

Bildanalytische Charakterisierung trockengestreuter Faserstoffe: Ein neuer messtechnischer Ansatz für die MDF Industrie

Jan T. Benthien, Sabrina Heldner, Dr. Martin Ohlmeyer
Thünen-Institut für Holzforschung

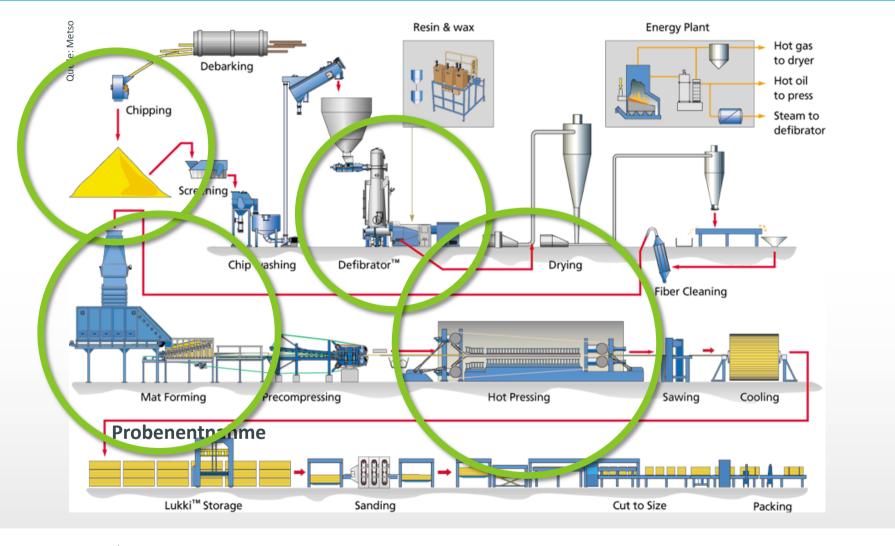
Übersicht

Problemstellung

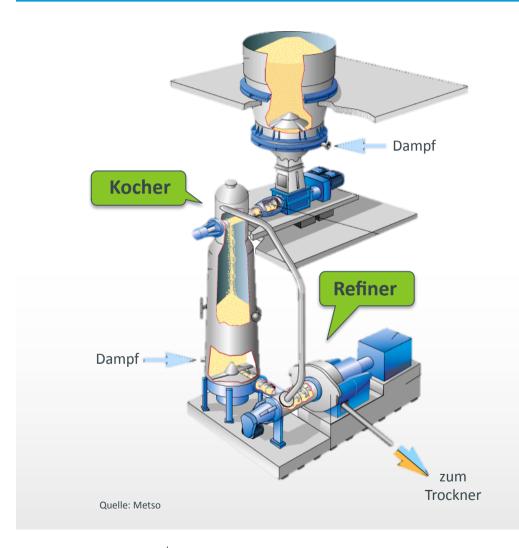
- Überblick MDF-Prozess
- Bestimmung der Faserqualität

Das Messgerät

- Hardware und Funktionsprinzip
- Software und Datenauswertung


Versuchsergebnisse

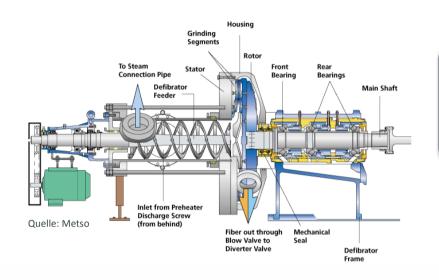
• Einflussparameter auf die Faserstoff-Qualität



