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Abstract 

We formulate and estimate a farm level simulation model of agricultural crop production, 

and apply it to a scenario with increasing yield variability. The objective function is of the mean-

variance utility type with a positive mathematical programming (PMP) cost function, and it is 

estimated using the optimality conditions and a large panel data set obtained from the FADN. 

Special attention is given to the problem of separating the effect of the covariance matrix from 

that of the quadratic PMP terms. The model is applied in a partial analysis of impacts of climate 

change in Germany by exogenously changing yield patterns. 

Key words: Climate change, positive mathematical programming, risk, Bayesian econometrics, 

FADN 

1. Introduction 

Farming is an inherently risky business, exposed to weather variations as well as unexpected 

market and policy changes. The role of risk and risk management in agriculture receives 

increased attention in recent years which may even further rise in the future. One consequence of 

the projected climate change may be increased crop yield variation due to a higher frequency of 

extreme events (Teixeira et al., 2013) possibly calling for adaptations of cropping programs.
1
 

The opening of European agricultural market over the last two decades leads to an increase in 

variability of EU prices (Thompson et al., 2000) despite little evidence on globally rising food 

price variability in the longer run (Gilbert and Morgan, 2010). In any case, increasing farmers’ 

and political awareness lead to a substantial increase of risk management in the form of 

insurances and corresponding government support in the US over the last 20 years (Glauber, 

2013) and has now also entered EU agricultural policy after long debates (European Commission 

(2013), Article 30). 

However, many of the large scale applied agricultural economic models regularly used for 

policy impact analysis and market outlooks such as CAPRI and AgLink, do not explicitly 

consider risk as a factor influencing production decisions limiting their applicability in this 

respect. Modelling risk is certainly not new to agricultural economics
2
, but due to the 

developments just mentioned it has recently also attracted increased attention from applied 

policy modellers (Cortignani and Severini, 2012; Petsakos and Rozakis, 2011), yet large scale 

applications at national or EU level are missing. 

The purpose of this paper is to formulate, estimate and apply a robust model of agricultural 

crop production with explicit consideration of risk, suitable for large scale application to 

European agriculture. The proposed model resembles the one from Cortignani and Severini 

(2012) in extending a standard quadratic PMP objective function such that it represents an 

Expectation-Variance (EV) risk model. In contrast to their approach, our approach introduces 

farm specific relative risk aversion coefficients, estimates parameters using a more flexible and 

transparent Bayesian methodology and is designed for a large scale application based on an 

unbalanced panel data set obtained from FADN. Moreover, we also consider explicitly the 

estimation of the covariance matrix of gross margins using the same data set.  

The paper contributes to analysing the question, raised by Heckelei (2002) (pp 40-43), as to 

what extent risk aversion is a valid micro economic explanation of PMP terms. In order to do so 

we develop a Bayesian econometric model allowing estimating objective function parameters 

                                                 
1 Although inter-annual variability of major crops in important production countries did predominantly go down over the 

last 50 years and no positive impact of a changing climate signal could be identified (Osborne and Wheeler, 2013) 
2 For an overview and references see Moschini and Hennessy, 2001 



  

 

 

2 

 

econometrically and is a first step towards testing hypotheses concerning parameter values in the 

PMP functions (Jansson and Heckelei, 2010). 

The applicability of the framework is demonstrated by the estimation of 323 farm type 

models in Germany based on a sample of 31 000 FADN farms observed 122 000 times in total. 

The models are applied and evaluated in a simulation where yield patterns are changed so as to 

represent possible effects of climate change. The present model contains only crop production, 

but it is extensible also to animal husbandry. 

2. Microeconomic model 

The key idea behind the model developed in this paper is to combine econometrically estimated 

positive mathematical programming models (Buysse et al., 2007; Heckelei and Wolff, 2003; 

Jansson and Heckelei, 2011) with risk programming models such as those proposed by Freund 

(1956). Quadratic programming (QP) models have formed the basis of most PMP models 

(Heckelei et al., 2012) since its formal introduction by Howitt (1995). The considered 

Expectation-Variance (EV) risk model considered here is also quadratic and can be written as 

         
 

 
      

  subject to   

         

       

where 

  is an n1vector of agricultural production activity levels 

   is the n1 vector of expected gross margins,  

  is the coefficient of absolute risk aversion,  

  is the nn covariance matrix of gross margins,  

  is the     matrix of (fixed) resource use coefficients, and  

  is the m1 vector of endowments (e.g. land). 

