was outlined by SIMAR and 

Wilson (1998), (2000a), (2000b)(SM). Our paper is not indented to explain the bootstrap 

procedure in detail. However, because it is important for the understanding of the remainder 

the general idea behind the bootstrap approach and the extension made by SIMAR and 

WILSON will be illustrated. In the following bootstrapping is discussed in terms of input 

efficiency. Given a column vector of p inputs (denoted by px +ℜ∈ ) and q outputs ( qy +ℜ∈ ), 

the activity of the production set can be described by means of the  

( ){ }qpyx +
+ℜ∈=Ψ ,   (1) 

production set (SIMAR and WILSON 2000b). The input requirement set defined  Ψ∈∀ y is 

{ }Ψ∈ℜ∈= + ),(|)( yxxyX p                                           (2)   

The Farrell efficiency boundaries are subsets of )(yX denoted by  

{ }10)(),(|)( <<∀∉∈=∂ θθ yXxyXxxyX  (3) 

The efficiency for a given point ),( kk yx : 

{ })(|min kkk yXx ∈= θθθ  (4) 

If 1=kθ the unit k is input efficient. An 1≤kθ represents the feasible proportionate reduction 

of inputs the DMU could realize if ky were produced efficiently. Hence the efficient level of 

input of corresponding to the output level is: 

kkkk xyxx θθ =),( .  

kθ is unknown because )(, yXΨ and kk xθ are unknown. 

Let P denote the DGP (data generating process) defined by specific assumption (see SIMAR 

and WILSON 2000b, page 7-8), from which the random sample ( ){ }niyx ii ,...,1|, ==χ  is 

obtained. By using a nonparametric method Μ  to obtain )(ˆ),(ˆ,ˆ yXyX ∂Ψ  it is possible to 

estimate its efficiency  { })(ˆ|minˆ
kkk yXx ∈= θθθ .  (5) 

The bootstrap procedure is based on the simple idea that there is a Data Generating Process 

which can be determined by Monte Carlo approximation. Therefore, it may be a reasonable 

estimator of the true unknown DGP generated from the data χ . By using the nonparametric 

method Μ  

( )






 =≥=≥≤>= ∑∑∑

===

nixxyyyx i

n

i
i

n

i
ii

n

i
ii ,...,1,0,1,,,|0min,ˆ

11
0

1
000 γλγθγθθ . (6)  

We can obtain an estimate ( )00 ,ˆ yxθ  of the true ( )00 , yxθ  efficiency for the farm 0f .  
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Consider now a new data set ( ){ }niyx ii ,...,1|, *** ==χ  drawn from P̂ . The convex hull of 

*χ gives an estimator *Ψ̂ of Ψ̂ , where Ψ⊆Ψ̂ .  

Corresponding to Ψ̂ we can derive  

( )






 =≥=≥≤>= ∑∑∑

===

nixxyyyx i

n

i
i

n

i
ii

n

i
ii ,...,1,0,1,,,|0min,ˆ

11

*
0

1

*
000

* γλγθγθθ (7) 

The sampling distribution of ( )00
* ,ˆ yxθ  is known since P̂  is known. This distribution can 

easily approximated by Monte Carlo methods. By using P̂  to generate B samples 

Bbb ,...,1,* =χ , yields a set of pseudo estimates *
b̂θ . The bootstrap method introduced by 

EFRON (1979) is based on the idea that if P̂  is a consistent estimator of P , the known 

bootstrap distribution will mimic the original unknown sampling distribution of the estimators 

of interest with: ( ) ( )( ) ( ) ( )( ) PyxyxPyxyx
approx

|,,ˆ~ˆ|,ˆ,ˆ* θθθθ −− . (8) 

     

Unfortunately this "naive" bootstrap would yield inconsistent estimates (SIMAR and 

WILSON 2000a). Therefore SM introduced a homogeneous smoothed bootstrap procedure. 

