



International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) Further development and implementation of an EU-level Forest Monitorng System (FutMon)

# Forest Condition in Europe

# 2011 Technical Report of ICP Forests and FutMon

Work Report of the:

Johann Heinrich von Thünen-Institute Institute for World Forestry



Johann Heinrich von Thünen-Institute Federal Research Institute for Rural Areas, Forestry and Fisheries Address: Leuschnerstr. 91, D-21031 Hamburg, Germany Postal address: P.O. Box: 80 02 09, D-21002 Hamburg, Germany

> Phone: +40 / 73962-101 Fax: +40 / 73962-299 E-mail: wfw@vti.bund.de Internet: http://www.vti.bund.de

**Institute for World Forestry** 

# Forest Condition in Europe

# 2011 Technical Report of ICP Forests and FutMon

Richard Fischer, Martin Lorenz (eds.)

Work report of the Institute for World Forestry 2011 / 1

Hamburg, June 2011

#### United Nations Economic Commission for Europe (UNECE) Convention on Long-Range Transboundary Air Pollution CLRTAP International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) www.icp-forests.org

#### Further development and implementation of an EU-level Forest Monitorng System (FutMon) www.futmon.org

Institute for World Forestry von Thünen-Institute, Leuschnerstr. 91 D-21031 Hamburg Germany

www.icp-forests.org www.futmon.org

#### Citation

Fischer R, Lorenz M (eds.). 2011: Forest Condition in Europe, 2011 Technical Report of ICP Forests and FutMon. Work Report of the Institute for World Forestry 2011/1. ICP Forests, Hamburg, 2011, 212 pp.

#### Acknowledgements

34 countries supported the preparation of the present report by submission of data and by providing comments and corrections to the text. Several countries granted financial support. Assessments on the monitoring plots were partly co-financed under the LIFE+ Regulation (EC) 614/2007 of the European Parliament and of the Council. A complete list of the national and international institutions participating in ICP Forests is provided in Chapter 11.

Cover photos: Dan Aamlid (landscape, top), Richard Fischer (middle) Silvia Stofer (bottom)

# **Table of Contents**

| reface |
|--------|
|--------|

## Part I INTRODUCTION

1. Background, set-up and current state of the ICP Forests and FutMon monitoring system..13

Martin Lorenz and Oliver Granke

| 1.1 BACKGROUND                              | 13 |
|---------------------------------------------|----|
| 1.2 LARGE-SCALE FOREST MONITORING (LEVEL I) |    |
| 1.3 INTENSIVE FOREST MONITORING (LEVEL II)  |    |

2. Quality Assurance and Quality Control within the monitoring system ......19

Marco Ferretti, Nils König, Oliver Granke, Nathalie Cools, John Derome(†), Kirsti Derome, Alfred Fürst, Friedhelm Hosenfeld, Aldo Marchetto, Volker Mues

| 2.1 THE OVERALL QUALITY ASSURANCE PERSPECTIVE   | 19 |
|-------------------------------------------------|----|
| 2.2 QUALITY IMPROVEMENT IN THE LABORATORIES     | 20 |
| 2.3 QUALITY CONTROL IN THE DATA BASE            |    |
| 2.3.1 Compliance checks                         |    |
| 2.3.2 Conformity checks                         |    |
| 2.3.3 Uniformity checks                         |    |
| 2.3.4 Experience with improved data base system |    |
| 2.4 REFERENCES                                  |    |
|                                                 |    |

# Part II TREE HEALTH AND VITALITY

| 3. Tree crown condition and damage causes | 29 |
|-------------------------------------------|----|
|-------------------------------------------|----|

Stefan Meining and Richard Fischer

| 3.1 Abstract                                                      | 29 |
|-------------------------------------------------------------------|----|
| 3.2 LARGE SCALE TREE CROWN CONDITION                              | 29 |
| 3.2.1 Methods of the surveys in 2010                              | 29 |
| 3.2.2 Results of the transnational crown condition survey in 2010 | 37 |
| 3.2.3 Defoliation trends                                          | 46 |
| 3.3 DAMAGE CAUSE ASSESSMENT                                       | 64 |
| 3.3.1 Background                                                  | 64 |
| 3.3.2 Methods of the Surveys in 2011                              | 64 |
| 3.3.3 Results                                                     | 69 |
| 3.4 CONCLUSIONS                                                   | 78 |
| 3.5 References                                                    | 79 |
| 3.6 ANNEXES                                                       | 80 |
|                                                                   |    |

# Part III ELEMENT FLUXES

| 4. Exceedance of critical limits of nitrogen concentration in soil solution     | 87 |
|---------------------------------------------------------------------------------|----|
| Susanne Iost, Pasi Rautio, Antti-Jussi Lindroos, Richard Fischer, Martin Lorenz |    |

| 4.1 Abstract                   |  |
|--------------------------------|--|
| 4.2 INTRODUCTION               |  |
| 4.3 DATA                       |  |
| 4.4 Methods                    |  |
| 4.5 Results                    |  |
| 4.6 DISCUSSION AND CONCLUSIONS |  |
| 4.7 References                 |  |

| 5. Exceedance of critical loads for acidity and nitrogen and scenarios for the fut development of soil solution chemistry |                |
|---------------------------------------------------------------------------------------------------------------------------|----------------|
| Hans-Dieter Nagel, Thomas Scheuschner, Angela Schlutow, Oliver Granke, Nicholas Clarke, R                                 | ichard Fischer |
| 5.1 Abstract                                                                                                              |                |
| 5.2 INTRODUCTION                                                                                                          |                |
| 5.3 DATA                                                                                                                  |                |
| 5.4 Methods                                                                                                               |                |
| 5.5 RESULTS OF CRITICAL LOADS AND THEIR EXCEEDANCES                                                                       |                |
| 5.6 RESULTS OF DYNAMIC MODELLING WITH VSD+                                                                                |                |
| 5.6.1 Base saturation                                                                                                     |                |
| 5.6.2 pH value                                                                                                            |                |
| 5.6.3 C:N ratio                                                                                                           |                |
| 5.7 DISCUSSION AND CONCLUSIONS                                                                                            |                |
| 5.8 References                                                                                                            |                |

# Part IV CARBON AND CLIMATE CHANGE

| 6. Analysis of forest growth data on intensive monitoring plots | 115 |
|-----------------------------------------------------------------|-----|
| Matthias Dobbertin, Georg Kindermann, Markus Neumann            |     |

| 6.1 ABSTRACT                                                      |  |
|-------------------------------------------------------------------|--|
| 6.2 INTRODUCTION                                                  |  |
| 6.3 DATA AND METHODS                                              |  |
| 6.3.1 Data completeness and spatial/temporal extent               |  |
| 6.3.2 Measurement accuracy                                        |  |
| 6.3.3 Differences caused by different calculation methods         |  |
| 6.3.4 Methods used for calculations                               |  |
| 6.4 RESULTS                                                       |  |
| 6.4.1 Development on plot level                                   |  |
| 6.4.2 Spatial stocking volume and increment on all observed plots |  |
| 6.5 DISCUSSION AND CONCLUSIONS                                    |  |
| 6.6 References                                                    |  |
|                                                                   |  |

#### Part V BIODIVERSITY

| 7. | Ej | pipł | ıyti | c li | chen | diver | rsity | / in | rel | atio | on | to a | ıtmo | ospł | eric | deposition | ••••• | <br> | ••••• | 128 |
|----|----|------|------|------|------|-------|-------|------|-----|------|----|------|------|------|------|------------|-------|------|-------|-----|
| _  | -  | _    |      |      |      |       |       |      |     | -    | ~  |      |      | _    |      |            |       |      |       |     |

Paolo Giordani, Vicent Calatayud, Silvia Stofer, Oliver Granke

| 7.1. Introduction                                                                 | 128 |
|-----------------------------------------------------------------------------------|-----|
| 7.2 Methods                                                                       | 128 |
| 7.2.1. Data                                                                       |     |
| 7.2.2. Lichen diversity                                                           |     |
| 7.2.3 Nitrogen deposition and lichen functional groups                            |     |
| 7.3 RESULTS: METHOD DEVELOPMENT                                                   |     |
| 7.3.1 Representativeness of sampled trees                                         |     |
| 7.4 RESULTS: EFFECTS OF NITROGEN DEPOSITION                                       |     |
| 7.4.1 Relation between nitrogen deposition and % oligotrophic macrolichen species |     |
| 7.4.2 Mapping of the percentage of oligotrophic lichens                           |     |
| 7.5 DISCUSSION AND CONCLUSIONS                                                    |     |
| 7.6 References                                                                    |     |
| 7.7 Annex                                                                         |     |
| 8. Development of vegetation under different deposition scenarios                 | 144 |

Angela Schlutow, Thomas Scheuschner, Hans Dieter Nagel

| 8.1 Abstract                   | 144 |
|--------------------------------|-----|
| 8.2 INTRODUCTION               | 144 |
| 8.3 DATA                       | 144 |
| 8.4 Methods                    | 144 |
| 8.5 RESULTS                    | 146 |
| 8.6 DISCUSSION AND CONCLUSIONS | 149 |
| 8.7 References                 |     |
|                                |     |

#### Part VI NATIONAL SURVEYS

| 9. | National crown condition surveys and contacts | 152 | ! |
|----|-----------------------------------------------|-----|---|
|    |                                               |     |   |

Richard Fischer and Georg Becher

| 9.1 NATIONAL SURVEY REPORTS |  |
|-----------------------------|--|
| 9.1.1 Andorra               |  |
| 9.1.2 Austria               |  |
| 9.1.3 Belarus               |  |
| 9.1.4 Belgium               |  |
| 9.1.5 Bulgaria              |  |
| 9.1.6 Cyprus                |  |
| 9.1.7 Czech Republic        |  |
| 9.1.8 Denmark               |  |
| 9.1.9 Estonia               |  |
| 9.1.10 Finland              |  |
| 9.1.11 France               |  |
| 9.1.12 Germany              |  |
| 9.1.13 Greece               |  |
| 9.1.14 Hungary              |  |
| 9.1.15 Ireland              |  |
| 9.1.16 Italy                |  |
| 9.1.17 Latvia               |  |
|                             |  |

| 9.1.18 Lithuania                                                                         | 163 |
|------------------------------------------------------------------------------------------|-----|
| 9.1.19 Republic of Moldova                                                               | 164 |
| 9.1.20 The Netherlands                                                                   | 164 |
| 9.1.21 Norway                                                                            | 165 |
| 9.1.22 Poland                                                                            | 166 |
| 9.1.23 Romania                                                                           | 166 |
| 9.1.24 Russian Federation                                                                | 167 |
| 9.1.25 Serbia                                                                            | 167 |
| 9.1.26 Slovak Republic                                                                   | 167 |
| 9.1.27 Slovenia                                                                          | 168 |
| 9.1.28 Spain                                                                             | 168 |
| 9.1.29 Sweden                                                                            | 169 |
| 9.1.30 Switzerland                                                                       | 169 |
| 9.1.31 Turkey                                                                            | 170 |
| 9.1.32 United Kingdom                                                                    | 171 |
| 9.1.33 Ukraine                                                                           | 171 |
| 9.1.34 United States of America                                                          | 171 |
| 9.2 ANNEX: NATIONAL RESULTS                                                              | 173 |
| 9.2.1 Forests and surveys in European countries (2010).                                  | 173 |
| 9.2.2 Percent of trees of all species by defoliation classes and class aggregates (2010) | 174 |
| 9.2.3 Percent of conifers by defoliation classes and class aggregates (2010)             |     |
| 9.2.4 Percent of broadleaves by defoliation classes and class aggregates (2010)          | 176 |
| 9.2.5 Percent of damaged trees of all species (1999-2010)                                | 177 |
| 9.2.6 Percent of damaged conifers (1999-2010).                                           | 178 |
| 9.2.7 Percent of damaged broadleaves (1999-2010)                                         | 179 |
| 9.2.8 Changes in defoliation (1988-2010)                                                 | 180 |
| 9.3 ANNEX: ADDRESSES                                                                     | 193 |
|                                                                                          |     |

\_\_\_\_\_

# Preface

Forests provide a wealth of benefits to the society but are at the same time subject to numerous natural and anthropogenic impacts. For this reason several processes of international environmental and forest politics were established and the monitoring of forest condition is considered as indispensable by the countries of Europe. Forest condition in Europe has been monitored since 1986 by the International Co-operative Programme on the Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) in the framework of the Convention on Long-range Transboundary Air Pollution (CLRTAP) under the United Nations Economic Commission for Europe (UNECE). The number of countries participating in ICP Forests has meanwhile grown to 41 including Canada and the United States of America, rendering ICP Forests one of the largest biomonitoring networks of the world. ICP Forests has been chaired by Germany from the beginning on. The Institute for World Forestry of the Johann Heinrich von Thünen-Institute (vTI) hosts the Programme Coordinating Centre (PCC) of ICP Forests.

Aimed mainly at the assessment of effects of air pollution on forests, ICP Forests provides scientific information to CLRTAP as a basis of legally binding protocols on air pollution abatement policies. For this purpose ICP Forests developed a harmonised monitoring approach comprising a large-scale forest monitoring (Level I) as well as a forest ecosystem forest monitoring (Level II) approach laid down in the ICP Forests Manual. The participating countries have obliged themselves to submit their monitoring data to PCC for validation, storage, and analysis. The monitoring, the data management and the reporting of results used to be conducted in close cooperation with the European Commission (EC). EC co-financed the work of PCC and of the Expert Panels of ICP Forests as well as the monitoring by the EU-Member States until 2006.

While ICP Forests - in line with its obligations under CLRTAP - focuses on air pollution effects, it delivers information also to other processes of international environmental politics. This holds true in particular for the provision of information on several indicators for sustainable forest management laid down by Forest Europe (FE). The monitoring system offers itself for being further developed towards assessments of forest information related to carbon budgets, climate change, and biodiversity. This is accomplished by means of the project "Further Development and Implementation of an EU-level Forest Monitoring System" (FutMon). FutMon is carried out from January 2009 to June 2011 by a consortium of 38 partners in 23 EU-Member States, is also coordinated by the Institute for World Forestry of vTI, and is co-financed by EC under its Regulation "LIFE+". FutMon revises the monitoring system in close cooperation with ICP Forests. It establishes links between large-scale forest monitoring and National Forest Inventories (NFIs). It increases the efficiency of forest ecosystem monitoring by reducing the number of plots for the benefit of a higher monitoring intensity per plot. This is reached by means of a higher number of surveys per plot and newly developed monitoring parameters adopted by ICP Forests for inclusion into its Manual. Moreover, data quality assurance and the database system are greatly improved.

Given the current cooperation between ICP Forests and FutMon, the present Technical Report is published as a joint report of both of them.

# 3. Tree crown condition and damage causes

Stefan Meining<sup>1</sup> and Richard Fischer<sup>2</sup>

#### **3.1 Abstract**

The study presents results of the 2010 forest health and vitality survey carried out on the representative net of Level I plots of ICP Forests and the FutMon project. The survey was based on over 7 500 plots and 145 000 trees in 33 participating countries, including 26 EU member states. It was thus the most comprehensive survey that has ever been carried out on the Level I network.

Defoliation results show slightly higher mean defoliation for broadleaves as compared to the conifers assessed. Deciduous temperate oaks had the highest mean defoliation (24.8%), followed by the south European tree species groups. *Picea abies* and *Pinus sylvestris* showed lowest mean defoliation with 17.0% and 17.4% respectively. The Mediterranean coast in southern France and northern Spain was a hot spot with specifically high defoliation in several species groups.

Over the last five years, temporal defoliation trends show some recuperation for evergreen oaks and a continuously increasing defoliation of *Pinus sylvestris*. For the other species/-goups there is no pronounced trend in the most recent years. After the heat and drought in central Europe in 2003 defoliation clearly increased for most tree species. This points to the value of the data as basis of an early warning system for tree health under changing environmental conditons.

For the first time, forest damage assessments were evaluated based on newly introduced assessments that had started in 2005. In 2010, damage causes were assessed with harmonized methods on 6 413 plots in 32 different countries across Europe. Insects and fungi were the most widespread agents occurring on 27% and 15% of the trees within the survey. The occurrence of these factors shows clear regional trends like plots with high insect occurrence in north-eastern Spain, Italy or Hungary or high occurrence of trees with fungal infestations in Estonia.

#### 3.2 Large scale tree crown condition

#### 3.2.1 Methods of the surveys in 2010

The annual transnational tree crown condition survey was carried out on 7 503 plots in 33 participating countries, including 26 EU member states. It was thus the most comprehensive survey that has ever been carried out on the Level I network. Due to cofinancing through the FutMon project Austria, Greece, The Netherlands, Romania and United Kingdom again conduted the survey after one or several years without assessments. Montenegro participated for the first time. The assessment was carried out under national responsibilities according to harmonized methods laid down in ICP Forests (2010). Data were compiled and checked for consistency by the participating countries and submitted online to the European Coordinating Centre at the Institute for World Forestry in Hamburg, Germany.

