ARBEITSBERICHT

Institut für Holzchemie und chemische Technologie des Holzes

Stoffliche Verwertung von Pyrolyseflüssigkeiten aus Lignocellulosen Teilvorhaben 1: Wissenschaftlich-technische Begleitung

von

Dietrich Meier

Bundesforschungsanstalt für Forst- und Holzwirtschaft

und die

Ordinariate für Holzbiologie, Holztechnologie und Weltforstwirtschaft der

Universität Hamburg

Hamburg 2003

Bundesforschungsanstalt für Forst- und Holzwirtschaft Leuschnerstr. 91, 21031 Hamburg Postfach 80 02 09, 21002 Hamburg

> Tel.: 040 / 739 62 - 517 Fax: 040 / 739 62 - 502

Institut für Holzchemie und chemische Technologie des Holzes

Stoffliche Verwertung von Pyrolyseflüssigkeiten aus Lignocellulosen Teilvorhaben 1: Wissenschaftlich-technische Begleitung

von

Dietrich Meier

Arbeitsbericht des Instituts für Holzchemie und chemische Technologie des Holzes 2003/1

Hamburg, Januar 2003

INHALTSVERZEICHNIS

1	KURZ	E DARSTELLUNG	1
	1.1 At	JFGABENSTELLUNG	1
	1.2 PL	ANUNG UND ABLAUF	1
2	EINGE	HENDE DARSTELLUNG DER ERGEBNISSE	
	2.1 AF	P1 ANALYSE UND CHARAKTERISIERUNG DER CHEMVIRON-ÖLE	4
	2.1.1	Analyse spezieller Fraktionen	6
	2.2 AF	2 Analyse und Charakterisierung der Öle mittels LC/MS	11
	2.3 AF	P3 Überkritische CO ₂ -Extraktion	
	2.3.1	SCFE 2	
	2.3.2	<i>SCFE 3</i>	
	2.3.3	SCFE 4	
	2.3.4	SCFE 5	
	2.3.5	SCFE 6	
	2.3.6	SCFE 7	
	2.4 AF	24 Entwicklung von Trennverfahren im Labormaßstab	
	2.4.1	Festphasenextraktion (SPE)	
	2.4.2	Lösemittelextraktion mit Soxhlet-Extraktion	
	2.5 AN	VALYSEN VON WERKSPROBEN	
3	NUTZI	EN, VERWERTUNGSPLAN UND VERÖFFENTLICHUNGEN	
4	ANHA	NG	

1 Kurze Darstellung

1.1 Aufgabenstellung

Bei einer großen Holzkohleproduktionsfirma (Chemviron Carbon), die bisher ca. 90 % der Pvrolvseöle (ca. 40.000 t/Jahr) verbrennt, soll anfallenden durch Anwendung produktionsintegrierter Umweltschutzmaßnahmen unter Einsatz von modernen und innovativen Trennverfahren überkritische CO₂-Extraktion, Chromatographie sowie Extraktion und Destillation die bisherige thermische Verwertung der anfallenden Pyrolyseflüssigkeiten zugunsten einer stofflichen Nutzung ersetzt werden. Die chemische Nutzung der Pyrolyseflüssigkeiten würde, im Vergleich zur einfachen Verbrennung, eine wesentliche höhere Wertschöpfung der Öle bedeuten und durch Vermeidung der heutigen thermischen Entsorgung des organisch belasteten Wassers zu einer Energieeinsparung von bis zu 50 % führen. Darüber hinaus liefert die stoffliche Nutzung der Nebenprodukte der Holzkohleproduktion auch einen Beitrag zur Schonung fossiler Rohstoffe, da diese nicht mehr aus fossilen Energieträgern gewonnen werden müssen.

Die Aufgabe der BFH bestand in der wissenschaftlich-technische Begleitforschung zum Antrag der Fa. Chemviron. Dazu wurden diverse Arbeitspakete (AP) zu Beginn des Vorhaben definiert und in weitere Teilaufgaben (TA) aufgegliedert, die im folgenden dargestellt sind.

1.2 Planung und Ablauf

AP1 Analyse und Charakterisierung der Chemviron-Öle

- TA1 Gaschromatographie-FID zur Quantifizierung der verdampfbaren Öl-Komponenten
- TA2 Gaschromatographie-Massenspektrometrie zur Identifizierung der verdampfbaren Öl-Komponenten
- TA3 Ermittlung chemo-physikalischer Kennzahlen (Wassergehalt, Viskosität, pH, Carbonylgruppen)
- TA4 Festphasen-Extraktion zur Gruppierung von Öl-Komponenten

AP2 Analyse und Charakterisierung der Öle mittels LC/MS bei der BFH

- TA6 Methodenentwicklung zur Flüssigkeitschromatographie und massenspektroskopische Untersuchungen der Eluate
- TA7 Erstellung einer Spektrenbibliothek

AP3 Aufbau einer Extraktionsapparatur für überkritisches Kohlendioxid (SCFE)

TA8 Ein vorhandenes Autoklavensystem soll durch eine moderne, kontinuierlich arbeitende Extraktionsapparutur für überkritisches CO₂ ersetzt werden.

AP4 Entwicklung von Trennverfahren im Labormaßstab bei BFH

TA9 In enger Kooperation mit Chemviron Carbon werden verschiedene neuartige Verfahren untersucht. Im Vordergrund steht die Festphasenextraktion und die Flüssigkeitschromatographie mit angekoppeltem Massenspektrometer (LC/MS) zur Identifizierung nicht verdampfbarer Komponenten. Die Festphasenextraktion und die Flüssigkeitschromatographie sollen sowohl für den analytischen als auch für den präparativen Maßstab entwickelt werden. Zu Beginn des Projektes wurde eine Literaturrecherche durchgeführt am FIZ Karlsruhe über STN mit den Stichworten "pyrolysis" and "bio" and "oil" and "chemicals" in den Datenbanken Caplus, COMPENDEX, ENERGIE, ENERGY, INID und INSPEC. Die relevanten Ergebnisse sind im folgenden dargestellt.

Production of chemicals from bio-oil Radlein, D.; Piskorz, J. Resource Transforms International Ltd., Unit 5, Waterloo, ON, N2V 1Z7, Can. Biomass Gasif. Pyrolysis, [Conf.] (1997), 471-481.Editor(s): Kaltschmitt, Martin; Bridgwater, A. V. Publisher: CPL Press, Newbury, UK.

Application of rapid thermal processing of biomass Graham, Robert G.; Freel, Barry a.; Huffman, D. R.; Bergougnou, Maurice A. Ensyn Technologies Inc., Gloucester, ON, K1G 3N3, Can. Adv. Thermochem. Biomass Convers., [Ed. Rev. Pap. Int. Conf.], 3rd (1994), Volume 2, 1275-88.Editor(s): Bridgwater, Anthony V. Publisher: Blackie, Glasgow, UK.

The characterization of fast pyrolysis bio-oils Huffman, D. R.; Vogiatzis, A. J.; Bridgwater, A. V. Ensyn Technol. Inc., Gloucester, ON, K1G 3N3, Can. Adv. Thermochem. Biomass Convers., [Ed. Rev. Pap. Int. Conf.], 3rd (1994), Meeting Date 1992, Volume 2, 1095-102.Editor(s): Bridgwater, Anthony V. Publisher: Blackie, Glasgow, UK.

Integrated chemicals and fuels recovery from pyrolysis liquids generated by ablative pyrolysis Meier, D.; Bridgwater, A. V.; Di Blasi, C.; Prins, W. BFH-Institute for Wood Chemistry and Chemical Technology of Wood, Hamburg, 21027, Germany Biomass Gasif. Pyrolysis, [Conf.] (1997), 516-527.Editor(s): Kaltschmitt,

Martin; Bridgwater, A. V. Publisher: CPL Press, Newbury, UK.

Fast pyrolysis of biomass for recovery of specialty chemicals Scott, D. S.; Legge, R. L.; Piskorz, J.; Majerski, P.; Radlein, D. Dept. of Chemical Engineering, University of Waterloo, Waterloo, ON, Can. Dev. Thermochem. Biomass Convers. (1997), Volume 1, 523-535.Editor(s): Bridgwater, A. V.; Boocock, Dave G. B. Publisher: Blackie, London, UK.

Method of upgrading biomass pyrolysis liquids for use as fuels and as a source of chemicals by reaction with alcohols PA Radlein, Desmond St. A.G., Can.; Piskorz, Jan K.; Majerski, Piotr A. PA Radlein, Desmond St. A.G., Can.; Piskorz, Jan K.; Majerski, Piotr A. Eur. Pat. Appl., 9 pp.

The extraction and recovery of chemicals from biomass derived fast pyrolysis liquids Dick, C. M.; Bridgwater, A. V. Energy Research Group, University Aston Birmingham, Birmingham, UK Biomass Energy, Environ., Agric. Ind., Proc. Eur. Biomass Conf., 8th (1995), Meeting Date 1994, Volume 3, 1757-64.Editor(s): Chartier, Philippe; Beenackers, A. A. C. M.; Grassi, G. Publisher: Elsevier, Oxford, UK.

Alle o.g. Arbeiten befassen sich mit der Nutzung von Ölen, die durch schnelle Pyrolyse (Flash-Pyrolyse) von Biomasse erzeugt werden. Die Literatur beschreibt fast ausschließlich prinzipielle Möglichkeiten der Chemierohstoffnutzung. Bislang wird aber kommerziell nur die Herstellung von Flüssigrauch aus RTP (Rapid Thermal Processing) Ölen betrieben.

Über die Gewinnung von Wertstoffen aus der langsamen Pyrolyse, wie sie in diesem Vorhaben angestrebt ist, konnten allerdings keine Literaturangaben ermittelt werden.

Im Laufe der Untersuchungen wurden regelmäßig Literaturrecherchen bei EASY WEB of SCIENCE durchgeführt. Darüber hinaus hält der Verfasser über EU-Projekte und EU-Netzwerke (THERMONET) persönlichen Kontakt zu europäischen und amerikanischen Fachleuten. Dabei ist bekanntgeworden, dass die Gewinnung von Chemierohstoffen aus Pyrolyseflüssigkeiten zwar oft angestrebt wird, aber die Märkte oft Nischen darstellen oder bereits von kleinen Firmen besetzt sind, die allerdings aufgrund ihrer exklusiven Geschäfte verständlicherweise nicht publizieren.

2 Eingehende Darstellung der Ergebnisse

2.1 AP1 Analyse und Charakterisierung der Chemviron-Öle

Zunächst wurden sämtliche Pyrolyseöl-Fraktionen der Fa. Chemviron, die bei der Holzkohleproduktion gewonnen werden (siehe Tabelle 1), auf ihren Gehalt an Wertstoffen untersucht sowie chemisch charakterisiert.

Nr.	Name	Abkürzung
1	Tauchtopfteer	TTT
2	Rohteer	
3	Rohholzessig	RHE
4	Tropfenfänger gesamt Mischphase	
4a	wässrige Phase	
4b	teerige Phase	
5	Holzgeist	HG
6	Prozesswasser vor Kolonne	
7	Prozesswasser nach Kolonne	PW
8	Extraktionsteer	Exteer
9	Flüssigrauch (höherer Phenolanteil)	HC 1
10	Flüssigrauch (höherer Carbonylanteil)	HC 2
10b	neutralisiert auf pH 7	
11	Stufe 2 Sirup	
12	Flüssigrauch Red Arrow 24s	
13	Buchenholzteer	

Tabelle 1 Untersuchte Proben aus dem Produktionsprozess von Chemviron

Sämtliche Proben wurden mittels GC/MS analysiert. Trennung und Auswertung der Ergebnisse erfolgte nach einer Hausmethode unter Zuhilfenahme eigener und kommerzieller Massenspektrenbibliotheken. Die Quantifizierung der Einzelkomponenten erfolgte durch GC/FID Analyse mit der internen Standard Methode. Die Ergebnisse sind in den folgenden Tabellen zusammengefasst. Die Masseprozent beziehen sich auf Einwaage Probe.

Die im Tabellen 2-17 im Anhang zeigen die Auswertungen der kombinierten GC/MS-GC/FID Untersuchungen, in denen die Einzelverbindungen, geordnet nach zunehmendem Mengenanteil, aufgelistet sind. Das Kürzel n.q. bedeutet, dass die Verbindung nicht quantifiziert werden konnte, weil dafür keine Korrekturfaktoren vorliegen.

	Besonderheiten	Wassergehalt (%)	Carbonyl- gruppen (mol/kg)	рН	Säurezahl (mg KOH/g)
IR 1: Tauchtopfteer (TTT), 18.08.99		13,1	2,1	2,48	101,77
JR 2: Rohteer, 18.08.99		11,5	2,1	2,78	96,08
R 3: Rohholzessig (RHE), 18.08.99	inhomogen	71,1	1,1	2,04	121,40
IR 3: Rohholzessig (RHE), 18.08.99	inhomogen				
IR 4: Tropfenfänger gesamte Mischphase, 18.08.99		30,1	2,1	2,40	121,70
IR 4a: wässrige Phase, 18.08.99		50,9	1,8	2,24	147,50
IR 4b: teerige Phase, 18.08.99		14,8	2,3	3,26	105,30
VR 5: Holzgeist (HG), 18.08.99		24,1	2,5	4,36	3,30
IR 6: Prozeßwasser vor Kolonne, 18.08.99		86,6	0,7	2,91	24,30
R 7: Prozeßwasser nach Kolonne (PW), 18.08.99		98,1	0,3	2,52	3,30
JR 8: Extraktionsteer (Ex.teer), 18.08.99		0,7	4,7	1,72	65,28
R 9: Flüssigrauch HC 1 (höherer Phenolanteil), 18.08.99		26,5	2,7	2,91	103,20
IR 10: Flüssigrauch HC 2 (höherer Carbonylanteil), 18.08.99		74,7	2,2	2,27	39,20
IR 10b: neutalisiert auf pH 7, 18.08.99		74,4	1,4	5,08	4,00
JR 11: Stufe 2 Sirup, 18.08.99	löst sich schlecht in Methanol	3,7	6,2	2,33	88,83
IR 12: Flüssigrauch Red Arrow 24s, 18.08.99	oberer Teil	50,1	2,7	2,58	85,50
IR 12: Flüssigrauch Red Arrow 24s, 18.08.99	unmischbarer Bodensatz		/		

Tabelle 2 Ergebnisse der chemischen Charakterisierung

Die GC-Analysen zeigen, dass alle Proben sehr komplex zusammengesetzt sind. Um den künftigen Analysenaufwand zu verringern, wurde mit dem Industriepartner vereinbart, sich auf folgende Schlüsselprodukte bzw. Produktgruppen zu konzentrieren, denen auch ein Marktpotential angerechnet wird:

- Guajakole (Guajakol, 4-Methylguajakol, 4-Ethylguajakol, Vanillin, Isoeugenol))
- Syringole (Syringol, 4-Methylsyringol, 4-Ethylsysringol, Allylsysringol)
- Cycloten (2-Hydroxy-3-methyl-2-cyclopenten-1-on)
- 2,3-Butandion (Diacethyl)
- Maltol (3-Hydroxy-2-methyl-4H-pyran-4-on)
- Levoglukosan
- Hydroxyacetaldehyd

2.1.1 Analyse spezieller Fraktionen

Aufgrund der gewonnenen Erkenntnisse über den Anteil einzelner Wertstoffe in den Fraktionen, wurde bei Chemviron der Prozess dahingehend geändert, dass nunmehr 5 Pyrolyseöl-Fraktionen mit angereicherten Wertstoffen erhalten wurde. Es handelt sich dabei um

- Teeröl (angereichert mit Guajakolen)
- TT-Extrakt(Tauchtopfextrakt extrahiert mit Wasser, angereichert mit Levoglukosan, und Aldehyden)
- TT-Rest (Extraktionsrückstand)
- Extraktionsteer (direkt aus der Produktion, angereichert mit Cycloten)
- Roh-Holzgeist (angereichert mit Diacetyl)

2.1.1.1 GC-Analyse

Die folgenden Tabellen zeigen die GC-Analyse der Hauptkomponenten in den angereicherten Fraktionen.