An easily implemented algorithm for consistently generating the bootstrap values *
b̂θ from a 

kernel density estimate is given in SIMAR and WILSON 1998 and SIMAR and WILSON 

2000b. 

The complete smoothed bootstrap algorithm is summarized by the following steps:  

(a)    First for each nkyx kk ,...,1),( =  compute kθ̂ by the linear program (6)  

(b) Using the smooth bootstrap generate a random sample of size n from nii ,...,1,ˆ =θ  

providing  *
1

* ˆ,...,ˆ
nbb nθθ .  

(c)  Then compute the bootstrap estimates  bk ,
*θ̂  for  kθ̂  for  nk ,...,1=  by solving  

( )






 =≥=≥≤>= ∑∑∑

===

nixxyyyx i

n

i
i

n

i
bkik

n

i
iik ,...,1,0,1;,,|0min,ˆ

11
,

*

1
00

* γλγθγθθ  (9) 

where nixx iibk ,...,1,)/ˆ( **
, == θθ  and *

iθ is a factor that is necessary to correct the generated 

bootstrap sequence. (see SIMAR and WILSON 2000a, page 56) with 

)~)(ˆ/1/(1 **2
ˆ

2** βθσβθ θ −++= ih        (10) 

with ∑ =
= n

i in
1

** /1 ββ         (11) 
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and let ** ,..., ni ββ  a simple bootstrap sample from nθθ ˆ,...,1̂  obtaining be drawing with 

replacement from nθθ ˆ,...,1̂  and the random generator 











−−
≤+>−+

=
otherwiseh

ifh

ii

iiii
i **

****
*

2
,1~

εβ
εβεβ

θ       (12) 

where h  is called the bandwidth factor and *
iε is a random deviate drawn from the standard 

normal. SIMAR and WILSON (2000b) discussed in detail how to calculate the bandwidth 

factor. We used the normal reference rule which assigns 

 4
1

4
1

4
4ˆ ++

++










++
= qp

qp
n

qp
h  .       (13) 

The rule is only valid when the data are normally distributed with unit variance and zero 

covariance. Because that will probably not be the case, several other bandwidth factors were 

chosen in order to assess the impact of that parameter for applied DEA analysis in our 

analysis.  

  

(d) Finally repeat step b-c B times to provide for k=1,..n a set of estimates 

 

{ }Bbbb ,...,1ˆ*
, =θ          (14) 

 

The procedure described by SIMAR and WILSON (1998) for constructing confidence 

intervals introduces additional noise into the procedure (SIMAR and WILSON 2000a). 

Therefore, they introduced an improved procedure (SIMAR and WILSON 1999) to derive 

confidence intervals which automatically correct for bias without explicit use of a noisy 

biased estimator.  Using the pseudo estimates { }Bbbb ,...,1ˆ*
, =θ  it is possible to find αα ab ˆ,ˆ . 

 αχθθ αα −=−≤−≤− 1))(ˆ|ˆ),(ˆ),(ˆˆPr( 0000
*

nDEA Payxyxb     (15)  

Finding αα ab ˆ,ˆ  means sorting the values ),(ˆ),(ˆ
0000

* yxyxDEA θθ − , b 01,…,B in increasing 

order and then deleting 






 100*
2
α  percent of the rows at either end of the list and set 

αα ab ˆ,ˆ −− to the endpoints of the array with αα ba ˆˆ, ≤ and the α−1 -percent confidence interval 

is then αα θθθ byxyxayx DEADEA
ˆ),(ˆ),(ˆ),(ˆ

000000 +≤≤+ . This procedure is then repeated n 

times to obtain n confidence intervals, one for each form. 
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5 DEA Applications in Agricultural Science  

 

PETRAJA-CHAPARRO et al. (1999) state that: [… inspite of the maturity of the DEA 

literature, there remain same lacunae] and amongst the most important is the absence of a 

convincing model selection methodology. Therefore, the purpose of this section is to argue 

that insufficient attention has been payed to decisions regarding data aggregation, sample size 

and returns to scale within the applied agricultural literature. Moreover, sensitivity analysis 

has been the exception rather than a rule. The findings are displayed in Table 2, whereby 

interest is directed toward the different models, data aggregations and sample sizes. 