Der MDF-Prozess

Thermische Beanspruchung der Fasern

16 bar (200 °C)/8 min


8 bar (170 °C)/ 4 min

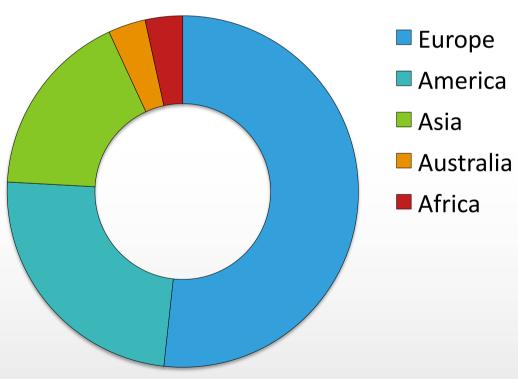
4 bar (143 °C)/ 1 min

Mechanische Beanspruchung der Fasern

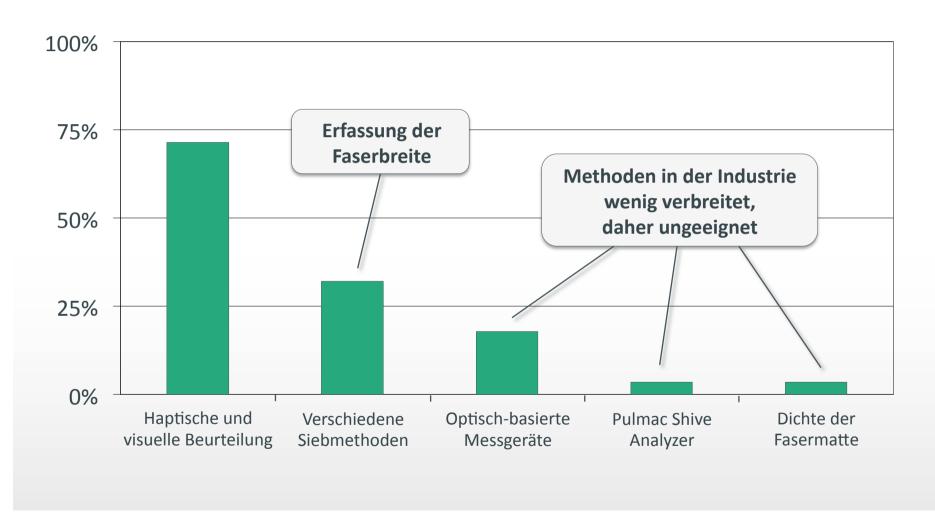
- Mahlscheibenabstand
- Energieverbrauch
- ↑ Mahlscheibenabstand
- ♠ Faserbündel

↑ Faserbündel

= **Ψ** Plattenoberfläche


Bestimmung der Faserstoff-Qualität

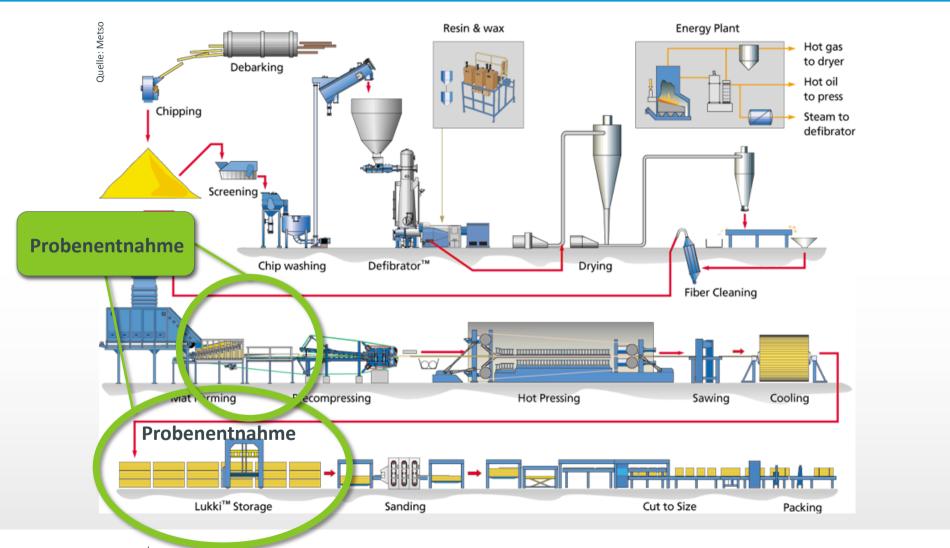
Weltweite Umfrage in 2011


 Wie wird die Faserstoff-Qualität in der MDF-Industrie bestimmt?