Komponenten	Gew.%
2,3-Butandion	0,10
4-Allyl-syringol	0,29
Syringol	3,35
2-Hydroxy-3-methyl-2-cyclopenten-1-on	4,37
Guajakol	6,32
Total	14,42

Tabelle 3 GC-Analyse der Zielkomponenten im Teeröl

Komponente	Gew.%
Vanillin	0,04
Guajakol	0,09
2-Hydroxy-3-methyl-2-cyclopenten-3-on	0,45
Hydroxyacetaldehyd	0,53
Syringol	0,55
Levoglukosan	1,27
Total	2,92

Tabelle 4 GC-Analyse der Zielkomponenten im TT-Extrakt

Tabelle 5 GC-Analyse der Zielkomponenten im TT-Rest

Komponenten	Gew.%
Vanillin	0,25
Guajakol	0,81
2-Hydroxy-3-methyl-2-cyclopenten-3-on	1,12
4-Allyl-syringol	1,21
Syringol	4,68
Total	8,06

Tabelle 6 GC-Analysen der Zielkomponenten im Extraktionsteer

Komponente	Gew.%
4-Allyl-syringol	0,21
Vanillin	0,23
Guajakol	1,80
Syringol	2,14
2-Hydroxy-3-methyl-2-cyclopenten-3-on	2,66
Total	7,05

Tabelle 7	GC-Analy	vse der Z	Zielkom	nonenten	im	Holzae	ist
	OC-Anar	yse der z	LICIKOIII	Jonenien	1111	HUIZge	151

Komponente	Gew.%
Benzaldehyde	0,04
5-Methyl-2-furaldehyde	0,05
Dimethyl-2-cyclopenten-1-on	0,05
2-Acetyl-furan	0,06
2-Methyl-2-cyclopentan-1-on	0,15
3-Furfural	0,24
2,3-Butandion	2,76
2-Furfural	2,96
Total	6,29

Aufgrund dieser Untersuchungen wurde bei Chemviron versucht. durch Extraktion und Destillation aus den vielversprechenden Fraktionen Teeröl, TT-Rest und Extraktionsteer weitere Wertstoffe anzureichern.

2.1.1.2 Wassergehalte

Die Wassergehalte der fünf Pyrolyseöl wurden durch Karl-Fischer-Titration bestimmt. Die Ergebnisse sind in Tabelle 8 wiedergegeben.

	% Wasser
Extraktionsteer	0,45
TT Rest	8,84
Teeröl	13,49
Rohholzgeist	23,30
TT-Extrakt	70,18

Tabelle 8 Wassergehalte der Pyrolyseölfraktionen

Im Verlauf der Forschungsarbeiten wurde versucht, die 5 Pyrolyseölfraktionen weiter zu charakterisieren und aufzutrennen, was im folgenden näher beschrieben wird.

2.1.1.3 Vergleich chromatographischer Ergebnisse BFH/Chemviron

Zum Vergleich der gaschromatographischen Ergebnisse, die sowohl beim Industriepartner Chemviron als auch bei BFH anfallen, wurde ein Standard von Chemviron zur Verfügung gestellt und mit fünf verschiedenen Konzentrationen gemessen. Die Konzentration der einzelnen Verbindungen in der Standardlösung zeigt Tabelle 9.

Komponente	Gew.%
Essigsäure	13,58
γ-Butyrolactone	2,22
Cycloten	4,33
Phenol	1,25
Guajakol	1,98
o-Kresol	0,38
Maltol	1,55
m-Kresol	0,24
p-Kresol	0,12
4-Methyl-guajakol	0,99
2,4-Dimethyl-phenol	0,93
4-Ethyl-phenol	0,02
4-Ethyl-guajakol	0,43
trans-Isoeugenol	0,10
5-Hydroxymethyl-2-furaldehyde	1,29
Syringol	18,12
4-Allyl-syringol	4,35

Tabelle 9 Chemviron Standard mit Konzentrationen (Gew.%)

Abbildung 1 Vergleich gaschromatographischer Bestimmungen von Pyrolyseölkomponenten zwischen BFH und Chemviron.

Die Abbildung 1 verdeutlicht die gute Übereinstimmung der gefundenen Konzentrationen in den beiden Laboren.

2.1.1.4 Maltol oder Cycloten?

Bei Chemviron war es schwierig, gaschromatographisch zwischen Maltol und Cycloten zu unterscheiden. Daher wurden Probenmuster mit einer speziellen polaren GC-Säule untersucht, um die eindeutige Identifizierung über die Retentionszeit sicherzustellen. Zusätzlich wurden GC/MS Untersuchungen mit Bibliotheksvergleich durchgeführt. Die Ergebnisse sind in Abbildung 2 und Abbildung 3 dargestellt.

Abbildung 2 Massenspektren von Cycloten aus Messung (oben) und Bibliothek (unten)

Abbildung 3 Massenspektren von Maltol aus Messung (oben) und Bibliothek (unten)

Mit Hilfe der massenspektroskopischen Untersuchungen konnten die beiden Verbindungen zweifelsfrei identifiziert werden. Abbildung 2 zeigt das Massenspektrum von Cycloten (2-Hydroxy-3-methyl-2-cyclopenten-1-on) mit dem Molekülpeak 112 und den typischen Fragmentionen. Abbildung 3 zeigt das Spektrum von Maltol (3-Hydroxy-2-methyl-4H-pyran-4-on) mit dem Molekülpeak 126 und den charakteristischen Fragmentionen.

2.2 AP2 Analyse und Charakterisierung der Öle mittels LC/MS

Zu Beginn des Projektes wurde ein LC/MS System beschafft (Abbildung 4), um Analysendaten über die polaren und höher molekularen Anteile der Pyrolyseflüssigkeiten zu erhalten. Es muss erwähnt werden, dass für diese Arbeiten noch keinerlei Erfahrungen vorlagen, so dass vom wissenschaftlichen Standpunkt aus gesehen absolutes Neuland betreten wurde.

Abbildung 4 Ansicht des kompletten LC/MS-Systems (1: Vakuumentgaser; 2: Hochdruckpumpe; 3: Autosampler; 4: UV/VIS-DA-Detektor; 5: Massenspektrometer

Das Foto von Abbildung 4 zeigt die Vorderansicht des LC/MS Systems. Die vorbereiteten Proben werden in den Autosampler(3) gestellt, von dort über ein Hochdruck-Injektionsventil in das Trennsystem überführt. Nach Durchlaufen der Säule, die sich in einem Säulenofen (4) befindet, gelangen die Substanzen zuerst in den UV/VIS Diodenarraydetektor (5) und anschließend in das Massenspektrometer (6).

Nach der Inbetriebnahme wurden erste Datenaufnahmen mit den von Chemviron vorgegebenen Schlüsselkomponenten durchgeführt. Dabei stellte sich heraus, dass sich die Komponenten 4-Methyl-Syringol (BR76), 4-Ethyl-Sytingol (BR 81), 4-Allyl-Syringol (BR 88a) nur mit dem UV-Signal detektieren lassen. Eine Ionisierung für die massenspektroskopische Analyse konnte weder mit der ESI (Elektrospray-Ionisation), noch mit der APCI (Atmospheric Pressure Chemical Ionisation) Technik erzielt werden. Die folgenden Abbildungen zeigen diverse Beispiele.

Abbildung 5 Schlüsselkomponenten mit UV Detektion

In Abbildung 5 werden die UV/VIS Detektorsignale von Glyoxal, Hydroxyacetaldehyd (Glycolaldehyd) (a und b), Methylglyoxal (a und b) sowie Butandion (a und b) gezeigt. Alle Signale sind nicht aussagekräftig und zeigen, dass diese Substanzen nicht mit UV/VIS detektiert werden können. Wahrscheinlich würde ein Brechungsindexdetektor (RI) bessere Resultate liefern. Allerdings gehörte er nicht zum Lieferumfang des LC/MS-Systems.

Abbildung 6 Massenspektren von Standards mit Spritzenpumpe und ESI

In Abbildung 6 werden von oben nach unten die im ESI Modus aufgenommenen Massenspektren von Glycolaldehyd (Massenbereich bis 100 bzw. 150), Glyoxal und Methylglyoxal gezeigt. Die Substanzen wurden direkt in das Massenspektrometer mit der Infusionstechnik eingebracht. Das Ergebnis ist enttäuschend. Die Spektren lassen keine Rückschlüsse auf die Molekülstruktur zu. Offensichtlich ist keine genügende Ionisierung dieser Moleküle möglich. Auch die APCI-Technik, mit denen Moleküle schonend ionisiert werden kann, erbrachte keine Verbesserungen des Ergebnisses. Daher wurde versucht, die HPLC Trennung mit dem PDA zu optimieren, um doch noch zu brauchbaren Ergebnissen zu kommen.

Abbildung 7 UV Detektion von Fraktionenen unter isokratischen Bedingungen

Danach wurde versucht, die von Chemviron in die engere Wahl gezogenen Fraktionen zu analysieren. Dazu wurden eine Reihe von chromatographischen Trennversuchen durchgeführt und verschiedene HPLC-Parameter variiert. Abbildung 7 zeigt von oben nach unten die isokratische Trennung mit Acetonitril von Ether-Extrakt, Ex-Teer, TT-Extrakt und TT-Rest. Die Detektion erfolgte mit dem Diodenarray-Detektor (PDA). Die Trennung ist sehr unbefriedigend.

Abbildung 8 Syringole mit UV

Die Trennung von Einzelkomponenten gelang dagegen zufriedenstellend, wie es in Abbildung 8 beispielhaft für die Gruppe der Syringole dargestellt ist. Von oben nach unten sind die Signale abgebildet von: Syringol, Methylsyringol, Allylsysringol, Syringaaldehyd.

Abbildung 9 Exteer Auftrennung. UV, TIC und Base Peak Signale bei linearem MeOH Gradient

Die Exteer-Probe wurde benutzt, um die Ionisierbarkeit zu untersuchen. Dazu wurde die Probe durch sukzessiver Detektion zunächst mit dem PDA vermessen und danach mit Hilfe des Massenspektrometers, das den Totalionenstrom (TIC) aufzeichnete. Das TIC-Base-Peak Signal ergibt sich durch die angewandte Software, wobei nur die jeweils größten Ionen im TIC Berücksichtigung finden und dadurch optisch eine bessere Trennschärfe erzielt wird. Wie eine Vergleich der PDA und TIC Signale in Abbildung 9 zeigt, lassen sich nur wenige Moleküle aus der Mischung ionisieren. Oben ist das PDA Signal gezeigt, darunter der Totalionenstrom (TIC) und im unteren Fenster das Signal der Basepeaks, das im Gegensatz zum TIC schärfere Signale liefert.

Methanol und Acetonitril wurden vergleichend als Lösemittel für die HPLC untersucht. Methanol lieferte bessere Trennungen, so dass im weiteren Verlauf der Arbeiten weitere Optimierungsversuche mit den Fraktionen von Chemviron mit Methanol als organisches Elutionsmittel unternommen wurden.

Um den Einfluß der hochmolekularen, hydrophoben Bestandteile der Teeröle auf die Trennqualität einschätzen zu können, wurden die Proben nur in Wasser gelöst, der unlösliche Teil abfiltriert und nur der wasserlösliche Anteil chromatographiert. Abbildung 10 zeigt die UV/VIS Signale dieser wasserlössichen Bestandteile von Ex-Teer, Holzgeist, TT-Extrakt und TT-Rest. Trotz der komplexen Zusammensetzung ist eine recht befriedigende Trennung zu erkennen. Nach dem UV/VIS-Detektor wurde die Probe weiter in das Massenspektrometer geleitet und mit der APCI-Technik ionisiert.

Abbildung 10 UV Signale der wasserlöslichen Anteile von Exteer, Rohholzgeist, TT-Extract und TT-Rest (von oben nach unten), Lösemittel MeOH, linearer Gradient

Im weiteren Verlauf der Untersuchungen wurden die gleichen Proben vollständig in Methanol gelöst und ebenfalls analysiert. Das Ergebnis ist in Abbildung 11 dargestellt. Es ist eindeutig zu erkennen, dass die Trennschärfe nachlässt und somit die höhermolekularen Probenmoleküle die Analyse negativ beeinflussen.

Darüber hinaus wurde auch der Einfluss des pH Wertes durch Zugabe von Trifluoressigsäure (TFA) auf das chromatographische Trennergebnis untersucht. Wie aus Abbildung 12 hervorgeht, wird durch Zusatz von geringen Mengen an TFA die Trennung wesentlich verbessert.

Schliesslich wurde noch die Trennung mit einem nicht-linearen MeOH/Wasser Gradienten geprüft, um die Peaktrennung weiter zu verbessern. Beim Vergleich von Abbildung 10 mit Abbildung 13 wird deutlich, dass sich eine Verbesserung erzielen lässt.

Abbildung 11 UV Signale der hydrophilen und hydrophoben Anteile (Gesamtprobe) von Exteer, Rohholzgeist, TT-Extract und TT-Rest (von oben nach unten), Lösemittel MeOH, linearer Gradient

Abbildung 12 Verbesserung der Trennung durch Zugabe von Trifluoressigsäure (TFA)

Abbildung 13 Trennung wie in Abbildung 11 aber mit nicht-linearem MeOH Gradient

Ein direkter Vergleich der Abbildung 11 und Abbildung 13 zeigt, dass auch ein nicht-linearer Gradient die Trennung der komplexen Probe verbessert.

Wie bereits erwähnt lässt sich die UV-Signalschärfe verbessern, wenn nur der hydrophile Anteil der Probe chromatogrphiert wird und der hydrophobe Anteil vor der Analyse abgetrennt wird. Im Gegensatz dazu stehen die Signale des Massenspektrometers. Abbildung 14 und Abbildung 15 geben diesen Sachverhalt wieder. Abbildung 14 zeigt die Base-Peak spur der vier untersuchten Chemviron Proben Exteer, Rohholzgeist, TT-Extrakt und TT-Rest. Danach sind die größten Signale im Exteer und TT-Rest zu finden. Eine Zuordnung zu einzelnen Verbinden gelang bisher jedoch nicht.

