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Abstract

Climate forcing in complex ecosystems can have profound implications for ecosystem sustainability and may thus challenge
a precautionary ecosystem management. Climatic influences documented to affect various ecological functions on a global
scale, may themselves be observed on quantitative or qualitative scales including regime shifts in complex marine
ecosystems. This study investigates the potential climatic impact on the reproduction success of spring-spawning herring
(Clupea harengus) in the Western Baltic Sea (WBSS herring). To test for climate effects on reproduction success, the
regionally determined and scientifically well-documented spawning grounds of WBSS herring represent an ideal model
system. Climate effects on herring reproduction were investigated using two global indices of atmospheric variability and
sea surface temperature, represented by the North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Oscillation
(AMO), respectively, and the Baltic Sea Index (BSI) which is a regional-scale atmospheric index for the Baltic Sea. Moreover,
we combined a traditional approach with modern time series analysis based on a recruitment model connecting parental
population components with reproduction success. Generalized transfer functions (ARIMAX models) allowed evaluating the
dynamic nature of exogenous climate processes interacting with the endogenous recruitment process. Using different
model selection criteria our results reveal that in contrast to NAO and AMO, the BSI shows a significant positive but delayed
signal on the annual dynamics of herring recruitment. The westward influence of the Siberian high is considered strongly
suppressing the influence of the NAO in this area leading to a higher explanatory power of the BSI reflecting the
atmospheric pressure regime on a North-South transect between Oslo, Norway and Szczecin, Poland. We suggest
incorporating climate-induced effects into stock and risk assessments and management strategies as part of the EU
ecosystem approach to support sustainable herring fisheries in the Western Baltic Sea.
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Introduction

The EU Marine Strategy Framework Directive and the recently

revised EU Common Fisheries Policy requires the development of

sustainable ecosystem-based management strategies to reach the

goal of Good Environmental Status. A key objective in European

fishery management thereby is to provide the greatest societal

benefit on a sustainable and precautionary basis. Subject to

different constraints, this can be interpreted in different ways. One

important constraint is the limited understanding of highly

fluctuating recruitment processes of exploited fish populations

and how they interact with exogenous factors.

A major problem in assessing fish populations is that ecosystem

effects are most often ignored when fisheries advice is formulated.

However, it is known that major limitations are essentially

triggered by the environment. One important limit set by latent

factors is the carrying capacity of the ecosystem. This complex of

limiting factors, which is most likely also the shaping source of

density dependence, can by itself be considered predominately

driven by global-scale forces such as climate. Hence, climate

related changes in complex ecosystems can have profound

implications for ecosystem sustainability in many ways and may

challenge a precautionary ecosystem management. Taking into

account climate forcing in models may thus significantly reduce

the degree of non-explained ecologically induced variation and as

such lowers predictive certainty.

Landings of Western Baltic Sea (WBSS) herring (Clupea harengus,

L.) have declined substantially over the last decade. These declines

have been linked to intensive exploitation, but the role of

environmental conditions along with overharvesting is not

satisfyingly understood and hence cannot be neglected. How

climate-related changes in the system would affect WBSS herring

is presently unknown. Mechanisms could include a combination of

climate-induced changes in hydrographical features interacting

with ecological variables such as predator-prey relationships. From

the perspective of the authors, linkages between WBSS population

dynamics and environmental cycles need to be explored on a

global scale allowing for the reproduction of emergent properties
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of the system such as regime shifts, and secondly facilitating the

implementation of results into assessment and management

procedures. Accordingly, the biological hypotheses included in

this study are:

(i) a significant correspondence exists between global climate

and WBSS herring with one or more clear climate signals to

be identified; a qualitative correspondence may also be

inherent when comparing shift patterns

(ii) Climate-forced changes will predominately affect the earliest

ontogenetic stages of WBSS herring, as documented for other

species in different parts of the world [1], [2].

Integrating these aspects via extended stock-recruitment models

into stock assessment models would not only facilitate modern

ecosystem approaches, but can be expected to significantly

improve management procedures.

Materials and Methods

Biological Data
Greifswald Bay in the German part of the South-Western Baltic

Sea is considered as a major spawning area of WBSS herring

(Figure 1). After early juvenile stages are spent close to shore, the

2+ wr group (individuals with two or more winter rings in their

otoliths) migrate out of the Rügen area during the 2nd quarter of

the year, to feed in the Kattegat and Skagerrak area (ICES–

Management Division IIIa) as well as in the neighbouring North

Sea. Between February and May herring returns to the Western

Baltic Sea for spawning [3], [4], [5], [6]. On Skagerrak and

Kattegat feeding grounds WBSS herring overlaps with North Sea

autumn-spawning stocks introducing the requirement to split the

stocks for reliable assessments.

Estimates of WBSS herring spawning-stock biomass (SSB) and

recruitment (R, age 1) were obtained from the last report of the

International Council for the Exploration of the Sea (ICES)

Herring Assessment Working Group [7], based on virtual

population estimates of population size and mortality rates for

the period 1991–2011 (Figure 2). These estimates integrate

information derived from commercial and recreational catch-at-

age data, discards, and fishery-independent research surveys for

the region. Details on data sources and analytical methods

employed in stock assessment are provided in [7]. However, given

the requirements of ‘‘autoregressive integrated moving average’’

(ARIMA) modelling procedures (see below for details), and

because the relevant data series do not appear mean stationary

(Figure 2) during the period under consideration (1991–2011), the

data series were first made stationary (Figure 2) before being used

for further analyses.