 

A quadratic PMP supply model can be formulated as 

              
 

 
      

  subject to 

        

       

where   

  is a n1 vector of linear PMP parameters and  

  is a nn square, symmetric, positive definite PMP parameter matrix. 

 

The linear constraint sets of the two models are identical, whereas the objective functions 

differ: the EV model contains a quadratic term representing the (dis-) utility of variance in 

profits, whereas the second model contains a general quadratic term that carries no particular 

economic meaning. Both the EV and the PMP models are quadratic in nature, and hence the 

conjecture is imminent that by merging the two, the importance of the PMP terms (the Q-matrix) 

in explaining model outcomes will be reduced as compared to a model without the variance 

terms (for example Jansson and Heckelei (2011)). Reducing the importance of the PMP terms is 
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desirable, because their weak theoretical foundation impairs the interpretation of model results 

and constrains the possibility to create economically meaningful shocks. 

Combining the EV and the PMP models above gives the quadratic supply model represented 

by equations (1) to (3).Since both terms enter the objective function in a quadratic way, the 

statistical identification of the parameters is cumbersome and is further discussed below. 

         
 

 
         

 

 
      (1) 

  subject to 

        (2) 

       (3) 

3. Data 

The model (1)-(3) is assumed as a template model for a group of farms, all which are similar 

in terms of some selected attributes. Each farm group is thus represented by an instance of that 

model with its own unique parameterization. In order to estimate those parameters, we need to 

define a stochastic model relating observations to theory. The list of all permissible crops is 

shown in table 2. 

The data set used in this exercise is the Farm Accountancy Data Network (FADN).The  

accounts are collected using a stratified sampling procedure (EU, 2008), which define the sample 

farms, to be selected in the network, to present the population. The population is clustered into 

grid cells using the type of farming (ToF), representing the specialisation, and the economic size 

of the holding (ESU). The network collects for each grid cell a certain number of FADN farms, 

which build up, finally the database. The total number of sampled farms divided by the total 

number of farms in the grid is the weighting factor. A factor describing how much of the 

population a FADN sample farm represents. 

This approach forms an unbalanced panel data, where each farm in general participates in 

the sample several years, but where the composition of the sample changes over time. Overall 

274,000 sample farms contributed in different years to the FADN network, between 1990 and 

2008, representing a population of 4.15 million farms in 1990, which than increased due to the 

EU enlargement to a population of 4.95 million farms. Derived from national surveys, FADN is 

the only source of micro-economic data that is harmonised using bookkeeping principles. The 

accounting and recording principals of the FADN are specified under EU regulations, but the 

data is collected by MS organizations. The accounting positions are defined in several 

publications
3
. Generally the FADN sample contains primarily economic data on revenues, costs 

and assets, but also physical quantities such as mass of products produced, hectares planted with 

different crops and number of animals of different categories. Noteworthy is that inputs other 

than land are only measured in monetary terms and not allocated to the various products. For a 

detailed analysis of the underlying data and how the farm accountancy information is translated 

into the variable definition used in the estimation see Neuenfeldt and Gocht (2013). To define 

the groups for the estimation, we used the ToF and ESU classification as the sampling procedure 

in FADN, however, because the definition is too detailed we further aggregated as given in table 

Fehler! Verweisquelle konnte nicht gefunden werden.. This definition would result into 39 

farm groups based on 13 specialisations and 3 farm sizes. This adjustment, unfortunately, 

doesn’t prevent the existence of groups with little observations. Therefore, we apply a selection 

approach which first ranked the possible 39 farm groups of a region with respect to two equally 

weighted criteria: livestock units (LUs) and utilised agricultural area (UAA), and selects a 

                                                 
3 RI/CC 1256 (REV. 7) (2011) and RI/CC 1256 (REV. 7) (2011) and RI/CC 882 (REV. 9) (2011) 



  

 

 

4 

 

defined number per region, across EU on average ~10 groups, as final farm group for the 

estimation. The remaining farms result, after aggregation, into the residual farm group (Gocht 

and Britz, 2011). 

Using the above defined selection and considering only farms specialisation without animal 

production the data panel for the estimation consists of 323 farm groups with 122 000 

observations in FADN for Germany.  

