

Reducing fertilizer-derived N_2O emission: Point injection vs. surface application of ammonium-N fertilizer at a loamy sand site

Marianna Deppe (1), Reinhard Well (1), Anette Giesemann (1), Martin Kücke (2), and Heinz Flessa (1) (1) Thünen-Institute of Climate-Smart Agriculture, Braunschweig, Germany (marianna.deppe@ti.bund.de), (2) Institute for Crop and Soil Science, Julius Kühn-Institut, Braunschweig, Germany

N2O emitted from soil originates either from denitrification of nitrate and/or nitrification of ammonium. N fertilization can have an important impact on N2O emission rates. Injection of nitrate-free ammonium-N fertilizer, in Germany also known as CULTAN (Controlled Uptake Long-Term Ammonium Nutrition), results in fertilizer depots with ammonium concentrations of up to 10 mg N g^{-1} soil⁻¹. High concentrations of ammonium are known to inhibit nitrification. However, it has not yet been clarified how N₂O fluxes are affected by CULTAN. In a field experiment, two application methods of nitrogen fertilizer were used at a loamy sand site: Ammonium sulphate was applied either by point injection or by surface application. ¹⁵N-ammonium sulphate was used to distinguish between N_2O originating from either fertilizer-N or soil-N. Unfertilized plots and plots fertilized with unlabeled ammonium sulphate served as control. N₂O emissions were measured using static chambers, nitrate and ammonium concentrations were determined in soil extracts. Stable isotope analysis of ¹⁵N in N₂O, nitrate and ammonium was used to calculate the contribution of fertilizer N to N_2O emissions and the fertilizer turnover in soil. 15 N analysis clearly indicated that fertilizer derived N₂O fluxes were higher from surface application plots. For the period of the growing season, about 24% of the flux measured in surface application treatment and less than 10% from injection treatment plots originated from the fertilizer. In addition, a lab experiment was conducted to gain insight into processes leading to N_2O emission from fertilizer depots. One aim was to examine whether the ratio of N₂O to nitrate formation differs depending on the ammonium concentration. Loamy sand soil was incubated in microcosms continuously flushed with air under conditions favouring nitrification. ¹⁵N-labeled nitrate was used to differentiate between nitrification and denitrification. Stable isotope analyses of ^{15}N were performed on N₂O in the gas phase and on ammonium and nitrate extracted from soil samples.