Climate Data
Broad-scale climate indices were used to represent large-scale

processes that may influence the recruitment of fish stocks in the

North Atlantic Ocean: the Baltic Sea Index (BSI), the North

Atlantic Oscillation (NAO), and the Atlantic Multidecadal

Oscillation (AMO). These standardized climate proxies are

considered as latent factors that represent more regionalized

effects that are difficult to compare individually and inter

regionally. Such characteristics help to avoid problems generated

by redundancy, multi co-linearity or error inflation [8]. While both

the BSI and the NAO are atmospheric sea level pressure

anomalies (SLP), the AMO is an index of long-term sea surface

temperature (SST) in the North Atlantic Ocean [9]. Whereas the

NAO is based on differences in the normalized SLP between

Iceland and either the Azores or Portugal [10], [11], [12], the BSI

is based on differences in normalized SLPs between Oslo (Norway)

and Szchezin (Poland). Because those station based indices are

fixed in space while the NAO centers move throughout the annual

cycle such indices can only adequately capture NAO variability for

parts of the year [13]. Accordingly, we used an averaged NAO

index over the period December–March (winter NAO), covering

the beginning of the WBSS herring spawning season. For reasons

of comparability, we also used the BSI index averaged over the

same period to give a winter BSI. As the temporal pattern of AMO

does not differ by month, the annual averages were used as SST

index. For details regarding the NAO index, see [13], [14], for

those of the BSI, see [15], [16], [17] and for those of the AMO

index, see [9] and http://www.esrl.noaa.gov/psd/data/

timeseries/AMO/. Given the constraints of ARIMA modelling

procedures (see below) all data series are required to be stationary

(Figure 2b, 4th panel). To capture the characteristics of the entire

climate time-series including long-term cycles, the full BSI, NAO

and AMO time-series were used for pre-whitening and also for

deriving a generalized transfer function (ARIMAX; for both

procedures see below).

Statistical Hypotheses Testing using a Climate-extended
Stock-recruitment Model

In contrast to parental fish stocks, that tend to be rather

influenced by biological factors, early life stages tend to be

predominately influenced by their ambient physical environment.

The survival success of passive egg and larval stages may be

considered evolutionarily adjusted to prevailing hydrographic

processes, synchronised with food provision (quantitatively plus

qualitatively). We may assume cascadal effects ranging from

global- to small-scale levels in the following hierarchical manner:

climate R abiotic environment R biotic environment R eggs R
larvae R recruitment. Hence, higher order levels trigger lower

levels via the cascadal flow. It is obvious that this cascadal structure

contains indirect effects that may in addition be delayed, simply

because of the long ‘‘signal travelling time’’. Accordingly the

underlying hypothesis of this study is that the reproduction of

Baltic Sea herring will in particular be most likely affected by

abiotic changes in the ambient environment, triggered by strong

changes in the climatic patterns. Statistically it makes sense to

consider climate as higher order exogenous variable in modelling

approaches functioning as latent background factor. The advan-

tage of using one latent factor instead of multiple environmental

(e.g. hydrographic) variables or products of variable aggregation

methods (such as principal component analysis, factor analysis or

variable clustering) is as follows: in contrast to the second option a

latent factor contains already a large portion of relevant process

information in a condensed manner, which is normally spread

over many variables. This avoids all the problems generated

through multiple factor inclusion such as redundancy or multi-

collinearity induced by an unknown level of variable interaction,

unknown causal structures between variables, unwanted reduction

of the degrees of freedom, complex and/or non-reversal transfor-

mations, etc. Thus in summary recruitment may be seen as a

function of the parental stock, which initially generates the

spawning products, plus climatic factors that take over the abiotic

cascadal control during the development of the external stages (i.e.

egg and larvae stages). Statistically these influences can be tested

by setting up the following statistical hypotheses:

H0: no climate effect, no stock size effect, no climate/parent

stock interaction effect

H1: climate effect and/or stock size effect.

Climate and WBSS Herring Recruitment
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These hypotheses can either be tested using classical parameter

tests (significance tests) and/or by using information criteria (see

below) that quantify the performance of a model and thus aid in

variable selection. The climate/parental stock interaction effect

needs to be tested, because of a potential redundancy problem

(multi-collinearity), and to avoid misinterpreting the climate signal

as direct signal although it may have been (at least partially)

mediated via the parental stock. However, as these effects may also

be delayed we need to additionally test the significance of lagged

climate signals and that of lagged parental stock effects using cross-

correlation analysis (see below).

The best way to address the above setup of hypotheses is to start

with some model formulation, in our case with a simple Cushing-

type stock–recruitment model [18] which provides a baseline

(deterministic part only):

Rt~aSSBd
t{1, ð1Þ

where R is recruitment at age 1, SSB the spawning-stock biomass

of the parental stock, and a and d are model parameters. This is

equivalent to imposing a single structural constraint in the model

to reflect the functional relationship between WBSS herring

recruitment at age 1 in year t and the SSB in year t–1 that

produced these recruits. Figure 3 is a two-panel diagram depicting

the fit of the Cushing-type stock–recruitment model to the WBSS

herring recruitment data.