Table 2 Overview over DEA efficiency measurement applications in agriculture 
Author Title D

E
A

 m
ethod 

Place of 
investigation 

Explaining 
efficiency scores 

Sensitivity 
analysis 

Input/Out 
in DEA 
 
Sample 
size 
 
 

Efficiency 

LLEWELYN, 
WILLIANS 
(1996) 

Nonparametric analysis of 
technical, pure technical 
and scale efficiency for 
food crop production in 
East Java 

CRS, 
VRS 

Indonesia 
Java 

Socio 
economi
c 
regressi
on  

- 6/1 
 

(77) 

TE, PTE, 
SE 

TOWNSEND, 
KIRTEN, VINK 
(1998) 

Farms size productivity 
and return to scale in 
agriculture revisited: a 
case study of wine 
producers in South Africa 

CRS, 
VRS 

South 
Africa 

Regressi
on on 
producti
vity and 
farm 
size 

- 7/1 
 

(400) 

TE, SE 

JAFORULLAH, 
WHITEMAN 
(1999) 

Scale efficiency in New 
Zealand dairy industry: a 
non-parametric approach  

CCR, 
BCC 

New 
Zealand 

- - 3/7 
 

(264) 

TE,PTE,
SE 

SHARMA, 
LEUNG, 
ZALESKI 
(1999) 

Technical, allocative and 
economic efficiencies in 
swine production in 
Hawaii: a comparison of 
parametric and 
nonparametric approaches 

DEA 
(VRS 
and 

CRS), 
SFA 

Hawaii Regressi
on 

- 4/1 
 

(53) 

TE, AE, 
EE  

FRASER,CORD
INA (1999) 

An Application of DEA to 
irrigated diary farms 

CRS, 
VRS 

North 
Victoria 
Australia 

- - 6/1 
(50) 

TE 

FRASER, 
HONE (1999)  

Farm level efficiency and 
productivity measurement 
using panel data: wool 
production in south west 
Victoria 

CRS South west 
Victorian 
wool farms 

- - 4/1 
(26) 

TE, TFP 

ZAIBET,DHAR
MAPALA 
(1999) 

Efficiency of government- 
supported horticulture: the 
case of Oman 

SFA, 
DEA 

(CCR, 
BCC) 

Oman Regressi
on 

- 3/1 
 

(35) 

TE 
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SHAFIQ, 
REHMAN(2000) 

The extent of resource use 
inefficiencies in cotton 
production in Pakistan’s 
Punjab: an Application of 
DEA 

CRS, 
VRS 

Pakistan Regressi
on 

- 6/1 
 

(117) 

TE,AE 

BRÜMMER 
(2001) 

Estimating confidence 
intervals for technical 
efficiency: the case of 
private farms in Slovenia 

DEA, 
SFA 

Slovenia No BS5 4/1 
 

(185) 

TE 

 

 Table 2 shows that both CRS and VRS model specifications and different input data 

aggregations were applied. Sample sizes range from 26 up to 4027. Most analysis applied 

both, CRS and VRS. While this should be viewed positively, the majority of the literature has 

not discussed, with the exception of scale efficiency, which assumptions were likely to be 

more appropriate. In applied research, the estimation of confidence intervals for the 

nonparametric frontier approach has been mainly absent, with the exception of BRÜMMER 

(2001). Although many different DEA models were developed in the past and used for 

applied analysis, there seems to be little theoretical or empirical guidance with regard to DEA 

specification, particularly when using bootstrapping. 

