

Institute for Market Analysis and Agricultural Trade Policy

Renewable energies – new forces in Brazilian trade with the EU?

Ernst-Oliver v. Ledebur, Petra Salamon, Kamal Elmahdi and Rainer Klepper

Facts

Method

Outcome

Structure

- Introduction
- Ethanol production
 - trade
- Trade flow analysis
 - the gravity model
- Results and conclusion

Facts

Method

Outcome

Background I – increasing energy costs

OPEC Real oil prices 1970 to 2004

Annual Statistical Bulletin 2004, OPEC (2005)

Facts

Method

Outcome

Background I – increasing energy costs

OPEC Real oil prices 1970 to 2004

Annual Statistical Bulletin 2004, OPEC (2005)

Facts

Method

Outcome

Background II – increasing energy costs

Real crude prices* January 1970 to July 2005

^{*} West Texas Intermediate in constant (July, 2005) U.S. dollars

SOURCE: Federal Reserve Bank of St. Louis, and Bureau of Labor Statistics in LEMIEUX (2006)

Facts

Method

Outcome

Agricultural energetic option - ethanol

Own calculations based on USDA, FAOStat (2004/5)

Facts

Method

Outcome

Agr. energetic option - ethanol

Own calculations based on USDA, FAOStat (2004/5)

Facts

Method

Outcome

Ethanol: still an agr. energetic option?

Own calculations based on USDA, FAOStat (2004/5)

Facts

Method

Outcome

Background III – increasing energy costs

Real crude prices* January 1970 to July 2005

^{*} West Texas Intermediate in constant (July, 2005) U.S. dollars

SOURCE: Federal Reserve Bank of St. Louis, and Bureau of Labor Statistics in LEMIEUX (2006)

Facts

Method

Outcome

Ethanol production

Source: OECD (2006), based on FAOSTAT and F.O. Licht.

Facts

Method

Outcome

Ethanol export flows, 2004

Facts

Method

Outcome

Ethanol import flows, 2004

Facts

Method

Outcome

Trade flow analysis: the gravity equation

$$X_{ij} = \alpha_0 GDP_i^{\alpha_1} \left(\frac{GDP_i}{POP_i}\right)^{\alpha_3} GDP_j^{\alpha_2} \left(\frac{GDP_j}{POP_j}\right)^{\alpha_4} DIST_{ij}^{\alpha_5}$$

$$\ln X_{ij} = \ln \alpha_0 + (\alpha_1 + \alpha_3) \ln GDP_i - \alpha_3 \ln POP_i$$
$$+ (\alpha_2 + \alpha_4) \ln GDP_j - \alpha_4 \ln POP_j + \alpha_5 \ln DIST_{ij}$$

Facts

Method

Outcome

Trade flow analysis: the gravity equation

$$\ln X_{ij} = \alpha_0 + \alpha_1 \ln GDP_i + \alpha_3 \ln \left(\frac{GDP_i}{POP_i}\right)$$

$$+ \alpha_2 \ln GDP_j + \alpha_4 \ln \left(\frac{GDP_j}{POP_j}\right)$$

$$+ \alpha_5 \ln DIST_{ij}$$

$$+ \alpha_6 \ln(Area_i) + \alpha_7 \ln(Area_j) + \alpha_8(ID)$$

$$+ \alpha_{10}(JD_T) + ... + \alpha_{T+n}(JD_{T+n})$$

Facts

Method

Outcome

Specification and results

logX = f (logGDP, logGDP_E, logDistance,

log_GDP/POP_log_GDP_E/POP_E

dummy_exEU15,

dummy_MSUL_,

dummy_inEU15,

dummy_inNAFTA, dummy_NAFTA_,

dummy_inMSUL,

logAREA E)

Trade Creation dummy: 1 if countries i and i belong to the same RTA

Trade diversion dummy: 1 if an RTA member imports from a third country

And additional dummies and variables to capture influence of:

- annual events
- price/quality variation
- energy prices
- substitutes (sugar)