We next expanded this basic model to consider the ad hoc

selected climate covariates attempting to explain more of the

variance in recruitment (deterministic part only):

Rt~aSSBd
t{1e

c1BSIt{lzc2NAOt{kzc3AMOt{h , ð2Þ

where c1, c2 and c3 are coefficients associated with the BSI, the

NAO and the AMO, l a time-lag for the effect of the BSI on

recruitment, k a time-lag for the effect of the NAO on recruitment,

h a time-lag for the effect of the AMO on recruitment, and all

Figure 1. Map of the Baltic Sea area surrounded by neighbouring countries. The inset shows the location of the study area (south-eastern
coast of Rügen Island plus the Greifswalder Bodden). The straight broken line connects Oslo (Norway) with Szczecin (Poland) representing the direct
geographical distance between the two locations the BSI atmospheric pressure index has been calculated for.
doi:10.1371/journal.pone.0087525.g001
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other terms are defined as before. The identification of the final

model structure as well as addressing the question which of the

exogenous variables (SSB, NAO, BSI, AMO) finally to include, at

what lags (h, k, l) and with what parameter values to be estimated

is subject to an explorative model (variable) selection procedure,

among others based on cross-correlations using different perfor-

mance measures (see below). This model structure however implies

that the climate factors have a multiplicative effect on recruitment.

The model in equation (2) can be linearized by taking natural

logarithms of both sides to give (deterministic part only)

loge(Rt)~logeazdlogeSSBt{1zc1BSIt{l

zc2NAOt{kzc3AMOt{h,
ð3Þ

where all the terms are as defined above. This definition however

implies Granger causality (see below).

In recognition of the time-series (TS) nature of the observations,

we cast the estimation problem as a multiple TS analysis. For early

applications of TS analysis to stock–recruitment data, see [19],

[20]. The full transfer function model (i. e. the model including the

error structure gt) for this problem can be expressed as.

loge(Rt)~logeazd(B1)logeSSBtzc1(B
l)BSIt

zc2(B
k)NAOtzc3(B

h)AMOtzgt,
ð4Þ

where B is a so-called backshift operator of type BXt = xt-1,

B2Xt = xt-2, …, BkXt = xt-k specifying appropriate time-delays 1, 2,

…, k for the variables’ linear combinations, gt a random error

term that can be modelled as an autoregressive, integrated-

moving-average process and all other terms are as defined before.

In our analysis, the time delay is fixed at 1 for the loge(SSBt) term,

and the time delays in terms of l, k, and h for BSI, NAO and AMO

need to be determined empirically. The transfer function model

permits a much more general error structure than an ordinary

least squares regression model specified for the same set of

observations. It also imposes important constraints on the

stationarity of the series (see below).

For the transfer-function model, we based part of our statistical

treatment on methods described by [21], [22] for developing

multiple TS models. The development of transfer-function models

is typically based on empirical patterns in the cross-correlation

functions (CCFs) between the input variables and the output

variable, and on patterns of autocorrelation (ACF) and partial

autocorrelation (PACF) in the residuals of the model (Table 1).

Cross-correlation analysis is one of the most essential tools to study

Granger causality [23] which basically states that only predeter-

mined (past) values of the same (endogenous variable, output) or

another time series variable (exogenous variable, input) can have

an influence on future values, but future values not on past values.

Thus Granger causality defines causal direction through the

temporal order of the underlying TS values.

Figure 4 conceptually summarizes and illustrates the entire

variable and model selection algorithm, respectively. This type of

analysis basically tries to identify and estimate the structure and

order of an underlying autoregressive integrated moving average

(ARIMA) process based on stationary TS (Figure 4a, c, f). If this

process is further linked to exogenous variables (X), as in our case,

Figure 2. Plots of the dataseries of loge(R), loge(SSB), and winter BSI from 1991 to 2011, where R is WBSS herring recruitment, SSB is
spawning-stock biomass for WBSS herring, and BSI the Baltic Sea index. Left panels: Non-stationary (original) dataseries (open dots
connected by solid lines) with significant linear trend lines (broken lines). Right panels: stationary dataseries, with lines as in the three left panels, and
values distributed around zero (detrended by taking 1st order differences).
doi:10.1371/journal.pone.0087525.g002
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Figure 3. Cushing model [Equation (1) – see text] fitted to Rügen herring recruitment data. (A) Plot of loge recruitment R (numbers in
loge-thousands) against loge spawning-stock biomass SSB (loge-t); the continuous line represents the predicted values of loge R based on the Cushing

Climate and WBSS Herring Recruitment
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then it is referred to as an ARIMAX process or a transfer function

(Figure 4a–e, g–h). As the variables in our analysis were non-

stationary, we first took differences [21] of each variable

(Figure 4c). Thus, in contrast to the approach taken in traditional

regression models, we modelled dynamic change in the processes.

To guard against identifying spurious relationships, univariate TS

models were then developed for the input variables (BSI, NAO,

AMO) and thereafter used to reduce both the input and output

series to white noise (Figure 4d). The filtered (or ‘‘pre-whitened’’)

series were then cross-correlated to identify the appropriate model

structure (Figure 4e).