 

6 On the quality of efficiency scores 

 

In view of the observations above,  this paper uses Slovenian farm data to investigate how 

efficiency ranking depends on the model specifications and how confidence intervals can be 

used to give further insights into the validity of the efficiency scores. Efficiencies and 

confidence intervals for constant and variable returns to scale, for different bandwidth factors 

h (see equation 12) and for different input aggregations were calculated for a corrected data 

set of 69 Slovenian farms.  

 

The sample size satisfies the rule proposed by BANKER et al. (1989). He proposed that the 

sample size (n) should be greater tan 3(m+s), where m is the number of inputs and s the 

number of outputs. Furthermore, the sample is representative of the reviewed applications in 

Table 2, where data collection was at the farm level. In addition SIMAR and WILSON 2000b 

illustrated the bootstrap method by examining data with 70 observations originally from 

CHARNES et al. (1981). Therefore, the chosen sample size is representative for this kind of 

investigation.  The model specifications include a calculation for CRS and VRS for a 

2input/1output and 4input/1output case. The confidence intervals were estimated by using the 

                                                 
5 Bootstrap/Confidence interval 
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homogeneous smoothed bootstrap procedure introduced by SILMAR and WILSON with 

2000 bootstraps and three different bandwidth  factors (h), whereby h(0.58) was estimated by 

using the normal reference rule (see equation 13). To compare the different confidence 

intervals the coefficient of separation was estimated (LATRUFFE et al. 2002). The coefficient 

of separation is a summary statistic, which is calculated by taking each firm and identifying 

the farms in the sample that are significantly more efficient (at a given significance level). 

The statistic tells us, what percentage of the sample are significantly less efficient than a given 

percentage of the sample, after the sample has been ranked. The coefficient of separation is 

calculated by the ratio of the area under the curve and the area of full separation (see figure 4) 

and serves to demonstrate the fact that wider intervals mean higher probability of overlapping 

intervals. In essence, the smaller the coefficient of separation (at a given level of 

significance), the less we can differentiate between farm efficiencies. 

 

7 Data 

 The data used in this study are based on the RIAFE (Research Institute for Agricultural and 

Food economics) farm cost database in Slovenia. It is not the main purpose of this work to 

investigate the structure of efficiencies in Slovenia, but to show how reliable the DEA results 

are by applying different model specifications. After the data set was corrected for outliers the 

mean normalized procedure was (SARKIS 2002). The inputs for the four input case are (1) 

purchased seed, home grown seed (implicit price), (2) purchased fertilizer, manure (implicit 

price), (3) chemicals, other direct costs, wages and (4) services and other cost (all inputs in 

Slovenian Krowns) Output defined as production of wheat in metric tons. For the two input 

case the inputs 1/2 and 3/4 were aggregated.  

 

 

8 Computation 

To compute the confidence intervals it is necessary to solve n x b linear programs. The 

GAMS/DEA tool was added to the GAMS system, which solves linear and mixed integer 

Data Envelopment Analysis (DEA) programs very efficiently (FERRIS et al 2000). By using 

the SLICE module in GAMS and CPLEX it was possible to reach a very high performance 

regarding the calculation time6. Several runs were made to test the power of the GAMS/DEA 

SLICE module and our recommendation are that there is no computational burden  up to 2500 

                                                 
6 Hardware Intel® Pentium® 3 processor 800 Mhz. The Gams Programs for the bootstrapping procedure are 
provided in the Appendix. This shall document the work in the most precise and reproducible way possible.  
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DMUs and 8 input/1output. Therefore sensitivity analysis on DEA estimates using 

bootstrapping may be implemented as a standard routine, at least from the computational 

point of view.   

Table 3 Solution time for (CPLEX) Slice Interface DEA (BBC)  
 

Number of 
bootstraps 

Number of DMUs Number of 
outputs 

Number of inputs Solving time 

2000 80 4 1 47 min 

2000 1000 4 1 7 hours, 24 min 
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9 Results 

To investigate the robustness of the results, the smoothed homogeneous input orientated 

bootstrap method for each model specifications were applied with the calculated 

bandwidthfactor7 of 0.58. If one applies this rule to estimate the bandwidth it is assumed that 

the data are normally distributed. Nevertheless SIMAR and WILSON found for their sample 

that the normal reference rule produced a reasonably good estimator for the bandwidth. 