4. Statistical model 

4.1 Observable variables 

We assume that the allocated hectares are measured without errors. This assumption seems 

reasonable in case of this variable and stabilizes the complex (bilevel programming) estimation 

problem. In contrast, gross output and input use is assumed to be observed with additive and 

normally distributed errors. At first glance, those variables may seem equally well known as land 

allocations. The motivation for assuming errors here is twofold. Firstly, the entries for gross 

production and use in FADN is the sum (and difference) of several positions (sales plus farm use 

plus closing stock minus opening stock). Secondly, realised values are likely different from 

optimal values as weather and other unexpected events will make an exact optimal choice 

unlikely. . 

The error model used here is therefore different from the one in Jansson and Heckelei 

(2011), where land allocation is stochastic. In order to account for the possibility that the farmer 

in practice fails to exactly determine an optimal solution to the utility maximization problem, we 

add an optimization error also to the first-order condition itself.  

Since the estimating equations contain three types of error terms (outputs, inputs and 

optimization error) it will not be possible to simultaneously estimate the variances of the error 

terms. The reason of the underlying identification problem is rigorously derived in the literature 

on Errors In Variables and Measurement Errors (Carroll et al., 1995; Fuller, 1987). We make 

stronger assumptions on variances than necessary for identification by not only setting exact 

knowledge of their relative variances, but even making explicit assumptions of their values in 

terms of shares of the observed variables as reported in the section on priors below. 

To summarize, we assume the following error models for the observable variable     , 

which is gross production (use) on farm   of output (input)   in year  : 

     ∑         

 

     
io        outputs 

     ∑        

 

     
io       inputs 

    
io    (      

 ) 

It is likely that some errors are correlated. That is ignored in this application, at the expense 

of efficiency of the estimator. A SUR estimator would be a feasible remedy, but would further 

increase the complexity of an already technically demanding estimation procedure. 

4.2 Prior distributions 

In order to render the estimator robust and also to utilize out-of-sample information about 

farm supply behaviour, we formulate prior distributions for selected parameters or hyper-

parameters. The prior information is expressed as probability density functions to allow us to 

handle the information in a transparent and theoretically solid fashion in a Bayesian model. This 
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is a suitable place to also discuss various parameter constraints that were introduced in order to 

restrict the number of free parameters to estimate. 

The matrix   is assumed to have a special block structure, where all crops are assigned to 

crop groups, and all crops within a crop group (see table   for the definition of groups) have 

exactly the same effect on all crops of another crop group. Furthermore, all farms belonging to 

the same farm group share the same   matrix, scaled by a farm size index     that is specified 

further below. Denoting crop group membership by the     indicator matrix   with k denoting 

the number of crop groups, we require that        (      ), where B is the     matrix of 

unique cross-crop effects and D is an n-size diagonal matrix with only own-crop effects. The 

groups constructed are shown in table 4. Crops not belonging to any group will not have any 

direct effect on the marginal cost of other crops. 

The farm size index     is derived from the proposition that farms belonging to the same 

type should behave in a similar way. Similar supply behaviour is interpreted responding to a 

given price change by changing a similar share of their land allocation. We can imagine an 

exogenous price change, identical to all farms, and write the total differential of the first order 

conditions of the primal model in the following fashion:  

 

                      
     

Collecting terms gives 

   (                )        

Ignoring the risk component, i.e. the middle term of the bracket, for the time being and 

considering that changes in dual values     are likely similar across farms. Then our definition 

of farms “behaving in a similar way” boils down to    being the inverse of the total farm land 

area, so that the right hand side becomes the change in the land use shares.  

In our model,   denotes the Pratt-Arrow measure of absolute risk aversion, defined as 

   
      (   )   (   )⁄ . Is a local measure of risk preferences and may change over the level 

of income,    . As the units of    
  and     must always be reciprocal to one another(Raskin & 

Cochran, 1986), relative risk aversion coefficient,       
    , is unitless. We assume that    

is similar across time and farms within a farm group. Therefore, we substitute    
  

   
 in the 

model, and formulate a gamma prior for    with mode of 1 and the support [    ].  
For our priors we choose from four different families of (proper) density functions:  

Family Description Used for 

Spike The parameter is fixed at a 

particular value. 

Prior means and variances of (normally distributed) 

error terms of gross inputs, gross outputs and 

optimization errors. 

Uniform An upper and a lower 

bound is provided. 

Parameters of the PMP cost function, in order to 

enforce curvature (the D matrix) and enable the 

solver to scale (avoiding infinity as upper limit). 