As noted above, we imposed a single structural constraint in the

model to reflect the functional relationship between WBSS herring

recruitment at age 1 in year t and the SSB in year t–1 that

produced these recruits. The estimation and model-selection

procedure can be subdivided into five principal steps (Figure 4f–h):

(i) identification of model structure according to the behav-

iour of the autocorrelation (ACF) and partial autocorrela-

tion functions (PACF), as given in Table 1;

(ii) estimation of model parameters;

(iii) diagnostic checking of model residuals;

(iv) diagnostic forecasting (cross-validation);

(v) real prognosis,

with steps (iv) and (v) being outside the real modelling phase and

hence being ignored here. For details on performing these steps in

a marine biological context, see [24], [25], [26]. For a purely

statistical description, see [21], [27], [28], [29].

Performing Cross-correlations and Model Diagnostics
In contrast to simple correlation, CCFs require two treatments

of the data before they can be cross-correlated to avoid bias: (i)

both time-series need to be made stationary (in both mean and

variance), and (ii) the risk of identifying spurious correlations must

be minimized by then pre-whitening the data. These two

treatments change the association of the two variables to be

cross-correlated, implying that the results from cross-correlations

cannot be compared with those from simple correlation. The first

step is intended to detrend the data to achieve stationarity in the

mean and to make them homoscedastic (stationary in variance),

two prerequisites for ARIMA modelling.

All time-series were differenced, converting the data from

absolute values to sequential changes in time (rates). As the

intended ARIMAX model uses loge-transformed estimates of

recruitment as output as well as loge-transformed estimates of SSB,

annual AMO, winter NAO and winter BSI data as input variables,

these variables were ensured stationary in mean and variance

through selection of the right order of differentiation. To check

this, mean stationarity was tested by testing the slope of a linear

trend under the null hypotheses that the slope differs from zero,

variance stationarity was tested using the Levene’s test under the

null hypothesis of homoscedasticity.

The second step involves first fitting an ARIMA model to each

input variable, separately applying each of these models to the

output variable, then using the residuals of each fitted model to

cross-correlate them separately with the output variable. This is

necessary to preclude false signals being generated that can result

simply from concurrent similar trends and the sequential order of

the data that do not reflect a true underlying relationship among

the two variables. To capture the full cyclic pattern of all input

(exogenous) variables, this part of the analysis was based on the

entire exogenous time-series, in the case of the winter NAO going

back to 1821, in the case of winter BSI back to 1970, and in the

case of the all-year AMO back to 1856.

To find the best model all permutations of ARIMAX terms

(auto-regressive (AR) terms, moving average (MA) terms, SSB, and

climate parameter specifications) plus the model assumptions need

to be tested using standard model-selection procedures. As it is

good scientific practice to use more than one criterion we made

use of cross-correlations, of two information criteria (including

Akaike’s Information Criterion (AICC) [30] bias corrected for

small samples [31], [32], [33] plus Schwartz/Bayes Criterion

(SBC) [34], as well as of residual diagnostics (including Ljung/Box

tests i.e. Chi2-based autocorrelation checks of residuals, also called

Portmanteau tests, for small TS under the null hypothesis of no

residual autocorrelation). As a qualitative guide to assess model

performance we estimated rperformance as the coefficient of

correlation between predicted and observed values for each model

[26] giving values that can range from 0 (worst) to 1 (best). We

generally set our significance level to a= 0.05. For distributional

tests of normality as well as Levene’s tests on homoscedasticity, a

higher a (0.1) was selected, to increase the power (1–b; by

decreasing the type II error b) and reduce the risk of falsely

accepting the null hypothesis of either the residuals being normally

distributed or the TS being homoscedastic, respectively, if they are

not [35]. We used SAS 9.3 to perform all analyses.

To avoid misinterpretation, it should be noted that CCFs

cannot be compared with Pearson’s correlation coefficients or with

rperformance measures. Such a comparison would be misleading

model, the open dots connected by a dotted line and annotated by year represent observed loge values of R at observed loge SSB, and the light blue
area the 95% prediction interval related to the Cushing model. (B) Plot of loge R over time (years); the continuous line represents the predicted values
of loge R based on the Cushing model, the open dots the observed loge values of R, and the light blue area the 95% prediction interval related to the
Cushing model.
doi:10.1371/journal.pone.0087525.g003

Table 1. General pattern of the autocorrelation function (ACF) and the partial autocorrelation function (PACF) relative to the type
of process, where AR is the autoregressive component of order p of the process, MA the moving average component of order q of
the process, and ARMA a combination of both.

Component ACF PACF

AR Tails off exponentially or in sine-waves Drops off after lag p

MA Drops off after lag q Tails off exponentially or in sine waves

ARMA Tails off exponentially or in sine-waves Tails off exponentially or in sine waves

doi:10.1371/journal.pone.0087525.t001
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because the apparent levels of significance of the latter two may be

artificially inflated by serial correlation, reducing the effective

degrees of freedom [36]. In contrast, CCFs are based on stationary

(in this case differenced), prewhitened (autocorrelation-free) TS.

Detecting Shift Patterns in the Time Series
In addition we studied the possibility of synchronous climate

driven shock signals (structural breaks, shifts, jumps etc) potentially

visible in the herring recruitment data as well as in the climate

related time series. In contrast to cross-correlations this is rather

focussed on the qualitative nature of the climate induced forcing.