Auf der anderen Seite verdeutlicht Abbildung 15, dass sich offenbar mehr Verbindungen ionisieren lassen, wenn sich der hydrophobe Anteil mit in der probe befindet; denn nur dann werden auch Moleküle in den übrigen Fraktionen angezeigt und die Signale der anderen beiden proben verstärkt.

Abbildung 14 Base peak MS-Signal der hydrophilen Fraktionen aus Exteer, Rohholzgeist, TT-Extrakt und TT-Rest (von oben nach unten)

Abbildung 15 Base peak MS-Signal der hydrophilen und hydrophoben (Gesamtprobe) Fraktionen aus Exteer, Rohholzgeist, TT-Extrakt und TT-Rest (von oben nach unten)

Letztendlich haben sich folgende Parameter als bislang optimalste Methode für die Auftrennung der Chemvironproben ergeben:

MS Parameter:

Capillary Temp (C): 150.00 APCI Vaporizer Temp (C): 450.00 AGC: On AGC Off Ion Time (ms): 5.000 Sheath Gas Flow (): 60.00 Aux Gas Flow (): 0.00 Source Type: APCI

POSITIVE POLARITYSource Voltage (kV): 6.00Source Current (uA): 5.00Capillary Voltage (V):10.00Tube Lens Offset (V):0.00Multipole RF Amplifier (Vp-p):400.00Multipole 1 Offset (V):-3.00

Multipole 2 Offset (V): -7.00InterMultipole Lens Voltage (V): -16.00Trap DC Offset Voltage (V): -10.00 Zoom Micro Scans: 5 Zoom AGC Target: 1000000.00 Zoom Max Ion Time (ms): 50.00 Full Micro Scans: 3 Full AGC Target: 5000000.00 Full Max Ion Time (ms): 50.00 SIM Micro Scans: 5 SIM AGC Target: 2000000.00 SIM Max Ion Time (ms): 200.00 MSn Micro Scans: 3 MSn AGC Target: 2000000.00 MSn Max Ion Time (ms): 200.00 NEGATIVE POLARITY Source Voltage (kV): 6.00 Source Current (uA): 5.00 Capillary Voltage (V): -10.00Tube Lens Offset (V): -50.00Multipole RF Amplifier (Vp-p): 400.00 Multipole 1 Offset (V): 3.00 Multipole 2 Offset (V): 7.00 InterMultipole Lens Voltage (V): 16.00 Trap DC Offset Voltage (V): 10.00 Zoom Micro Scans: 5 Zoom AGC Target: 1000000.00 Zoom Max Ion Time (ms): 50.00 Full Micro Scans: 3 Full AGC Target: 1000000.00 Full Max Ion Time (ms): 50.00 SIM Micro Scans: 5 SIM AGC Target: 2000000.00 SIM Max Ion Time (ms): 200.00 MSn Micro Scans: 3 MSn AGC Target: 2000000.00 MSn Max Ion Time (ms): 200.00

LC-Parameter:

Push loop injection Oven temp. 40 °C Injection volume 10 µl Solvent A: Wasser/Ameisensäure + 1% MeOH-TFA Solvent B: MeOH Gradient: nicht linear

Die LC/MS Methoden werden laufend validiert und optimiert, so dass eine endgültige Methode zur Auftrennung der Pyrolyseflüssigkeiten noch nicht angegeben werden kann.

2.3 AP3 Überkritische CO₂-Extraktion

Nach Projektbeginn wurde der Bau und die Inbetriebnahme einer Extraktionsapparatur für überkritisches Kohlendioxid in Angriff genommen. Die Idee, ein vorhandenes Autoklavensystem umzubauen, wurde fallengelassen, weil die Reaktorgeometrie des alten Systems ungeeignet war. Daher wurde ein Komplettsystem der Fa. Mothes, Berlin aufgebaut. Das Fließbild ist in Abbildung 16 wiedergegeben.

Abbildung 16 Fließbild der CO₂ Extraktionsanlage

Legende zum Fließbild der Abbildung 16

1	Doppelrohrwärmetauscher (Kühler)	V9	Ablaßventil CO ₂ -Ausgang
2	Membranpumpe	V10	Sicherheitsventil Kreislaufkühler (65 bar)
3	Vorheizer (elektr. Wärmetauscher)		
4	Extraktor (PARR, 0,64 l Inhalt)	HZ1	Vorheizer
5	Abscheider 1 (HOKE, 0,15 l Inhalt)	HZ2	Extraktor-Heizung
6	Abscheider 2 (HOKE, 0,15 l Inhalt)	HZ3	KÄMMER-Ventil-Heizung
7	Kreislaufkühler (HOKE, 3 l Inhalt und Kälteaggregat)	HZ4	1. Abscheider-Heizung
		Hz5	Rohr-Heizung (vor und nach Extraktor)
A1	Rückschlagventil		
A2	Berstscheibe (315 - 385 bar)		FI Durchflußanzeige
H1	Absperrhahn CO ₂ -Flasche		PI Druckanzeige
H2	Absperrhahn CO ₂ -Kreislauf		TI Temperaturanzeige
H3	Ablaßhahn Extraktor		PCI Druckanzeige mit Regler
H4	Absperrhahn CO ₂ -Kreislauf		
V1	Bypass (Kurzschluß)- Ventil		T1-5 Temperaturmeßstelle (innen)
V2	Absperrventil Ausgang CO ₂ -Pumpe		p1-3 Druckmeßstelle
V3	Absperrventil Ausgang Vorheizer		m Massendurchflußmesser

Abbildung 17 Fotos der installierten CO₂-Extraktionsanlage. 1: Vorheizer; 2: Extraktor; 3: Druckregulierventil; 4: 1. Abscheider; 5: 2. Abscheider; 6: Hochdruckpumpe

Pyrolyseöl wurde nicht in flüssiger Form in den Extraktor eingebracht, sondern vor der Extraktion an Silikagel adsorbiert. Etwa 200 g Silika reichten aus, um ca 160 g Pyrolyseöl so zu adsorbieren, dass ein pulverförmiges Produkt entstand. Dies wurde in einen Siebeinsatz gefüllt, der dann in den Extraktor abgesenkt werden konnte.

Nach anfänglichen Vorversuchen zum Einfahren der Anlage, die etwa 12 Monate in Anspruch nahmen, wurden in Abssprache mit Chemviron insgesamt 6 Großversuche mit den Fraktionen Ex-Teer und TT-Rest gefahren.

Die folgende Tabelle 10 gibt einen Überblick über das experimentelle Design.

Vers. Nr.	Probe	Druck	Temp.	Zustand	Abscheidung
SCFE 2	Ex-Teer	100/150/200/250/300	50	überkritisch	2-stufig
SCFE 3	TT-Rest	100/150/200/250/300	50	überkritisch	2-stufig
SCFE 4	TT-Rest	100/150/200/250/300	50	überkritisch	1-stufig
SCFE 5	TT-Rest	60/100/150/200/250/300	20	flüssig	1-stufig
SCFE 6	Ex-Teer	150/300	50	überkritisch	1-stufig
SCFE 7	TT-Rest	150/300	50	überkritisch	1-stufig

Tabelle 10 Übersicht über die Versuche zur CO2-Extraktion

Nach der Extraktion mit Kohlendioxid wurde der Siebeinsatz mit Silikagel und der in Kohlendioxid unlöslichen Probe herausgezogen, der Inhalt in eine Extraktionshülse überführt und anschließend sukzessiv mit Aceton und Methanol in einer Soxhlet-Apparatur erschöpfend extrahiert. Die Tabelle 11 zeigt die Massenbilanzen aller Extraktionsstufen.

Vers. Nr.	CO_2	Aceton	Methanol	Gesamt
SCFE 2	44,9	32,0	1,5	78,4
SCFE 3	51,5	51,0	1,4	103,9
SCFE 4	29,0	51,3	1,9	82,2
SCFE 5	44,6	54,8	1,3	100,7
SCFE 6	55,5	38,0	1,6	95,1
SCFE 7	41,3	55,2	1,8	98,3

Tabelle 11 Übersicht über die Extraktionsausbeuten mit CO₂, Aceton und Methanol (%-Angaben bezogen auf wasserfreien Probenmenge)

Es lässt sich beobachten, dass etwa die Hälfte der Proben mit CO_2 und die andere Hälfte mit Aceton extrahierbar war. In allen Fällen lag der Methanol-Extrakt bei ca. 1,5 %. Die Ergebnisse der CO_2 -Extraktionen zeigen überraschenderweise keinen signifikanten Unterschied zwischen dem füssigen und überkritischem Zustand. Eine spätere genauere Analyse ergab jedoch, dass zwar die Gesamtausbeute vergleichbar ist, jedoch bei der Extraktionsstufe mit flüssigem Kohlendioxid nur wenig extrahierbar ist. Die Acetonausbeute liegt beim Ex-Teer im Bereich von 30 % und beim TT-Rest bei ca. 50 %.

Die jeweiligen Extrakte wurden gaschromatographisch ausgewertet und auch teilweise mit HPLC/MS untersucht. Die Ergebnisse werden in den folgenden Kapiteln vorgestellt.

2.3.1 SCFE 2

Im Versuch SCFE 2 wurde die Probe bei 50 °C und Drücken von 100, 150, 200, 250 und 300 bar extrahiert und insgesamt 13 Fraktionen gewonnen. Das Versuchsprotokoll befindet sich im Anhang, Tabelle 36).

Die Tabelle 12 zeigt das Ergebnis der gaschromatographischen Analyse aller 13 Fraktionen, die bei unterschiedlichen Versuchsbedingungen gewonnen wurden. Die Ausbeuten sind den ursprünglichen Gehalten im Ausgangsprodukt Extraktionsteer gegenübergestellt. Es zeigt sich, dass im wesentlichen alle gaschromatographisch erfassten Schlüsselprodukte durch die Extraktion wiedergewonnenwurden. Knapp die Hälfte der Verbindungen kann bei einem Druck von 100 bar extrahiert werden.

Komponente	Extraktionsteer	Summe P1-13	100	150	200	250	300
			bar	bar	bar	bar	bar
2-Hydroxy-3-methyl-2-	7,3	8,3	2,7	3,3	1,5	0,6	0,2
cyclopenten-1-on							
Guajakol	5,0	5,1	3,4	1,4	0,3	0,0	0,0
Maltol	n.d.	n.d	n.d	n.d	n.d	n.d	n.d
Syringol	5,9	5,3	1,8	1,8	1,0	0,5	0,2
Vanillin	0,6	0,3	0,1	0,1	0,1	0,0	0,0
4-Allyl-syringol	0,6	1,0	0,3	0,4	0,2	0,1	0,0
Summe	19,5	20,0	8,3	7,0	3,0	1,3	0,5

Tabelle 12 Massenbilanz von Schlüsselverbindungen in Kohlendioxid-Extraktionen von Extraktionsteer (in Gew.%)

2.3.2 SCFE 3

Im Versuch SCFE 3 wurde die Probe bei 50 °C und Drücken von 100, 150, 200, 250 und 300 bar extrahiert und insgesamt 10 Fraktionen gewonnen. Das Versuchsprotokoll befindet sich im Anhang, Tabelle 37).

Die Tabelle 13 zeigt das Ergebnis der gaschromatographischen Analyse aller 10 Fraktionen, die bei unterschiedlichen Versuchsbedingungen gewonnen wurden. Die Ausbeuten sind den ursprünglichen Gehalten im Ausgangsprodukt TT-Rest gegenübergestellt. Es zeigt sich, dass die Ausbeute niedriger liegt als beim Exteer. Insgesamt konnten nur 75 % der ursprünglichen Verbindungen mit Kohlendioxid extrahiert werden.

Tabelle 13 Massenbilanz von Schlüsselverbindungen in Kohlendioxid-Extraktionen von TT-Rest (in Gew.%)

Komponente	TT-Rest	Summe P1-10	100	150	200	250	300
			bar	bar	bar	bar	bar
2-Hydroxy-3-methyl-2-	2,4	2,5	0,8	0,9	0,5	0,2	0,1
cyclopenten-1-on							
Guajakol	1,7	1,4	0,9	0,4	0,1	0,0	0,0
Maltol	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Syringol	9,8	6,8	1,7	2,5	1,6	0,7	0,4
Vanillin	0,5	0,2	0,0	0,1	0,0	0,0	0,0
4-Allyl-syringol	2,5	1,9	0,5	0,7	0,4	0,2	0,1
Summe	17,0	12,8	3,9	4,5	2,6	1,1	0,6

2.3.3 SCFE 4

Dieser Versuch ist eine Wiederholung von SCFE 3. Allerdings traten experimentelle Schwierigkeiten auf, so dass die Ausbeuten unter denen von SCFE 3 liegen. Insgesamt konnten nur ca. 50 % wiedergewonnen werden. Das Versuchsprotokoll ist im Anhang, Tabelle 38.

Komponente	TT-Rest	Summe P1-10	100	150	200	250	300
			bar	bar	bar	bar	bar
2-Hydroxy-3-methyl-2-						0.0	0.0
cyclopenten-1-on	2,4	0,8	0,3	0,3	0,1	,	,
Guajakol	1,7	1,0	0,7	0,2	0,0	0,0	0,0
Maltol	n.d.	0,3	0,1	0,1	0,0	0,0	0,0
Syringol	9,8	4,3	1,4	1,5	0,6	0,4	0,4
Vanillin	0,5	0,3	0,1	0,1	0,0	0,0	0,0
4-Allyl-syringol	2,5	1,8	0,6	0,6	0,3	0,2	0,2
Summe	17,0	8,3	3,2	2,8	1,0	0,7	0,6

Tabelle 14 Massenbilanz von Schlüsselverbindungen in Kohlendioxid-Extraktionen von TT-Rest (in Gew.%)

2.3.4 SCFE 5

In diesem Experiment wurde untersucht, ob es auch möglich ist, an Stelle von überkritischem Kohlendioxid mit flüssigem CO_2 zu akzeptablen Extraktausbeuten zu gelangen. Wie Tabelle 15 zeigt, lässt sich bei 60 bar (unterkritischer, flüssiger Zustand) kaum etwas extrahieren.