Normal Mean/mode and variance 

flexibly set, no bounds. 

Optimization errors and error terms of activity 

levels. 

Gamma Only positive values 

permitted, but no upper 

bound. Distinct mode and 

flexible variance. 

Positive parameters or hyperparameters: Variable 

input cost coefficients, supply elasticities, dual 

values (land rent), gross inputs, gross outputs and 

the relative risk aversion coefficient. 
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Parameterizing the gamma density is a bit more technical than for the other families. We 

compute the two parameters from more intuitive pieces of information: (i) the mode, and (ii) a 

subjective ‘accuracy’ defined from zero to infinity where the density goes towards a uniform 

density when accuracy goes to zero and 10 means “a fairly narrow peak” with a standard 

deviation equal to half of the mode. The key translation from accuracy to gamma-parameters was 

defined by linking accuracy to standard deviation via the formula
4
   

mode

  accuracy
. The graphs of 

some of the resulting density functions are shown in figure 1, together with the implied means 

and variances. 

 
Figure 1: Graphs of gamma prior density functions for mode = 1 and various accuracies. 

 

The matrix of input coefficients,  , is endogenously estimated, but assumed to be identical 

across farms belonging to the same farm group. For robustness of estimates we include a prior 

density for   obtained from the CAPRI model (Britz and Witzke, 2012). In particular, we use the 

average input coefficients for Germany as the prior mode for all farms of all farm groups, and 

assume a gamma density function with accuracy of three. 

Regarding the parameters B and D of the PMP cost function, we force them in estimation to 

be such that the Q matrix is strictly positive definite (PD). That is accomplished by (i) requiring 

B to be positive semi-definite (PSD) via a Cholesky factorization and (ii) requiring that all the 

elements of the diagonal matrix D exceed an arbitrarily small positive number, for which we 

selected 10
-6

. We also imposed an upper bound of 10
6
 divided by the average area of the crop on 

that farm, which should be well beyond the relevant range
5
 for most crops. Finally, due to 

degrees of freedom considerations and identification, we fix one element of D to zero for each 

crop group
6
. 

The PMP cost function parameters have a direct impact on the supply elasticity of the primal 

model, and for that, we do have some fairly clear priors: the own-price supply elasticity for the 

                                                 
4 This information is sufficient to derive the two parameters. Solving for the two gamma parameters requires solving a 

second degree polynomial where only the positive root is kept. The algebra is omitted in this paper due to space limitations. 
5 Note that the unit of D is ”change in marginal cost in euro per hectare when acreage changes by one hectare”, so that the 

upper bound implies that doubling the crop area increases the marginal cost per hectare by a million euro. An intensive perennial 

greenhouse crop might hit that bound in the short run, implying that the area is fixed, while any field crop should be well below 

that. 
6 If the expressions for the diagonal Hessian elements are written down for all crops of a crop group with n crop members 

it becomes evident that there are n equations but n+ 1 variable (the n diagonal elements of D plus the single diagonal own-crop-

group effect element of B). One could alternatively fix the entire diagonal of B to zero, but that would make imposition of 

definiteness of the Hessian more demanding as we would need to consider the sum         , which has higher rank than 

B. 
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farm group as a whole should be positive, typically in the magnitude of 1, and very large 

numbers, say beyond 10, are very rare in the literature. We computed an analytic expression for 

the own-price elasticity to include in the estimation equations, and imposed a gamma prior with 

mode 1.5 and an accuracy of 5. 

Land rent   is gamma distributed with mode derived from the land rental cost plus land asset 

values divided by 50 (equivalent to a 2% interest rate on own capital) divided by the land 

endowment. Accuracy is set to 3, which is fairly weak. 

Optimization errors (the additive errors of the first order conditions) receive normal priors 

with zero mean and variance equal to the diagonal elements of the estimated covariance 

matrix  . 

4.3 Estimation of the covariance matrix 

The variance-covariance matrix of gross margins was estimated based on the (unbalanced) 

panel of FADN farm revenues. Since costs are arguably much less stochastic than revenues from 

the farmer’s planning perspective, the variance of the gross margin will be approximated by the 

variance of revenues. To capture covariance of yields and prices, a feasible generalized least 

squares estimator was applied. 

Each farmer knows whether her farm has systematically higher or lower revenues per 

hectare than the average, i.e. if the soil is good or bad, if she specializes in higher or lower 

quality crops, and so on. To avoid that such unobserved heterogeneity is interpreted as risk, a 

fixed effects model was estimated. 