To investigate this we used the shift detection algorithm according

to [37] that looks for synchronous structural breaks in corre-

sponding time series based on a structural break model. This

structural break model is essentially a regression model of yt

(response variable, for instance NAO, AMO, etc.) over t (time),

extended by two shift variables combining a pulse (P) intervention

DP
t at t0 with a step (S) intervention DS

t at t0+1, thus allowing for

both an instantaneous ‘‘overshoot’’ as well as a lagged adjustment

in the intervention period:

yt~b0zb1tza1D
P
t za2D

S
t tzet ð5Þ

with DP
t according to

DP
t ~

1 if t~t0

0 otherwise

�
pulse intervention, ð6Þ

DS
t according to

DS
t ~

1 if twt0

0 otherwise

�
step intervention ð7Þ

a1, a2, b0, and b1 are regression parameters.

Meanwhile the shift detection algorithm has been successfully

applied in different studies [7], [38], [39] and can be summarized

as follows: while iteratively moving a potential shift point t0 over

the TS (by incrementing t0 by 1 year each step), using a specifically

defined structural break model, per each iteration relevant

decision criteria described below are recorded. These results are

displayed in a compound diagrammatic illustration that is termed

as a ‘‘shiftogram’’ [37]. A shiftogram consists of a set of elementary

diagrams (plots) that summarize graphically the results of all

relevant decision criteria (quality-of-fit criteria, marginal p values)

each of which are synchronized over the same time scale. As the

shiftogram simultaneously displays all data and outcomes resulting

from iteratively searching for potential shocks in the TS, it

facilitates interpretation of the results of the iterative screening

process for the detection of shifts in the TS. Hence, a shiftogram

consists of the following 10 component graphic panels:

Figure 4. Conceptual illustration of the variable and model selection algorithm.
doi:10.1371/journal.pone.0087525.g004

Climate and WBSS Herring Recruitment
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N shiftogram panel 1: Plot of the TS (time-series),

N shiftogram panel 2: Quality-of-fit plot using the corrected

Akaikes information criterion (AICC),

N shiftogram panel 3: Plot of the empirical first order

autocorrelation coefficient of the model residuals (given the

particular structural break specification),

N shiftogram panel 4: p value of the first order autocorre-

lation coefficient from shiftogram panel 4 (t test),

N shiftogram panel 5: p value of the statistical test of joint

significance of all parameters related to the particular

structural break specification (F Test),

N shiftogram panel 6: Power plot to indicate the risk of false

no-warning; the larger the power, the lower the risk of false no-

warning (power = 1–b),

N shiftogram panel 7: p value of the statistical test of the pure

impulse (F test),

N shiftogram panel 8: p value of the statistical test of a break

in slope (F test),

N shiftogram panel 9: p value of the statistical test of identical

levels before and after the shock (ANOVA, F test),

N shiftogram panel 10: p value of the statistical test of the

variances before and after the shock (Levene-s test on

homoscedasticity).

To detect the shift, panels 2, 5 and 6 aid in localizing the

position of the change in the time series temporally. All other

panels may be consulted in helping to characterize the type of the

shift and which of the TS features have been changed.

Results

Results from Cross-correlation Analysis
Climate can potentially affect herring recruitment at multiple

life stages while a combination of direct and indirect effects may

trigger recruitment strength. To test for indirect effects mediated

through SSB, we examined the cross correlation factors (CCF)

between SSB versus all-year AMO, winter NAO as well as BSI

with lags of up to seven years (<25% of the total time span) to seek

potential climatic effects using stationary data (2nd order

differenced). To test for direct effects the CCF analysis was

repeated between log-transformed R and each of the three climate

variables in a pair wise fashion.

Given different autocorrelation structures, prewhitening was

handled slightly differently for the three climate variables. In the

case of the full winter NAO TS (1821–2010), 2nd, 3rd, 4th, and 6th

order autoregressive components were fitted to both the 2nd order

differenced winter NAO and the R and SSB data series,

respectively. For the winter BSI TS (1970–2010), 1st and 4th

order autoregressive components were fitted to both the differ-

enced winter BSI and the R (SSB). For the full all-year AMO TS

(1856–2010), 1st and 2nd order autoregressive components were

fitted to both the differenced AMO and the R (SSB); data series;

no moving-average components were significant in either case.

Bartlett confidence intervals were used to set confidence limits

[29].

Taking the differences clearly leads to mean and variance

stationary data, as a comparison of the three left panels of Figure 2

(original data) with its three right ones (differenced data) shows: all

statistical tests (slope tests, Levene-s tests) reveal that none of the

differenced TS show either a significant trend (p,0.05) or

heteroscedasticity (p.0.1).

While the results indicate a strong positive winter BSI signal at

lag 1 year when cross-correlated with R (Figure 5a), no significant

effect can be found on SSB (Figure 5b). The positive winter BSI

signal at lag 1 year remains stable when the BSI is aggregated not

only over the winter months but the full 1st half of the year

(January–June); it however disappears when BSI is aggregated

over the full 2nd half of the year (July–December). This feature

holds even if the significance level is halved according to splitting

the year into two halves to take into account the Bonferroni

problem. On the other hand, when disaggregating the winter BSI

simply by using monthly indices indicates the strongest signal on R

to be in February the year before.