Umfang

- 300 Fragebögen
- Rücklaufquote 10%
- n = 29

Angewandte Methoden zur Qualitätsbestimmung



Bestimmung der Faserstoff-Qualität

Bestimmung der Faserstoff- bzw. Platten-Qualität

Seite 8 11.09.2013

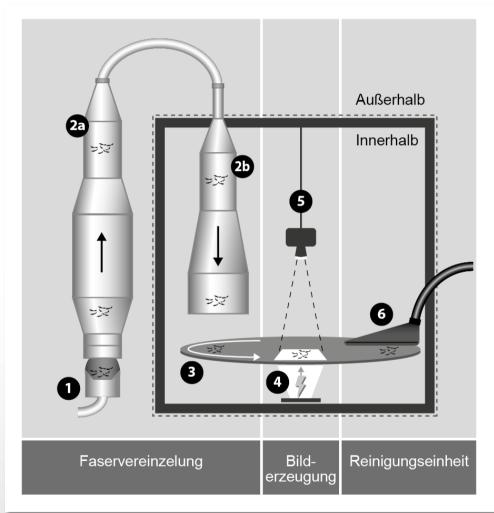
Benthien, Heldner, Ohlmeyer Arbeitskreis Faseranalytik, IfBB, HS Hannover

Zwischenfazit

Problem

• Geeignetes Verfahren zur Bestimmung der Faserstoff-Qualität ist derzeit nicht verfügbar

Benötigt wird ein Messgerät zur


- Prozesskontrolle: spezifizieren, überprüfen und sicherstellen der Ziel-Faserqualität
- Bestimmung des Zustandes der Maschinen,
 z.B. den Grad der Abnutzung der Mahlscheiben im Refiner
- Beobachtung der Faserqualität bei der Prozessoptimierung
- Überprüfung der vom Refiner-Hersteller garantierter Faserqualitäten
- Spezifizierung einer Faserqualität, auf die eine MDF-Anlage ausgelegt sein soll

Lösungsansatz

- Bildanalytisches Messsystem, basierend auf trockengestreuter Fasern
- Entwickelt vom Thünen-Institut für Holzforschung (Hamburg) und GreCon (Alfeld)

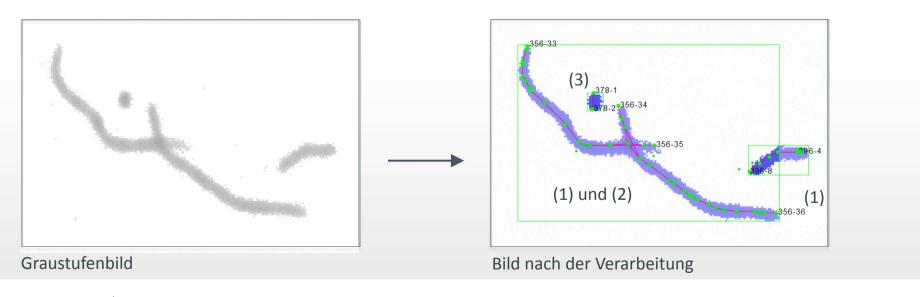
Funktionsprinzip

- 1 Probenzuführung
- 2a Steigrohr
- **2b** Absinkrohr
- 3 Rotierender Glastisch
- 4 Blitzlicht
- 5 Hochauflösende Kamera
- 6 Absaugung
- ∍ÿ Fasern
- **Einhausung**