A particular problem is the computation of the covariance matrix from an unbalanced cube 

of error terms (i.e. error terms in the three dimensions of farms, crops and time with many 

missing values). The empirical covariance matrix often becomes indefinite, and missing values 

must be imputed somehow. A special Hadamard weighted Frobenius norm shrinkage estimator, 

similar to that proposed by Higham (2002), was developed in order to find the strictly positive 

definite covariance matrix that is closest (in the above norm) to the empirically estimated one. It 

is beyond the scope of this paper to describe that estimator in detail. 

4.4 Bayesian posterior mode estimation 

Putting together all the details provided above regarding sampling model we can follow 

Jansson and Heckelei (2010) and formulate the Bayesian posterior density function. Maximizing 

the posterior density provides a point estimate for the parameters of interest. The posterior 

density function is the product of many densities and will therefore be something highly 

nonlinear and numerically tiny. A logarithmic transformation of the posterior improves upon the 

numerical properties of the problem. Doing so and discarding constants, results in the following 

maximization problem: 

    ∑   

 

 ̃   
 (    

  )
 

   

  ∑   

 

 ̃  

(    
   )

 
 ∑[( ̃    

    )           ̃    
       ]

       

 ∑[( ̃   
     )          ̃   

       ]

   

 ∑[( ̃  
   )         ̃  

    ]

  

 ∑[( ̃ 
 

  )      
   ̃ 

 
  

 ]

 

 

Subject to the first (FOC)- and second-order condition (SOC) of the primal model, 

(     ̃     ̃ )  
  

 ̃  
  ̃       ̃    ̃    ̃   ̃  ̃  ̃       ̃     
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and subject to the definition of errors on gross inputs and outputs (here observations are 

vertically concatenated into the matrix z). 

 ̃   [
   

  
]  ̃      

   

 

and subject to the definition of the “hyper parameter” of supply elasticity   ,  

    vec (diag (   [   
      

   ̃( ̃   
   ̃)

  
 ̃   

  ]    ))  [ ̃    ̃  
out] 

    
  

 ̃  
   ̃  (      ) 

with     for the Hessian matrix. The function diag( ) means that we consider only the 

diagonal of the square matrix argument
7
, the vec( ) operator converts the diagonal matrix into a 

vector, the   operator is the binary element-wise multiplication operator, and   denotes the 

elementwise division operation. 

5. Scenario 

We simulate a scenario where the variances of all crop revenues increase by inflating the 

covariance matrix by a factor two. The results of the scenario are compared with a baseline 

representing the situation in 2007. More recent years than 2007 contain less complete data in the 

FADN dataset we used in this study. 

6. Results 

The impacts of the increased variance are very different across farm groups. Yet some 

general pattern emerges. Table 1 shows descriptive statistics of impacts on different farm groups 

for three major crop groups: cereals, oilseeds and other arable crops. The acreage of cereals goes 

down by 1.1% on average across farm groups, with a standard deviation of 4.5%. Oil seed 

production generally increases, by on average 4.2 percentage points and with large variation 

across farm groups (standard deviation of 21% change). The biggest impact in relative terms is 

found in “other arable crops”, where the average acreage increase is close to 23%. One might 

hypothesize that the explanation is that sugar beet and potatoes (the major crops among “other 

arable crops”), and also oil seeds, more often are subject to fixed-term contracts and thus to less 

variation in the data set. 

Looking at the details of farm groups, the tendency to decrease cereals production is quite 

general. The smallest specialist field crop farms show the strongest tendency to shift from cereals 

to other arable crops, whereas the larger specialist field crops farms rather tend to shift to oil 

seeds production. Among general field crops and mixed farms, there is a move away from other 

arable crops (-3.6%) and from cereals (-1%) towards oil seeds (+19%) among the smaller farms, 

whereas the larger farms increase their acreage of arable crops (+6.6%). 

The move away from cereals towards other crops is found even for the animal farms, such 

as the specialist dairy farms of all sizes (-1% to -4%), despite them producing primarily for own 

consumption. In fact, only cattle rearing farms and the residual “rest” group tends to somewhat 

increase their own cereals production when facing the increased price variance pattern. 