Additional bandwidths of (0.005/0.05) were used to find the impact of the bandwidths on the 

confidence intervals for the efficiency scores of the DMUs. The results for the estimated 

confidence interval for the two input case, CRS/VRS and h(0.58) are shown in Figure 2. 

 

Figure 2: Confidence intervals and point estimates for CRS (a) and VRS (b) 2 inputs h(0.58) 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
 
7 Calculated according to normal reference rule. See equation (13) 
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(b) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2 depicts the sample observations ordered by the bias-corrected efficiency score. The 

95 percent confidence intervals for each farm are represented by the lower dashed line and the 

upper line and original efficiencies are indicated by the respective symbols. It is evident that 

the original efficiencies are not included in the confidence interval. The estimated confidence 

intervals for the CRS case are narrower than the confidence intervals of the VRS. Figure 2 

reveals that the estimated bias is negative and in many cases quite large. Amongst the 

observations which were originally efficient, the lower bound for the estimated 95 percent 

confidence intervals range, for the CRS case, from 0.5 to 0.57 and, for the VRS case, from 

0.02 to 0.63 for the two input model. 

 

For DMU 57 an original efficiency score of 1.00 was estimated. The bias corrected efficiency 

was 0.50 and the lower and upper bound of the confidence interval are 0.02 and 0.78. These 

wide confidence intervals for particular DMUs have also been found by SIMAR and 

WILSON (2000b). Nevertheless, there are observations where the confidence interval is quite 

small, in particular for the two input CRS case. The widths of the confidence intervals vary 

considerably over the sample size especially for the VRS case and for more than two inputs. 

BRÜMMER (2001) stated that it is easier to identify the observations with low efficiency 

scores than to identify high performers in his sample. The same observation can be made for 

the Slovenian farm sample, in particular for the VRS model.  
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Figure 3  Confidence intervals and point estimates for CRS (a) and VRS (b) 4 inputs h(0.58) 
 
(a) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3 depicts the 4 input case for the estimated bandwidth factor h(0.58). The Weight of 

the confidence intervals for the VRS as well as for the CRS increases, and hence the 

coefficients of separation decline.  
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Table 4 Coefficient of Separation for the different model specifications 
 

  Coefficient of Separation in % 

Number of input Return to 
scale 

h=0,005 h=0,05 h=0,58 

2 CRS 71.7 70.8 57.4 
2 VRS 50.1 48.2 37 
4 CRS 52.2 49.4 36.4 
4 VRS 29.7 26.9 20.3 

 
The coefficient of separation ranges between 71,7 to 20,3. The highest coefficient of 

separation is reached in the case of two input, CRS and h(0,005) and the lowest by the four 

Inputs-VRS h(0,5). For h(0.58) the separation coefficient is still 57 percent. Unfortunately, 

this is only valid for the model specification case with two inputs and CRS. If the 

discriminatory power was improved by increasing the number of inputs, the coefficient of 

separation declined by 20 percent, independent of the choice of return to scale or the 

bandwidth factor.  

 

 The situation deteriorates when applying VRS. The coefficient of separation declines then by 

21 percent. The coefficient of separation decreased if a larger bandwidth factor was chosen. 

The implications of the analysis above are that with moderate sample sizes, expecting to get 

accurate point estimates using VRS is optimistic. However, this does not undermine the use of 

DEA in these circumstances. Many studies use these estimates in subsequent analysis, taking 

DEA scores and regressing them against potential explanatory variables such as education and 

so on. The implication of the analysis above is that the dependent variable is measure with 

considerable noise. The results above do suggest that these studies are invalid. However, they 

do highlight that there are important decisions to be made with regard to using CRS or VRS. 