<sup>&</sup>lt;sup>1</sup> Büro für Umweltüberwachung, Im Sauergarten 84, D – 79112 Freiburg, Germany

<sup>&</sup>lt;sup>2</sup> Johann Heinrich von Thünen-Institute (vTI), Federal Research Institute for Rural Areas, Forestry and Fisheries, Institute for World Forestry, Leuschnerstraße 91, D-21031 Hamburg, Germany

Aditional data quality checks were carried out in the context of the online data submission (Chapt. 2).

| Country Number of sample plots assessed |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-----------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|                                         | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 |
| Austria                                 | 130  | 130  | 130  | 130  | 133  | 131  | 136  | 136  | 135  |      |      |      | 135  |
| Belgium                                 | 29   | 30   | 29   | 29   | 29   | 29   | 29   | 29   | 27   | 27   | 26   | 26   | 9    |
| Bulgaria                                | 134  | 114  | 108  | 108  | 98   | 105  | 103  | 102  | 97   | 104  | 98   | 159  | 140  |
| Cyprus                                  |      |      |      | 15   | 15   | 15   | 15   | 15   | 15   | 15   | 15   | 15   | 15   |
| Czech Republic                          | 116  | 139  | 139  | 139  | 140  | 140  | 140  | 138  | 136  | 132  | 136  | 133  | 132  |
| Denmark                                 | 23   | 23   | 21   | 21   | 20   | 20   | 20   | 22   | 22   | 19   | 19   | 16   | 17   |
| Estonia                                 | 91   | 91   | 90   | 89   | 92   | 93   | 92   | 92   | 92   | 93   | 92   | 92   | 97   |
| Finland                                 | 459  | 457  | 453  | 454  | 457  | 453  | 594  | 605  | 606  | 593  | 475  | 886  | 932  |
| France                                  | 537  | 544  | 516  | 519  | 518  | 515  | 511  | 509  | 498  | 504  | 508  | 500  | 532  |
| Germany                                 | 421  | 433  | 444  | 446  | 447  | 447  | 451  | 451  | 423  | 420  | 423  | 412  | 411  |
| Greece                                  | 93   | 93   | 93   | 92   | 91   |      |      | 87   |      |      |      | 97   | 98   |
| Hungary                                 | 59   | 62   | 63   | 63   | 62   | 62   | 73   | 73   | 73   | 72   | 72   | 73   | 71   |
| Ireland                                 | 21   | 20   | 20   | 20   | 20   | 19   | 19   | 18   | 21   | 30   | 31   | 32   | 29   |
| Italy                                   | 177  | 239  | 255  | 265  | 258  | 247  | 255  | 238  | 251  | 238  | 236  | 252  | 253  |
| Latvia                                  | 97   | 98   | 94   | 97   | 97   | 95   | 95   | 92   | 93   | 93   | 92   | 207  | 207  |
| Lithuania                               | 67   | 67   | 67   | 66   | 66   | 64   | 63   | 62   | 62   | 62   | 70   | 72   | 75   |
| Luxemburg                               | 4    | 4    | 4    |      | 4    | 4    | 4    | 4    | 4    | 4    | 4    |      |      |
| The Netherlands                         | 11   | 11   | 11   | 11   | 11   | 11   | 11   | 11   | 11   |      |      | 11   | 11   |
| Poland                                  | 431  | 431  | 431  | 431  | 433  | 433  | 433  | 432  | 376  | 458  | 453  | 376  | 374  |
| Portugal*                               | 149  | 149  | 149  | 150  | 151  | 142  | 139  | 125  | 124  |      |      |      |      |
| Romania                                 | 235  | 238  | 235  | 232  | 231  | 231  | 226  | 229  | 228  | 218  |      | 227  | 239  |
| Slovak Republic                         | 109  | 110  | 111  | 110  | 110  | 108  | 108  | 108  | 107  | 107  | 108  | 108  | 108  |
| Slovenia                                | 41   | 41   | 41   | 41   | 39   | 41   | 42   | 44   | 45   | 44   |      | 44   | 44   |
| Spain**                                 | 465  | 611  | 620  | 620  | 620  | 620  | 620  | 620  | 620  | 620  | 620  | 620  | 620  |
| Sweden                                  | 764  | 764  | 769  | 770  | 769  | 776  | 775  | 784  | 790  |      |      | 789  | 830  |
| United Kingdom                          | 88   | 85   | 89   | 86   | 86   | 86   | 85   | 84   | 82   | 32   |      |      | 76   |
| EU                                      | 4751 | 4984 | 4982 | 5004 | 4997 | 4887 | 5039 | 5110 | 4938 | 3885 | 3478 | 5147 | 5455 |
| Andorra                                 |      |      |      |      |      |      | 3    |      | 3    | 3    | 3    | 3    | 3    |
| Belarus                                 | 416  | 408  | 408  | 408  | 407  | 406  | 406  | 403  | 398  | 400  | 400  | 409  | 410  |
| Croatia                                 | 89   | 84   | 83   | 81   | 80   | 78   | 84   | 85   | 88   | 83   | 84   | 83   | 83   |
| Moldova                                 | 10   | 10   | 10   | 10   |      |      |      |      |      |      |      |      |      |
| Montenegro                              |      |      |      |      |      |      |      |      |      |      |      |      | 49   |
| Norway                                  | 386  | 381  | 382  | 408  | 414  | 411  | 442  | 460  | 463  | 476  | 481  | 487  | 491  |
| Russian Fed.                            |      |      |      |      |      |      |      |      |      |      |      | 365  | 288  |
| Serbia                                  |      |      |      |      |      | 103  | 130  | 129  | 127  | 125  | 123  | 122  | 121  |
| Switzerland                             | 49   | 49   | 49   | 49   | 49   | 48   | 48   | 48   | 48   | 48   | 48   | 48   | 48   |
| Turkey                                  |      |      |      |      |      |      |      |      |      |      |      | 563  | 555  |
| Total Europe                            | 5701 | 5916 | 5914 | 5960 | 5947 | 5933 | 6152 | 6235 | 6065 | 5020 | 4617 | 7227 | 7503 |

Table 3-1: Number of sample plots assessed for crown condition from 1998 to 2010

\* including Azores, \*\*including Canares

#### 3.2.1.1 Assessment parameters

For the monitoring year 2010, the following stand and site characteristics are reported from transnational plots: *country*, *plot number*, *plot coordinates*, *altitude*, *aspect*, *water availability*, *humus type*, and *mean age of dominant storey*. Besides *defoliation* and *discolouration*, the tree related data reported are *tree numbers*, *tree species* and *identified damage types*. (Tab. 3-2). Also recorded is the *date of observation*.

| <b>Table 5-2</b> : Stand and site parameters given within the crown condition data base. |                                                                                                        |                                                                                                                                                                                   |  |  |  |  |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Registry and                                                                             | country                                                                                                | state in which the plot is assessed [code number]                                                                                                                                 |  |  |  |  |
| location                                                                                 | plot number                                                                                            | identification of each plot                                                                                                                                                       |  |  |  |  |
|                                                                                          | plot coordinates                                                                                       | latitude and longitude [degrees, minutes, seconds] (geographic)                                                                                                                   |  |  |  |  |
|                                                                                          | date                                                                                                   | day, month and year of observation                                                                                                                                                |  |  |  |  |
| Physiography                                                                             | altitude [m a.s.l.]                                                                                    | elevation above sea level, in 50 m steps                                                                                                                                          |  |  |  |  |
|                                                                                          | aspect [°]                                                                                             | aspect at the plot, direction of strongest decrease of altitude in 8 classes (N, NE,, NW) and "flat"                                                                              |  |  |  |  |
| Soil                                                                                     | water availability three classes: insufficient, sufficient, excessive water av<br>to principal species |                                                                                                                                                                                   |  |  |  |  |
|                                                                                          | humus type                                                                                             | mull, moder, mor, anmor, peat or other                                                                                                                                            |  |  |  |  |
| Forest type                                                                              | Forest type                                                                                            | 14 forest categories according to EEA (2007)                                                                                                                                      |  |  |  |  |
| Stand related data                                                                       | mean age of<br>dominant storey                                                                         | classified age; class size 20 years; class 1: 0-20 years,, class 7: 121-140 years, class 8: irregular stands                                                                      |  |  |  |  |
| Additional tree related data                                                             | tree number                                                                                            | number of tree, allows the identification of each particular tree over all observation years                                                                                      |  |  |  |  |
|                                                                                          | tree species                                                                                           | species of the observed tree [code]                                                                                                                                               |  |  |  |  |
|                                                                                          | identified damage<br>types                                                                             | treewise observations concerning damage caused by game and<br>grazing, insects, fungi, abiotic agents, direct action of man, fire,<br>known regional pollution, and other factors |  |  |  |  |

**Table 3-2**: Stand and site parameters given within the crown condition data base.

Nearly all countries submitted data on water availability, humus type, altitude, aspect, and mean age (Tab. 3-3).

| Country              | Number of plots per site parameter |       |       |          |        |        |
|----------------------|------------------------------------|-------|-------|----------|--------|--------|
|                      | plots                              | Water | Humus | Altitude | Aspect | Age    |
| Austria              | 135                                | 135   | 135   | 135      | 135    | 135    |
| Belgium              | 9                                  | 9     | 9     | 9        | 9      | 9      |
| Bulgaria             | 140                                | 140   | 140   | 140      | 140    | 140    |
| Cyprus               | 15                                 | 15    | 15    | 15       | 15     | 15     |
| Czech Rep.           | 132                                | 132   | 53    | 132      | 132    | 132    |
| Denmark              | 17                                 | 17    | 17    | 17       | 17     | 17     |
| Estonia              | 97                                 | 97    | 97    | 97       | 97     | 97     |
| Finland              | 932                                | 932   | 923   | 932      | 932    | 932    |
| France               | 532                                | 497   | 497   | 532      | 532    | 532    |
| Germany              | 411                                | 411   | 345   | 411      | 411    | 411    |
| Greece               | 98                                 | 98    | 98    | 98       | 98     | 98     |
| Hungary              | 71                                 | 71    | 39    | 71       | 71     | 71     |
| Ireland              | 29                                 | 29    | 17    | 29       | 29     | 29     |
| Italy                | 253                                | 253   | 253   | 253      | 253    | 253    |
| Latvia               | 207                                | 207   |       | 207      | 207    | 207    |
| Lithuania            | 75                                 | 75    | 75    | 75       | 75     | 75     |
| Netherlands          | 11                                 | 11    | 11    | 11       | 11     | 11     |
| Poland               | 374                                | 374   | 374   | 374      | 374    | 374    |
| Romania              | 239                                | 239   | 239   | 239      | 239    | 239    |
| Slovak Rep.          | 108                                |       | 108   | 108      | 108    | 108    |
| Slovenia             | 44                                 | 44    | 44    | 44       | 44     | 44     |
| Spain                | 620                                | 620   | 620   | 620      | 620    | 620    |
| Sweden               | 830                                | 830   | 785   | 830      | 830    | 830    |
| United Kingdom       | 76                                 | 73    | 62    | 76       | 76     | 76     |
| EU                   | 5455                               | 5309  | 4956  | 5455     | 5455   | 5455   |
| Percent of EU plot   |                                    | 97.3% | 90.9% | 100.0%   | 100.0% | 100.0% |
| Andorra              | 3                                  | 3     | 3     | 3        | 3      | 3      |
| Belarus              | 410                                | 410   | 410   | 410      | 410    | 410    |
| Croatia              | 83                                 | 83    | 83    | 83       | 83     | 83     |
| Montenegro           | 49                                 | 49    | 49    | 49       | 49     | 49     |
| Norway               | 491                                |       | 481   | 491      | 491    | 491    |
| Federation           | 288                                |       |       | 288      | 288    | 288    |
| Serbia               | 121                                | 121   | 39    | 121      | 121    | 121    |
| Switzerland          | 48                                 | 47    | 46    | 48       | 48     | 48     |
| Turkey               | 555                                | 538   | 524   | 555      | 555    | 555    |
| Total Europe         | 7503                               | 6560  | 6591  | 7503     | 7503   | 7503   |
| Percent of total plo | ot sample                          | 87.4% | 87.8% | 100.0%   | 100.0% | 100.0% |

Table 3-3: Number of sample plots assessed for crown condition and plots per site parameter

### 3.2.1.2 Defoliation

On each sampling point, sample trees were selected according to national procedures. On 52.8% of the plots sample tree number per plot was between 20 and 24 trees. On 22.5% of all plots less than 10 sample trees were observed (Fig. 3-1).

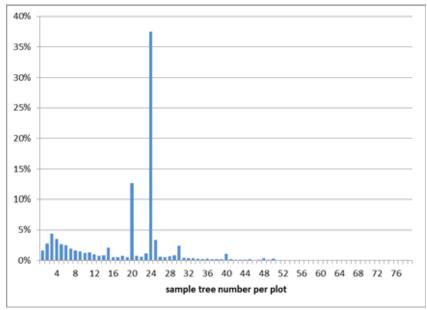



Figure 3-1: Percentage of sample tree number per plot

Due to harmonisation with plot designs of national forest inventories, the variation of numbers of trees per plot has been increasing in comparison to previous years. Predominant, dominant, and co-dominant trees (according to the system of Kraft) of all species qualify as sample trees, provided that they have a minimum height of 60 cm and that they do not show significant mechanical damage.

The variation of crown condition is mainly the result of intrinsic factors, age and site conditions. Moreover, defoliation may be caused by a number of biotic and abiotic stressors. Defoliation assessment attempts to quantify foliage missing as an effect of stressors including air pollutants and not as an effect of long lasting site conditions. In order to compensate for site conditions, local reference trees are used, defined as the best tree with full foliage that could grow at the particular site. Alternatively, absolute references are used, defined as the best possible tree of a genus or a species, regardless of site conditions, tree age etc. depicted on regionally applicable photos, e.g. photo guides. Changes in defoliation and discolouration attributable to air pollution cannot be differentiated from those caused by other factors. Consequently, defoliation due to factors other than air pollution is included in the assessment results. Trees showing mechanical damage are not included in the sample. Should mechanical damage occur to a sample tree, any resulting loss of foliage is not counted as defoliation.

In 2010, 145 323 trees were assessed (Tab. 3-4). Defoliation scores were available for 144 724 trees (Tab. 3-6). Table 3-4 shows the total number of trees assessed in each participating country since 1998. The figures in the table are not necessarily identical to those published in previous reports as re-submission of older data is possible in case of reorganisation of national observation networks.

63.4% of the plots assessed in 2010 were dominated by conifers and 36.6% by broadleaves (Annex I). Plots in mixed stands were assigned to the species group which comprised the majority of the sample trees. On almost 90% of the plots assessed in 2010, only one to three different tree species occurred. On 9.1% of plots four to five species and on 1.8% of plots six to ten tree species occurred (Annex II)

The total number of species within the tree sample was 133. Most abundant were *Pinus sylvestris* (23.6%) followed by *Picea abies* (15.5%), *Fagus sylvatica* (8.4%), *Betula pendula* (4.7%), and *Pinus nigra* (3.8%). In the following evaluations a number of tree species are groupd into species groups:

- **Deciduous temperate oak:** (*Quercus robur* and *Q. petraea*) accounting together for 6.7% of the assessed trees,
- Mediterranean lowland pines: (*Pinus brutia, P. pinaster, P. halepensis* and *P. pinea*) accounting together for 6.1% of the assessed trees,
- Deciduous (sub-) temperate oak: (*Quercus frainetto, Q. pubescens, Q. pyrenaica* and *Q. cerris*) accounting together for 5.5% of the assessed trees,
- Evergreen oak: (*Quercus coccifera, Q. ilex, Q. rotundifolia* and *Q. suber*) accounting together for 3.9% of the assessed trees.

Country Number of sample trees Austria Belgium Bulgaria Cyprus Czech Rep. Denmark Estonia Finland France Germany Greece Hungary Ireland Italy Latvia Lithuania Luxemburg Netherlands Poland Portugal\* Romania Slovak Rep. Slovenia Spain<sup>\*\*</sup> Sweden Kingdom EU Andorra Belarus Croatia Moldova Montenegro Norway Russian Fed. Serbia Switzerland Turkey Total Europe

Table 3-4: Number of sample trees from 1998 to 2010 according to the current database

\* including Azores, \*\* including Canares

#### 3.2.1.3 Scientific background for the defoliation data analysis

Defoliation reflects a variety of natural and human induced environmental influences. It would therefore be inappropriate to attribute it to a single factor such as air pollution without additional evidence. As the true influence of site conditions and the share of tolerable defoliation can not be quantified precisely, damaged trees can not be distinguished from healthy ones only by means of a certain defoliation threshold. Consequently, the 25% threshold for defoliation does not necessarily identify trees damaged in a physiological sense. Some differences in the level of damage across national borders may be at least partly due to differences in standards used. This restriction, however, does not affect the reliability of trends over time.

Natural factors strongly influence crown condition. As also stated by many participating countries, air pollution is thought to interact with natural stressors as a predisposing or accompanying factor, particularly in areas where deposition may exceed critical loads for acidification (CHAPPELKA and FREER-SMITH, 1995, CRONAN and GRIGAL, 1995, FREER-SMITH, 1998).

It has been suggested that the severity of forest damage has been underestimated as a result of the replacement of dead trees by living trees in the course of regular forest management activities. However, detailed statistical analyses of the results of 10 monitoring years have revealed that the number of dead trees has remained so small that their replacement has not influenced the results notably (LORENZ et al., 1994).

#### 3.2.1.4 Classification of defoliation data

The results of the evaluations of the crown condition data are presented in terms of mean plot defoliation or the percentages of the trees falling into 5%-defoliation steps. In previous presentations of survey results, partly the traditional classification of both defoliation and discolouration had been applied, although it is considered arbitrary by some countries. This classification (Tab. 3-5) is a practical convention, as real physiological thresholds cannot be defined.

| UNECE and EU classification |                  |                          |  |  |  |  |  |  |
|-----------------------------|------------------|--------------------------|--|--|--|--|--|--|
| Defoliation class           | needle/leaf loss | degree of defoliation    |  |  |  |  |  |  |
| 0                           | up to 10 %       | none                     |  |  |  |  |  |  |
| 1                           | > 10 - 25 %      | slight (warning stage)   |  |  |  |  |  |  |
| 2                           | > 25 - 60 %      | moderate                 |  |  |  |  |  |  |
| 3                           | >60 - $<100$ %   | severe                   |  |  |  |  |  |  |
| 4                           | 100 %            | dead                     |  |  |  |  |  |  |
| Discolouration              | foliage          | degree of discolouration |  |  |  |  |  |  |
| class                       | discoloured      |                          |  |  |  |  |  |  |
| 0                           | up to 10 %       | none                     |  |  |  |  |  |  |
| 1                           | > 10 - 25 %      | slight                   |  |  |  |  |  |  |
| 2                           | > 25 - 60 %      | moderate                 |  |  |  |  |  |  |
| 3                           | > 60 %           | severe                   |  |  |  |  |  |  |
| 4                           |                  | dead                     |  |  |  |  |  |  |
|                             |                  |                          |  |  |  |  |  |  |

**Table 3-5**: Defoliation and discolouration classes according toUNECE and EU classification

In order to discount perturbations background which might be considered minor, a defoliation of >10-25% is con-sidered a warning stage, and a defoliation > 25%is taken as a threshold for Therefore, in damage. the present report a distinction has sometimes only been made between defoliation classes 0 and 1 (0-25% defoliation) on the one hand, and classes 2, 3 and 4 (defoliation > 25%) on the other hand.