 

                                                 
7 The argument of the diag operator is in this case the matrix of derivatives [

     

     
] of the supply function implied by the 

FOC, as obtained using matrix algebra. 
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7. Discussion 

The method is feasible as demonstrated in this paper. Much work remains before we can 

perform rigorous econometric tests for the values of the PMP-terms. The technical and numerical 

difficulties when handling the large unbalanced data set are considerable. 

On the content side, we note that increased variability affects different farm groups in 

different ways. Part of the explanation is that the covariant matrices are different across farm 

groups. The model offers no insight into why that is the case. Another part of the explanation is 

in the risk aversion coefficients. In our model, the absolute coefficient of risk aversion is 

computed by dividing the relative risk aversion coefficient with total farm income. A farm that 

derives a large share of its income from crop production then becomes more sensitive to risk in 

crop production than a farm that derives a significant share of its income from other sources 

(animals, dairy). The remaining part of the explanation rests with the size of the B and D 

matrices, which in turn depend on the observed behaviour of the farms in the group in the 

sample. 

The model estimated and applied in this paper opens up the possibility to simulate wealth 

effects of decoupled payments. In a traditional farm programming model, fully decoupled 

payments enter as a constant (lump sum) in the objective function. Changing a constant term has 

no effect on the location of the maximum. In our model, income enters as a scaling factor for the 

variance component of the objective function, affecting farm decisions. 

The proposed model, finally, could be modified to simulate impacts of some income 

insurance support schemes as permitted under the current CAP. 

 

Table 1: Descriptive statistics of simulation results for three major crop groups (percentage 

deviation from 2007 observation). 

 Cereals Oil seeds Other arable 

Mean -0.01095 0.04212 0.22688 

Standard Error 0.00271 0.01383 0.05009 

Median -0.00100 0.00240 0.02695 

Standard Deviation 0.04473 0.21296 0.78568 

Sample Variance 0.00200 0.04535 0.61729 

Minimum -0.26640 -1.00000 -1.00000 

Maximum 0.19560 1.48900 8.53000 

Count 273 237 246 

Confidence Level(95.0%) 0.00533 0.02725 0.09867 

 

Table 2: Crop groups and their member crops 

Crop activities Crop group 

SWHE,DWHE,RYEM,BARL,OATS CERE 

MAIZ,OCER CER2 

RAPE,SUNF,SOYA,OOIL,OIND OILS 

PULS,POTA,SUGB,TEXT OARA 

MAIF,ROOF,OFAR FARA 
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Table 3: Type of farming and economic size of the holding for the farm groups in the estimation 

based on SGM approach 

Type of farming  Abbr. 

Specialist cereals, oilseed and protein crops FT13 

General field cropping + Mixed cropping FT14+ FT60 

Specialist horticulture FT20 

Specialist vineyards FT31 

Specialist fruit and citrus fruit FT32 

Specialist olives FT33 

Various permanent crops combined FT34 

Specialist dairying FT41 

Specialist cattle + dairying rearing, fattening FT42+FT43 

Sheep, goats and other grazing livestock FT44 

Specialist granivores FT50 

Mixed livestock holdings FT70 

Mixed crops-livestock FT80 

Economic size class (ESC) Abbr. 

< 16 ESU ESC 1 

   16 - 100 ESU ESC 2 

> 100 ESU ESC 3 

 

 

Table 2: Maximal set of crops in estimation 

Abbr. Descriptions 

SWHE "Soft wheat production activity" 

DWHE "Durum wheat production activity" 

RYEM "Rye and meslin production activity" 

BARL "Barley production activity" 

OATS "Oats and summer cereal mixes production activity without triticale" 

MAIZ "Grain maize production activity" 

OCER "Other cereals production activity including triticale" 

RAPE "Rape production activity" 

SUNF "Sunflower production activity" 

SOYA "Soya production activity" 
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OOIL "Other seed production activities for the oil industry" 

OIND "Other industrial crops production activity" 

OCRO "Other crops production activity" 

PARI "Paddy rice production activity" 

OLIV "Olive production activity for the oil industry" 

PULS "Pulses production activity" 

POTA "Potatoes production activity" 

SUGB "Sugar beet production activity" 

TEXT "Flax and hemp production activity" 

TOBA "Tobacco production activity" 

TOMA "Tomatoes production activity" 

OVEG "Other vegetables production activity" 

APPL "Apples  pears and peaches production activity" 

OFRU "Other fruits production activity" 

CITR "Citrus fruits production activity" 

TAGR "Table grapes production activity" 

TABO "Table olives production activity" 

TWIN "Wine production activity" 
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