Tabelle 15 Massenbilanz von Schlüsselverbindungen in Kohlendioxid-Extraktionen	von	TT-
Rest (in Gew.%)		

Komponente	TT-Rest	Summe P1-6	60	100	150	200	250	300
			bar	bar	bar	bar	bar	bar
2-Hydroxy-3-methyl-2-	2,4	1,0	0,0	0,5	0,2	0,1	0,0	0,1
cyclopenten-1-on								
Guajakol	1,7	1,3	0,0	1,1	0,1	0,0	0,0	0,0
Maltol	n.d.	0,3	0,0	0,2	0,1	0,0	0,0	0,0
Syringol	9,8	5,3	0,1	2,8	1,4	0,2	0,3	0,5
Vanillin	0,5	0,4	0,0	0,2	0,1	0,0	0,0	0,0
4-Allyl-syringol	2,5	2,4	0,0	1,3	0,6	0,2	0,1	0,2
Summe	17,0	12,8	0,2	6,2	2,5	0,5	0,4	0,7

2.3.5 SCFE 6

Zur Vereinfachung der experimentellen Arbeiten wurden in SCFE 6 und SCFE 7 nur zwei Druckstufen untersucht und jeweils die beiden Fraktionen Exteer und TT-Rest eingesetzt. Das Versuchsprotokoll von SCFE6 zeigt Tabelle 40 im Anhang.

Die Gesamtausbeute der Kohlendioxidfraktion betrug lediglich 10,6 %. Ein Vergleich zu SCFE2, bei dem die Wiederfindungsrate bei 100 % lag, verdeutlicht, dass offenbar eine mehrstufige Extraktion bessere Ergebnisse liefert.

Komponente	Extraktionsteer	Summe P1-3	150 bar	300 bar
2-Hydroxy-3-methyl-2-	7,3	3,1	2,8	0,3
cyclopenten-1-on			,	,
Guajakol	5,0	3,3	3,2	0,1
Syringol	5,9	3,4	2,8	0,6
Vanillin	0,6	0,0	n.d.	n.d.
4-Allyl-syringol	0,6	0,6	0,5	0,1
Summe	19,5	10,4	9,3	1,1

Tabelle 16 Massenbilanz von Schlüsselverbindungen in Kohlendioxid-Extraktionen von Exteer (in Gew.%)

2.3.6 SCFE 7

Dieser Versuch läßt sich direkt mit SCFE6 vergleichen. Das Protokoll befindet sich im Anhang, Tabelle 41. Die Gesamtausbeuten sind recht gut reproduzierbar, allerdings ist die Verteilung der beiden Fraktionen, die bei 150 und 300 bar gewonnen wurden, nicht übereinstimmend.

Tabelle 17 Massenbilanz von Schlüsselverbindungen in Kohlendioxid-Extraktionen von Exteer (in Gew.%)

Komponente	TT-Rest	Summe P1-2	150 bar	300 bar
2-Hydroxy-3-methyl-	2,4	0,9	0,4	0,5
2-cyclopenten-1-on				
Guajakol	1,7	1,0	0,7	0,3
Syringol	n.d.	n.d.	n.d.	n.d.
Vanillin	9,8	5,1	2,2	3,0
4-Allyl-syringol	0,5	n.d.	n.d.	n.d.
Summe	2,5	2,2	1,0	1,2
	17,0	9,2	4,3	4,9

2.4 AP4 Entwicklung von Trennverfahren im Labormaßstab

2.4.1 Festphasenextraktion (SPE)

Das Teeröl wurde einer Festphasenextraktion (SPE – Solid Phase Extraction) unterworfen, um Guajakole anzureichern. SPE wird zur Abtrennung von organischen Substanzen aus einer Matrix (organische Lösungsmittel, Wasser etc.) eingesetzt und ersetzt das klassische Ausschütteln mit dem Scheidetrichter. In der Regel geschieht die Trennung an einem Sorbens, das aus modifiziertem Kieselgel oder Harzen bestehen kann. Die Sorbentien befinden sich in einer kleinen Kartusche mit Fritte und werden von verschiedenen Herstellern (Supelco, Varian, Baker etc.) angeboten.

Es wurden unterschiedliche Säulen von verschiedenen Herstellern getestet. Aufgrund der Vielzahl der Säulen und auch Kombinationsmöglichkeiten sind endgültige Ergebnisse nicht zu erhalten. Wir haben uns jedoch nach sorgfältiger Prüfung für folgendes Verfahren entschieden:

Benutzt werden eine CH- und eine C18 Kartusche, d.h. das Silika ist einmal mit Cyclohexyl bzw. mit einem langkettigen C18-Kohlenwasserstoff modifiziert. Die Gelmenge beträgt 500 mg in einer 3 ml Kartusche. Die SPE teilt sich in folgende Schritte auf:

- Probenvorbereitung: Die wasserunlöslichen Bestandteile des Pyrolyseöls werden abgetrennt. Sie bestehen in der Regel aus makromolekularen Ligninbruchstücken, die nicht gaschromatographisch erfaßbar sind. Dazu werden ca. 20 g Öl mit 450 ml Wasser ausgeschüttelt. Die wäßrige Phase kann dabei trüb erscheinen, sie wird aber so wie sie anfällt benutzt.
- 2. *Konditionierung*: Für die Extraktion wird eine spezielle Vakuumeinrichtung verwendet, mit der die Probe durch die Kartusche gesaugt werden kann. Zunächst wird die CH Kartusche auf die C18 Kartusche gesteckt und beide Säulen konditioniert, zunächst mit jeweils 3 ml Methanol und danach mit je 3 ml Wasser.
- 3. *Elution*: Es werden 3 ml der wäßrigen Phase aufgegeben und langsam eluiert. In dem wäßrigen Eluat befinden sich Essigsäure, Acetol, 2-Furfural und Levoglucosan. Jetzt werden die Kartuschen getrennt und mit Stickstoff getrocknet, um sie Elution mit organischen Lösungsmitteln fortzusetzen. Folgende Lösungsmittel werden verwendet:

Lösungsmittel
Hexan
Hexan/CCl ₄ (50/50)
CCl ₄
CCl ₄ /1-Chlorbutan (50/50)
1-Chlorbutan
Dichlormethan
Ethylacetat
Methanol

2.4.2 Lösemittelextraktion mit Soxhlet-Extraktion

Neben der SPE-Fraktionierung wurde das Teeröl auch mit Hilfe einer Soxhlet-Apparatur fraktioniert. Dazu wurden ca. 90 g Pyrolyseöl Öl an 200 g Silikagel (Kieselgel 60, 0,2-0,5 µm Partikelgröße) adsorbiert, das so beladene Kieselgel in eine Extraktionskartusche überführt und anschließend im Soxhlet sukzessive erschöpfend mit folgenden Lösemitteln extrahiert:

Lösemittel	Polarität
	(nach Hildebrandskala)
Hexan	0
1-Chlorbutan	0,26
Diethylether	0,38
Aceton	0,56
Methanol	1,0

Tabelle 18 Lösemittel für die Soxhlet-Extraktion

Tabelle 19 Ausbeuten d	ler sukzessiven	Lösemittelextraktion
------------------------	-----------------	----------------------

	Teeröl	Tauchtopf-Rest	Extraktionsteer
Hexan	60,76	55,10	62,25
1-Chlorbutan	11,12	16,83	10,80
Diethylether	2,06	12,71	13,06
Aceton	0,09	3,20	6,10
Methanol	0,40	1,79	1,47
Summe	74,43	89,63	93,68

Auffällig ist die geringe Extraktausbeute des Teeröles, das offensichtlich größere Mengen an höhermolekularen Verbindungen enthält. Die Extrakte wurden anschließend gaschromatographisch analysiert. Die Chromatogramme befinden sich im Anhang von Abbildung 18 bis Abbildung 31.

2.5 Analysen von Werksproben

Neben der Methodenentwicklung und Validierung wurden auch im Rahmen des Projektes konkrete Proben aus der Produktion auf ihre Tauglichkeit als Flüssigraucharoma untersucht. Die Ergebnisse der gaschromatogrphischen Untersuchungen zeigen Tabelle 42 bis Tabelle 68. Die Analysendaten wurden Chemviron übermittelt und dort ausgewertet.

3 Nutzen, Verwertungsplan und Veröffentlichungen

Die Ergebnisse sind Chemviron zugeleitet worden und haben ein klareres Bild von der chemischen Zusammensetzung und den potentiellen Verwertungslinien gezeichnet. Die Ergebnisse werden von Chemviron zur Änderung der Stoffströme genutzt, um eine verbesserte Verwertung der Pyrolyseölfraktionen – vor allem im Flüssigrauchbereich – zur erhalten. Der Verwertungsplan wird von Chemviron aufgestellt. Eine Veröffentlichungen der Ergebnisse ist auf der internationalen Konferenz "Science in Thermochemical Biomass Conversion", 6.-10 Juni 2004, Victoria, Kanada vorgesehen.

4 Anhang

Seite 34-50:	GC-Analysetebellen der Ausgangsfraktionen		
Seite 51-57:	Gaschromatogramme nach Lösemittelfraktionierung		
Seite 51-63:	Versuchsprotokolle der Extraktion mit überkritischem Kohlendioxid		
Seite 64-73:	GC-Analysenergebnisse von Werksproben		
Br.Nr.	Name	Gew.%	
------------	---	-------	
57	2,4- and 2,5-Dimethyl phenol	0,03	
108	Dihydrosinapyl alcohol (S VII)	0,04	
60	4-Ethyl guaiacol	0,04	
100	Homosyringaldehyde	0,06	
40.1	5-Methyl-(5H)-Furan-2-one	0,06	
106	Propiosyringone	0,08	
50.4	m-Cresol	0,08	
57.1	3- and 4- Ethyl phenol	0,10	
36.2	3-Methyl-2-Cyclopentene-1-one	0,11	
68.1	4-Propyl guaiacol	0,11	
41	3-Hydroxy-5,6-dihydro-(4H)-Pyran-4-one	0,12	
104	Conifervlaldehvde	0.13	
49.1	o-Cresol	0.14	
68	Eugenol	0.16	
83	Acetoguaiacone	0.17	
50.5	n-Cresol	0.19	
66	4-Vinyl guaiacol	0.21	
72	Isoeugenol (cis)	0.21	
45	Phenol	0.24	
17 1	1-Hydroxy-2-butanone	0.27	
34	2-Hydroxy-2-Cyclopenten-1-one	0.28	
86	4-Vinyl syringol	0.32	
102	Acetosyringone	0,32	
37	g-Butyrolactone	0.34	
99	Svringaldehvde	0.34	
87	Guaiacyl acetone	0.34	
92.1	Isomer of Conifervl alcohol	0,34	
38	(5H)-Furan-2-one	0,35	
93	4-Propenyl syringol (cis)	0,37	
69	5-Hydroxymethyl_2-furaldehyde	0,30	
18	3-Hydroxymonanal	0.43	
77	Vanillin	0.45	
105	Svringvl acetone	0.47	
46	Guaiacol	0,47	
54	4-Methyl guaiacol	0,54	
54 75	Isoeugenol (trans)	0,57	
26	2-Furaldehyde	0,01	
20 43 1	2-Hydroxy-3-methyl-2-Cyclonentene-1-one (MCP)	1.00	
43.1 64	1 4.3 6-Dianhydro-a-d-glucopyranose	1,00	
88	4-Allyl- and 4-Propyl syringol	1,02	
80 81	4-Aliyi- and 4-1 topyi synngol	1,17	
07	4-Enry Sympol	1,50	
76	4-Methyl syringol	2.09	
96		2,08	
12	Hudrovunronanona Agatal Hudrovuggatana	2,39	
70	Swingel	2,31	
11	A cetie soid	5.02	
11	Dromanoje sojd	3,92	
24	n ropanolic aciu	n,q,	
24	unknown Aldenyde: poss. Glyoxal-Derivative	n,q,	

Tabelle 20 GC-Analyse vom Tauchtopfteer

	totals	32,09
98	Dihydroconiferyl alcohol	n,q,
89	Propioguaiacone	n,q,
	Methyl-benzenediol	n,q,
	Hydroxy-benzaldehyde	n,q,
79.2	Resorcin	n,q,
	1,2,3-Trimethoxy-5-methyl benzene	n,q,
	2,3-Dihydro-1H-inden-1-one	n,q,
	3,4-Dimethyl-phenol	n,q,
	4-Hydroxy-5-oxohexanoic-acid-lactone	n,q,
58	3-Ethyl guaiacol	n,q,
	2,3-Dimethyl phenol	n,q,
	2-Hydroxy-3-propyl-2-cyclopenten-1one	n,q,
54.1	Anhydrosugar	n,q,
	Tetrahydro-furan-methanol	n,q,
	3-Ethyl-2-hydroxy-2-cyclopenten-1-one	n,q,
	3-Ethyl-2-cyclopenten-1-one	n,q,
	Dimethyl-2-cyclopenten-1-one	n,q,
	Tetrahydro-furan-methanol	n,q,
35.2	5-Methyl-2-furaldehyde	n,q,
35	Dihydro-methyl-furanone	n.g.
	2.5- Hexandione	n.g.
29.1	Tetrahydro-4-methyl-3-furanone or 2-Ethyl-butanal	n.a.
29.05	2-Methyl-2-cyclopentene-1-one	n,q,
20	1-Acetyloxypropane-2-one	n,q,
28	2-Furfuryl alcohol	n.a.