Classically, trees in

classes 2, 3 and 4 are referred to as "damaged", as they represent trees with considerable defoliation. In the same way, the sample points are referred to as "damaged" if the mean defoliation of their trees (expressed as percentages) falls into class 2 or higher. Otherwise the sample point is considered as "undamaged". The most important results have been tabulated

separately for all countries having participated (called "all plots") and for the 26 participating EU-Member States.

## 3.2.1.5 Mean defoliation and temporal development

For all evaluations related to a particular tree species a criterion had to be set up to be able to decide if a given plot represents this species or not. This criterion was that the number of trees of the particular species had to be three or more per plot ( $N \ge 3$ ). The mean plot defoliation for the particular species was calculated as the mean defoliation of the trees of the species on that plot.

The temporal development of defoliation is expressed on maps as the slope, or regression coefficient, of a linear regression of mean defoliation against the year of observation. It can be interpreted as the mean annual change in defoliation. These slopes were considered as "significant" only if there was at least 95% probability that they are different from zero.

Besides the temporal development, also the change in the results from 2009 to 2010 was calculated (Annex V). In this case, changes in mean defoliation per plot are called "significant" only if the significance at the 95% probability level was proven in a statistical test.

### 3.2.1.6 National surveys

National surveys are conducted in many countries in addition to the transnational surveys. The national surveys in most cases rely on denser national grids and aim at the documentation of forest condition and its development in the respective country. Since 1986, densities of national grids with resolutions between 1 x 1 km and 32 x 32 km have been applied due to differences in the size of forest area, in the structure of forests and in forest policies. Results of crown condition assessments on the national grids are presented in Chapter 11. Comparisons between the national surveys of different countries should be made with great care because of differences in species composition, site conditions and methods applied.

#### 3.2.2 Results of the transnational crown condition survey in 2010

In 2010 crown condition was assessed on 7 503 plots (Tab. 3-3) comprising 144 724 sample trees with defoliation scores (Tab. 3-6). Of these, 80 709 conifers and 64 015 deciduous trees were investigated.

Mean defoliation of all assessed trees in Europe was 19.0%. Deciduous trees showed a mean defoliation of 20.1%, slightly higher than that of conifers (18.1%). Annex IV shows a map of mean plot defoliation for all species.

A share of 19.5% of the assessed trees was evaluated as damaged, i.e. had a defoliation of more than 25% (Tab. 3-6). The share of damaged broadleaves (21.9%) exceeded that of damaged conifers (17.6%). In Annex III the percentages of damaged trees are mapped for each plot.

Because of the different numbers of participating countries, the defoliation figures from 2010 are not comparable to those from previous reports. The development of defoliation over time is derived from tree and plot samples from defined sets of countries (Chapt. 3.2.4.1).

|                 |                                        |      | Percentage of trees in defoliation class |      |        |     | Defo | No of |      |        |        |
|-----------------|----------------------------------------|------|------------------------------------------|------|--------|-----|------|-------|------|--------|--------|
|                 | Species type                           | 0-10 | >10-25                                   | 0-25 | >25-60 | >60 | dead | >25   | mean | median | trees  |
| EU              | broadleaves                            | 28.5 | 46.5                                     | 75.0 | 22.1   | 2.1 | 0.7  | 25.0  | 21.7 | 20     | 45623  |
|                 | conifers                               | 35.5 | 43.7                                     | 79.3 | 18.5   | 1.3 | 0.9  | 20.7  | 19.4 | 15     | 54400  |
|                 | all species                            | 32.3 | 45.0                                     | 77.3 | 20.1   | 1.7 | 0.8  | 22.7  | 20.4 | 15     | 100023 |
| Total<br>Europe | Fagus sylvatica<br>Deciduous temperate | 35.9 | 43.7                                     | 79.6 | 19.0   | 1.2 | 0.3  | 20.4  | 18.9 | 15     | 12140  |
|                 | oak<br>Deciduous (sub-)                | 19.2 | 46.6                                     | 65.8 | 31.3   | 2.2 | 0.6  | 34.2  | 24.8 | 20     | 9674   |
|                 | mediterranean oak                      | 26.0 | 47.5                                     | 73.5 | 23.4   | 2.6 | 0.5  | 26.5  | 22.3 | 20     | 8010   |
|                 | Evergreen oak                          | 18.2 | 61.7                                     | 80.0 | 17.6   | 1.7 | 0.7  | 20.0  | 21.8 | 20     | 4762   |
|                 | broadleaves                            | 34.2 | 43.9                                     | 78.1 | 19.2   | 2.0 | 0.7  | 21.9  | 20.1 | 15     | 64015  |
|                 | Pinus sylvestris                       | 38.2 | 47.4                                     | 85.6 | 12.8   | 0.8 | 0.7  | 14.4  | 17.4 | 15     | 34210  |
|                 | Picea abies<br>Mediterranean           | 47.3 | 32.2                                     | 79.5 | 18.5   | 1.5 | 0.5  | 20.5  | 17.0 | 15     | 22449  |
|                 | lowland pines                          | 19.6 | 60.6                                     | 80.1 | 16.5   | 1.6 | 1.8  | 19.9  | 22.3 | 20     | 8917   |
|                 | conifers                               | 38.8 | 43.6                                     | 82.4 | 15.5   | 1.2 | 0.9  | 17.6  | 18.1 | 15     | 80709  |
|                 | all species                            | 36.8 | 43.7                                     | 80.5 | 17.1   | 1.6 | 0.8  | 19.5  | 19.0 | 15     | 144724 |

**Table 3-6**: Percentages of trees in defoliation classes and mean defoliation for broadleaves, conifers and all species

The frequency distribution of the sample trees is shown in 5% classes for broadleaves, conifers, and all species (Fig. 3-2). Dead trees are indicated by defoliation values of 100%.

More than 50% of all trees exhibit defoliation of 10 to 20%. The proportion of conifers is higher in defoliation classes of up to 15%, whereas it was found that deciduous trees showed higher shares in defoliation classes above 15%.

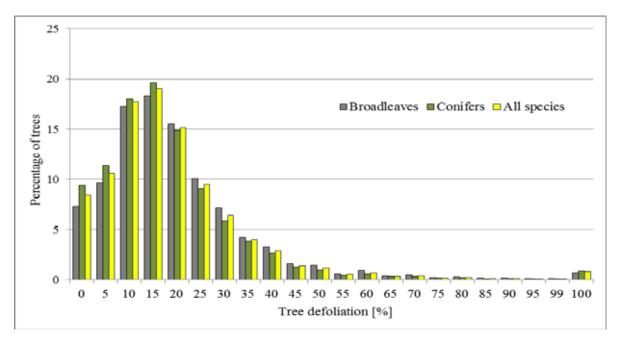



Figure 3-2: Frequency distribution of all trees assessed in 2010 in 5%-defoliation steps

Figures 3-3 to 3-9 show maps of mean plot defoliation for *Pinus sylvestris*, *Picea abies, Fagus sylvatica*, and for the species groups deciduous temperate oak, deciduous (sub-) mediterranean oak, evergreen oak and Mediterranean lowland pines. The maps partly reflect the differences in crown condition between species seen in Table 3-5.

Deciduous temperate oaks had the highest value of mean defoliation (24.8%) on the assessed plots. The spatial distribution on the maps shows clusters of plots with high defoliation concentrated in central Europe. The mean defoliation of deciduous (sub-) mediterranean oaks (22.3%) was higher than the defoliation of the evergreen oaks (21.8%). *Fagus sylvatica* showed a mean defoliation of 18.9%.

From the evaluated conifers Mediterranean lowland pines had the highest mean defoliation (22.3%). In contrast, the mean defoliation of *Pinus sylvestris* and *Picea abies* was lower. Of all the evaluated tree groups *Picea abies* showed the lowest mean defoliation (16.9%).

Clusters of plots with mean defoliation of *Pinus sylvestris* and *Picea abies* above 30% are located in central Europe. Specifically for *Pinus sylvestris* mean defoliation was lower on plots in boreal and hemiboreal regions.

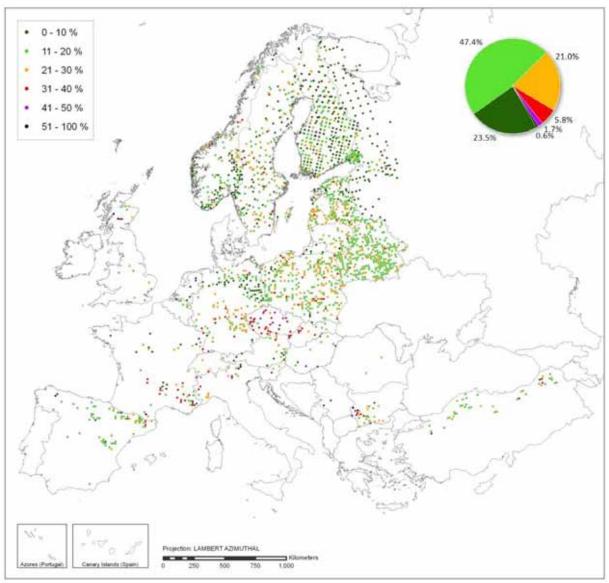



Figure 3-3: Mean plot defoliation for *Pinus sylvestris*, 2010

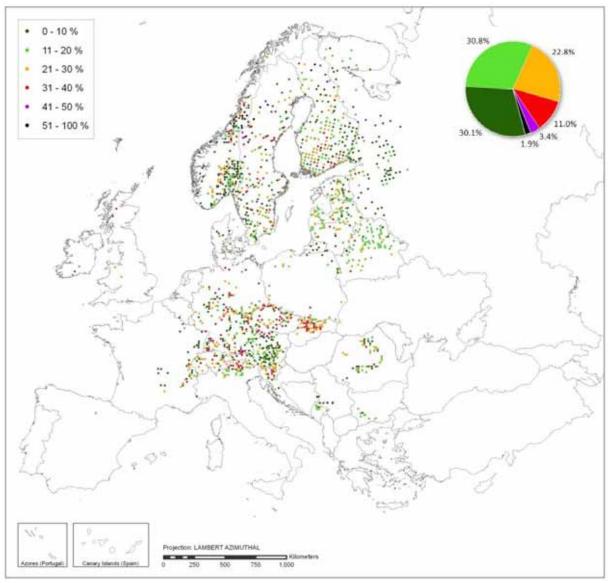



Figure 3-4: Mean plot defoliation for Picea abies, 2010

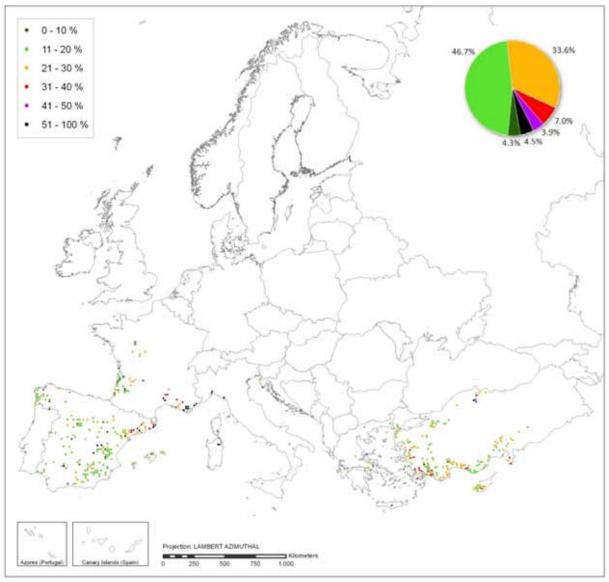



Figure 3-5: Mean plot defoliation for Mediterranean lowland pine (*Pinus brutia, Pinus halepensis, Pinus pinaster, Pinus pinea*), 2010

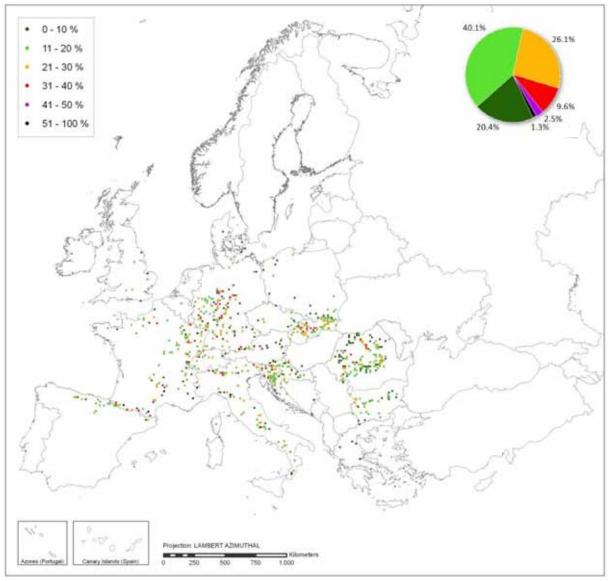
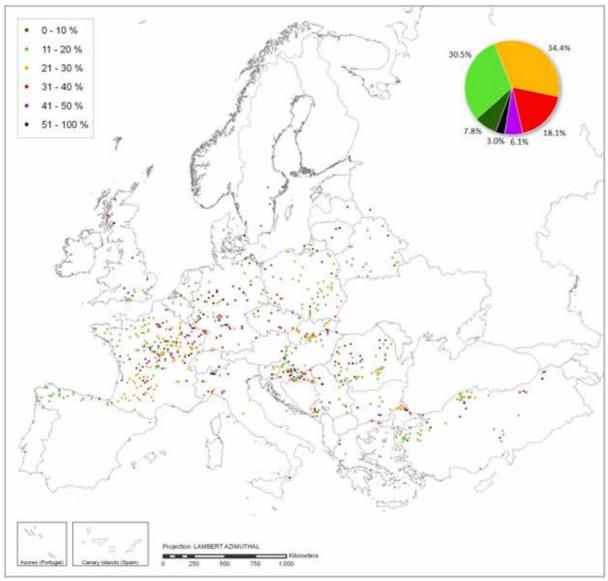
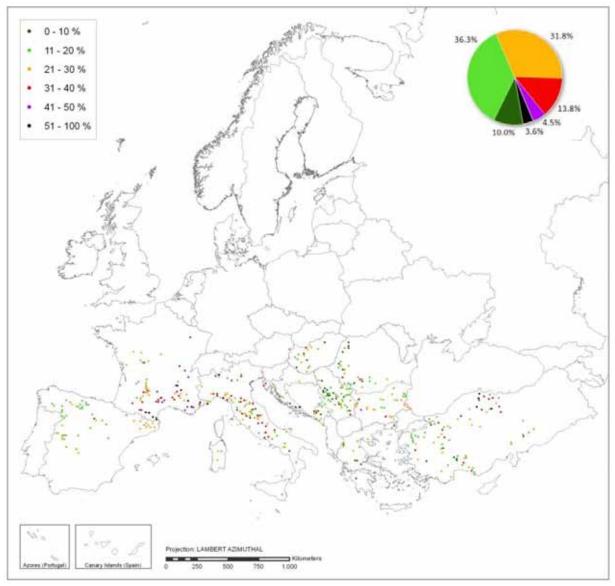





Figure 3-6: Mean plot defoliation for Fagus sylvatica, 2010



**Figure 3-7**: Mean plot defoliation for deciduous temperate oak (*Quercus petraea and Quercus robur*), 2010



**Figure 3-8**: Mean plot defoliation for Deciduous (sub-) Mediterranean oak (*Quercus cerris, Quercus frainetto, Quercus pubescens, Quercus pyrenaica*), 2010

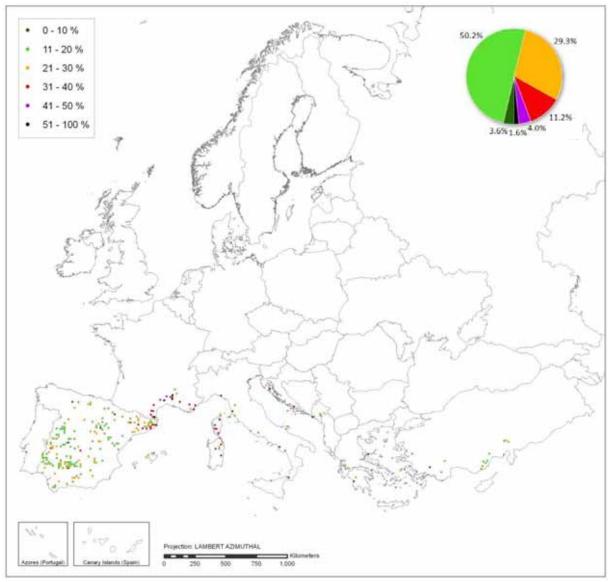



Figure 3-9: Mean plot defoliation for evergreen oak (*Quercus coccifera, Quercus ilex, Quercus rotundifolia, Quercus suber*), 2010

#### **3.2.3 Defoliation trends**

#### 3.2.3.1 Approach

The development of defoliation is calculated assuming that the sample trees of each survey year represent forest condition. Studies of previous years show that the fluctuation of trees in this sample (due to the exclusion of dead and felled trees as well as inclusion of replacement trees) does not cause distortions of the results over the years. However, fluctuations due to the inclusion of newly participating countries must be excluded, because forest condition among countries can deviate greatly. For this reason, the development of defoliation can only be calculated for defined sets of countries. Different lengths of time series require different sets of countries, because at the beginning of the surveys the number of participating countries was much smaller than it is today.