by D. Schmidt

Das Messgerät

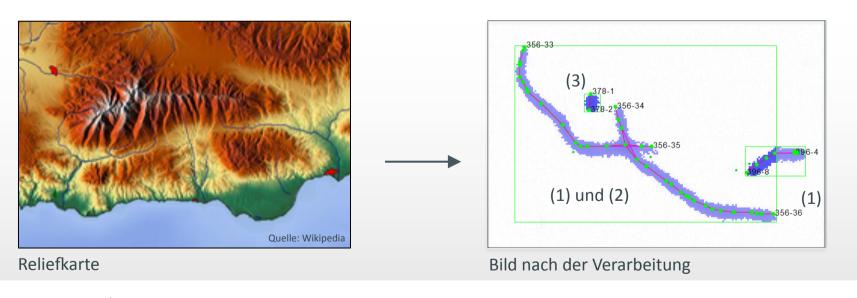
- 0,5 g Fasern je Messung
- 82 Bilder pro Minute
- Bildgröße: 93 x 62 mm
- Pixelgröße 23.2 μm
- 1094 dpi (ppi)
- 8 min pro Messung
- 650 Bilder pro Messung
- 250.000 Fasern pro Messung
- 3 Wiederholungsmessungen pro Faserstoff



THÜNEN

Bildverarbeitung

Fasererfassung


- Bilder werden mit "Grabber" verarbeitet
- Schwellwert-Methode definiert Pixel als "Faser" oder "Hintergrund"
- Aneinandergrenzende Faser-Pixel werden jeweils "Region of Interest" zugeordnet

Bildverarbeitung

Faservermessung

- Faserverfolgung (1): Graustufenbildes als Reliefkarte; Gratwanderung von Gipfel zu Gipfel
- Separierung von überlappenden Fasern (2): Algorithmus prüft auf Verzweigung bzw. Überlappung
- Momente Methode (3): Vermessung der Hauptachsen einer angepassten Ellipse
- Spezialbehandlung, wenn (1) und (3) nicht angewendet werden können

Datenverarbeitung

Grabber

- Je Messdurchgang ca. 650 Bilder/CSV-Dateien
- Je Faservermessung 1900 Dateien (ca. 150 MB)

Analysetool

- CSV-Dateien werden zu xlsx-Dateien aufgearbeitet
- Fasern werden in 656 Längenklassen sortiert
- Gewichtung von Faseranzahl mit Faserlänge
- Kennzahlen, z.B. mittlere Faserlänge

Excel

Erzeugung von Diagrammen

Erfasste Messgrößen

- Faserlänge
- Faserbreite
 (mehrere Messwerte pro Faser)
 - Schlankheitsgrad
 - Projektionsfläche
 - Faservolumen
- Faserkrümmung
- Verzweigungsgrad
- Informationen über Seitenarme
- Intensität
 - Grobpartikelerkennung