Tabelle 21 GC-Analyse vom Rohteer

Br.Nr.	Name	Gew.%
57	2,4- and 2,5-Dimethyl phenol	0,03
40.1	5-Methyl-(5H)-Furan-2-one	0,05
60	4-Ethyl guaiacol	0,05
108	Dihydrosinapyl alcohol	0,06
106	Propiosyringone	0,09
41	3-Hydroxy-5,6-dihydro-(4H)-Pyran-4-one	0,09
50.4	m-Cresol	0,10
57.1	3- and 4- Ethyl phenol	0,10
36.2	3-Methyl-2-Cyclopentene-1-one	0,10
104	Coniferylaldehyde	0,12
68.1	4-Propyl guaiacol	0,12
66	4-Vinyl guaiacol	0,13
68	Eugenol	0,16
49.1	o-Cresol	0,16
83	Acetoguaiacone	0,18
86	4-Vinyl syringol	0,19
17.1	1-Hydroxy-2-butanone	0,20
72	Isoeugenol (cis)	0,21
34	2-Hydroxy-2-Cyclopenten-1-one	0,21
50.5	p-Cresol	0,21

45	Phenol	0,27
37	g-Butyrolactone	0,29
38	(5H)-Furan-2-one	0,29
102	Acetosyringone	0,31
99	Syringaldehyde	0,31
18	3-Hydroxypropanal	0,32
87	Guaiacyl acetone	0,33
93	4-Propenyl syringol (cis)	0,35
69	5-Hydroxymethyl-2-furaldehyde	0,39
105	Svringvl acetone	0,43
77	Vanillin	0,45
75	Isoeugenol (trans)	0.50
46	Guaiacol	0,51
54	4-Methyl guaiacol	0.55
26	2-Furaldehyde	0.63
43.1	2-Hydroxy-3-methyl-2-Cyclopentene-1-one (MCP)	0.91
64	1.4:3.6-Dianhydro-a-d-glucopyranose	1.06
88	4-Allyl- and 4-Propyl syringol	1.14
81	4-Ethyl syringol	1 42
97	4-Propenyl syringol (trans)	1.45
12	Hydroxypropanone	1.67
76	4-Methyl syringol	2.10
96	Levoglucosan	2.19
70	Svringol	3 12
11	Acetic acid	4 74
	Propanoic acid	n a
24	unknown Aldehyde: poss Glyoxal-Derivative	n,q,
28	2-Furfuryl alcohol	n,q,
29	1-Acetyloxypropane-2-one	n,q,
29.05	2-Methyl-2-cyclopentene-1-one	n,q,
29.1	Tetrahydro-4-methyl-3-furanone or 2-Ethyl-butanal	n a
_>	2.5-Hexanedione	n,q,
35.2	5-Methyl-2-furaldehyde	n,q,
55.2	1-(acetyloxy)-2-Butanone	n,q,
	Tetrahydro-furan-methanol	n,q,
	Dimethyl-2-Cyclopenten-1-one	n,q,
	2-Hydroxy-3 5-Dimethyl-2-Cyclopenten-1-one	n,q,
	3-Ethyl-2-hydroxy-2-cyclopenten-1one	n,q,
50.2	noss :3-Methyl-(5H)-furan-2-one	n,q,
54.1	Anhydrosugar	n,q,
0	2-Hydroxy-3-propyl-2-cyclopenten-1one	n,q,
	2 3-Dimethyl-nhenol	n,q,
58	3-Ethyl guaiacol	n,q,
60.2	3 4-Dimethyl phenol	n,q,
00.2	2 3-Dihydro-1H-inden-1-one	n,q,
	1.2.3-Trimethoxy-5-methyl benzene	n.q,
79 2	Resorcin 1 3-Benzenediol	n.q,
	Hydroxy-benzaldehyde	n a
	Methyl-benzenediol	n.q,
89	Propioguaiacone	n.q,
98	Dihydroconiferyl alcohol	n.q,
		п,ч,

3,4,5-Trimethoxybenzyl methyl-ether	n,q,
totals	28,21

Br.Nr.	Name	Gew.%	Gew.%
		Α	В
102	Acetosyringone	0,01	0,01
87	Guaiacyl acetone	0,01	0,01
99	Syringaldehyde	0,01	
50.4	m-Cresol	0,01	0,02
57	2,4- and 2,5-Dimethyl phenol	0,02	0,02
97	4-Propenyl syringol (trans)	0,02	0,03
88	4-Allyl- and 4-Propyl syringol	0,03	0,04
38	(5H)-Furan-2-one	0,03	0,11
50,5	p-Cresol	0,04	0,04
49.1	o-Cresol	0,04	0,04
60	4-Ethyl guaiacol	0,04	0,05
81	4-Ethyl syringol	0,05	0,05
96	Levoglucosan	0,06	0,06
45	Phenol	0,08	0,09
76	4-Methyl syringol	0,10	0,10
34	2-Hydroxy-2-Cyclopenten-1-one	0,10	0,09
37	g-Butyrolactone	0,12	0,10
54	4-Methyl guaiacol	0,12	0,13
46	Guaiacol	0,18	0,18
70	Syringol	0,20	0,20
43.1	2-Hydroxy-3-methyl-2-Cyclopentene-1-one (MCP)	0,24	0,24
17.1	1-Hydroxy-2-butanone	0,33	0,32
18	Ethyl-Benzene	0,39	0,36
26	2-Furaldehyde, 2-Furfural	0,85	0,83
12	Hydroxypropanone	4,10	3,91
11	Acetic acid	13,48	12,93
	Propanoicacid	n,q,	n,q,
24	poss.Glyoxal-Derivative	n,q,	n,q,
28	2-Furfuryl alcohol	n,q,	n,q,
29	1-Acetyloxypropane-2-one	n,q,	n,q,
29.1	Tetrahydro-4-methyl-3-furanone or 2-Ethyl-butanal	n,q,	n,q,
30.1	2-Acetylfuran	n,q,	n,q,
35	Dihydro-methyl-furanone	n,q,	n,q,
35.2	5-Methyl-2-furaldehyde	n,q,	n,q,
54.1	Anhydrosugar	n,q,	n,q,
107.1	Isomer of Sinapyl alcohol	n,q,	n,q,
	totals	20,62	19,91

Tabelle 22 GC-Analyse vom Rohholzessig

Br.Nr.	Name	Gew.%
106	Propiosyringone	0,03
57	2,4-and 2,5-Dimethyl phenol	0,04
80	Homovanillin	0,05
86	Vinyl syringol	0,08
99	Syringaldehyde	0,08
83	Acetoguaiacone	0,08
40,1	5-Methyl-(5H)-Furan-2-one	0,10
102	Acetosyringone	0,10
41	3-Hydroxy-5,6-dihydro-(4H)-Pyran-4-one	0,11
72	Isoeugenol (cis)	0,13
87	Guaiacyl acetone	0,14
66	4-Vinvl guaiacol	0.15
57.1	3- and 4-Ethyl phenol	0.16
105	Svringvl acetone	0.16
93	4-Propenyl syringol (cis)	0.19
68	Eugenol	0.20
77	Vanillin	0.20
68.1	4-Propyl guaiacol	0.20
36.2	3-Methyl-2-cyclopentene-1-one Öl	0.23
50.2	m-Cresol	0.23
69	5-Hydroxymethyl-2-furaldehyde	0.25
34	2-Hydroxy-2-Cyclopenten-1-one	0.35
37	g-Butyrolactone	0.42
38	(5H)-Furan-2-one	0.44
171	1-Hydroxy-2-butanone	0.47
75	Isoeugenol (trans)	0.48
96	Levoglucosan	0,40
<u>70</u> 49 1	o-Cresol	0,52
18	3-Hydroxypropanal	0,55
50.5	n-Cresol	0,50
64	1 4:3 6-Dianhydro-a-d-gluconyranose	0,57
97	4-Propenvil syringol (trans)	0,07
15	Phenol	0.74
4J 88	A-Allyl- and A-Propyl syringol	0,74
81	4-Anyl- and 4-1 topyt synngol	0,77
60	4 Ethyl guaiacol	1.07
00 43 1	2 Hydroxy 3 methyl 2 Cyclopentene 1 one	1,07
43.1	(MCP)	1,40
76	A Methyl syringol	1.46
70 46	Guaiacol	1,40
40 54	4 Methyl guaiacol	1,55
70 70	4-Methyl gualacol	2 42
26	2 Euroldobudo 2 Eurfurol	2,43
12	2-Fuladellyde, 2-Fulfulat	2,03
12	nyuroxypropanone	3,18
11	Acette acta	11,50
24	Propanoic acia	n,q,
24	unknown Aldenyde: poss. Glyoxal-Derivative	n,q,
28	2-Furturyl alconol	n,q,
29	1-Acetyloxypropane-2-one	n,q,
29.05	Metnyi-2-cyclopenten-1-one	n,q,
29.1	I etrahydro-4-methyl-3-furanone or 2-Ethyl-	n,q,
	butanal	

Tabelle 23 GC-Analyse vomTropfenfänger, gesamt Mischphase

30.1	2-Acetylfuran	n,q,
35,2	5-Methyl-2-furaldehyde	n,q,
	1-(acetyloxy)-2-Butanone	n,q,
	2-Hydroxy-3,5-dimethyl-2-cyclopenten-1-one	n,q,
	3-Ethyl-2-cyclopenten-1-one	n,q,
	3-Ethyl-2-hydroxy-2-cyclopenten-1-one	n,q,
50.1	Methyl-butyraldehyde derivative und Maltol	n,q,
50.3	2,6-Dimethylphenol	n,q,
	4-Etthyl-2-hydroxy-2-cyclopenten-1-one	n,q,
	Naphthalin	n,q,
51	3-Methyl guaiacol	n,q,
54.1	Anhydrosugar	n,q,
	2,3-Dimethoxytoluene	n,q,
	2,3-Dimethyl phenol	n,q,
58	3-Ethyl guaiacol	n,q,
	Me-Naphthalin	n,q,
60.2	3,4-Dimethyl phenol	n,q,
	C ₃ -Phenol	n,q,
	2,3-Dihydro-1H-inden-1-one	n,q,
	2,3,5-Tri-me-phenol	n,q,
	C ₃ -Phenol	n,q,
	C ₃ -Phenol	n,q,
	Dimethyl-Naphthaline	n,q,
	Di-Me-Naphthaline	n,q,
79.2	Resorcin	n,q,
	Me-benzenediol	n,q,
	Fluorene	n,q,
	Phenanthrene	n,q,
	1-Phenyl-Naphthalene	n,q,
	totals	37,76

Tabelle 24 Analyse der wässrigen Phase vom Tropfenfänger

Br.Nr.	Name	Gew.%
	Propanoic acid	0,00
57	2,4-and 2,5-Dimethyl phenol	0,01
106	Propiosyringone	0,01
83	Acetoguaiacone	0,03
68,1	4-Propyl guaiacol	0,03
72	Isoeugenol (cis)	0,04
93	4-Propenyl syringol (cis)	0,04
99	Syringaldehyde	0,04
57.1	3- and 4-Ethyl phenol (3-E/ RT 39.10/ 4-E/ RT 38.95)	0,04
68	Eugenol	0,04
102	Acetosyringone	0,06
40,1	5-Methyl-(5H)-Furan-2-one	0,06
87	Guaiacyl acetone	0,07
50.4	m-Cresol	0,08
77	Vanillin	0,08
41	3-Hydroxy-5,6-dihydro-(4H)-Pyran-4-one	0,09
105	Syringyl acetone	0,09
75	Isoeugenol(trans)	0,10
69	5-Hydroxymethyl-2-furaldehyde	0,11

35	Dihydro-methyl-furanone (Isomer of No. 27)	0,12
36,2	3-Methyl-2-Cyclopentene-1-one Öl	0,14
50,5	p-Cresol	0,18
49.1	o-Cresol	0,18
88	4-Allyl- and 4-Propyl syringol	0,18
97	4-Propenyl syringol (trans)	0,18
60	4-Ethyl guaiacol	0,27
34	2-Hydroxy-2-Cyclopenten-1-one	0,27
81	4-Ethyl syringol	0,29
37	gamma-Butyrolactone, Dihydro-2(3H)-furanone	0,33
38	(5H)-Furan-2-one	0,33
45	Phenol	0,33
54	4-Methyl guaiacol	0,45
17,1	1-Hydroxy-2-butanone	0,51
64	1,4:3,6-Dianhydro-alpha-d-glucopyranose	0,54
76	4-Methyl syringol	0,59
18	3-Hydroxypropanal	0,61
46	Guaiacol	0,67
96	alpha-Anhydro-beta-D-glucopyranose, Levoglucosan	0,68
43.1	2-Hydroxy-3-methyl-2-Cyclopentene-1-one (MCP)	0,94
70	Syringol	1,15
26	2-Furaldehyde, 2-Furfural	1,62
12	Hydroxypropanone	4,39
11	Acetic acid	14,31
24	unknown Aldehyde: poss. Glyoxal-Derivative	n,q,
28	2-Furfuryl alcohol	n,q,
29	1-Acetyloxypropane-2-one	n,q,
29,05	2-Methyl-2-cyclopentene-1-one	n,q,
29,1	Tetrahydro-4-methyl-3-furanone or 2-Ethyl-butanal	n,q,
30,1	2-Acetylfuran	n,q,
35,2	5-Methyl-2-furaldehyde	n,q,
	3-Et-2-OH-2-cyclo penten-1-one	n,q,
50,1	Methyl-butyraldehyde derivative	n,q,
52	g-lactone derivative	n,q,
54.1	Anhydrosugar	n,q,
	2,3 Di me phenol	n,q,
58	3-Ethyl guaiacol	n,q,
69,1	g-lactone derivative	n,q,
	Me-benzenediol	n,q,
	totals	30,24

Name	Gew.%
Propiosyringone	0,05
2,4-and 2,5-Dimethyl phenol	0,07
5-Methyl-(5H)-Furan-2-one	0,10
3-Hydroxy-5,6-dihydro-(4H)-Pyran-4-one	0,11
Levoglucosan	0,15
Acetosyringone	0,16
Syringaldehyde	0,19
Vinyl syringol	0,19
(5H)-Furan-2-one	0,20
Syringyl acetone	0,21
Acetoguaiacone	0,23
Isoeugenol (cis)	0,23
Guaiacyl acetone	0,25
3- and 4-Ethyl phenol	0,27
4-Vinyl guaiacol	0.27
3-Methyl-2-cyclopentene-1-one	0,29
2-Hydroxy-2-Cyclopenten-1-one	0.31
m-Cresol	0.34
Eugenol	0.35
4-Propyl guaiacol	0.35
4-Propentyl syringol (cis)	0.38
1-Hydroxy-2-butanone	0.39
3-Hydroxypropanal	0.39
Vanillin	0.41
5-Hydroxymethyl-2-furaldehyde	0.41
g-Butyrolactone	0.48
1 4.3 6-Dianhydro-alpha-d-glucopyranose	0.58
o-Cresol	0.79
Isoeugenol (trans)	0.83
p-Cresol	0.84
Phenol	1 01
4-Propenyl syringol (trans)	1,01
2-Hydroxy-3-methyl-2-Cyclopentene-1-one	1,25
(MCP)	-,
4-Allyl- and 4-Propyl syringol	1.35
4-Ethyl syringol	1.40
4-Ethyl guaiacol	1.68
4-Methyl guajacol	1.88
Guajacol	2.14
4-Methyl syringol	2.17
Hydroxypropanone	2.18
Svringol	3.36
Acetic acid	8.80
Propanoic acid	n.a.
Cvclopentanone	n.g.
2-Furaldehvde	n.,4,
2-Furfuryl alcohol	
1-Acetyloxypropane-2-one	
Methyl-2-cyclopenten-1-one	n.q,
Tetrahydro-4-methyl-3-furanone or 2-Ethyl-	n,q,
butanal	,4,
2-Acetvlfuran	n.a
2.5- Hexanedione	n.a
	NamePropiosyringone2,4-and 2,5-Dimethyl phenol5-Methyl-(5H)-Furan-2-one3-Hydroxy-5,6-dihydro-(4H)-Pyran-4-oneLevoglucosanAcetosyringoneSyringaldehydeVinyl syringol(5H)-Furan-2-oneSyringyl acetoneAcetoguaiaconeIsoeugenol (cis)Guaiacyl acetone3- and 4-Ethyl phenol4-Vinyl guaiacol3-Methyl-2-cyclopentene-1-one2-Hydroxy-2-Cyclopenten-1-onem-CresolEugenol4-Propyl guaiacol4-Propyl guaiacol4-Propyl guaiacol4-Propyl guaiacol3-HydroxypropanalVanillin5-Hydroxymethyl-2-furaldehydeg-Butyrolactone1,4:3,6-Dianhydro-alpha-d-glucopyranoseo-CresolIsoeugenol (trans)p-CresolPhenol4-Propenyl syringol (trans)2-Hydroxy-3-methyl-2-Cyclopentene-1-one(MCP)4-Allyl- and 4-Propyl syringol4-Ethyl guaiacol4-Methyl guaiacol4-Methyl guaiacol4-Methyl guaiacol4-Methyl syringol4-Ethyl guaiacol4-Methyl guaiacolCyclopentanoneSyringolAcetic acidPropanoic acidCyclopentanone2-Furaldehyde2-Furaldehyde2-Furaldehyde2-Furaldehyde2-Furaldehyde2-Furaldehyde2-Furaldehyde2-Furaldehyde2-Furaldehyde2-Furaldehyde

