

Isotope fractionations factors of N_2O production and reduction by denitrification: a. Laboratory incubation studies using N_2O reductase inhibition

Reinhard Well (1), Daniel Weymann (2), Dominika Lewicka-Szczebak (1,3), Lena Rohe (1), and Heinz Flessa (1) (1) Thünen Institute of Climate-Smart Agriculture, Germany (reinhard.well@ti.bund.de), (2) Research Centre Jülich GmbH, (3) University of Wroclaw

Isotopologue signatures of N₂O such as δ^{18} O, average δ^{15} N (δ^{15} N^{bulk}) and ¹⁵N site preference (SP = difference in δ^{15} N between the central and peripheral N positions of the asymmetric N₂O molecule) can be used to constrain the atmospheric N₂O budget and to characterize N₂O turnover processes. However, the use of this approach to study N₂O dynamics in soils requires knowledge of isotopologue fractionation factors (ε) for the various partial processes involved, e.g. N₂O production by nitrification or denitrification, and N₂O reduction by denitrification.

Here we present results from laboratory incubations of soils and aquifer material to determine ε gf N₂O production (ε_{prod}) and N₂O reduction to N₂ (ε_{red}) during denitrification. ε_{prod} for δ^{18} O, δ^{15} N^{bulk} and SP was obtained by anaerobic incubation of NO₃⁻ amended soils when N₂O reduction was inhibited by 10 kPa acetylene. ε_{red} of the respective signatures was derived by comparing treatments with and without inhibition of N₂O reduction. We investigated samples from 4 mineral soils, one organic soil and from a sandy aquifer. The mineral soils were incubated under unsaturated conditions in closed or open systems, the organic and aquifer samples as homogenized slurries in a closed system.

Results of fractionation factors, process rates and incubation conditions will be presented and discussed in view of previous studies and theoretical considerations.