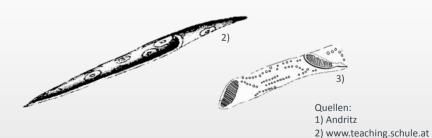
Einflussgrößen auf die Faserqualität

Thermische Belastung

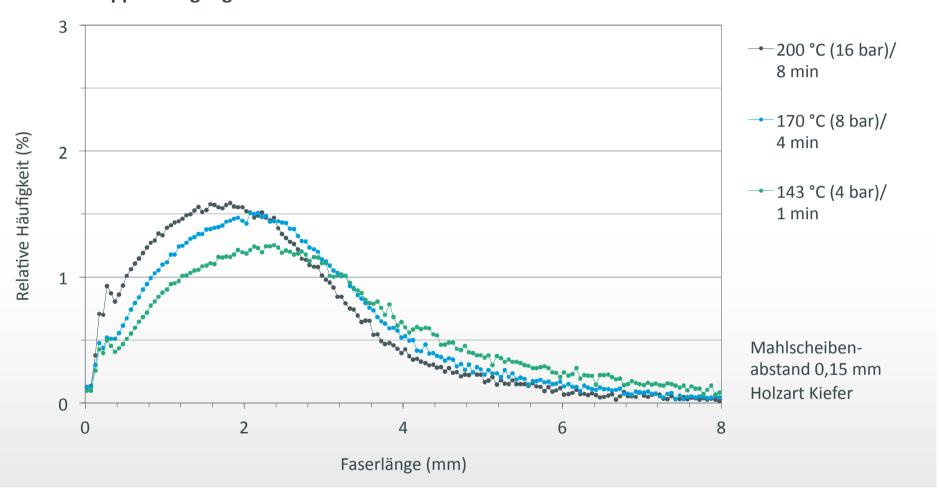
- Kochdauer und Kochtemperatur:
 - − Milde Kochbedingungen
 → lange Fasern
 - Scharfe Kochbedingungen → kurze Fasern

Mechanische Belastung

- Mahlscheibenabstand im Refiner
 - Großer Mahlscheibenabstand → lange Fasern
 - Kleiner Mahlscheibenabstand → kurze Fasern


Holzart

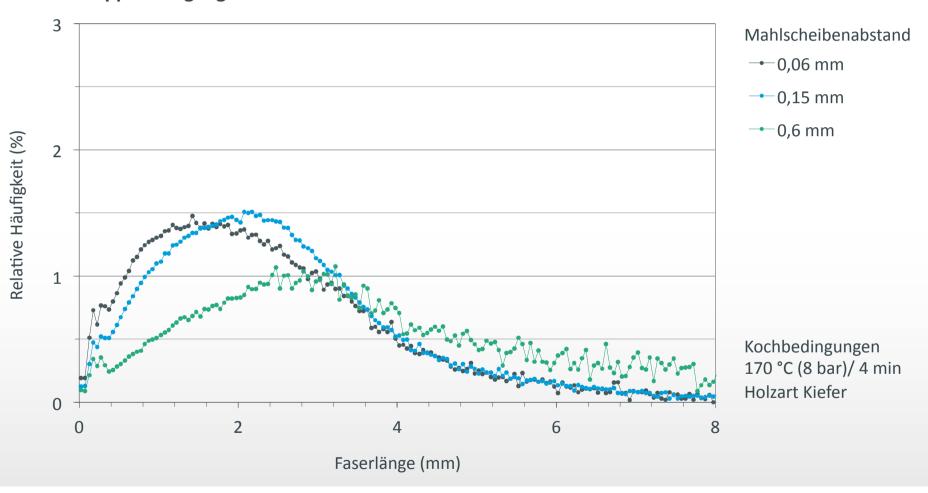
- Nadelholz versus Laubholz
 - − Kiefer → lange Fasern
 - Buche → kurze Fasern