For the present evaluation the following three time periods and the following countries were selected for tracing the development of defoliation:

- **Period 1991-2010 ("long term period")**: Belgium, Czech Republic, Denmark, Finland, France<sup>1</sup>, Germany, Hungary, Ireland, Italy, Latvia, Poland, Slovak Republic, Spain, and Switzerland.
- **Period 1997-2010 ("many countries"):** Belarus, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Ireland, Italy, Latvia, Lithuania, Norway, Poland, Slovak Republic, Spain, and Switzerland.
- Period 2002-2010 ("short term period used to calculate the trend of the mean plot defoliation"): Belarus, Belgium, Bulgaria, Croatia, Czech Republic, Cyprus, Denmark, Estonia, Finland, France, Germany, Hungary, Ireland, Italy, Latvia, Lithuania, Norway, Poland, Slovak Republic, Spain, and Switzerland.

Several countries could not be included in one of the three time periods because of changes in their tree sample sizes, their assessment methods or missing assessments in certain years. Development of defoliation is presented for the periods 1991-2010 and 1997-2010 in graphs and in tables. Graphs show the fluctuations of mean defoliation and shares of trees in defoliation classes over time.

The maps depict trends in mean defoliation from 2002-2010. Whereas all plots of the countries mentioned above are included for the two respective time periods in graphs, the maps of the trend analysis only represent plots within these countries that were included in all of the surveys. In the last years plots were shifted within Finland and parts of northern Germany (Brandenburg). These plots are not depicted in the maps but the countries are included in the time series calculation.

The spatial pattern of the changes in mean defoliation from 2009 to 2010 across Europe is shown in Annex I-5. On 84.8% of the plots between 2009 and 2010 there was no statistical significance of the differences in mean plot defoliation detected. The share of plots with increasing defoliation was 6.9%, the share of plots with a decrease was 8.3%.

<sup>&</sup>lt;sup>1</sup> Methodological changes in the first years of the assessments

#### 3.2.3.2 All tree species

For all species depicted, the two time series show very similar trends for mean defoliation due to the fact that the countries included in the short time series were also included in the evaluation of the long time series (Fig. 3-10 and Fig. 3-11). For *evergreen oak* and *Mediterranean lowland pines* there was hardly any difference in sample sizes on which evaluations of the different time series were based. The largest differences occurred for *Pinus sylvestris* and *Picea abies* the sample sizes for the long time series being 70% smaller than that of the shorter time series.

Since 1991 mean defoliation of the evaluated tree species developed very differently. With the exception of *Picea abies* and *Pinus sylvestris*, all tree species showed a sharp rise in mean defoliation in the first years of the study. Mean defoliation of *Picea abies*, *Fagus sylvatica* and the deciduous temperate oaks peaked after the extremely dry and warm summer in 2003. In all samples studied, deciduous temperate oaks and deciduous (sub-) mediterranean oaks exhibited the highest mean defoliation over the last decade. In contrast, *Pinus sylvestris* clearly showed the lowest mean defoliation from all evaluated species.

Trends in mean plot defoliation for all tree species for the period 2002-2010 are mapped in Figure 3-12. The share of plots with distinctly increasing defoliation (16.8%) surmounts the share of plots with decreasing defoliation (10.0%). Plots showing deterioration are scattered across Europe, but their share is particularly high in southern France, at the eastern edge of the Pyrenean Mountains, Czech Republic, and northeastern Italy.

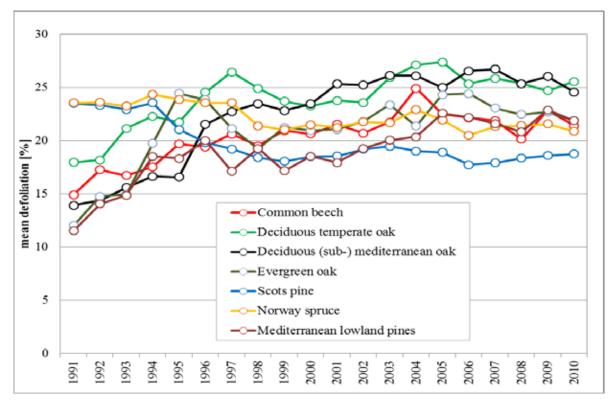



Figure 3-10: Mean defoliation of main species 1991 - 2010

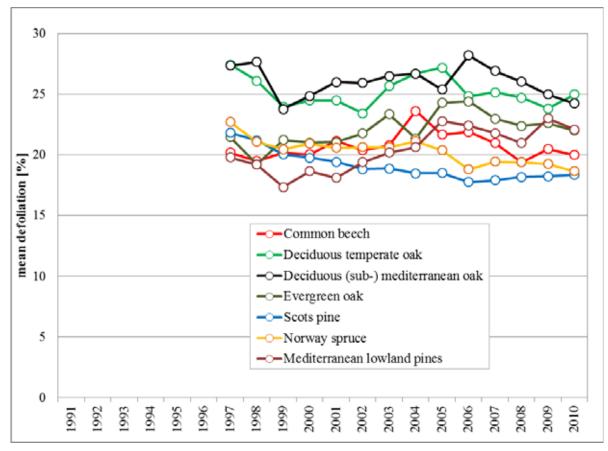
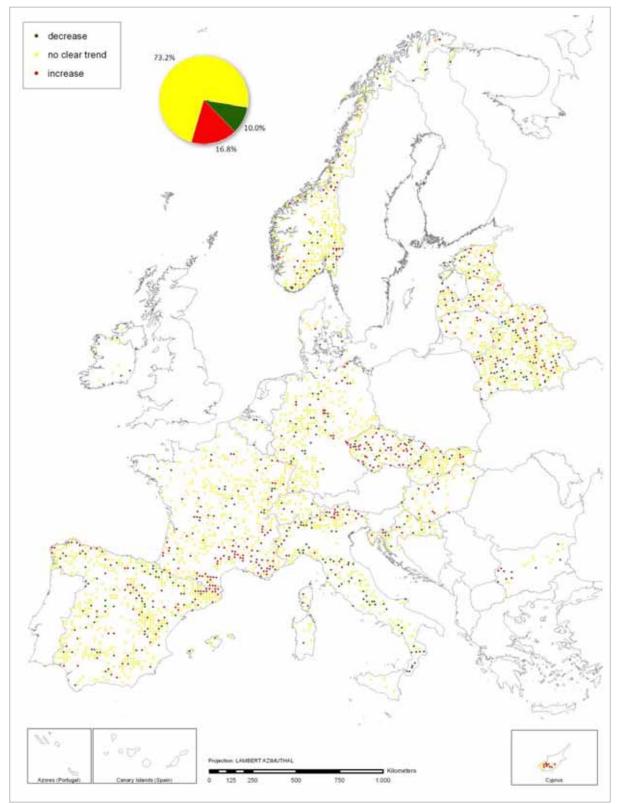
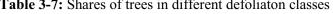
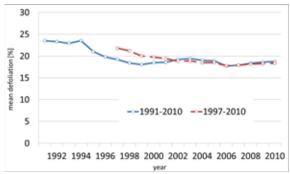




Figure 3-11: Mean defoliation of main species 1997 - 2010

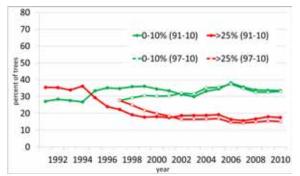


**Figure 3-12**: Development of mean plot defoliation (slope of linear regression) of all species over the years 2002 – 2010

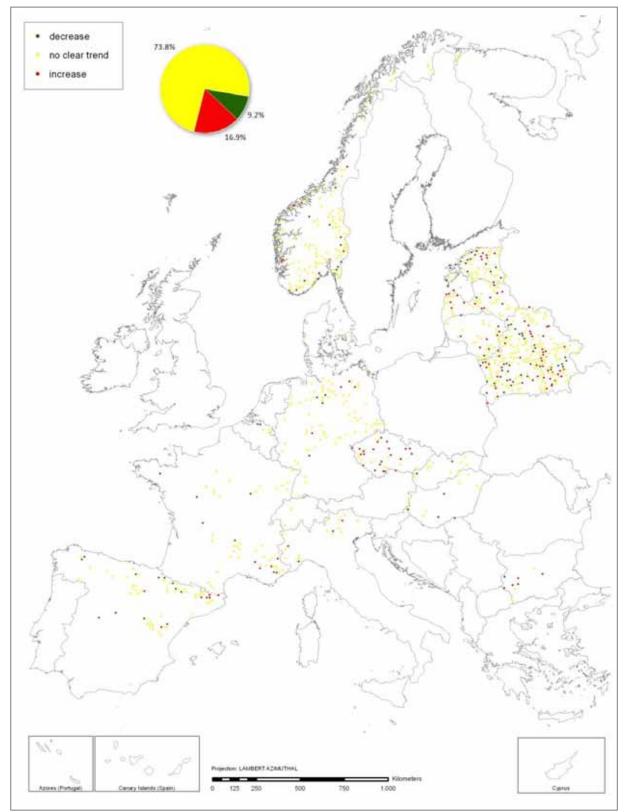

#### 3.2.3.3 Pinus sylvestris


*Pinus sylvestris* is by far the most common tree species in the sample. It covers most regions in Europe and occurs on Level I plots from northern Scandinavia to the Mediterranean region. Due to the large sample number and its occurrence throughout Europe, regional differences in the development of crown condition are leveled off in the aggregated results (Tab. 3-7).

Over the long time period, a decrease in the mean defoliation was noticed. In recent years, however, almost no change in crown condition was seen. Throughout both time periods, the share of healthy pines (0-10%) increased and the share of the damaged pine trees (>25%) decreased (Tab. 3-7, Fig. 3-13, Fig. 3-14).


Plots showing a deterioration are scattered across Europe (Fig. 3-15). Most plots show no clear trend from 2002 to 2010. The share of plots with increasing defoliation (16.9%) is larger than the share of plots with decreasing defolation (9.2%).

|          | N Trees   | 0-10%           | >10-25%        | >25%         |
|----------|-----------|-----------------|----------------|--------------|
| 1991     | 17768     | 27.1            | 37.4           | 35.5         |
| 1992     | 17193     | 28.4            | 36.3           | 35.4         |
| 1993     | 17224     | 27.6            | 38.5           | 33.9         |
| 1994     | 16570     | 26.8            | 37.0           | 36.2         |
| 1995     | 18751     | 33.4            | 37.3           | 29.3         |
| 1996     | 18788     | 35.2            | 40.8           | 24.0         |
| 1997     | 18824     | 34.8            | 42.9           | 22.3         |
| 1998     | 19205     | 35.9            | 45.0           | 19.1         |
| 1999     | 19468     | 36.1            | 46.2           | 17.7         |
| 2000     | 19455     | 34.5            | 47.5           | 18.0         |
| 2001     | 19571     | 33.4            | 49.1           | 17.5         |
| 2002     | 19495     | 31.2            | 50.1           | 18.6         |
| 2003     | 19486     | 29.9            | 51.4           | 18.7         |
| 2004     | 21101     | 33.2            | 48.0           | 18.8         |
| 2005     | 21279     | 34.5            | 46.3           | 19.2         |
| 2006     | 18654     | 38.1            | 45.5           | 16.4         |
| 2007     | 19254     | 35.6            | 48.8           | 15.6         |
| 2008     | 17696     | 33.9            | 49.4           | 16.7         |
| 2009     | 16979     | 33.7            | 48.3           | 18.0         |
| 2010     | 17122     | 33.5            | 49.1           | 17.5         |
|          |           |                 |                |              |
|          | N Trees   | 0-10%           | >10-25%        | >25%         |
| 1997     | 29838     | 27.7            | 44.6           | 27.7         |
| 1998     | 30196     | 29.2            | 45.8           | 25.0         |
| 1999     | 30148     | 30.6            | 47.6           | 21.8         |
| 2000     | 29855     | 30.2            | 49.9           | 19.9         |
| 2001     | 29967     | 30.4            | 51.3           | 18.3         |
| 2002     | 29798     | 32.0            | 51.6           | 16.4         |
| 2003     | 30077     | 31.6            | 52.0           | 16.5         |
| 2004     | 31593     | 35.2            | 48.3           | 16.6         |
| 2005     | 31722     | 35.5            | 47.6           | 16.9         |
| 2006     | 28990     | 37.4            | 48.1           | 14.6         |
| 2007     | 29570     | 34.8            | 50.9           | 14.2         |
| 2008     | 28046     | 32.5            | 52.7           | 14.8         |
| 2009     | 27662     | 32.6            | 52.0           | 15.4         |
| 2010     | 27851     | 33.0            | 51.9           | 15.1         |
| fable 3- | 7: Shares | of trees in dif | ferent defolia | aton classes |





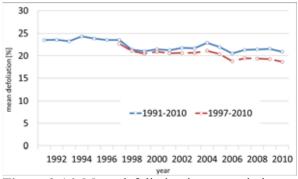

**Figure 3-13**: Mean defoliation in two periods (1991-2010 and 1997-2010)



**Figure 3-14**: Shares of trees of defoliation 0-10% and >25% in two periods (1991-2010 and 1997-2010)

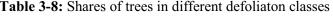


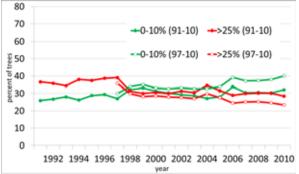
**Figure 3-15**: Development of mean plot defoliation (slope of linear regression) of *Pinus sylvestris* over the years 2002 – 2010


#### 3.2.3.4 Picea abies

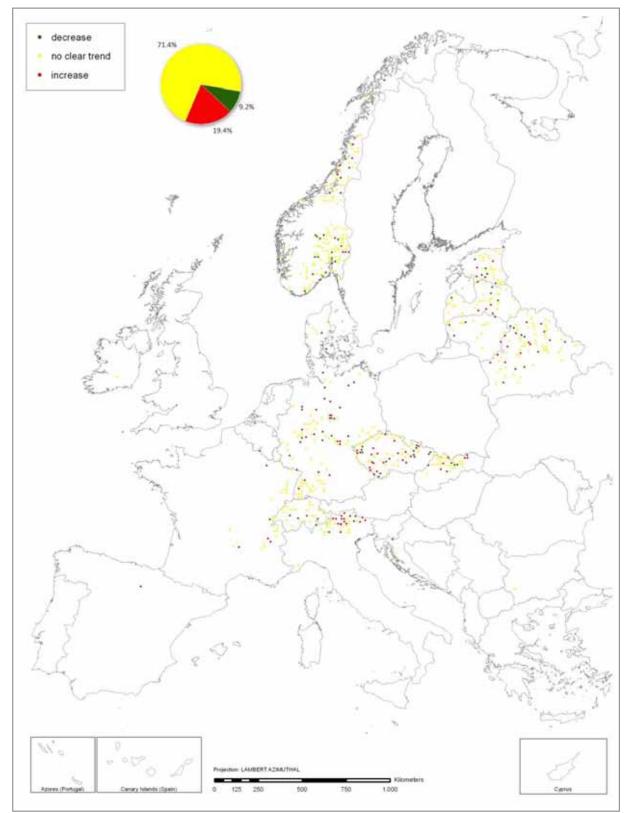
*Picea abies* is the second most frequently occurring tree species in the large scale tree sample. Its range extends mainly from Scandinavia to northern Italy.

The crown condition of *Picea abies* slightly improved over the course of both observation periods. Due to the extreme weather conditions in central Europe in summer 2003, mean defoliation peaked in this year. Until 2006 a regeneration phase was observed. Since then, the crown condition has remained more or less unchanged (Tab. 3-8, Fig. 3-16, Fig. 3-17).


Since 1991, the share of healthy trees (0-10%) increased slightly. In the same period the share of more damaged spruce (>25%) decreased slightly. A significant improvement in the crown condition of spruce was observed in 1998 and 2006.


From 2003 to 2010, a total of 19.4% of all plots showed an increase of mean defoliation; a significant decrease in crown damage was only observed on 9.2%. In particular, decreasing trends of defoliation were determined in Belarus and southern Norway (Fig. 3-18).