Tabelle 25 GC-Analyse der teerigen Phase vom Tropfenfänger

	2-Furanmethanol, acetate	n,q,
	Furic- acid methylester	n,q,
35.2	5-Methyl-2-furaldehyde	n,q,
	1(Actyloxyl)-2-butanone	n,q,
	Dimethyl-2-cyclopenten-1-one	n,q,
	Tetrahydro-furanmethanol	n,q,
	2-Hydroxy-3,5-dimethyl-2-cyclopenten-1-one	n,q,
43.3		n,q,
	3-Ethyl-2-cyclopenten-1-one	n,q,
	3-Ethyl-2-hydroxy-2-cyclopenten-1-one	n,q,
	Maltol	n,q,
50.3	2,6-Dimethylphenol	n,q,
	4-Ethyl-2-hydroxy-2-cyclopenten-1-one	n,q,
	Naphthalene	n,q,
54.1	Anhydrosugar	n,q,
56	2-Ethyl phenol	n,q,
	2,3-Dimethoxytoluene	n,q,
	2,4,6-Trimethyl phenol	n,q,
	2,3-Dimethyl phenol	n,q,
	Trimethyl phenol	n,q,
58	3-Ethyl guaiacol	n,q,
	Methyl-naphthalene	n,q,
60.2	3,4-Dimethyl phenol	n,q,
	C3-Phenol	n,q,
	C3-Phenol	n,q,
	2,3-Dihydro-1H-inden-1-one	n,q,
	2,3,6-Trimethyl phenol	n,q,
	2,3,5-Trimethyl phenol	n,q,
	Dimethyl naphthalene	n,q,
	Dimethyl naphthalene	n,q,
79.2	Resorcin	n,q,
	Methyl benzenediol	n,q,
	Fluorene	n,q,
89	Propioguaiacone	n,q,
98	Dihydroconiferyl alcohol	n,q,
	Phenanthrene	n,q,
	totals	38,25

Br.Nr.	Name	Gew.%
26	2-Furaldehyde, 2-Furfural	5,01
	Di methoxy-ethane	n,q,
5,1	2,3-Butandione	n,q,
	Propanoicacid Me-ester	n,q,
	2-Pentaneone	n,q,
	1-Cyclopropyl-ethanone	n,q,
	2-Penaneone	n,q,
	2,3Pentanedione	n,q,
20	(3H)-Furan-2-one	n,q,
22	3-Furaldehyde, 3-Fufural	n,q,
	Me-2-cyclopenten-1-one	n,q,
	Naphthaline	n,q,
	Me-Naphthalene	n,q,
	totals	5,01

Tabelle 26 GC-Analyse vom Holzgeist

Tabelle 27 GC-Analyse vom Prozesswasser vor Kolonne

Br.Nr.	Name	Gew.%
96	alpha-Anhydro-beta-D-glucopyranose, Levoglucosan	0,04
11	Acetic Acid	1,55
12	Hydroxypropanone	1,68
	Ethylacetate	n,q,
5,1	2,3-Butandione	n,q,
	totals	3,28

Tabelle 28 GC-Analyse vom Prozesswasser nach Kolonne

Br.Nr.	Name	Gew.%
96	alpha-Anhydro-beta-D-glucopyranose, Levoglucosan	0,05
12	Hydroxypropanone	1,38
	totals	1,43

Br.Nr.	Name	Gew.%
57	2,4-and 2,5-Dimethyl phenol	0,02
60	4-Ethyl guaiacol	0,02
106	Propiosyringone	0,03
77	Vanillin	0,05
83	Acetoguaiacone	0,06
68,1	4-Propyl guaiacol	0,07
99	Syringaldehyde	0,08
68	Eugenol	0,10
75	Isoeugenol (trans)	0,11
87	Guaiacyl acetone	0,13
102	Acetosyringone	0,13
50.4	m-Cresol	0,20
105	Syringyl acetone	0,21
40,1	5-Methyl-(5H)-Furan-2-one	0,23
97	4-Propenyl syringol (trans)	0,24
11	Acetic acid	0,28
88	4-Allyl- and 4-Propyl syringol	0,34
50,5	p-Cresol	0,41
34	2-Hydroxy-2-cyclopentene-1-one	0,42
49.1	o-Cresol	0,47
36.2	3-Methyl-2-cyclopentene-1-one Öl	0,47
81	4-Ethyl syringol	0,51
18	3-Hydroxypropanal	0,56
45	Phenol	0,90
76	4-Methyl syringol	0,96
17,1	1-Hydoxy-2-butanone	1,07
54	4-Methyl guaiacol	1,22
38	(5H)-Furan-2-one	1,27
37	g-Butyrolactone, Dihydro-2(3H)-furanone	1,47
46	Guaiacol	2,22
70	Syringol	2,24
43.1	2-Hydroxy-3-methyl-2-Cyclopentene-1-one (MCP)	2,69
26	2-Furaldehyde, 2-Furfural	3,16
12	Hydroxypropanone	5,95
	Propanoic acid	n,q,
24	unknown Aldehyde: poss. Glyoxal-Derivative	n,q,
25	2-Hydroxy-3-oxobutanal	n,q,
	2-Cyclopenten-1-one	n,q,
29	1-Acetyloxypropane-2-one	n,q,
	Me-2-cyclopenten-1-one	n,q,
29,1	Tetrahydro-4-methyl-3-furanone	n,q,
30.1	2-Acetylfuran	n,q,
	2,5-Hexanedione	n,q,
	2-Furicacid-me-ester	n,q,
		. 1

Tabelle 29 GC-Analyse vom Extraktionsteer

	totals	28,23
	Me-Benzenediol	n,q,
79,2	Resorcin, 1,3-Benzenediol	n,q,
	2,3-Di me-phenol	n,q,
	Tetrahydro-2-furan methanol	n,q,
50,2	poss.:3-Methyl-(5H)-furan-2-one	n,q,
	4-Ethyl-2-OH-2-cyclopenten-1-one	n,q,
	Maltol	n,q,
	3-Et-2-OH-2-cyclo penten-1-one	n,q,
	1(Actyloxy)-2-butanone	n,q,
35,2	5-Methyl-2-furaldehyd	n,q,

Tabelle 30 GC-Analyse vom Flüssigrauch (höherer Phenolanteil)

Br.Nr.	Name	Gew.%
106	Propiosyringone	0,03
108	Dihydrosinapyl alkohol	0,03
45	Phenol	0,07
41+u	3-Hydroxy-5,6-dihydro-(4H)-Pyran-4-one	0,07
35	Dihydro-methyl-furanone	0,07
83	Acetoguaiacone	0,07
60+u	4-Ethyl guaiacol	0,10
34	2-Hydroxy-2-cyclopentene-1-one	0,14
46	Guaiacol	0,14
97	4-Propenyl syringol (trans)	0,16
87	Guaiacyl acetone	0,17
99	Syringaldehyde	0,18
102	Acetosyringone	0,20
17	1,2 Ethanediol	0,26
105	Syringyl acetone	0,34
81	4-Ethyl syringol	0,36
77	Vanillin	0,36
38	(5H)-Furan-2-one	0,37
80+ u	Homovanillin	0,38
37	gamma-Butyrolactone, Dihydro-2(3H)-furanone	0,39
69	5-Hydroxymethyl-2-furaldehyde	0,41
18	Ethyl-Benzene (1,3- or 1,4)	0,58
43,1	2-Hydroxy-3-methyl-2-Cyclopentene-1-one MCP)	0,88
76	4-Methyl syringol	0,89
64	1,4:3,6-Dianhydro-alpha-d-glucopyranose	1,36
70	Syringol	1,84
7	Hydroxyacetaldehyde	2,27
11	Acetic acid	2,31
12	Hydroxypropanone	2,72
96	alpha-Anhydro-beta-D-glucopyranose, Levoglucosan	4,88

	totals	22,03
	Me-Benzenediol	n,q,
79,2	Resorcin, 1,3-Benzenediol	n,q,
71	2-Hydroxy-butanedial	n,q,
69.1	gamma lactone derivative	n,q,
52+u	gamma lactone derivative	n,q,
50,2	poss.:3-Methyl-(5H)-furan-2-one	n,q,
50.1	Methyl-butyraldehyde derivative	n,q,
	3-Et-2-OH-2-cyclopenten-1-one	n,q,
29,1	Tetrahydro-4-methyl-3-furanone or 2-Ethyl-butanal	n,q,
24	unknown Aldehyde: poss.Glyoxal-Derivative	n,q,
	Tetrahydro-2-furanmethanol	n,q,

 Tabelle 31 GC-Analyse von Flüssigrauch (höherer Carbonylanteil)

Br.Nr.	Name	Gew.%
70	Syringol	0,02
64	1,4:3,6-Dianhydro-alpha-d-glucopyranose	0,08
11	Acetic acid	0,41
96	alpha-Anhydro-beta-D-glucopyranose, Levoglucosan	1,00
7	Hydroxyacetaldehyd	5,38
12	Hydroxypropanone	15,75
24	unknown Aldehyd: poss.Glyoxal-Derivative	n,q,
52+u	g-lactone derivative	n,q,
54.1	Anhydrosugar	n,q,
69.1	gamma lactone derivative	n,q,
	totals	22,64

Br.Nr.	Name	Gew.%
70	Syringol	0,02
64	1,4:3,6-Dianhydro-alpha-d-glucopyranose	0,08
37	gamma-Butyrolacetone, Dihydro-2(3H)furanone	0,09
11	Acetic acid	0,19
17	1,2 Ethanediol	0,85
96	alpha-Anhydro-beta-D-glucopyranose, Levoglucosan	0,95
7	Hydroxyacetaldehyde	3,31
12	Hydroxypropanone	3,39
	Tetra-hydro-2-furan-methanol	n,q,
24	unknown Aldehyd: poss.Glyoxal-Derivative	n,q,
29	1-Acetyloxypropane-2-one	n,q,
50.1	Methyl-butyraldehyde derivative	n,q,
52	gamma lactone derivative	n,q,
54.1	Anhydrosugar	n,q,
69.1	gamma lactone derivative	n,q,
	totals	8,88

Tabelle 32 GC-Analyse von Flüssigrauch (10) neutralisiert

Br.Nr.	Name	Gew.%
110,1	Sinapaldehyde	0,01
83	Acetoguaiacone	0,01
37	gamma-Butyrolactone, Dihydro-2(3H)-furanone	0,06
35	Dihydro-methyl-furanone	0,10
64	1,4:3,6-Dianhydro-alpha-d-glucopyranose	0,40
18	3-Hydroxypropanal	1,13
12	Hydroxypropanone	2,24
17	1,2 Ethanediol	2,64
96	alpha-Anhydro-beta-D-glucopyranose, Levoglucosan	4,55
7	Hydroxyacetaldehyde	11,11
8	Formic acid	n,q,
	Pyridine	n,q,
16	2-Propenoic acid methylester	n,q,
	4-Me-Pyridine	n,q,
	Tetra-hydro-2-furan-methanol	n,q,
24	unknown Aldehyd: poss.Glyoxal-Derivative	n,q,
30	Dihydro-methyl-furanone or Dihydro-dimethyl-furan	n,q,
	3-Methoxy-pyridine	n,q,
	Methoxy-pyridine und u.	n,q,
52?	gamma lactone und u.	n,q,
54.1	Anhydrosugar	n,q,
69.1	gamma lactone derivative	n,q,
	totals	22,24

Tabelle 33 GC-Analysen von Stufe 2 Sirup

Tabelle 34 GC-Analyse vom Flüssigrauch Red Arrow 24s

Br.Nr.	Name	Gew.%
83	Acetoguaiacone	0,04
104	Coniferylaldehyde	0,04
77	Vanillin	0,05
102	Acetosyringone	0,08
69	5-Hydroxymethyl-2-furaldehyde	0,08
64	1,4:3,6-Dianhydro-alpha-d-glucopyranose	0,10
99	Syringaldehyde	0,13
70	Syringol	0,16
38	(5H)-Furan-2-one	0,19
43.1	2-Hydroxy-3-methyl-2-Cyclopentene-1-one (MCP)	0,21
96	alpha-Anhydro-beta-D-glucopyranose, Levoglucosan	1,69
12	Hydroxypropanone	2,70

	totals	13,83
79.2	Resorcin,1,3-Benzenediol	n,q,
76.1	1,5-Anhydro-beta-D-xylofuranose	n,q,
71	2-Hydroxy-butanedial	n,q,
69.1	gamma lactone derivative	n,q,
54.1	Anhydrosugar	n,q,
52	gamma lactone derivative	n,q,
50,1	Methyl-butyraldehyde derivative	n,q,
24	unknown Aldehyd: poss.Glyoxal-Derivative	n,q,
5.1	2,3-Butandione, Diacetyl	n,q,
11	Acetic acid	5,59
7	Hydroxyacetaldehyde	2,79

Tabelle 35 GC-Analyse vom Buchenholzteer

Br.Nr.	Name	Gew.%
34	2-Hydroxy-2-Cyclopenten-1-one	0,01
57.1	3-and 4-Ethyl phenol	0,06
106	Propiosyringone	0,12
17.1	1-Hydroxy-2-butanone	0,12
50.4	m-Cresol	0,12
38	(5H)-Furan-2-one	0,13
77	Vanillin	0,14
68,1	4-Propyl guaiacol	0,16
68	Eugenol	0,17
83	Acetoguaiacone	0,20
49.1	o-Cresol	0,20
50,5	p-Cresol	0,23
57	2,4-and 2,5-Dimethyl phenol	0,25
26	2-Furaldehyde	0,26
99	Syringaldehyde	0,31
93	4-Propenyl syringol (cis)	0,32
45	Phenol	0,32
102	Acetosyringone	0,36
75	Isoeugenol(trans)	0,37
87	Guaiacyl acetone	0,37
37	gamma-Butyrolactone, Dihydro-2(3H)-furanone	0,39
105	Syringyl acetone	0,52
60	4-Ethyl guaiacol	0,65
46	Guaiacol	0,67
54	4-Methyl guaiacol	0,72
12	Hydroxypropanone	0,75
64	1,4:3,6-Dianhydro-alpha-d-glucopyranose	0,93
43.1	2-Hydroxy-3-methyl-2-Cyclopentene-1-one (MCP)	1,01