In contrast to this winter NAO as well as all-year AMO do not

exhibit any significant lags neither on R nor on SSB. Hence, the

results indicate no statistically significant winter BSI effect on the

parent stock why the inclusion of SSB as a structural constraint

into the model is statistically uncritical (redundancy, multi-

collinearity, variance inflation). Accordingly, climate effects

potentially mediated by SSB and loge(SSB), respectively, can be

ignored.

Results from Fitting an Extended Cushing-type Stock–
recruitment Model

Given our findings from cross-correlation and the underlying 1st

order integrated recruitment and climate processes, we finally

identified the following structure of the Cushing-type stock–

recruitment model as a predictive generalized transfer function

being extended by winter BSI (lagged by one year) (but see also

Figure 6):

(1{B)loge(Rt)~mz(c0{c1B{c2B
4)|(1{B)winter

BSIt{1zd|(1{B)loge(SSBt{1)zgt
ð8Þ

where the term (1–B) indicates that 1st order differences have been

taken for all variables, m is the mean term (corresponding to loge(a)

in our original model), ci (B) the ith numerator polynomial of the

transfer function for winter BSI and d is the 2nd numerator of the

transfer function for SSB. The noise term is given by

gt~
1
�
(1{B)(1{q1B

2)|et, with et being the independent ran-

dom error, and (1–Bd) = (yt–yt–d) a differentiation parameter of

order d= 0, 1, 2, … years. In short form, the model may be written

as IMAX (BSIt–1, loge(SSBt–1); q= 2, d = 1). The estimated

coefficients are m= 0.09563, c0 = 0.66767, c1 =20.67281, c2 =2

0.31405, d= 1.01087, and w1 =20.81471.

The good fit of the IMAX model represented by equation (6) is

demonstrated by a high correlation between predicted and

observed values of R (Figure 6b) (rperformance = 0.82, p,,0.05,

nobservations = 21, nresiduals = 19, k = 2) with AICC = -47.7122 and

SBC = -46.2898 representing the lowest values; besides the data

point in 2010 no value exceeded the 95% forecast interval

(Figure 6a). The strong correspondence is equivalent to explaining

about 67% of the recruitment variance by parental effects (SSB)

combined with climate (BSI) based on the IMAX model. With the

inclusion of winter BSI and by explicitly considering an

autocorrelation of 2nd order (q = 2) in the log recruitment

residuals, the residuals became normal (Figure 6d,e;

W2 = 0.0744, pW
2..0.10; A2 = 0.4510, pA

2..0.10) and uncor-

related (cross checks and autocorrelation checks of the residuals

revealed no significant test statistics, with all p-values..0.1),

indicating that no other exogenous systematic process is still

inherent and as such detectable. Moreover, the model residuals

were also homoscedastic (Figure 6c).

In contrast the simple Cushing-type recruitment model

(Figure 3) of equation (1) does not appear to be significant
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(F = 1.23, p..0.05); this is confirmed by a rather low perfor-

mance of this model (rperformance = 0.25, p..0.05, nobservations = 21,

nresiduals = 19, k = 2) with values of AICC =230.4699 and SBC =2

29.0475 exceeding the corresponding values of the IMAX model

(R on the log scale). The poor correspondence is equivalent to

about only 6% of the recruitment variance being explained by

parental effects (SSB) based on the Cushing-type recruitment

model.

In summary, extending the conventional Cushing-type recruit-

ment model and turning it into a rational transfer function, among

others by making use of equations (2), (3) and (6), by pre-whitening

and cross-correlating the input and output data series, by including

a moving average (MA) component with q = 2, and by shifting

back the predicted winter BSI by 1 year, let increase the level of

explanation by more than 10 times, i.e. by 61% points (from 6% to

67%).

Results from Studying Shift Patterns in the BSI and
Herring Recruitment Time Series

Figure 6 illustrates the two corresponding shiftograms of (a) the

winter BSI running from 1970 to 2010 and (b) the WBSS

recruitment time series running from 1992 to 2011 where the

black broken vertical lines indicate years of potential structural

breaks (shifts) and the three shiftogram panels 2, 5, and 6 (from

top) indicated by encircling rectangles (red broken lines) the three

major shift detection criteria (AICC, p-joint, power panel). From

the (a) shiftogram it is obvious that a rather strong shift occurred

around 1989 in the BSI time series. This shift corresponds well

with observations of other authors [38], [39], [7]. However, given

the different length and starting dates of the two corresponding

time series it is obvious that during the overlapping time span of

years 1992 to 2010 two rather weak shifts only occurred in the

WBSS recruitment time series (being centred around years 1994

and 1999), but without synchronous shock signals in the BSI time

series. Thus in summary during the overlapping time period the

shiftogram analysis did not reveal any corresponding shock signals

in both time series so that the influence can be concluded not

being driven by qualitative shocks from climate forcing (such as

jumps or other types of shifts in the winter BSI time series that may

have led to entire regime shifts through global forcing).

Discussion

To detect potential climatic effects we studied the effects of

winter NAO (December–March) and winter BSI on WBSS

herring recruitment. However, in case of the AMO we used the

annual average as in contrast to the monthly NAO indices the

monthly AMO cycles do not differ between months [26]. Cross-

correlation results suggest that environmental conditions related to

the winter BSI but not to winter NAO or all-year AMO are largely

responsible for the variability in R. This strong winter BSI signal

which appears with a response delay of 1 year on R persists even

when aggregating the BSI index over the 1st half of the year or

dissolving the winter effect into monthly effects where the major

effect seems to occur in February. The 1 year delay however

reflects that the BSI influences WBSS herring recruitment

indirectly and at earlier life stages. It is most likely that early life

stages in the Greifswalder Bodden retention area are BSI affected

as these are usually strongly influenced by abiotic factors.