**Figure 3-16**: Mean defoliation in two periods (1991-2010 and 1997-2010)

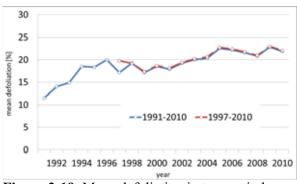
|      | N Trees | 0-10% | >10-25% | >25% |
|------|---------|-------|---------|------|
| 1991 | 15090   | 26.0  | 37.4    | 36.6 |
| 1992 | 12298   | 26.8  | 37.4    | 35.8 |
| 1993 | 12473   | 28.1  | 37.6    | 34.4 |
| 1994 | 12812   | 26.3  | 35.7    | 38.0 |
| 1995 | 14480   | 28.9  | 33.7    | 37.4 |
| 1996 | 14437   | 29.4  | 31.9    | 38.7 |
| 1997 | 14234   | 27.0  | 33.9    | 39.1 |
| 1998 | 13729   | 32.2  | 36.6    | 31.3 |
| 1999 | 14129   | 33.2  | 36.8    | 30.1 |
| 2000 | 14174   | 31.3  | 38.0    | 30.7 |
| 2001 | 13898   | 30.3  | 39.7    | 30.0 |
| 2002 | 13935   | 29.3  | 39.4    | 31.3 |
| 2003 | 13928   | 28.7  | 40.8    | 30.5 |
| 2004 | 14364   | 27.1  | 38.3    | 34.6 |
| 2005 | 13913   | 28.1  | 40.3    | 31.6 |
| 2006 | 11916   | 33.9  | 37.2    | 29.0 |
| 2007 | 11385   | 30.5  | 39.5    | 30.0 |
| 2008 | 10991   | 30.6  | 39.2    | 30.2 |
| 2009 | 10664   | 30.4  | 39.4    | 30.2 |
| 2010 | 10991   | 32.2  | 39.3    | 28.5 |
|      |         |       |         |      |
|      | N Trees | 0-10% | >10-25% | >25% |
| 1997 | 17982   | 30.0  | 34.2    | 35.8 |
| 1998 | 17465   | 34.0  | 36.1    | 29.9 |
| 1999 | 17862   | 35.1  | 36.7    | 28.3 |
| 2000 | 17833   | 33.1  | 38.3    | 28.6 |
| 2001 | 17574   | 32.6  | 39.4    | 27.9 |
| 2002 | 17630   | 33.2  | 39.1    | 27.7 |
| 2003 | 17736   | 32.6  | 40.3    | 27.1 |
| 2004 | 18272   | 32.8  | 37.4    | 29.8 |
| 2005 | 17749   | 33.9  | 38.5    | 27.6 |
| 2006 | 15845   | 39.2  | 36.3    | 24.5 |
| 2007 | 15538   | 37.2  | 37.5    | 25.2 |
| 2008 | 15325   | 37.4  | 37.3    | 25.3 |
| 2009 | 15274   | 38.0  | 37.4    | 24.6 |
|      |         |       |         |      |





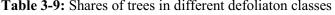
**Figure 3-17**: Shares of trees of defoliation 0-10% and >25% in two periods (1991-2010 and 1997-2010)

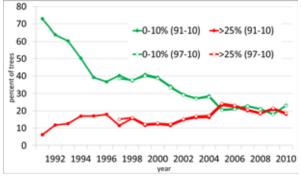



**Figure 3-18**: Development of mean plot defoliation (slope of linear regression) of *Picea abies* over the years 2002 – 2010

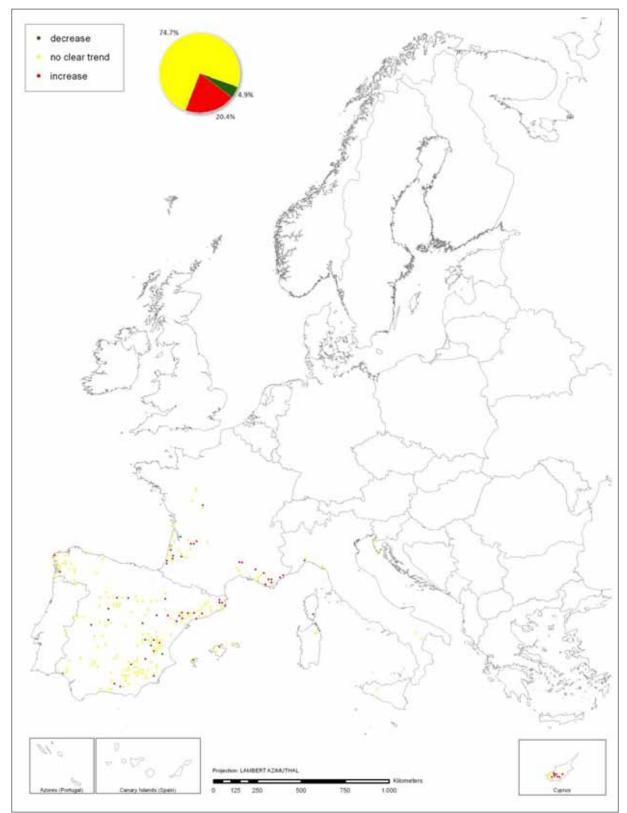
#### 3.2.3.5 Mediterranean lowland pines

The group of Mediterranean lowland pines is composed of *Pinus brutia*, *P. pinaster*, *P. halepensis* and *P. pinea*. Their occurrence is limited to the Mediterranean region. The results for different time periods observed are similar because the two time periods included almost identical countries.


Crown condition of this tree species group is characterized by a considerable increase in mean defoliation of the pine trees since 1991. The share of healthy trees (0-10%) has decreased from 72.9% in 1991 to 23.2% in 2010. In contrast, the share of the damaged Mediterranean lowland pines (>25%) peaked in 2005, decreased thereafter and fluctuated since then (Tab. 3-9, Fig. 3-19, fig. 3-20).


The worsening trend is also reflected in the share of plots showing a significant increase in mean plot defoliation. Mean plot defoliation increased on 20.4% of the plots from 2002 to 2010. These plots are mainly located along the Mediterranean coast in France and in northern Spain (Fig. 3-21).




**Figure 3-19**: Mean defoliation in two periods (1991-2010 and 1997-2010)

|      | N Trees | 0-10% | >10-25% | >25% |
|------|---------|-------|---------|------|
| 1991 | 3758    | 72.9  | 20.9    | 6.1  |
| 1992 | 3866    | 63.9  | 24.3    | 11.8 |
| 1993 | 3891    | 60.3  | 27.1    | 12.6 |
| 1994 | 3802    | 50.3  | 32.7    | 17.0 |
| 1995 | 3823    | 39.2  | 43.8    | 17.0 |
| 1996 | 3815    | 36.6  | 45.4    | 17.9 |
| 1997 | 3769    | 40.3  | 48.3    | 11.5 |
| 1998 | 3827    | 37.1  | 47.3    | 15.6 |
| 1999 | 5202    | 40.8  | 47.6    | 11.6 |
| 2000 | 5279    | 39.1  | 48.6    | 12.2 |
| 2001 | 5287    | 34.0  | 54.6    | 11.5 |
| 2002 | 5280    | 29.6  | 55.8    | 14.7 |
| 2003 | 5215    | 27.3  | 56.6    | 16.1 |
| 2004 | 5235    | 28.7  | 55.2    | 16.1 |
| 2005 | 5198    | 20.7  | 56.0    | 23.3 |
| 2006 | 5201    | 21.3  | 56.6    | 22.1 |
| 2007 | 5240    | 22.9  | 57.0    | 20.1 |
| 2008 | 5248    | 21.2  | 60.5    | 18.3 |
| 2009 | 5105    | 18.1  | 61.0    | 20.8 |
| 2010 | 5085    | 23.2  | 58.7    | 18.1 |
|      |         |       |         |      |
|      | N Trees | 0-10% | >10-25% | >25% |
| 1997 | 3944    | 38.5  | 46.4    | 15.1 |
| 1998 | 3940    | 37.5  | 46.5    | 16.0 |
| 1999 | 5314    | 40.1  | 47.6    | 12.3 |
| 2000 | 5368    | 38.6  | 48.6    | 12.8 |
| 2001 | 5376    | 33.5  | 54.3    | 12.2 |
| 2002 | 5345    | 29.3  | 55.5    | 15.2 |
| 2003 | 5280    | 27.0  | 56.2    | 16.8 |
| 2004 | 5348    | 28.1  | 54.7    | 17.3 |
| 2005 | 5289    | 20.4  | 55.3    | 24.3 |
| 2006 | 5290    | 21.0  | 55.8    | 23.1 |
| 2007 | 5305    | 22.6  | 56.6    | 20.7 |
| 2008 | 5313    | 21.0  | 60.2    | 18.8 |
| 2009 | 5170    | 17.9  | 60.5    | 21.6 |
| 2010 | 5150    | 23.1  | 58.2    | 18.7 |

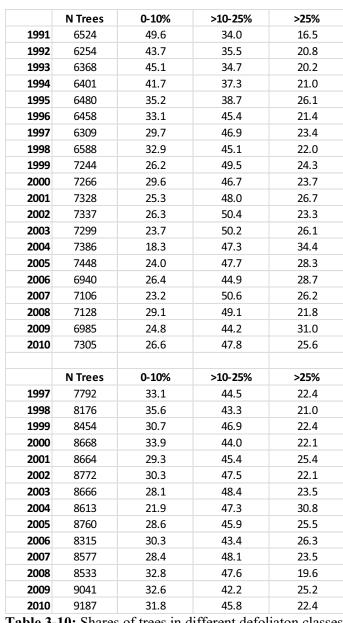


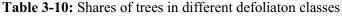


**Figure 3-20**: Shares of trees of defoliation 0-10% and >25% in two periods (1991-2010 and 1997-2010)



**Figure 3-21**: Development of mean plot defoliation (slope of linear regression) of *Mediterranean lowland pines* over the years 2002 – 2010


#### 3.2.3.6 Fagus sylvatica


*Fagus sylvatica* is the most common deciduous tree species occurring on Level I plots. It ranges from southern Scandinavia to Sicily and from the northern coast of Spain to Bulgaria.

Since the beginning of the study in 1991, mean defoliation of this species slightly increased. Defoliation peaked in the year after the hot and dry summer in central Europe in 2003. Recuperation has been observed since then. The increase in defoliation in 2009 has been explained by, widespread fructification (Tab. 3-10, Fig. 3-22, Fig. 3-23).

The share of healthy trees (0-10%) steadily decreased from 49.6% in 1991, to 18.3% in 2004. In 2010, the share of healthy trees increased to 26.6%. The share of the damaged trees (> 25%) was 25.6% in 2010.

Temporal trends of mean defoliation from 2003 – 2010 show an increase in mean defoliation of *Fagus sylvatica*, especially on plots in France and Croatia. Decreasing trends were detected for plots in Italy and western Germany (Fig. 3-24).





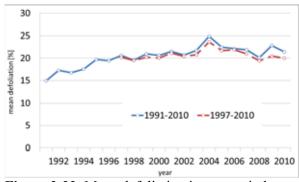
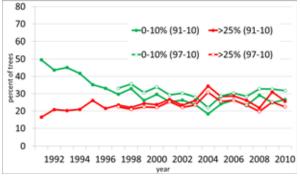
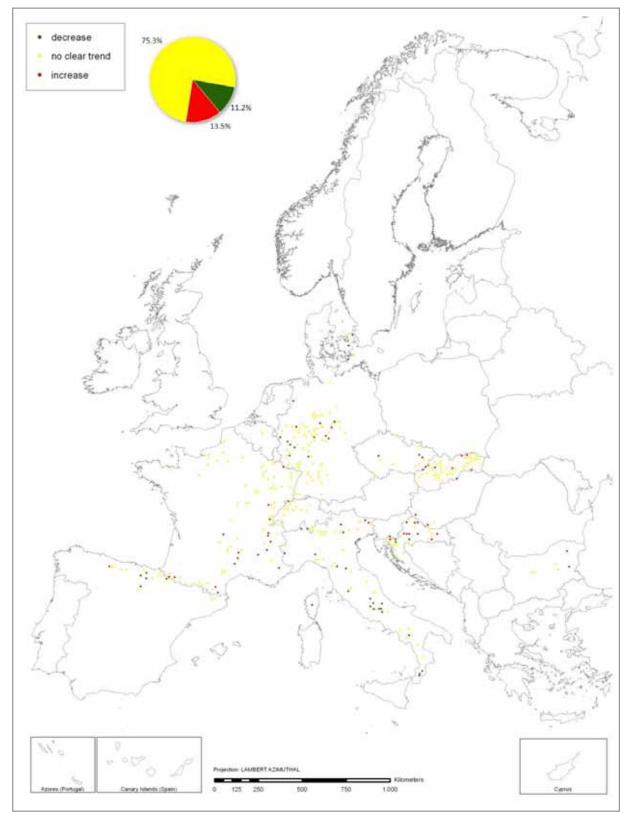





Figure 3-22: Mean defoliation in two periods (1991-2010 and 1997-2010)

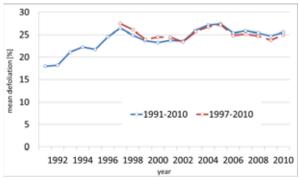


**Figure 3-23**: Shares of trees of defoliation 0-10% and >25% in two periods (1991-2010 and 1997-2010)



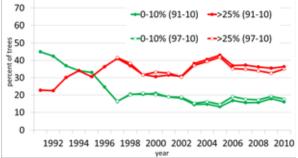
**Figure 3-24**: Development of mean plot defoliation (slope of linear regression) of *Fagus sylvatica* over the years 2002 - 2010

#### 3.2.3.7 Deciduous temperate oak

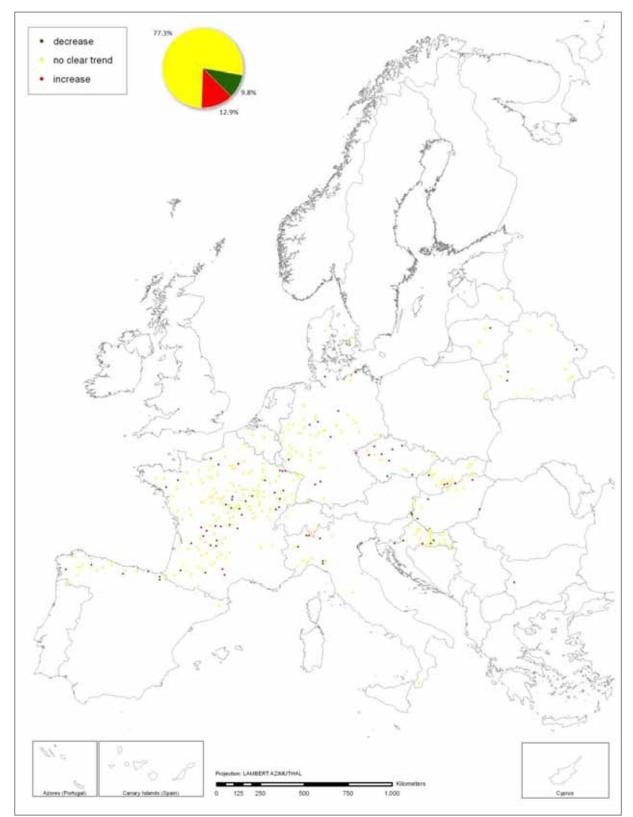

The group of decidious temperate oaks includes two species: *Quercus robur* and *Q. petraea*. These species are occuring throughout central Europe.

Defoliation of deciduous temperate oaks has been characterized by two peaks in 1997 and 2005 with a slight recuperation in the subsequent years. In 2010, mean defoliation again increased to slightly over 25%.

The share of healthy oaks has decreased by more 50% since 1991. Consequently, the share of damaged oaks increased over this time period (Tab. 3-11, Fig. 3-26, Fig. 3-26).


An increasing trend of defoliation was observed on 12.9% of the plots from 2002 to 2010. On 9.8% of all plots, a decreasing trend of mean plot defoliation was identified. No clear spatial trends for the development of defoliation were detected for the deciduous temperate oaks (Fig. 3-27).

|          | N Trees                                                            | 0-10% | >10-25% | >25% |  |  |  |  |  |
|----------|--------------------------------------------------------------------|-------|---------|------|--|--|--|--|--|
| 1991     | 5730                                                               | 45.0  | 32.2    | 22.8 |  |  |  |  |  |
| 1992     | 5295                                                               | 42.5  | 35.0    | 22.5 |  |  |  |  |  |
| 1993     | 5377                                                               | 36.9  | 33.0    | 30.1 |  |  |  |  |  |
| 1994     | 5593                                                               | 34.1  | 31.8    | 34.1 |  |  |  |  |  |
| 1995     | 5449                                                               | 33.0  | 36.4    | 30.6 |  |  |  |  |  |
| 1996     | 5422                                                               | 24.6  | 39.0    | 36.4 |  |  |  |  |  |
| 1997     | 5435                                                               | 16.3  | 42.6    | 41.1 |  |  |  |  |  |
| 1998     | 5589                                                               | 20.5  | 42.5    | 37.0 |  |  |  |  |  |
| 1999     | 5708                                                               | 20.4  | 47.8    | 31.7 |  |  |  |  |  |
| 2000     | 5737                                                               | 21.0  | 48.3    | 30.7 |  |  |  |  |  |
| 2001     | 5738                                                               | 18.9  | 49.6    | 31.5 |  |  |  |  |  |
| 2002     | 5750                                                               | 18.2  | 51.0    | 30.8 |  |  |  |  |  |
| 2003     | 5750                                                               | 14.5  | 47.3    | 38.2 |  |  |  |  |  |
| 2004     | 5852                                                               | 14.7  | 44.7    | 40.5 |  |  |  |  |  |
| 2005     | 5863                                                               | 13.3  | 43.7    | 43.0 |  |  |  |  |  |
| 2006     | 5373                                                               | 16.9  | 46.2    | 37.0 |  |  |  |  |  |
| 2007     | 5475                                                               | 15.6  | 47.1    | 37.2 |  |  |  |  |  |
| 2008     | 5646                                                               | 15.7  | 48.0    | 36.2 |  |  |  |  |  |
| 2009     | 5579                                                               | 17.9  | 46.6    | 35.5 |  |  |  |  |  |
| 2010     | 5639                                                               | 16.1  | 47.6    | 36.3 |  |  |  |  |  |
|          |                                                                    |       |         |      |  |  |  |  |  |
|          | N Trees                                                            | 0-10% | >10-25% | >25% |  |  |  |  |  |
| 1997     | 6548                                                               | 16.5  | 41.9    | 41.6 |  |  |  |  |  |
| 1998     | 6760                                                               | 20.1  | 41.6    | 38.3 |  |  |  |  |  |
| 1999     | 6791                                                               | 21.0  | 47.4    | 31.6 |  |  |  |  |  |
| 2000     | 6882                                                               | 20.2  | 46.6    | 33.2 |  |  |  |  |  |
| 2001     | 6811                                                               | 18.9  | 48.4    | 32.6 |  |  |  |  |  |
| 2002     | 6654                                                               | 18.8  | 50.8    | 30.4 |  |  |  |  |  |
| 2003     | 6659                                                               | 15.3  | 47.6    | 37.1 |  |  |  |  |  |
| 2004     | 6780                                                               | 16.2  | 44.5    | 39.4 |  |  |  |  |  |
| 2005     | 6849                                                               | 14.6  | 43.5    | 41.9 |  |  |  |  |  |
| 2006     | 6348                                                               | 19.2  | 45.6    | 35.2 |  |  |  |  |  |
| 2007     | 6475                                                               | 17.5  | 47.6    | 34.9 |  |  |  |  |  |
| 2008     | 6642                                                               | 17.2  | 48.8    | 34.0 |  |  |  |  |  |
| 2009     | 6928                                                               | 19.3  | 48.1    | 32.7 |  |  |  |  |  |
| 2010     | 6817                                                               | 17.7  | 47.3    | 35.0 |  |  |  |  |  |
| Table 3- | <b>Fable 3-11:</b> Shares of trees in different defoliaton classes |       |         |      |  |  |  |  |  |