97	4-Propenyl syringol (trans)	1,34
88	4-Allyl- and 4-Propyl syringol	1,47
11	Acetic acid	1,54
81	4-Ethyl syringol	1,74
96	alpha-Anhydro-beta-D-glucopyranose, Levoglucosan	2,33
76	4-Methyl syringol	2,58
70	Syringol	4,15
	Propaniocacid	n,q,
30.1	2-Acetylfuran	n,q,
35.2	5-Methyl-2-furaldehyde	n,q,
	20H-3,5 Di Me-2-cyclopenten-1one	n,q,
	3-Ethyl-2-cyclopenten-1one	n,q,
	3-Et-2-OH-2-cyclo penten-1-one	n,q,
50,2	poss.: 3-Methyl-(5H)-Furan-2-one	n,q,
54.1	Anhydrosugar	n,q,
	2,3-Di-methylphenol	n,q,
79.2	Resorcin, 1,3-Benzenediol	n,q,
	Me-Benzenediol	n,q,
89	Propioguaiacone	n,q,
	totals	24,16

Abbildung 18 GC-Analyse Teeröl Soxhlet Hexanextrakt

Abbildung 19 GC-Analyse Teeröl Soxhlet Chlorbutanextrakt

Abbildung 20 GC-Analyse Teeröl Soxhlet Etherextrakt

Abbildung 21 GC-Analyse Teeröl Soxhlet Acetonextrakt

Abbildung 22 GC-Analyse Teeröl Soxhlet Methanolextrakt

Abbildung 23 GC-Analyse TT-Rest Soxhlet Hexanextrakt

Abbildung 24 GC-Analyse TT-Rest Soxhlet Chlorbutanextrakt

Abbildung 25 GC-Analyse TT-Rest Soxhlet Etherextrakt

Abbildung 26 GC-Analyse TT-Rest Soxhlet Acetonextrakt

Abbildung 27 GC-Analyse TT-Rest Soxhlet Methanolextrakt

Abbildung 28 GC-Analyse von Ex-Teer Soxhlet Hexanextrakt

Abbildung 29 Analyse von Ex-Teer Soxhlet-Chlorbutanextrakt

Abbildung 30 GC-Analyse von Ex-Teer Soxhlet Acetonextrakt

Abbildung 31 GC-Analyse Ex-Teer Soxhlet Methanolextrakt

Tabelle 36 Versuchsprotokoll und Massenbilanzen von SCFE 2

Versuchsbezeichnung:	SCFE2					Wasserge	ehalt [g] 0.7	4565					
Probenname/Bezeichnung:	Extraktior	nsteer4/01				Wasserge	halt [Gew.	%] 0.45					
Einwaage Öl [g]	165,7					Versuchs	beginn: 19	.06.01					
Organischer Anteil Öl [g]	164,954					Gewicht F	lasche [kg]: 95					
	Pr.1	Pr.2	Pr.3	Pr.4	Pr.5	Pr.6	Pr.7	Pr.8	Pr.9	Pr.10	Pr.11	Pr.12	Pr.13
P1/soll [bar]	100	100	100	100	150	150	200	200	250	250	250	300	300
Temp. Vorheizer HZ1 [°C]	50	50	50	50	50	50	50	50	50	50	50	50	50
Temp. Extraktor HZ2 [°C]	50	50	50	50	50	50	50	50	50	50	50	50	50
Temp. Rohrheizung [°C]	50	50	50	50	50	50	50	50	50	50	50	50	50
Temp. Ventil HZ3 [°C]	50	50	50	50	50	50	50	50	50	50	50	50	50
Temp. Abscheider HZ4 [°C]	20	20	20	20	20	20	20	20	20	20	20	20	20
Durchfluss [g/min]	4	4	4	4	4	4	4	4	4	4	4	4	4
Stellgrad Pumpendrehzahl [%]	30	30	30	30	30	30	30	30	30	30	30	30	30
Pumpenhub [mm]	3,5	3,5	3	3	4	4,5	5,4	5,7					
Probenabnahme [h]	3	4	6	6	6	6	6	6	6	6	6	6	6
Modifier Typ													
Modifiermenge [ml]													
						6060.00		0551 51					16001.6
Gesanidurchiluss CO ₂ [g]						0209,03		9551,51					10221,0
Gewicht CO ₂ -Flasche [kg]						88,5		86,5	84,5				76
Einstellung V7 [bar]	40	40	40	40	40	40	40	40	40	40	40	40	40
Auswaage Abscheider 1oder 2 [g]	165,2	120,5	137,2	123,3	116,1	110,4	106,6	122	127,2	123,2	103,1	123,5	124
Tara Glasgefäß [g]	129	99,2	135,3	99,8	99,4	99,25	99,6	117,5	123,7	123,1	100,7	121,8	122,5
Auswaage [g]	36,2	21,3	1,9	23,5	16,7	11,15	7	4,5	3,5	0,1	2,4	1,7	1,5
Ausbeute [Gew. %]	21,85	12,85	1,15	14,18	10,08	6,73	4,22	2,72	2,11	0,06	1,45	1,03	0,91
Restöl in Reaktor [Gew. %]	78,15	65,30	64,15	49,97	39,89	33,16	28,94	26,22	24,11	24,05	22,60	21,58	20,67
Wassergehalt [Gew. %]	2,565	2,71	2,22	3,61	4,67	6,01	7,16	8,09	7,7	7,7	6,28	6,13	4,75
Wasser [g]	0,92853	0,57723	0,04218	0,84835	0,77989	0,67012	0,5012	0,36405	0,2695	0,0077	0,15072	0,10421	0,07125
GCFID	scfe2.001	scte2.002	scte2.003	scte2.004	scfe2.005	scte2.006	scfe2.007	scte2.008	scte2.009	scfe2.010	scfe2.011	scfe2.012	scfe2.013
Ausbeute Acetonextrakt [g]	53,5												
Ausbeute Methanolextrakt [g]	2,4												
wassergenalt Acetonex. [Gew.%]	1,5												
					Masse	nhilanz Ey	draktionste	er Finwaa		waane			
	Extrakti	onsteer	abzüglich	1 P1-P13	abzüg	ich Acetor	nextakt	abzügli	ch MeOH-	Extrakt	Sumr	ne des Ver	lustes
Probenmenge [g]	16	5,7	79	.33	+3	53,5			2,4			30,47	
Wassergehalt [Gew.%]	0,	45	6	7		1,5			Ó			,	
Probenmenge wasserfrei [g]	164.9	5435	74.0	1489		52.6975			2.4			35.84196	

Probenmenge [g]	16
Wassergehalt [Gew.%]	0,4
Probenmenge wasserfrei [g]	164,9

Massenbilanz Extraktionsteer Einwaage zu Auswaage									
ionsteer	abzüglich P1-P13	abzüglich Acetonextakt	abzüglich MeOH-Extrakt	Summe des Verlustes					
5,7	79,33	53,5	2,4	30,47					
45	6,7	1,5	0						
95435	74,01489	52,6975	2,4	35,84196					

Versuchsbezeichnung:	SCFE3					Wassergehalt i	n g:		11,16	
Probenname/Bezeichnung:		TT-Rest4/01				Wassergehalt [Gew. %]		8,84	
Einwaage Öl [g]	126,25					Versuchsbegin	n:		25.07.01	
Organischer Anteil Öl [g]	117,41					Gewicht CO2-F	lasche [kɑ]:		76.5	
	Pr1 F	Dr 2	Pr 3	Pr 4	Pr 5	Pr 6	Pr 7	Pr 8	Pr 9	Pr 10
P1/soll [bar]	100	1.2	150	150	200	200	250	250	300	300
Temp. Vorheizer HZ1 [°C] Temp. Extraktor HZ2 [°C]	50 50	50 50	50 50	50 50	50	50 50	50 50	50 50	50 50	50 50
Temp. Rohrheizung [°C]	50	50	50	50	50	50	50	50	50	50
Temp. Ventil HZ3 [°C]	50	50	50	50	50	50	50	50	50	50
Temp. Abscheider HZ4 [°C]	20	20	20	20	20	20	20	20	20	20
Durchfluss [g/min]	4	4	4	4	4	4	4	4	4	4
Stellgrad Pumpendrehzahl [%]	30	30	30	30	30	30	30	30	30	30
Pumpenhub [mm]	3	3	4,5	4,6	6	6	7,2	7,3	8,5	8,7
Probenabnahme [h]	6	6	6	6	6	6	6	6	6	6
Modifier Typ										
Modifiermenge [ml]										
Gesamtdurchfluss CO2 [g]	1920,1	1669,4	1615,9	1654,7	defekt!	1376,42	defekt!	defekt!	1792,48	defekt!
Gewicht CO2-Flasche [kg]	75	73,2	71,3	69,4	67,2	65,6	63,9	62,5	60,6	58.6
Einstellung V7 [bar]	40	40	40	40	40	40	40	40	40	40
Auswaage Abscheider [g]	113,3	106,8	131,1	132,3	128,5	19,4	18,6	18,3	16,4	18,1
Tara Glasgefäß [g]	100,5	98,3	119,2	123,6	120,1	15	15,4	15	15,1	15,1
Auswaage [g]	12,0	0,0 6 73	9.43	0,7 6 89	0,4 6 65	4,4	3,∠ 2,53	2,3 2,61	1,3	238
Restöl in Reaktor [Gew. %]	89,86	83,13	73,70	66,81	60,16	56,67	54,14	51,52	50,50	48,12
Wassergehalt [Gew. %]	7,39	7,82	9,68	10,92	11,97	10,65	10,385	10,14	9,485	7,89
Wasser [g]	0,946	0,665	1,152	0,950	1,005	0,469	0,332	0,334	0,123	0,237
Ausbeute Acetonextrakt [d]	59.5	SCIE3.002	SCIE3.003	50163.004	SCIE3.005	SCIE3.000	SCIE3.007	SCIE3.000	SCIE3.009	SCIE3.010
Ausbeute Methanolextrakt [g]	1,6									
Wassergehalt Acetonex. [Gew.%]	1,32									
						Massenbi	lanz Extraktionst	eer Einwaage zu	Auswaage	
	TT-R	est	abzüglic	h P1-P10	abz	züglich Acetone	takt	abzi	iglich MeOH-Ex	trakt
Probenmenge [g]	126,2	25	65	5,5		59,5			1,6	
vvassergenait [Gew.%] Probenmenge wasserfrei [g]	8,84 115 0	4	9,	49 284		1,32			U 16	
r roberinnenge wassenrei [g]	115,0		55,	204		55,715			1,0	

Tabelle 37 Versuchsprotokoll und Massenbilanzen von SCFE 3

Tabelle 38 Versuchsprotokoll und Massenbilanzen von SCFE 4

Versuchsbezeichnung:	SCFE4	_				Wassergehalt	[g]		11,21	
Probenname/Bezeichnung:	TT-REST4/01					Wassergehalt	Gew. %]		8,84	
Einwaage Öl [g]	126,8					Versuchsbegin	n:		05.10.01	
Organischer Anteil Öl [g]	115,59					Gewicht CO ₂ -F	lasche [kg]:		84,5	
	Pr.1	Pr.2	Pr.3	Pr.4	Pr.5	Pr.6	Pr.7	Pr.8	Pr.9	Pr.10
P1/soll [bar]	100	100	150	150	200	200	250	250	300	300
Temp. Vorheizer HZ1 [°C]	50	50	50	50	50	50	50	50	50	50
Temp. Extraktor HZZ [C]	50	50	50	50	50	50	50	50	50	50
Temp. Ventil H73. [°C]	50	50	50	120	120	120	120	120	120	120
Temp. Abscheider HZ4 [°C]	20	20	20	20	20	20	20	20	20	20
Durchfluss [g/min]	4	4	4	4	4	4	4	4	4	4
Stellgrad Pumpendrehzahl [%]	30	30	30	30	30	30	30	30	30	30
Pumpenhub [mm]	3,3	3,4	Ventil	4,6	5,8	6	7,2	7,1	8,1	8,4
Probenabnahme [h]	6	6	zu groß!	6	6	6	6	6	6	6
Modifier Typ			Versuch							
Modifiermenge [ml]			vorzeitig							
			beendet!			Display		Display		
Gesamtdurchfluss CO ₂ [g]	1994,86	2003,5	1411,81	2134,19	1635,68	Defekt!	1516,11	Defekt!	1820,54	1674,25
Gewicht CO ₂ -Flasche [kg]	81,2	79,1	77,6	75,3	73,5	71,8	70,3	68,8	66,8	65,1
Einstellung V7 [bar]	0	0	0	0	0	0	0	0	0	0
Auswaage Abscheider [g]	55,755	54,77	53,507	53,1788	102,0264	102,9393	101,1134	100,1539	21,044	183
Tara Glasgefäß [g]	48,481	48,433	48,266	48,3732	99,5242	100,9375	99,3632	99,115	19,832	181,25
Auswaage [g]	7,274	6,337	5,241	4,806	2,502	2,002	1,750	1,039	1,212	1,75
Ausbeute [Gew. %]	5,85	5,00	4,25	3,79	2,09	1,58	1,50	0,82	1,07	1,38
Restol In Reaktor [Gew. %]	94,15	89,16	84,91	81,12	79,03	77,45	75,96	75,14	/4,0/	72,69
Wasser[0]	0 149	0.082	0 121	0,08	0,38	0,403	0,385	0,41	0,03	0,045
GCFID	scfe4.001	scfe4.002	scfe4.003	scfe4.004	scfe4.005	scfe4P6.006	scfe4P7.007	scfe4P8.008	scfe4.009	scfe4.010
Ausbeute Acetonextrakt [g]	59,7									
Ausbeute Methanolextrakt [g]	2,24									
Wassergehalt Acetonex. [Gew.%]	0,62									
						Massanh	ilona Extraktion	atoor Einwaago a		
	TT-	Rest	abzüglic	h P1-P10	abz	rüglich Acetone	takt	abz	u Auswaage rüglich MeOH-Ext	rakt
Probenmenge [g]	12	6,8	33	,91		59,7			2,24	
Wassergehalt [Gew.%]	8,	84	1,	21		0,62			0	
Probenmenge wasserfrei [g]	115	,591	33,	500		59,330			2,24	