However, a mediating SSB effect can clearly be excluded as the

cross-correlation results of BSI with spawning stock biomass does

not indicate a BSI influence on recruitment variability via SSB.

Moreover, using the new shiftogram method a strong shock-like

BSI effect as being visible end of the 1980s (Figure 7a) could not be

detected during the overlapping time span thereafter (Figure 7a,b),

neither in the BSI nor in the WBSS recruitment time series: The

two rather weak shifts appearing in the WBSS recruitment time

series do not correspond to the BSI series and thus will clearly have

a different reasoning. However, as the relationship between BSI

and WBSS recruitment is rather strong on a metric scale future

climate shocks may prospectively affect WBSS recruitment also

rather strongly. Because the cross-correlation analysis detects those

relations with temporal delay, future effects might not immediately

become obvious.

A superior effect of climate induced SST has been related to the

residuals from a Ricker stock–recruitment curve for Atlantic cod

(Gadus morhua, L.) [40]. Similar analyses have been conducted

using the North Atlantic Oscillation (NAO) as the environmental

covariate [41], [42], [43], [44], demonstrating that inclusion of

NAO significantly increased explanatory power of stock recruit-

ment models for Northeast Atlantic cod.

This is in line with Post [45] who discussed delayed processes

with regard to climate, with specific focus on the relationship

between NAO and other regional environmental variables and

marine populations in the North Atlantic, concluding that ‘‘lagged

population responses to large-scale climatic variability may arise

when the proximal abiotic factor influencing the population

dynamics is itself correlated with regional atmospheric processes at

some time in the past’’. Lehmann et al. [15] investigated that the

large-scale atmospheric conditions over the North Atlantic are

correlated with regional atmospheric conditions over the western

Baltic, but e.g. the NAO-index only accounts for 25% of the

variance of the sea level pressure anomaly over the western Baltic

(BSI). In contrast to the NAO-index (ca. 3000 km) the BSI

represents a much smaller meridional atmospheric air pressure

gradient (600 km), i.e. the BSI includes the gradients of synoptic-

scale air pressure gradients which are not represented by remote

large-scale atmospheric forcing patterns. This was already

observed by Osborn et al. [46], who found correlation coefficients

between 0.3 and 0.6 for the Baltic Sea area. The local atmospheric

conditions have a strong influence on many environmental

processes in the Baltic Sea. A significant correlation of inter-

annual changes in the reproduction volume of eastern Baltic cod

and SST with changes in the BSI during winter months has been

demonstrated by a studies performed by Hinrichsen et al. [16],

[17], while BSI-values obtained during spring and summer have

shown a strong impact on eastern Baltic cod larval and juvenile

distributions [47].

In general, metabolism and physiology of boreal fish species are

very sensitive against changes of temperature regimes [48].

Recruitment models with explicit consideration of environmental

factors have been widely applied to various fish stocks to examine

the possible influence of temperature on recruitment e.g. [49],

[41], [25], [26], [50]. The survival of early herring life stages in

particular has been demonstrated to be especially vulnerable to

shifts of oceanographic temperature regimes [51]. For Pacific

Figure 5. Diagram showing the cross-correlations of (A) detrended and prewhitened loge(R) plotted against winter BSI as a
predetermined variable (with 95% confidence bands shown as the blue shaded area), and (B) detrended and prewhitened
loge(SSB) against winter BSI. The only significant spike exceeding the 95% confidence bands (blue areas) occurs in the case of loge(R) in panel (a)
at lag 1, indicating a delayed climate effect on herring recruitment.
doi:10.1371/journal.pone.0087525.g005
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Figure 6. IMAX model panel plot with Robs., Rpred. and SSB on a log-scale. (A) Plot of observed and fitted loge(R) values of the IMAX
recruitment model over time (years) with light blue prediction band (a=0.05). (B) Plot of observed against predicted loge(R) values indicating good
correspondence (r= 0.82, p,0.0001) with ,67% of the recruitment variation explained by winter BSI and parental effects. The inner solid line
represents the linear correspondence line, the two outer solid lines the 95% confidence interval related to the correspondence line, and the grey area
the conic 95% forecast bands related also to the correspondence line. (C) IMAX model residuals plotted against loge(SSB) with non-systematic
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herring (C. pallasii, Valenciennes 1847) interannual variability of

recruitment was shown to be strongly correlated with climatic

indices affecting coastal upwelling in the proximity of Northeast

Pacific estuaries [52]. This indicates that regional climate indices

indeed explain the variability of the temperature regime as a

baseline for sensitive ecological cascades relying on a suite of

interlinked mechanisms. As postulated by Hjort [53] and refined

by Cushing [54], the survival of larval fish is determined by the

critical period when larvae finished the yolk reservoir and start

feeding actively. If there is less suitable planktonic prey available at

this point of ‘‘first feeding’’ larvae will inevitably starve. Therefore

early life stage mortality is widely depending on match-mismatch

events of appearance of larvae and seasonal plankton blooms [54],

[55]. The timing of both components underlies interannual shifts

that might well be explained by regional climatic variability.