**Figure 3-25**: Mean defoliation in two periods (1991-2010 and 1997-2010)

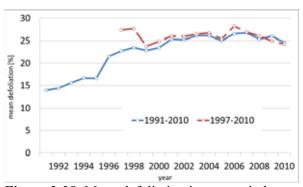




**Figure 3-26**: Shares of trees of defoliation 0-10% and >25% in two periods (1991-2010 and 1997-2010)

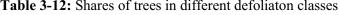


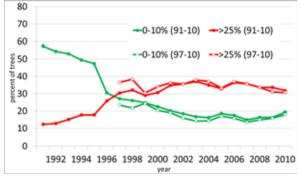
**Figure 3-27**: Development of mean plot defoliation (slope of linear regression) of deciduous temperate oak (*Quercus robur, Quercus petraea*) over the years 2002 – 2010


#### 3.2.3.8 Deciduous (sub-) mediterranean oak

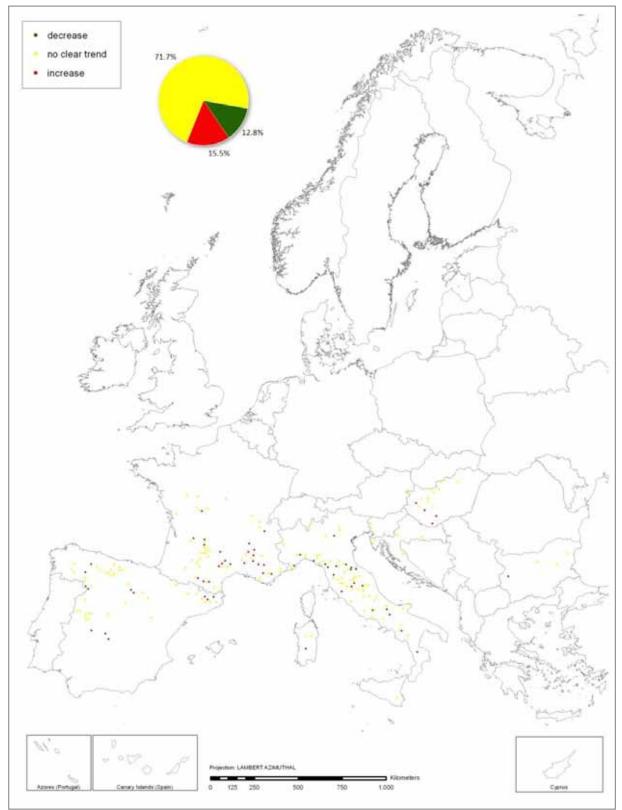
The group of deciduous (sub-) Mediterranean oak is composed of *Quercus cerris, Q. pubescens, Q. frainetto* and *Q. pyrenaica*. These species are occurring on plots in southern European countries.

Crown condition of these oaks declined drastically until the end of 1990s. For the first time in 1996, mean defoliation of this group increased to more than 20%. Since then, no prolonged phases with recuperating crown condition have been observed.


The share of healthy trees (0-10%) decreased by more than 50% since 1991. Accordingly, the proportion of damaged oaks rose to over 30% (Tab. 3-12, Fig. 3-28, Fig. 3-29).


The spatial distribution clearly shows a trend of deterioration of crown condition of deciduous (sub-) Mediterranean oaks since 2002, mainly in areas of southern France. In contrast, plots with an improving trend of mean plot defoliation were found in other areas, such as central Italy (Fig. 3-30).




**Figure 3-28**: Mean defoliation in two periods (1991-2010 and 1997-2010)

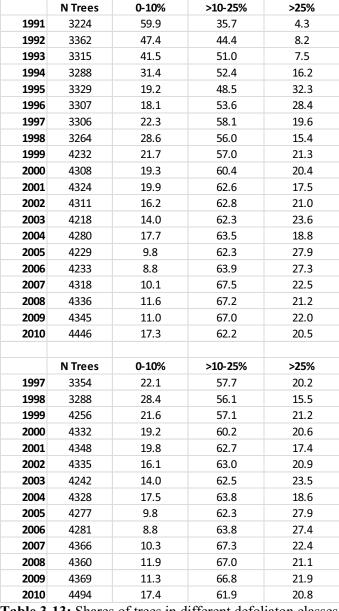
| Jak  |         |              |              |              |
|------|---------|--------------|--------------|--------------|
|      | N Trees | 0-10%        | >10-25%      | >25%         |
| 1991 | 3113    | 57.4         | 30.3         | 12.4         |
| 1992 | 3156    | 54.3         | 32.8         | 12.8         |
| 1993 | 3154    | 53.0         | 31.8         | 15.2         |
| 1994 | 3123    | 49.5         | 32.8         | 17.7         |
| 1995 | 3170    | 47.4         | 34.9         | 17.7         |
| 1996 | 3218    | 30.5         | 43.7         | 25.8         |
| 1997 | 3056    | 27.1         | 42.5         | 30.4         |
| 1998 | 3084    | 26.1         | 41.8         | 32.1         |
| 1999 | 3678    | 24.8         | 46.1         | 29.1         |
| 2000 | 3648    | 22.5         | 46.8         | 30.6         |
| 2001 | 3686    | 20.2         | 45.0         | 34.8         |
| 2002 | 3599    | 18.4         | 46.0         | 35.6         |
| 2003 | 3519    | 16.7         | 46.2         | 37.0         |
| 2004 | 3625    | 16.2         | 48.8         | 35.0         |
| 2005 | 3580    | 18.5         | 48.5         | 32.9         |
| 2006 | 3583    | 17.5         | 46.1         | 36.4         |
| 2007 | 3588    | 14.9         | 49.3         | 35.8         |
| 2008 | 3606    | 16.3         | 50.1         | 33.6         |
| 2009 | 3608    | 16.2         | 50.1         | 33.6         |
| 2010 | 3967    | 19.3         | 48.9         | 31.8         |
|      |         |              |              |              |
|      | N Trees | 0-10%        | >10-25%      | >25%         |
| 1997 | 4037    | 23.4         | 40.0         | 36.6         |
| 1998 | 4392    | 21.7         | 39.9         | 38.3         |
| 1999 | 4628    | 24.4         | 45.2         | 30.4         |
| 2000 | 4530    | 20.4         | 45.5         | 34.1         |
| 2001 | 4704    | 19.0         | 44.7         | 36.3         |
| 2002 | 4599    | 15.9         | 48.6         | 35.4         |
| 2003 | 4376    | 14.2         | 48.0         | 37.8         |
| 2004 | 4468    | 14.3         | 48.6         | 37.1         |
| 2005 | 4409    | 17.1         | 49.7         | 33.2         |
| 2006 | 4577    | 15.8         | 47.2         | 37.0         |
|      | 4387    | 13.6         | 50.7         | 35.7         |
| 2007 | 4507    |              |              |              |
|      | 4387    | 14.9         | 51.4         | 33.7         |
| 2007 |         | 14.9<br>15.8 | 51.4<br>53.1 | 33.7<br>31.1 |

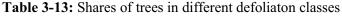


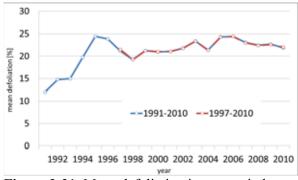


**Figure 3-29**: Shares of trees of defoliation 0-10% and >25% in two periods (1991-2010 and 1997-2010)

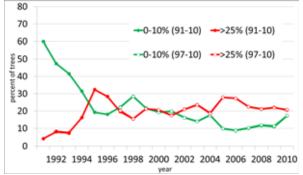



**Figure 3-30**: Development of mean plot defoliation (slope of linear regression) of deciduous (sub-Mediterranean oak *(Quercus cerris, Quercus frainetto, Quercus pubescens, Quercus pyrenaica)* over the years 2002 – 2010

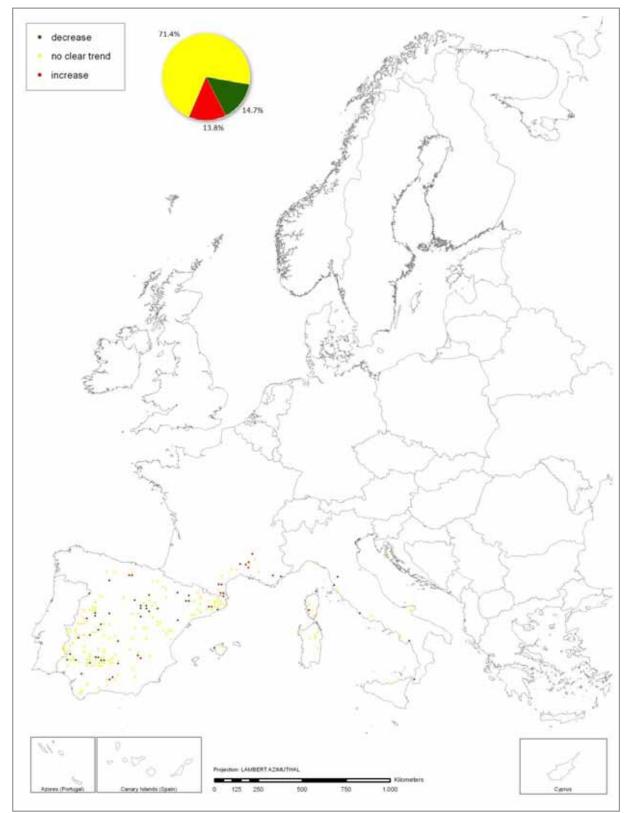

#### 3.2.3.9 Evergreen oak


The group of evergreen oaks includes *Quercus coccifera*, *Q. ilex*, *Q. rotundifolia* and *Q. suber*. The results for the different time periods shown in the graph are similar because of only marginal differences in the composition of countries represented by the figures.

At the beginning of the study in the early 1990s, mean defoliation of evergreen oak trees was relatively low – less than 15%. Accordingly, the share of healthy trees (0-10%) was high. The first peak (with just under 25% mean defoliation) was recorded in 1995, the second one in 2005 and 2006. Since then, a slight recovery of the crown condition has been recorded (Tab. 3-13, Fig. 3-31, Fig. 3-32).


14.7% of all plots showed a decreasing trend and 13.8% an increasing trend of mean plot defoliation of evergreen oaks from 2002 to 2010. In southern France there are clusters of plots with an increasing trend, while in the continental areas of Spain more plots with a decreasing trend can be identified (Fig. 3-33).








**Figure 3-31**: Mean defoliation in two periods (1991-2010 and 1997-2010)



**Figure 3-32**: Shares of trees of defoliation 0-10% and >25% in two periods (1991-2010 and 1997-2010)



**Figure 3-33**: Development of mean plot defoliation (slope of linear regression) of evergreen oak (Quercus coccifera, Quercus ilex, Quercus rotundifolia, Quercus suber) over the years 2002 – 2010

# 3.3 Damage Cause Assessment

## 3.3.1 Background

Crown condition is the most widely applied indicator for forest-health and vitality in Europe. In order to interpret the crown condition accurately, it is necessary to assess tree parameters that have an influence on tree vitality. Parameters assessed in addition to crown condition include discolouration and damages caused by biotic and abiotic factors. Through the assessment of damage and its influence on the crown condition, it is possible to draw conclusions on cause-effect mechanisms. Since 2005, tree crowns on Level I plots have been examined based on an amended method for damage assessment, which allows to obtain more information on injury symptoms, possible causes of damage, and extent of the injury.

The aim of the damage cause assessment is to collect as much information as possible on the causal background of tree damages in order to enable a differential diagnosis and to better interpret the unspecific parameter "defoliation".

## 3.3.2 Methods of the Surveys in 2011

#### 3.3.2.1 Selection of sample plots

Assessment of damage causes is part of the visual assessment of crown condition. All trees included in the crown condition sample (Level I plots) are required to be regularly assessed for damage causes.

In 2010, damage causes were assessed on 6 413 plots in 32 different countries across Europe (Fig. 3-34, Tab. 3-14). This is the highest number of assessed plots since the start of the extended damage cause assessment in 2005. The increase in plotnumbers with damage cause assessment from 2009 to 2010 is partly due to the first assessments on plots in Turkey in 2010.

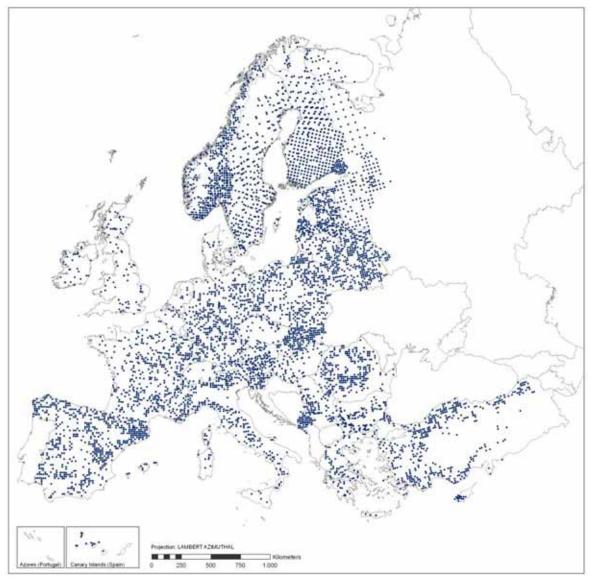



Figure 3-34: Plots with damage cause assessment 2010

| Country        | Number of sample plots assessed |      |      |      |      |      |  |
|----------------|---------------------------------|------|------|------|------|------|--|
|                | 2005                            | 2006 | 2007 | 2008 | 2009 | 2010 |  |
| Austria        | 136                             | 135  |      |      |      | 135  |  |
| Belgium        | 21                              | 25   | 27   | 25   | 23   | 9    |  |
| Bulgaria       | 96                              | 96   | 100  | 54   | 134  | 132  |  |
| Cyprus         | 15                              | 15   | 15   | 15   | 15   | 15   |  |
| Czech Rep.     | 138                             |      | 40   | 35   | 38   | 43   |  |
| Denmark        |                                 |      |      |      | 16   | 17   |  |
| Estonia        | 85                              | 81   | 64   | 76   | 92   | 97   |  |
| Finland        | 605                             | 606  | 518  | 423  | 886  | 932  |  |
| France         | 464                             | 498  | 450  | 459  | 459  | 489  |  |
| Germany        | 208                             | 235  | 255  | 238  | 412  | 389  |  |
| Greece         | 79                              |      |      |      | 97   | 98   |  |
| Hungary        | 73                              | 73   |      |      | 73   | 71   |  |
| Ireland        | 17                              | 15   |      | 31   | 32   | 29   |  |
| Italy          | 236                             | 250  | 238  | 235  | 251  | 253  |  |
| Latvia         | 65                              | 93   | 93   | 92   | 169  | 173  |  |
| Lithuania      | 48                              | 50   | 49   | 54   | 63   | 69   |  |
| Luxembourg     | 4                               | 4    | 2    | 4    |      |      |  |
| Netherlands    | 9                               | 11   |      |      | 11   | 11   |  |
| Poland         | 432                             | 376  | 430  | 433  | 376  | 374  |  |
| Portugal       | 88                              | 6    |      |      |      |      |  |
| Romania        | 66                              | 61   | 158  |      | 227  | 239  |  |
| Slovak Rep.    | 108                             | 107  | 107  | 102  | 108  | 108  |  |
| Slovenia       | 33                              | 23   |      |      | 44   | 44   |  |
| Spain          | 620                             | 620  | 620  | 620  | 590  | 582  |  |
| Sweden         | 784                             | 748  |      |      | 857  | 370  |  |
| United Kingdom | 84                              | 82   |      |      |      | 70   |  |
| EU             | 4514                            | 4210 | 3166 | 2896 | 4973 | 4749 |  |
| Andorra        |                                 | 3    | 3    | 3    | 3    | 3    |  |
| Belarus        | 403                             | 398  | 339  | 320  | 330  | 328  |  |
| Croatia        | 33                              | 32   |      |      |      |      |  |
| Montenegro     |                                 |      |      |      |      | 49   |  |
| Norway         | 460                             | 463  | 476  | 481  | 487  | 491  |  |
| Russian Fed.   |                                 |      |      |      | 336  | 279  |  |
| Serbia         | 62                              | 74   | 53   | 35   | 97   | 88   |  |
| Switzerland    | 20                              | 19   | 18   | 23   | 6    | 11   |  |
| Turkey         |                                 |      |      |      |      | 415  |  |
| Total Europe   | 5492                            | 5199 | 4055 | 3758 | 6232 | 6413 |  |

 Table 3-14: Number of sample plots assessed

#### 3.3.2.2 Assessment parameters

The assessment of damage to trees based on the ICP Forests methodology includes three steps: symptom description, determination of causes, and quantification of the symptoms. Several symptoms of damage can be described for each tree. The symptom description should focus on important factors which may influence crown condition.

#### **Symptoms**

Symptom description aims describing visible damage at for single trees. causes The description indicates affected parts of the assessed trees and type of symptoms observed. Symptom description should focus on important factors that may influence the crown condition.

Three main categories are distinguished for indicating the affected part of each tree: (a) leaves/needles, (b) branches, shoots, & buds, and (c) stem & collar. For each affected tree area, further specification is required (Tab. 3-15).