Tabelle 39 Versuchsprotokoll und Massenbilanzen von SCFE 5

Versuchsbezeichnung:	SCFE5					Wassergehalt [g]	11,01
Probenname/Bezeichnung:	TT-REST4/01					Wassergehalt [Gew. %]	8,84
Einwaage Öl [g]	124,538					Versuchsbegin	n:	15.02.02
Organischer Anteil Öl [g]	109,94					Gewicht CO ₂ -F	lasche [kg]:	65,1 [83]
	Pr.1	Pr.2	Pr.3	Pr.4	Pr.5	Pr.6	Summe	
P1/soll [bar] Temp. Vorheizer HZ1 [°C] Temp. Extraktor HZ2 [°C] Temp. Rohtheizung [°C] Temp. Venti HZ3 [°C] Durchfluss [g/min] Pumpenhub [mm] Probenabnahme [h]	60 20 20 50 4 1,8 Versuch	100 20 20 140 2,3 2,8 26	150 20 20 140 4,1 4,7 20	200 20 20 140 2,33 5,6 20	250 20 20 20 140 1,66 6,6 20	300 20 20 140 4 8,3 31		
Modifier Typ	beendet!							
Modifiermenge [ml]	kv-Wert							
	zu klein!							
Gesamtdurchfluss CO ₂ [g]		3600,0	4900	2800	2000	7476,39		
Gewicht CO ₂ -Flasche [kg] Auswaage Abscheider 1 [g] Tara Abscheider 1 [g] Auswaage Abscheider 2 [g] Auswaage Abscheider 2 [g] Auswaage Abscheider 5 [g] Ausbeute [Gew. %] Rest0i in Reaktor [Gew. %] Wassergehalt A1 [Gew. %] Wassergehalt A2 [Gew. %] GCFID GCFID A2 GCFID A2 GCFID A2 Ausbeute Acetonextrakt [g] Ausbeute Methanolextrakt [g] Wassergehalt Acetonex. [Gew. %]	92,685 91,711 0,974 0,78 99,22 0,035 SCFE5P1.001 63,13 1,49 1,43	61,5 111,4374 91,841 19,597 3,890 2,049 20,50 78,71 0,03 0,03 0,03 0,01 SCFE5P2.002 SCFE5P2.004 SCFE5P2.005	78,1 190 181,6 8,4 2,922 1,000 9,89 68,82 0,485 SCFE5P3.003	75,3 184,5 181,6 2,9 1,277 0,530 3,78 65,04 0,3 SCFE5.006	73,3 183,3 181,6 1,7 0,474 0,22804 1,93 63,11 0,37 SCFE5.007	65,6 185,5 182,4 3,1 1,375 0,283 3,82 59,29 0,53 SCFE5.008	36,671 9,937 4,091	
	1					Massenb	ilanz Extraktion	steer Einwaage zu Auswaage
	TT	Rest	abzüglic	h P1-P5	abz	uglich Acetonex	takt	abzüglich MeOH-Extrakt
Probenmenge [g]	124	,538	50,	699		63,13		1,49
Wassergehalt [Gew.%] Probenmenge wasserfrei [g]	8 113	,84 3,529	0, 50,	17 613	1,43 62,227			0 1,49

Tabelle 40 Versuchsprotokoll und Massenbilanzen von SCFE 6

Versuchsbezeichnung:	SCFE6		Wassergehalt [g]	0,623	
Probenname/Bezeichnung:	Extraktionsteer4/0	01	Wassergehalt [Gew. %]	0,45	
Einwaage Öl [g]	138,5		Versuchsbegin	n:	25.02.02	
Organischer Anteil ÖI [g]	137,87675		Gewicht CO ₂ -F	lasche [kg]:	65,6	
	Pr.1 P	Pr.2	Pr.3	Summe		
P1/soll [bar] Temp. Vorheizer HZ1 ["C] Temp. Extraktor HZ2 ["C] Temp. Rohrheizung ["C] Temp. Venti HZ3 ["C] Durchfluss [g/min] Pumpenhub [mm] Probenabanhme [n] Modifier Typ Modifiermenge [m]	150 50 50 140 2,407 4,3 18	150 50 50 140 3,182 4,6 6	300 50 50 140 2,5 8,2 16			
Gesamtdurchfluss CO ₂ [g]	2600	1145,6	2400			
Gewicht CO ₂ -Flasche [kg] Abscheider 1 incl. Extrakt [g] Tara Abscheider 1 [g] Auswaage Abscheider 1 [g] Auswaage Abscheider 2 [g] Auswaage Abscheider 5 [g] Auswaage Abscheider 3 [g] Auswaage Abscheider 4 [g]	63 142,7349 91,841 50,894 7,270 5,032 0,113 0,155	61,8 94,693 91,841 2,851 1,750 0,952 0	59,4 187,3 182,4 4,9 1,870 1,146 0 0	58,645 10,8911 7,13 0,113 0,155		
Ausbeute [Gew. %] Restöl in Reaktor [Gew. %] Wassergehalt A1 [Gew. %] Wassergehalt A2 [Gew. %] GCFID	45,82 54,18 0,185 2,265 1,815 SCFE6.001	4,01 50,17 0,265 SCFE6.002	5,72 44,45 0,26 SCFE6.003			
GCFID A2 GCFID A5 Ausbeute Acetonextrakt [g] Ausbeute Methanolextrakt [g] Wassergehalt Acetonex. [Gew.%]	SCFE6.004 SCFE6.005 52,81 S 2,24 0,81	SCFE6.006				
	Extraction	natoor	obzüglig	h D1 D2	Massenbilanz Extraktionste	er Einwaage zu Auswaage
Probenmenge [g]	138.	.5	abzuglic 76.9	934	52.81	2.24
Wassergehalt [Gew.%]	0,45	5	0,0	63	0,81	0
Probenmenge wasserfrei [g]	137,8	377	76,4	449	52,382	2,24

Tabelle 41 Versuchsprotokoll und Massenbilanzen von SCFE 7

Versuchsbezeichnung:	SCFE7		Wassergehalt [g]:	11,32	
Probenname/Bezeichnung:	TT-Rest 4/01		Wassergehalt.	[Gew. %]:	8,84	
Einwaage Öl [g]:	128		Versuchsbegin	n:	28.02.02	
Organischer Anteil Öl [g]:	116,68		Gewicht CO ₂ -F	lasche [kg]:	59.4(82.7)	
	Pr.1 Pr.2	2	Summme			
P1/s0l [bar] Temp. Vorheizer HZ1 [°C] Temp. Rohrheizung [°C] Temp. Rohrheizung [°C] Durchfluss [g/min] Pumpenhub [mm] Probenabnahme [h] Modifier Typ Modifiermenge [ml]	150 50 50 140 1,41 5 26	300 50 50 140 4,38 8,8 20				
Gesamtdurchfluss CO ₂ [g]	2200	5250,0				
Gewicht CO ₂ -Flasche [kg] Abscheider 1 incl. Extrakt [g] Tara Abscheider 1 [g] Auswaage Abscheider 1 [g] Auswaage Abscheider 2 [g] Auswaage Abscheider 5 [g]	57,2 110,4418 91,841 18,601 2,813 1,129	77,45 204,5 182,4 22,1 2,890 0,973	40,7005 5,703 2,102			
Ausbeute [Gew. %] Restöl in Reaktor [Gew. %] Wassergehatt A1[%] GCFID Ausbeute Acetonextrakt [g] Ausbeute Methanolextrakt [g] Wassergehalt Acetonex. [Gew.%]	17,61 82,39 0,345 SCFE7.001 SCF 64,99 2,09 0,98	20,28 62,11 0,505 FE7.002				
					Massenbilanz Extraktionste	er Einwaage zu Auswaage
Brohonmongo [a]	TT-Rest		abzüglic	h P1-P2	abzüglich Acetonextakt	abzüglich MeOH-Extrakt
Wassergehalt [Gew.%]	8,84		48,	57	0,98	2,09 0

Komponenten	Gew.%
Säuren	0,00
Alkohole	0,00
Aldehyde	0,00
Aromaten	0,48
Furane	0,99
Guajakole	16,40
Ketone	6,28
Phenole	8,60
Pyrane	0,00
Zucker	0,00
Syringole	24,39
Andere	n.q.
Total	57,14

Tabelle 42 GC-Analyse von Ex-Teer Batch 9561-1

Tabelle 43 GC-Analyse von Ex-Teer Batch 9561-2

Komponenten	Gew.%
Säuren	0,00
Alkohole	0,00
Aldehyde	0,00
Aromaten	0,00
Furane	2,25
Guajakole	30,44
Ketone	8,94
Phenole	25,90
Pyrane	0,00
Zucker	0,00
Syringole	9,41
Andere	n.q.
Total	76,94

Komponenten	Gew.%
Säuren	0,00
Alkohole	0,00
Aldehyde	0,00
Aromaten	1,02
Furane	0,81
Guajakole	9,59
Ketone	4,35
Phenole	4,91
Pyrane	0,00
Zucker	0,00
Syringole	30,76
Andere	n.q.
Total	51,44

Tabelle 44 GC-Analyse von Strahlwäscher Batch 9627-2

Tabelle 45 GC-Analyse Strahlwäscher Batch 9627-1

Komponenten	Gew.%
Säuren	0,00
Alkohole	0,00
Aldehyde	0,00
Aromaten	0,00
Furane	1,18
Guajakole	23,91
Ketone	4,53
Phenole	14,89
Pyrane	0,00
Zucker	0,00
Syringole	31,96
Andere	n.q.
Total	76,46

Komponenten	Gew.%
Säuren	0,00
Alkohole	0,00
Aldehyde	0,00
Aromaten	0,60
Furane	0,62
Guajakole	7,86
Ketone	0,69
Phenole	2,89
Pyrane	0,00
Zucker	0,00
Syringole	37,82
Andere	n.q.
Total	50,49

Tabelle 46 TT-Rest Batch 0304-11

Tabelle 47 GC-Analyse von TT-Rest Batch 04121-14

Komponenten	Gew.%
Säuren	0,00
Alkohole	0,00
Aldehyde	0,00
Aromaten	0,00
Furane	2,33
Guajakole	24,54
Ketone	2,01
Phenole	10,75
Pyrane	0,00
Zucker	0,00
Syringole	31,04
Andere	n.q.
Total	70,66

Compound	wt.%
Acids	3,29
Aldehydes	0,12
Furans	0,77
Guaiacols	0,12
Ketones	1,53
Phenols	0,06
Syringols	0,17
Total	6,05

Tabelle 48 GC-Analyse von Broste 14-05-A

Tabelle 49 GC-Analyse von Broste 14-05-	B
---	---

Compound	wt.%
Acids	14,36
Aldehydes	0,54
Furans	1,90
Guaiacols	0,13
Ketones	5,75
Phenols	0,07
Syringols	0,18
Total	22,93

Tabelle 50 GC-Analyse von Broste 14-05-C

Compound	wt.%
Acids	8,88
Aldehydes	2,00
Aromates	1,54
Furans	21,56
Guaiacols	13,80
Ketones	22,36
Phenols	9,52
Syringols	0,67
Total	80,34

Compound	wt.%
Acids	1,14
Aldehydes	0,09
Aromates	3,23
Furans	3,33
Guaiacols	29,98
Ketones	18,90
Phenols	23,44
Syringols	1,41
Total	81,52

Tabelle 51 GC-Analyse von Broste 14-05-D

Tabelle 52	GC-Analyse	von Broste	14-05-E

Compound	wt.%
Acids	0,60
Furans	1,05
Guaiacols	20,11
Ketones	9,47
Phenols	8,45
Pyrans	2,78
Sugars	4,51
Syringols	33,86
Total	80,83

Tabelle 53 GC-Analyse von Broste 14-05-F

Compound	wt.%
Acids	0,92
Furans	0,50
Guaiacols	9,68
Ketones	0,89
Phenols	0,81
Pyrans	0,36
Sugars	2,35
Syringols	60,05
Total	75,55

Compound	wt.%
Acids	1,83
Guaiacols	6,24
Ketones	0,31
Phenols	0,33
Pyrans	0,10
Sugars	2,58
Syringols	61,76
Total	73,16

Tabelle 54 GC-Analyse von Broste 14-05-G

Tabelle 55 GC-Analyse von Broste 14-05-H

Compound	wt.%
Acids	1,03
Guaiacols	5,03
Ketones	0,03
Phenols	0,03
Sugars	1,68
Syringols	67,59
Total	75,38

Tabelle 56 GC-Analyse von Broste 14-05-I

Compound	wt.%
Acids	1,94
Aromates	2,25
Furans	0,08
Guaiacols	7,15
Ketones	0,21
Phenols	0,12
Sugars	1,47
Syringols	52,74
Total	65,96
Compound	wt.%
-----------	-------
Acids	2,66
Aromates	1,44
Guaiacols	6,81
Ketones	0,12
Phenols	0,18
Sugars	0,23
Syringols	37,55
Total	48,98

Tabelle 57 GC-Analyse von Broste 14-05-J

Tabelle 58	GC-Analyse vo	n Broste	14-05-K
rabelle 50	OC maryse vo	II DIUSIC	17 05 IX

Compound	wt.%
Acids	5,13
Aromates	0,31
Furans	0,06
Guaiacols	5,93
Ketones	0,45
Phenols	0,43
Syringols	15,18
Total	27,50

Tabelle 59 GC-Analyse von Broste F 13

Compound	wt.%
Aromates	0,90
Furans	4,81
Guaiacols	4,60
Ketones	1,20
Phenols	1,38
Pyrans	5,32
Sugars	2,70
Syringols	30,62
Others	n.q.
Total	51,54

Compound	wt.%
Aromates	3,35
Furans	13,39
Guaiacols	24,40
Ketones	18,30
Phenols	13,00
Sugars	0,98
Syringols	0,51
Total	73,94

Tabelle 60 GC-Analyse von Broste F 9-12

Compound	wt.%
Acids	2,96
Aromates	26,92
Guaiacols	5,64
Ketones	1,62
Phenols	1,62
Pyrans	2,69
Syringols	51,53
Total	92,98

Tabelle 61 GC-Analysen von Broste F x

Tabelle 62 Analyse von RAPB 2

Compound	wt.%
Acids	3,22
Aldehydes	0,28
Aromates	0,13
Furans	0,69
Guaiacols	0,84
Ketones	1,83
Phenols	0,13
Sugars	6,40
Syringols	5,13
Total	18,65

Compound	wt.%
Aromates	n.q.
Guaiacols	5,01
Ketones	1,15
Phenols	4,95
Syringols	7,08
Total	18,18

Tabelle 63 GC-Analyse von trep-frak AK

Tabelle 64 GC-Analyse von Phenole TT-Rest

Compound	wt.%
Guaiacols	9,82
Ketones	0,17
Phenols	3,26
Syringols	25,28
Total	38,53

Tabelle 65 Analyse von Broste 14-05-K

Compound	wt.%
Acids	5,13
Aromates	0,31
Furans	0,06
Guaiacols	5,93
Ketones	0,45
Phenols	0,43
Syringols	15,18
Total	27,50

Tabelle 66	GC-Analyse w	on Ternene	TT_Rest
Tabelle 00	OC-Analyse vo	sii reipene	II-Rest

Compound	wt.%
Alcohols	n.q.
Aromates	n.q.
Furans	1,72
Guaiacols	21,97
Ketones	2,56
Phenols	9,71
Syringols	27,20
Total	63,17

Compound	wt.%
Aromates	n.q.
Guaiacols	4,95
Ketones	0,27
Phenols	1,60
Syringols	9,46
Total	16,28

Tabelle 67 GC-Analyse von terp-frak ref

Tabelle 68 Analyse von terp-frak xADy

Compound	wt.%
Aromates	n.q.
Furans	0,19
Guaiacols	3,52
Ketones	0,18
Phenols	1,29
Syringols	6,43
Total	11,61