Induced by climatic forcing a regime shift was documented for the

Baltic Sea concerning important changes in the prey composition

of e.g. herring [56]. The relation among climate indices and the

trophic regime of the outer Baltic Sea is therefore rather a tested

hypothesis than an assumption. Investigating drivers of recruit-

ment variability in various Baltic Sea herring stocks, Cardinale

et al. [57] indicated BSI to be a strong predictor of WBSS herring

recruitment strength. Since the base line for the authors’

explanatory approach was a spawning period from January to

March a direct linkage of winter BSI temperature regimes on

spawning process and early herring ontogeny seems plausible.

However, the peak spawning period of the Rügen herring stock

component is located in late March to mid-May [58] and therefore

a direct temperature effect of winter BSI on spawning and egg

development is rather unlikely. A direct effect of winter BSI on

larval metabolism and -growth can most likely also be rejected due

to seasonal decoupling of larval peak abundance and temporal

range of winter BSI, even the BSI effect persists over the 1st half of

the year as our study showed; but is also indicated that the major

signal occurs in February and hence one month earlier than the

start of the spawning activities in this region. However, indirect

cascading effects of winter climate variability on egg survival and

available prey fields for early larval stages according to match-

mismatch effective in coastal inshore systems and transitional

waters of the Baltic Sea might represent likely mechanisms

involved in climate induced recruitment variability of WBSS

herring. However, as the BSI effect is only small for the 2nd half of

the year it is not very likely that recruitment variations are

associated with wind-induced advective transport mechanisms of

late larval and juveniles stages towards their nursery grounds. Our

findings on effects of climate forcing on WBSS herring correspond

well with similar results on other clupeid species in different

ecosystems regarding fish recruitment to be predominately driven

by physical processes [59], [60], [61].

Unlike other important commercial fish species of the Baltic Sea

such as cod and sprat (Sprattus sprattus, L.), herring larvae hatch

from demersal eggs attached to benthic substrates [62]. Therefore

concentrations around the zero line. (D) Explorative distribution function (EDF) of the IMAX model residuals (stepped curve) fit by the cumulative
distribution function (CDF) of the normal distribution (continuous line). (E) Q–Q plot of the IMAX model residuals assuming normality.
doi:10.1371/journal.pone.0087525.g006

Figure 7. Shiftograms of (A) the BSI and (B) the WBSS recruitment time series. The broken vertical lines indicate years of potential structural
breaks (shifts), the open rectangles with broken lines encircle the three major shift detection criteria (AICC, p-joint, power panel).
doi:10.1371/journal.pone.0087525.g007
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they are not dispersed by current regimes potentially transporting

eggs to more favourable habitats if conditions in the spawning

grounds become unsuitable. Additionally herring eggs are not

capable of vertical adjustment to certain stratified water layers by

mass specific buoyancies [63], [64]. Winter BSI however will

determine climate condition in Baltic Sea transitional waters

during the early herring spawning period and thus affect the

immediate physico-chemical environment on the particular

spawning beds eventually affecting hatching success. Since early

spawning cohorts occur in March, their embryonic development is

impacted by climate conditions and thus may be affected by winter

BSI. However, very often in practice egg or early larval-

abundances are used as indices or proxies for the abundance of

the parental stock e.g. [7], [65] while large-larvae abundances are

used to approximate recruitment e.g. [7]. The reason is that the

relationship between SSB and abundance of eggs as well of small

larvae in the water appears to be approximately linear. Therefore

we can exclude a direct BSI effect on egg development or egg

survival of WBSS herring as no significant linear cross-correlation

signal of BSI on SSB was detected.

As demonstrated for Baltic sprat, simple correlation analysis is

suitable for detecting long-term trends and a general relationship

between physical variables and recruitment [66]. However, the

power of simple correlation analysis is limited to symmetric and

temporally corresponding processes. Therefore it may fail to detect

delayed responses and causalities. For instance, a global scale effect

such as climate forcing may need some time before penetrating

through an entire causal chain because of cascading or accumu-

lating effects with intermediate processes being involved [26], [37].

On a global scale climatic drivers can be diverse and slight

changes may lead to entire regime shifts since multiple ecosystem

components are affected synchronously. These effects may be

quantitative (expressed by correlations on a metric scale) or

qualitative (non-metric scale; corresponding shock signals, regime

shifts). Climate forcing on marine resources is evident in long-term

records of fishery and fish abundance and also in palaeo-ecological

and related observations [67], [68]. Changes of distribution and

marine fish productivity under changing environmental conditions

have now widely been documented [69], [70]. Hence, the need to

account for shifting climatic conditions by adjusting fishery

management reference values is increasingly being acknowledged

[71], [50], [72]. Synergistic effects of climate change and

harvesting can alter the resilience of exploited species and

influence long-term sustainability [73]. Integrating these findings

into stock assessment models – along with exploitation patterns –

can be expected to result in a significantly improved WBSS

management.
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47. Hinrichsen H-H, Böttcher U, Köster FW, Lehmann A, St. John MA (2003)

Modelling the influences of atmospheric forcing conditions on Baltic cod early

life stages: distribution and drift. J Sea Res 49: 187–201.
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