Table 3-15: Affected parts of a tree

| Affected part    | Specification of affected part      | Location in crown |
|------------------|-------------------------------------|-------------------|
| Leaves/needles   | Current needle year                 | Upper crown       |
|                  | Older needles                       | Lower crown       |
|                  | Needles of all ages                 | Patches           |
|                  | Broadleaves (incl. evergreen spec.) | Total crown       |
| Branches, shoots | Current year shoots                 | Upper crown       |
| & buds           | Twigs (diameter < 2 cm)             | Lower crown       |
|                  | Branches diameter 2 – < 10 cm       | Patches           |
|                  | Branches diameter ≥ 10 cm           | Total crown       |
|                  | Varying size                        |                   |
|                  | Top leader shoot                    |                   |
|                  | Buds                                |                   |
| Stem & collar    | Crown stem: main trunk or bole      |                   |
|                  | within the crown                    |                   |
|                  | Bole: trunk between the collar and  |                   |
|                  | the crown                           |                   |
|                  | Roots (exposed) and collar (≤ 25 cm |                   |
|                  | height)                             |                   |
|                  | Whole trunk                         |                   |
| Dead tree        | see below                           |                   |
| No symptoms on   | see below                           |                   |
| any part of tree |                                     |                   |
| No assessment    | see below                           |                   |
|                  |                                     |                   |

Symptoms are grouped into broad categories like wounds, deformations, necrosis etc. This allows a detailed description of the occurring symptoms.

#### Extent

The damage extent is classified in eight classes (Tab. 3-16). In trees where multiple damages occurred (and thus multiple extent classes), only the highest value was evaluated. In total, 49.1% of all assessed trees have been assigned a damage extent class of 1.

 Table 3-16: Damage extent classes

| erabbeb   |  |  |  |  |  |
|-----------|--|--|--|--|--|
| Class     |  |  |  |  |  |
| 0 %       |  |  |  |  |  |
| 1 - 10 %  |  |  |  |  |  |
| 11 - 20 % |  |  |  |  |  |
| 21-40 %   |  |  |  |  |  |
| 41 - 60 % |  |  |  |  |  |
| 61 - 80 % |  |  |  |  |  |
| 81 - 99 % |  |  |  |  |  |
| 100 %     |  |  |  |  |  |

#### **Causal agents**

For each symptom description a causal agent must be determined. The determination of the causal agent is crucial for the study of the cause-effect mechanism. Causal agents are grouped into nine categories (Tab. 3-17). In each category a more detailed discription is possible through a hierarchical coding system. In 2010, agent groups were identified for 59 520 trees (Tab. 3-18).

# **Table 3-17:** Main categoriesof causal agents

| Agent group                     |  |
|---------------------------------|--|
| Game and grazing                |  |
| Insects                         |  |
| Fungi                           |  |
| Abiotic agents                  |  |
| Direct action of men            |  |
| Fire                            |  |
| Atmospheric pollutants          |  |
| Other factors                   |  |
| (Investigated but) unidentified |  |

| Country        | Number of sample trees |       |       |       |       |       |  |  |
|----------------|------------------------|-------|-------|-------|-------|-------|--|--|
|                | 2005                   | 2006  | 2007  | 2008  | 2009  | 2010  |  |  |
| Austria        | 607                    | 747   |       |       |       | 982   |  |  |
| Belgium        | 239                    | 450   | 408   | 455   | 451   | 193   |  |  |
| Bulgaria       | 1283                   | 1231  | 1155  | 469   | 2563  | 2522  |  |  |
| Cyprus         | 255                    | 248   | 234   | 321   | 341   | 310   |  |  |
| Czech Rep.     | 59                     |       | 144   | 110   | 134   | 170   |  |  |
| Denmark        |                        |       |       |       | 86    | 94    |  |  |
| Estonia        | 1013                   | 1007  | 732   | 830   | 897   | 2068  |  |  |
| Finland        | 4261                   | 4274  | 3278  | 2959  | 2310  | 2137  |  |  |
| France         | 5385                   | 6101  | 6259  | 5951  | 6107  | 6607  |  |  |
| Germany        | 2146                   | 2216  | 2471  | 2000  | 10088 | 2115  |  |  |
| Greece         | 1023                   |       |       |       | 2071  | 1983  |  |  |
| Hungary        | 957                    | 928   |       |       | 1225  | 1231  |  |  |
| Ireland        | 198                    | 143   |       | 211   | 283   | 171   |  |  |
| Italy          | 5346                   | 5274  | 5232  | 5148  | 5468  | 6541  |  |  |
| Latvia         | 507                    | 456   | 403   | 398   | 604   | 536   |  |  |
| Lithuania      | 139                    | 146   | 140   | 159   | 235   | 326   |  |  |
| Luxembourg     | 70                     | 41    | 6     | 20    |       |       |  |  |
| Netherlands    | 111                    |       |       |       | 75    | 86    |  |  |
| Poland         | 3734                   | 4215  | 4869  | 5102  | 4165  | 4179  |  |  |
| Portugal       | 1693                   | 97    |       |       |       |       |  |  |
| Romania        | 585                    | 565   |       |       | 1623  | 1890  |  |  |
| Slovak Rep.    | 690                    | 4229  | 3894  | 3907  | 4312  | 4211  |  |  |
| Slovenia       | 312                    | 185   |       |       | 765   | 799   |  |  |
| Spain          | 9452                   | 9150  | 8925  | 8168  | 8781  | 7620  |  |  |
| Sweden         | 7653                   | 3829  |       |       | 506   | 543   |  |  |
| United Kingdom | 1806                   | 1619  |       |       |       | 1243  |  |  |
| EU             | 49524                  | 47151 | 38150 | 36208 | 53090 | 48557 |  |  |
| Andorra        |                        | 7     | 7     | 8     | 8     | 8     |  |  |
| Belarus        | 1827                   | 1628  | 1770  | 1393  | 1271  | 1276  |  |  |
| Croatia        | 257                    | 256   |       |       |       |       |  |  |
| Montenegro     |                        |       |       |       |       | 626   |  |  |
| Norway         | 792                    | 973   | 1053  | 975   | 779   | 817   |  |  |
| Russian Fed.   |                        |       |       |       | 3723  | 3475  |  |  |
| Serbia         | 856                    | 1167  | 503   | 188   | 838   | 941   |  |  |
| Switzerland    | 100                    | 71    | 76    | 74    | 79    | 105   |  |  |
| Turkey         |                        |       |       |       |       | 3715  |  |  |
| Total Europe   | 53356                  | 51253 | 41559 | 38846 | 59788 | 59520 |  |  |

**Table 3-18:** Number of sample trees with agent group. In this overview trees with more than one agent group are only counted once.

## 3.3.3 Results

#### 3.3.3.1 Affected part in 2010

In 2010, a total of 96 197 trees were included in the damage cause assessment. A share of 21.7% of the assessed trees showed symptoms on their leaves (only broadleaves), 13.1% of the trees had symptoms on the bole, and 11.8% symptoms on twigs. 35.8% of the trees showed no symptoms at all (Fig. 3-35).

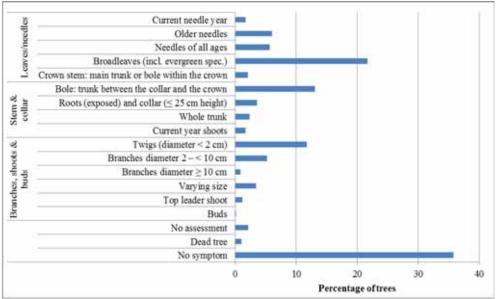



Figure 3-35: Frequency of affected part

# 3.3.3.2 Extent in 2010

About one quarter of all trees for which damage was recorded had an extent class of 2 and 16.1% had an extent class of 3. Higher classes rarely occurred (Fig. 3-36).

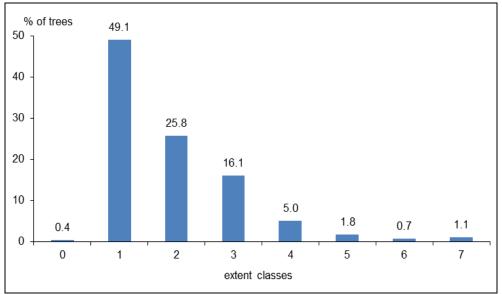



Figure 3-36: Share of trees with recorded damage extent class 2010

## 3.3.3.3 Agent groups in 2010

The distribution of the agent groups in 2010 shows that over 20 000 trees displayed symptoms caused by insects (Fig. 3-37) corresponding to 27% of the records (Tab. 3-19). Roughly half of the insect-caused symptoms were attributed to defoliators and to the other half to borers and other insects. Significantly fewer trees, namely just over 11 000, displayed damage caused by fungi, corresponding to 15% of the trees. In about 10 000 trees, an abiotic symptom (i.e. drought, frost) was found. Altogether, ca. 20 000 trees showed no signs of damage. Multiple agent groups were recorded for a number of trees.

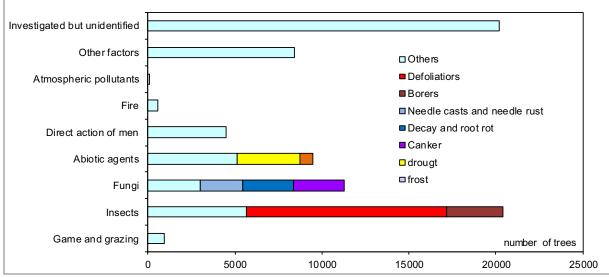



Figure 3-37: Frequency of agent groups

| share of damages   | Game and grazing | <u> </u> |       |                | Direct action of men | <u> </u> | <u>ui 2010</u>            |               | out                              |
|--------------------|------------------|----------|-------|----------------|----------------------|----------|---------------------------|---------------|----------------------------------|
| by agent group and | gra              |          |       | ent            | on e                 |          | nic                       | OTS           | d be<br>be                       |
| country for the    | put              |          |       | c ag           | acti                 |          | phei                      | acto          | gate<br>tifie                    |
| year 2010          | me å             | Insects  | lgi.  | Abiotic agents | ect                  | D.       | Atmospheric<br>pollutants | Other factors | Investigated but<br>unidentified |
|                    | Gai              | Ins      | Fungi | Ab             | Dir                  | Fire     | Atr<br>pol                | Oth           | Inv<br>uni                       |
| Austria            | 9                | 4        | 10    | 29             | 21                   | 0        | 0                         | 19            | 8                                |
| Belgium            | 1                | 15       | 19    | 5              | 10                   | 0        | 0                         | 0             | 50                               |
| Bulgaria           | 0                | 46       | 29    | 3              | 5                    | 0        | 0                         | 0             | 16                               |
| Cyprus             | 0                | 81       | 0     | 12             | 0                    | 0        | 0                         | 7             | 0                                |
| Czech Rep.         | 31               | 0        | 1     | 36             | 6                    | 0        | 0                         | 10            | 15                               |
| Denmark            | 5                | 72       | 2     | 9              | 3                    | 0        | 0                         | 1             | 7                                |
| Estonia            | 1                | 6        | 37    | 5              | 6                    | 0        | 0                         | 1             | 43                               |
| Finland            | 1                | 21       | 20    | 14             | 8                    | 0        | 0                         | 18            | 18                               |
| France             | 0                | 12       | 6     | 7              | 0                    | 0        | 0                         | 2             | 73                               |
| Germany            | 4                | 47       | 10    | 4              | 5                    | 0        | 0                         | 5             | 25                               |
| Greece             | 2                | 26       | 6     | 26             | 4                    | 0        | 0                         | 31            | 6                                |
| Hungary            | 1                | 36       | 26    | 13             | 14                   | 2        | 0                         | 8             | 1                                |
| Ireland            | 0                | 1        | 27    | 43             | 27                   | 0        | 0                         | 2             | 0                                |
| Italy              | 1                | 33       | 7     | 5              | 0                    | 0        | 0                         | 6             | 48                               |
| Latvia             | 22               | 3        | 16    | 12             | 34                   | 0        | 4                         | 4             | 4                                |
| Lithuania          | 6                | 6        | 19    | 26             | 15                   | 0        | 0                         | 4             | 25                               |
| Netherlands        | 0                | 7        | 9     | 75             | 0                    | 0        | 0                         | 1             | 8                                |
| Poland             | 1                | 20       | 11    | 8              | 12                   | 0        | 1                         | 24            | 24                               |
| Romania            | 3                | 46       | 9     | 26             | 7                    | 0        | 0                         | 8             | 2                                |
| Slovak Rep.        | 1                | 29       | 23    | 11             | 11                   | 0        | 0                         | 17            | 8                                |
| Slovenia           | 0                | 30       | 14    | 8              | 8                    | 0        | 0                         | 5             | 34                               |
| Spain              | 0                | 30       | 14    | 28             | 5                    | 3        | 0                         | 12            | 7                                |
| Sweden             | 5                | 1        | 8     | 14             | 19                   | 1        | 0                         | 1             | 52                               |
| United Kingdom     | 0                | 40       | 10    | 12             | 2                    | 0        | 0                         | 15            | 21                               |
| EU                 | 1                | 27       | 14    | 13             | 6                    | 1        | 0                         | 10            | 28                               |
| Andorra            | 0                | 13       | 63    | 13             | 0                    | 0        | 0                         | 0             | 13                               |
| Belarus            | 1                | 13       | 36    | 7              | 22                   | 1        | 1                         | 13            | 7                                |
| Montenegro         | 0                | 28       | 8     | 5              | 9                    | 3        | 0                         | 0             | 48                               |
| Norway             | 2                | 30       | 29    | 14             | 1                    | 0        | 0                         | 3             | 22                               |
| Russian Fed.       | 0                | 13       | 28    | 13             | 5                    | 3        | 0                         | 15            | 23                               |
| Serbia             | 0                | 67       | 24    | 3              | 2                    | 1        | 0                         | 4             | 1                                |
| Switzerland        | 0                | 45       | 0     | 18             | 8                    | 0        | 0                         | 30            | 0                                |
| Turkey             | 0                | 34       | 4     | 11             | 1                    | 0        | 0                         | 22            | 27                               |
| Total Europe       | 1                | 27       | 15    | 12             | 6                    | 1        | 0                         | 11            | 27                               |

**Table 3-19:** Share of damages by agent group and country for the year 2010

#### Agent Group "Game and grazing"

In 2010, only minor damage from "game and grazing" was observed on the assessed trees throughout Europe. Just 1.2% of all recorded damages were caused by this agent group. It has however to be taken into account that only adult trees in KRAFT classes 1-3 are regularly assessed for damage types and browsing in the herb and shrub layer is not recorded in this assessement. 80.4% of all affected plots show a share of damaged trees of 25% or lower (Fig. 3-38).

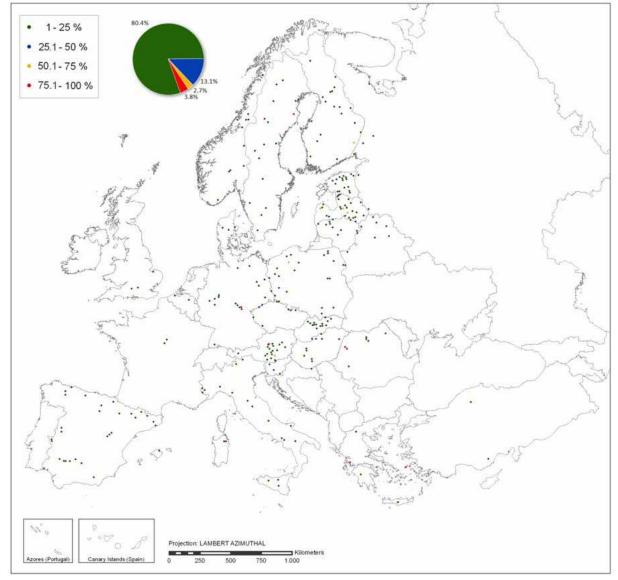



Figure 3-38: Shares of trees per plot with recorded agent group "game and grazing", 2010

#### Agent Group "Insects"

"Insects" were the most frequently detected agent group (26.9% of all damages) in 2010. They were observed in different intensities throughout Europe. On around half of all affected plots, more than 25% of the trees were damaged by insects. Plots with over 75% of the trees affected account for nearly one fifth of all plots. They are clustered e.g. at the eastern edge of the Pyrenean Mountains, Italy, Cyprus, and in the east of Slovak Republic (Fig. 3-39).

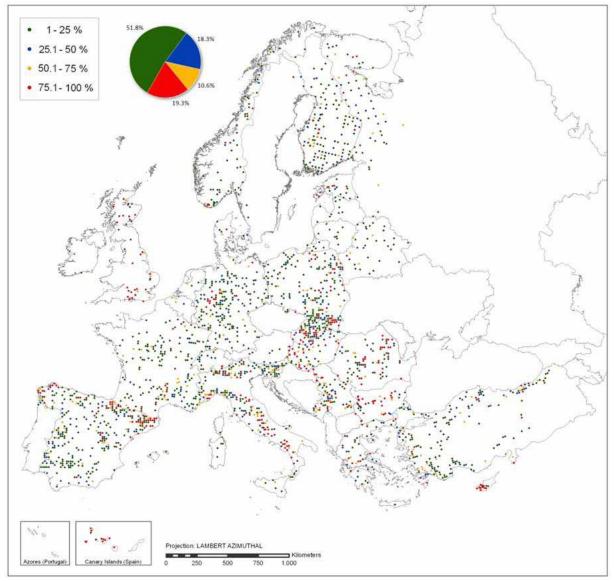



Figure 3-39: Shares of trees per plot with recorded agent group "insects", 2010

#### Agent Group "Fungi"

A total of 14.9% of all damages were included in the agent group "fungi". Most affected plots (68.5%) showed only a small share of damaged trees. On 7.3% of all affected plots, between 50 and 75% of the trees showed damage caused by fungi, and on 7.6% of all plots more than 75% of the trees were damaged. A particularly high share of plots damged by fungi was found in Estonia, in the north of Slovac Republic and western Bulgaria (Fig. 3-40).