3) www.wissenschaft-omline.de

Thermische Beanspruchung

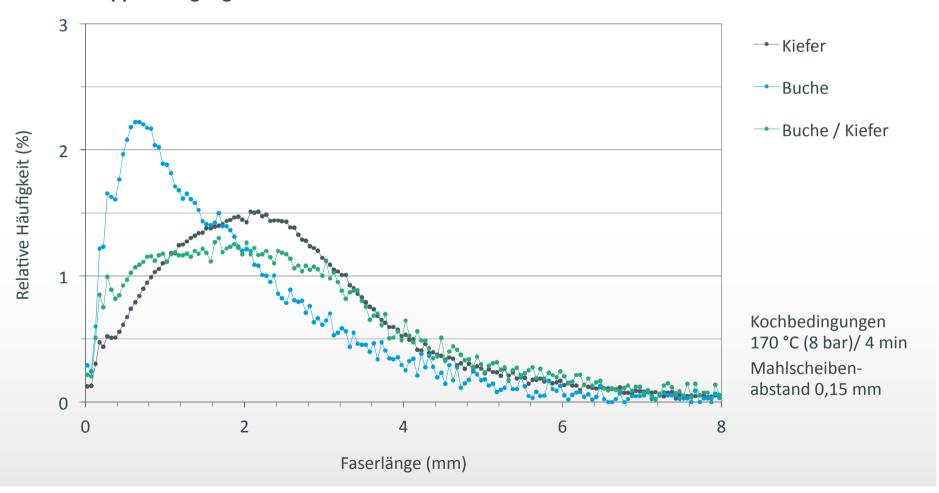
Doppelt-längengewichtet



Benthien, Heldner, Ohlmeyer Arbeitskreis Faseranalytik, IfBB, HS Hannover

Mechanische Beanspruchung

Doppelt-längengewichtet



Holzart

Doppelt-längengewichtet

Benthien, Heldner, Ohlmeyer Arbeitskreis Faseranalytik, IfBB, HS Hannover

Projektziele Fiber-Impact, FNR-Förderkennzeichen: 22013211

Messgerät

- Fertigstellung der Hardware
- Datenauswertung

Laborversuche

- Einfluss der Zerfaserungsparameter auf die Faserstoffqualität
- Einfluss der Faserstoffqualität auf die Eigenschaften von MDF

Industrieversuche

- Verifizieren der Laborergebnisse im Industriebetrieb
- Überprüfung der Praxistauglichkeit

Zusammenfassung und Ausblick

Zusammenfassung

- Es wird ein Messgerät zur Charakterisierung von MDF-Fasern gebraucht
- Unser entwickeltes Messgerät erfüllt die industriellen Anforderungen zur Charakterisierung von MDF-Fasern
- Die Einflussparameter auf die Faserstoff-Qualität können herausgearbeitet werden

Ausblick

- Einfluss der Faserstoff-Qualität auf Werkstoffeigenschaften
- Grobpartikelerkennung
- standardisierte Auswertung
- Automatisierung

Literatur

- Benthien JT, Hasener J, Pieper O, Tackmann O, Bähnisch C, Heldner S, Ohlmeyer M (2013) Determination of MDF fiber size distribution: Requirements and innovative solution. International Wood Composites Symposium 2013, April 03-04, 2013, Seattle
- Benthien JT, Bähnisch C, Heldner S, Ohlmeyer M (2013) Effects of fiber size distribution on MDF properties caused by varied cooking time and temperature of defibration process. Under Review at Wood Fiber Sci
- Lerche H, Benthien JT, Schwarz K, Ohlmeyer M (2013) Effects of defibration conditions on mechanical and physical properties of wood fiber/high density polyethylene composites. Accepted for publication at Journal of Wood Chemistry and Technology
- Ohlmeyer M, Seppke B, Pieper O, Hasener J (2011) Fiber quality control for MDF production. Joint International Symposium on Wood Composites and Veneer Processing and Products 2011, April 5-7 2011, Seattle
- Ohlmeyer M, Pieper O, Seppke B, Hasener J (2011) Entwicklung einer Software zur bildanalytischen Qualitätskontrolle von Holzfasern für die Herstellung von mitteldichten Faserplatten (MDF). Arbeitsbericht aus dem Institut für Holztechnologie und Holzbiologie 2011/02, Hamburg. 50 pp
- Pieper O, Bückner J, Seppke B, Ohlmeyer M, Hasener J (2011) Faserinspektion zur Optimierung der Oberflächenqualität. 8th Fußbodenkolloquium, November 10-11 2011, Dresden. Institut für Holztechnologie Dresden (IHD), Dresden.

Vielen Dank für Ihre Aufmerksamkeit

Jan T. Benthien

Thünen-Institut für Holzforschung

Leuschnerstr. 91c · 21031 Hamburg · Deutschland Tel +49 40 73962-652 · Fax +49 40 73962-699

jan.benthien@ti.bund.de www.ti.bund.de

Hannover,
11. September 2013