Facts

Method

Outcome

Specification and results

basic gravity equation specifications for the ethanol trade, 1975-2004

	Model 1	Model 2	
Intercept	-1.50191**	-13.78432**	
logGDP	0.43016**	0.46238**	
logGDP_e	-0.15383**	-0.1131**	
logDistance	-0.19773**	-0.17721**	
Log_(GDP/POP)	0.03586**	0.01712**	
Log_(GDPe/POP_e)	-0.0793**	-0.04606**	
dummy_inNAFTA	0.83964*	0.54269**	
dummy_exEU	-0.28247**	0.01969**	
logUnitVal		-0.69685**	
logOILPR		0.22686**	
logAREA_e	0.05602**	0.01978**	
dummy_EU15	1.05025**		
R^2/\overline{R}^2	0.2312/0.2306	0.3943/0.3941	

^{**} significant at a level of 1%,

^{*} significant at a level of 10%

^{11 290} observations in Model 1, 20 696 observations in Model 2 Own calculations.

Facts

Method

Outcome

Specification and results

Ethanol global gravity equation, period pooled data

	Model	Model	Model	Model	Model	Model
	04-00	99-95	94-90	89-85	<i>84-80</i>	<i>79-75</i>
Intercept	-13.78	-15.10	-13.732	-14.875	-22.140	-16.47
logGDP	0.462	0.333	0.484	0.491	0.402	0.498
logGDP_E	-0.113	-0.101	-0.093	-0.174	-0.089	-0.030
logDistance	-0.177	-0.025	-0.218	-0.19	-0.156	-0.091
log_(GDP/POP)	0.017	0.030	0.006	0.055	0.026	0.030
log_(GDP_E/POP_E)	-0.046	-0.021	-0.025	-0.005	-0.060	-0.030
dummy_inNAFTA	0.542	0.646	0.322	0.851	1.781	1.164
dummy_exEU	0.019	0.556	-0.397	-0.599	-0.449	-0.435
logUnitVal	-0.696	-0.86	-0.886	-0.886	-0.826	-0.571
logOILPR	0.226	0.339	-0.838	-0.187	2.462	0.679
logAREA_E	0.019	0.015	-0.008	-0.023	-0.078	-0.153
R^2/\overline{R}^2	0.38/0.38	0.40/0.40	0.43/0.43	0.50/0.50	0.40/0.39	0.31/0.30
Observations	7072	5055	3465	2307	1730	846
0 1 1 1		<u> </u>				

Own calculations.

Facts

Method

Outcome

Qualification

- Estimation results display relatively low significations
- Some commonly used dummy variables have been excluded due to correlation
- Non-existing trade flows had to be excluded from analysis
- The use of the Poisson Pseudo Maximum Likelihood Estimator (PPMLE) might overcome the problems and will be tested
- Preliminary results including tariffs here only applied tariffs – indicated insufficient results, therefore bound tariffs will be required for further analysis

Facts

Method

Outcome

Summary

- Pooled estimates of variables (size, income, distance) for ethanol trade are significant with expected signs
- Impact on exporter's income is more pronounced than that of importers
- From the supply side agricultural land is relevant
- Formation of EU and NAFTA have had a positive impact on intra-regional ethanol trade – but not for the MERCOSUR
- EU decoupled domestic ethanol market from the world market - but effect is decreasing
- Variations of oil price have had an influence on ethanol trade

Facts

Method

Outcome

Conclusions

- The gravity model approach explains the trade flows as expected but only at a low level of determination thus refinement is needed to enable estimation of potential developments
- The markets of renewable agricultural energy sources are complex as several goals are to be achieved inducing 'erratic market movements'
- The market will remain policy driven and will depend on tensions in the energy markets as well as on the technological development

E.g. the flex-fuel-engine boosted the demand for ethanol in Brazil, allowing the consumer to choose between the cheapest and most convenient fuel

Facts

Method

Outcome

Thank you for your attention

