

Soil denitrification potential and its influence on the N_2O / N_2 product ratio and N_2O isotopomer ratios

Jan Reent Köster (1), Mehmet Senbayram (2), Klaus Dittert (2), Reinhard Well (3), Anette Giesemann (3), Dominika Lewicka-Szczebak (3), and Karl H. Mühling (1)

(1) Kiel University, Institute of Plant Nutrition and Soil Science, Germany (jrkoester@plantnutrition.uni-kiel.de), (2) Department of Crop Science, University of Goettingen, Germany, (3) Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany

Nitrous oxide (N₂O), a potent greenhouse gas (GHG) and ozone depleting substance, is mainly emitted from soils where it is produced by biological denitrification and nitrification processes. It has been shown that N₂O production and consumption rates are largely affected by substrate availability, but also by soil properties and soil microbial community. Advancing N₂O mitigation strategies requires better understanding of microbial N₂O production and consumption processes, but also ways of N₂O source apportioning. The analysis of the intramolecular ¹⁵N site preference (SP) within the asymmetric N₂O molecule has been shown to have potential to differentiate between denitrification and nitrification to a certain extent, but also to be affected by N₂O reduction. We conducted two soil incubation experiments with different soil types to assess the influence of the soil type on the denitrification rate and denitrification product ratio.

Three different soils, a clay soil, a loam soil, and a sandy soil, were collected from unfertilized field plots and repacked into incubation vessels. Soil was amended with potassium nitrate solution and incubated in two incubation experiments under He atmosphere in a laboratory setup for 9 (Experiment 1; loam vs. clay) or 28 days (Experiment 2; loam vs. sand), respectively. N_2O and N_2 release was measured by online GC. Additionally, gas samples were collected and ratios of the major N_2O isotopomer species were analyzed by IRMS.

Comparing the clay and the loam soil in Exp. 1, both, cumulative N_2O and N_2 release, were significantly higher from the clay soil. Nevertheless, the $N_2O / (N_2O + N_2)$ product ratio was similar. The N_2O SP increased from both soils during the experiment, however, it was constantly c. 8 % higher from the clay soil. In Exp. 2 cumulative N_2O release from the sandy soil was significantly higher while N_2 production was lower compared to the loam soil, resulting in a four times higher $N_2O / (N_2O + N_2)$ product ratio with the sandy soil. Total N loss by denitrification was twice as high from the loam soil. N_2O SP values were clearly lower from the sandy soil compared to the loam.

These results confirm that the denitrification potential of different soils differs significantly and that the $N_2O / (N_2O + N_2)$ product ratio or the N_2O reduction rate, respectively, is not necessarily correlated with the total denitrification rate. The observed N_2O isotope values indicate that initial SP values of produced N_2O are clearly different from all three soils, but it remains open if this is solely due to different production pathways.