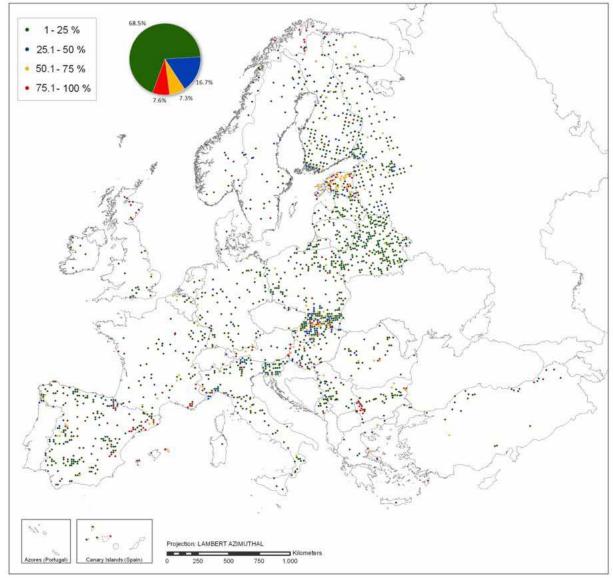



Figure 3-40: Shares of trees per plot with recorded agent group "fungi", 2010

#### Agent Group "Abiotic agents"

In 2010, the share of trees with damage caused by "abiotic agents" was 12.5%. The most frequent causes were drought, frost/snow, and wind. 72.9% of all affected plots showed a small share of damaged trees. Plots with a higher share of damaged trees were found mainly in Mediterranean areas of Europe. In particular, these plots occured at the eastern edge of the Pyrenean Mountains and in southern France (Fig. 3-41).

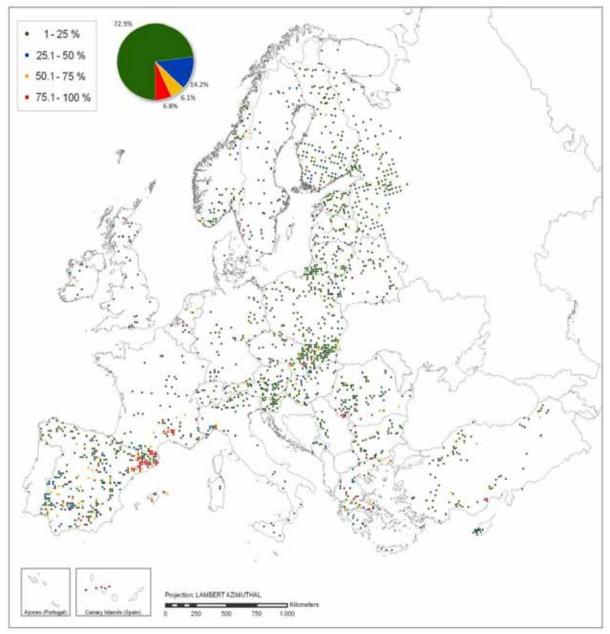



Figure 3-41: Shares of trees per plot with recorded agent group "abiotic agents", 2010

# Agent Group "Direct action of men"

The agent group "direct action of men" was recorded on 5.9% of all damaged trees in 2010. The agent group includes mechanical damage e.g. through harvesting operations or road construction. Over 80% of all affected plots displayed only a small number of damaged trees. (Fig. 3-42).

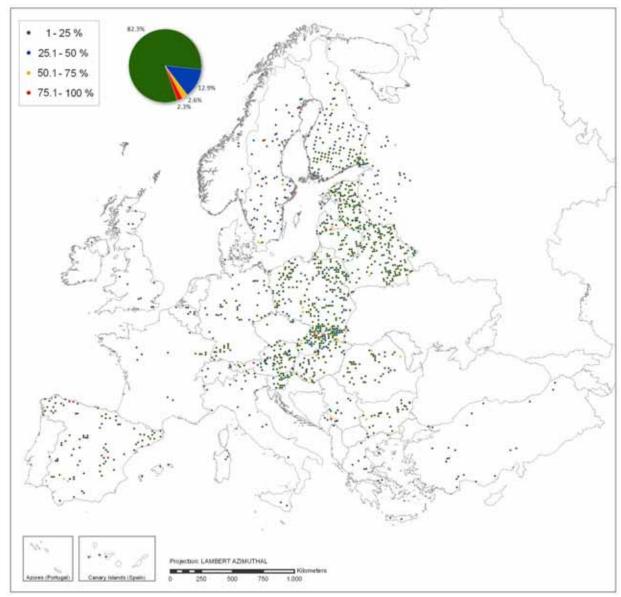



Figure 3-42: Shares of trees per plot with recorded agent group "direct action of man", 2010

#### **Agent Group "Fire"**

A share of 0.7% of all damages in 2010 was attributed to the agent group "fire". Damage caused by fire occured relatively infrequently, but often involved several trees on one plot. On over one third of the affected plots, roughly 25% of the trees were damaged (Fig. 3-43). The data provide a good basis for assessing the importance of fire induced damages in relation to other agents. For time near monitoring of forest fire occurrence the terrestrial survey and the related data processing is not appropriate. Such surveys are possible based on satellite imagery yielding spatially higher resoluted information.

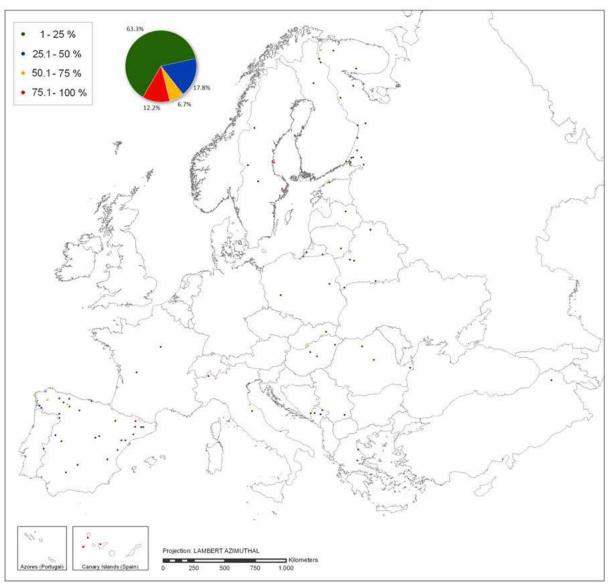



Figure 3-43: Shares of trees per plot with recorded agent group "fire", 2010

# **3.4 Conclusions**

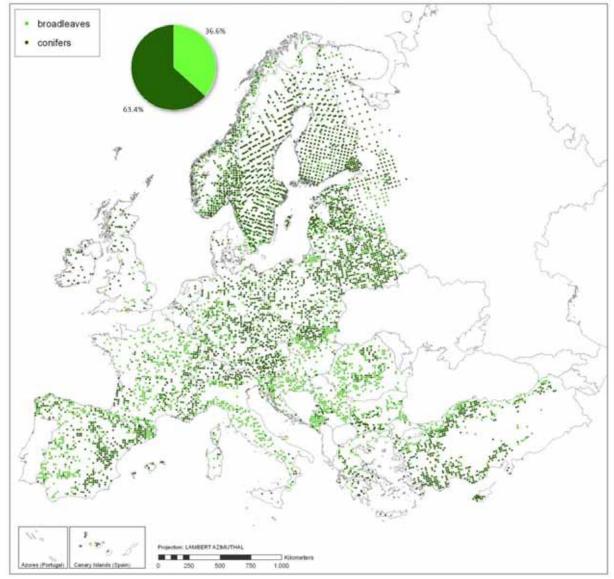
The 2010 large scale health and vitality survey was based on over 7 500 plots and 145 000 trees in 33 participating countries, including 26 EU member states. It was thus the most comprehensive survey that has ever been carried out on the Level I network. The increase is due to the co-financing through the FutMon project under the EU LIFE+ regulation which lead to the participation of Austria, Greece, The Netherlands, Romania and United Kingdom. These countries had not assessed forest health in the year before the start of the project. As concerns non-EU countries, Montenegro for the first time assessed forest condition in 2010 and Turkey as well as the Russian Federation have only very recently started the survey.

In 2010, the evaluation of defoliation was extended to 7 species (-groups) in order to take into account the extended geographical scope of the surveys. It also included the first comprehensive, even though descriptive, presentation of results from damage cause assessments. These assessments had been started in 2005. The continuously updated manual (ICP Forests 2010) provided the methodological basis and is an important cornerstone for the implementation of harmonized assessments. Whereas for the health and vitality assessments of the trees the manual gives explicit prescriptions, plot and tree selection allow for national approaches, requiring, however, that plots and trees selected must provide the basis for country representative results (Chapt. 1). The differing national approaches are reflected in the different numbers of trees selected per Level I plot (Fig. 3-1).

Defoliation results show slightly higher mean defoliation for broadleaves as compared to the conifers assessed. Taking into account the wide coverage of the assessments, these overall means need to be analysed species and region wise. Deciduous temperate oaks had the highest mean defoliation, followed by the south European tree species groups. *Picea abies* and *Pinus sylvestris* showed lowest mean defoliation. There are spatial clusters of plots with above and below average defoliated trees. The Mediterranean coast in southern France and northern Spain is a hot spot with specifically high defoliation in several species groups. Most of the spatial trends are, however, species specific. High defoliation of Mediterranean lowland pines was observed in southwestern Turkey and a cluster of plots with above average defoliation of *Picea abies* occured in Slovak Republic. *Pinus sylvestris* showed comparatively low defoliation on plots in northern Europe, in the Baltic States and Belarus.

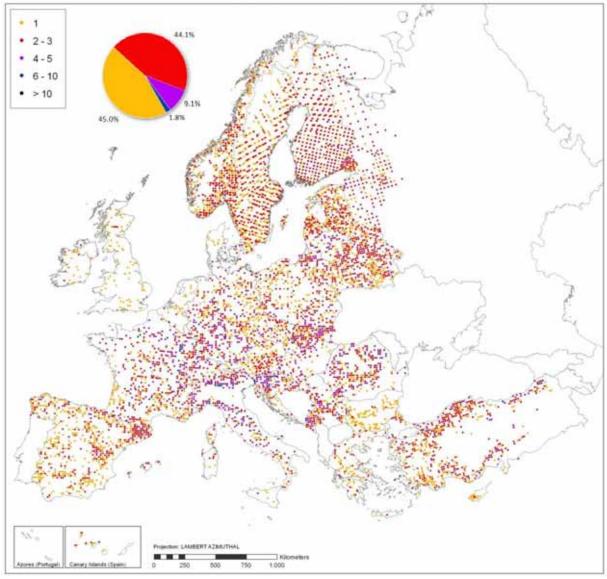
Over the last five years temporal trends show some recuperation for evergreen oaks and a continuously increasing defoliation of *Pinus sylvestris*. For the other species/-goups there is no pronounced trend in the most recent years. In general, the extreme heat and drought in summer 2003 is reflected in defoliation of the tree species occurring in temperate Europe, with the exception of *Pinus sylvestris*. The sharp increase of defoliation for four species /-groups at the beginning of the study and the continued fluctuation at comparatively high defoliation levels since then show that the development of tree health and vitality in terms of tree crown defoliation still requires further attention. Through the increasing number of trees in the survey regional developments are more and more levelled off in European mean values. This points to the increasing importance of national and regional studies.

Defoliation reflects a variety of natural and human induced environmental influences. Weather and site conditions as well as tree age influence tree health. The newly introduced damage cause assessment is thus of importance to show the extent of such factors. Insects and fungi are the most widespread agents that were assessed on the trees within the survey. The occurrence of these factors shows clear regional trends like plots with high insect occurrence in north-eastern Spain, Italy or Hungary or high occurrence of trees with fungal infestations in Estonia. The occurrence of insects and fungi is of high relevance for forest health and vitality as well as for forest management (Requardt et al 2009). Forest damage is one of the four


indicators under the criteria of the Forest Europe Ministerial Conference on the Protection of Forests in Europe. The ICP Forests and FutMon data base offers the only transnational, harmonized and plotbased information system for such information in Europe. The descriptive evaluations need to be continued and integrated evaluations with other data sets on weather and site conditions are needed as insects and fungi themselves reflect changes in environmental conditions.

The continuation of the time series and the further implementation of related quality assurance measures like field intercomparison courses and quality checks in the data base (Chapt. 2) are of importance to ensure an early warning system for tree health and vitality in the future and to provide the basis for further integrated statistical evaluations which need to be supported by research projects.

## **3.5 References**


- Chappelka, A.H., Freer-Smith, P.H. (1995): Predeposition of trees by air pollutants to low temperatures and moisture stress. Environmental Pollution 87: 105-117.
- Cronan, C.S., Grigal, D.F. (1995): Use of calcium/aluminium ratios as indicators of stress in forest ecosystems. Journal of Environmental Quality 24: 209-226.
- EEA (2007): European forest types. Categories and types for sustainable forest management reporting and policy. European Environment Agency (EEA) Technical Report 9/2006, 2nd edition, May 2007, 111 pp. ISBN 978-92-9167-926-3, Copenhagen.
- Freer-Smith, P.H. (1998): Do pollutant-related forest declines threaten the sustainability of forests. Ambio 27: 123-131.
- ICP Forests (2010). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE, ICP Forests, Hamburg. ISBN: 978-3-926301-03-1. [http://www.icp-forests.org/Manual.htm]
- Lorenz, M., Becher, G. (1994): Forest Condition in Europe. 1994 Technical Report. UNECE and EC, Geneva and Brussels, 174 pp.
- Requardt A, Schuck A, Köhl M (2009). Means of combating forest dieback EU support for maintaining forest health and vitality. iForest 2: 38-42. [online 2009-01-21] URL: http://www.sisef.it/iforest/contents/?ifor0480-002

# 3.6 Annexes



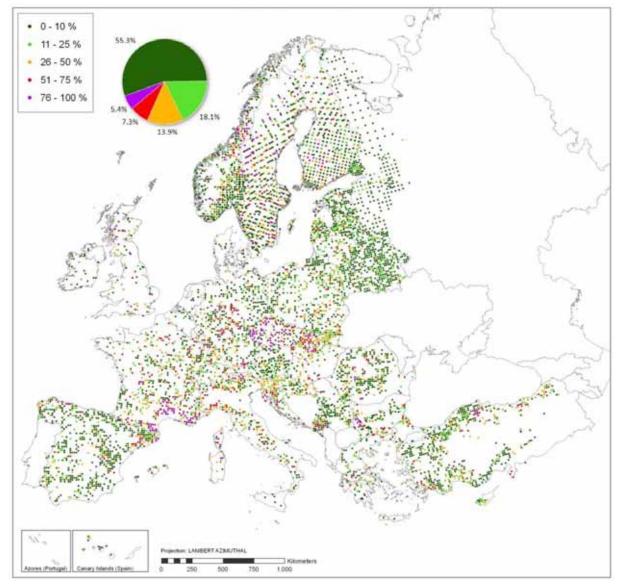

# Annex I: Broadleaves and conifers

Figure 3-47: Shares of broadleaves and conifers assessed on Level I plots in 2010



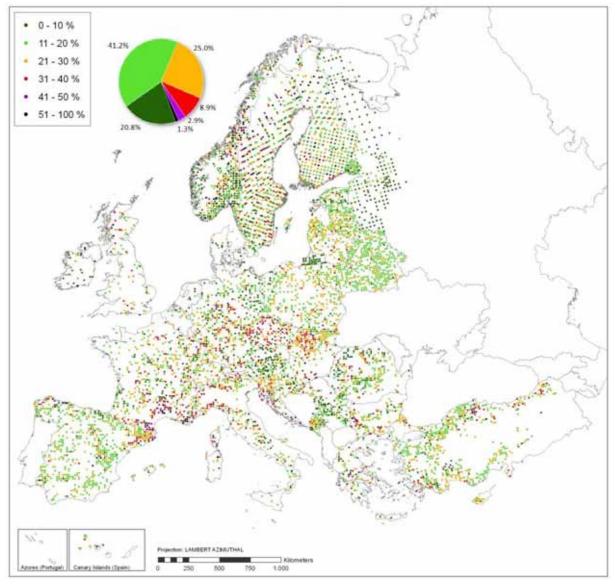

Annex II: Number of tree species per plot (Forest Europe classification) (2010)

Figure 3-48: Number of tree species assessed on Level I plots in 2010



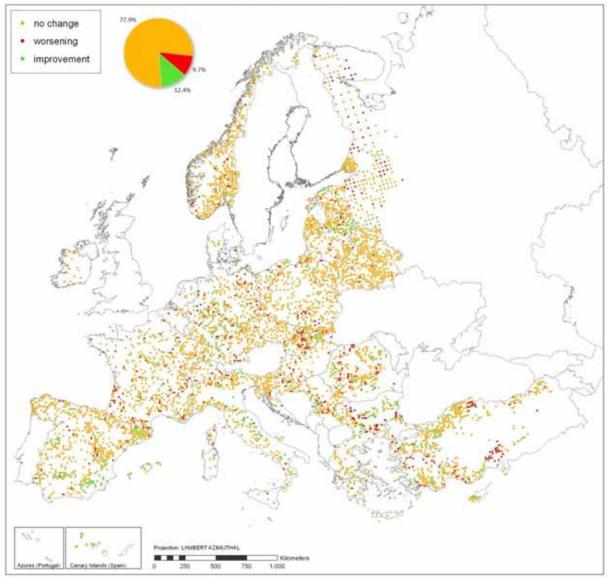

# Annex III: Percentage of trees damaged (2010)

Figure 3-49: Percentage of trees assessed as damaged (defoliartion >25%) on Level I plots in 2010



Annex IV: Mean plot defoliation of all species (2010)

Figure 3-50: Mean defoliation of all trees assessed per Level I plot in 2010



# Annex V: Changes in mean plot defoliation (2009 - 2010)

Figure 3-51: Changes in mean defoliation of all trees assessed per Level I plot from 2009 to 2010