The former may be more biased, but if the consequences of using VRS are that the intervals 

are very wide, then CRS might actually outperform it according to a mean square error 

criteria. Thus, there is a bias vs efficiency trade off here that is much the same as the tradeoff 

between using a flexible or parsimonious functional form using a SFA. 

  

On the basis of the results above, we would suggest always doing both CRS and VRS, 

whereby if the bootstrap standard errors for VRS are too large (CoS < 50 percent), use the 

CRS for subsequent analysis. Based on a CoS greater than 50 percent DMUs can be grouped 

and these groups can be used to rank the performance, to set targets or to examine the 
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efficiency of a particular group. Furthermore, one must be aware that higher aggregation of 

inputs or output means a loss of discriminating power but a gain regarding to the CoS or 

narrower intervals. The central argument of this paper is therefore: DEA in conjunction with 

bootstrapping give the applied researcher the possibility to justify the model specification 

subject to the purpose for which the results are used. Using the Slice Model, there is no 

overwhelming computational burden of doing this, even in very large sample sizes.   

  
Figure 4: Statistics for the different model specifications to get the Coefficient of Separation 
(2 inputs) 
 (a) h(0.005)            (b) h(0.58)  
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10 Summary and Conclusions  
 
Despite the growing literature on the statistical properties of DEA estimators, most 

agricultural scientists have ignored the sampling noise and often had little theoretical or 

empirical guidance concerning how to correctly conduct DEA. As different model 

specifications on Slovenian farm sample demonstrate, ignoring the statistical properties of the 

estimators or ignoring different assumptions about returns to scale and data aggregation can 

lead to erroneous conclusions. 

 

 For the different model specifications, CVS, VRS 2/4 input and h(0.005;0.05;0.58) it was 

shown that using VRS instead of CRS decreases the coefficient of separation, and efficient 

units also have larger confidence intervals than in the CRS case. If the bandwidth factor was 

increased the slope of the ordered bias-corrected efficiencies decreased. High bandwidth 

factors increase the bias and the original efficiencies are therefore not included in the 

confidence intervals. In the Slovenian data set, the coefficient of separation depends on the 

model specification and ranges from 20% to 71% non-overlapping confidence intervals. 

Therefore, DEA results must be interpreted cautiously. Here, we suggest always doing both 

CRS and VRS subject to different input and output aggregations, whereby if the bootstrap 

standard errors for VRS are too large (e.g. CoS under 50 percent), use the CRS for subsequent 

analysis and try to increase the aggregation subject to the purpose for which the results are to 

be used. Apart from the different model specifications, it is important to set up a 

computational framework which ensured a convenient calculation of confidence intervals for 

DEA. By using the slice model in GAMS, the statistical properties of the estimator may easily 

be investigated for any applied study and could shed light on the usefulness of the DEA 

efficiencies.  

 

The results of applied data envelopment analysis in agriculture can heavily depend on the 

methodology. Recently developed techniques for interval estimation of technical efficiency 

can be used to test DEA results. But again, the confidence intervals depend on the model 

(CCR, BBC) and on the aggregation assumptions. Hence it could be shown, that it is possible 

to rank 57 percent of the farms significantly under the assumption of CRS and two inputs. 

Whereas for VRS and four inputs only 20 percent of the DMUs in the sample could be ranked 

without overlapping intervals although the same data set was used. Therefore, it is possible 

that using different procedures, the coefficient of separation may heavily depend on the 

treatment of returns to scale and input aggregation.  
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Finally, further research might exploit the high performance of the programmed 

GAMS/SLICE bootstrap procedure. This might extend the work conducted by SIMAR and 

WILSON by conducting Monte Carlo experiments on more than 2 dimensions of inputs and 

outputs while also increasing the number of DMUs. Question marks also remain over the 

relationship between the sample size and the CoS.   
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