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Abstract: Among the machine learning tools being used in recent years for environmental 
applications such as forestry, self-organizing maps (SOM) and the k-nearest neighbor 
(kNN) algorithm have been used successfully. We applied both methods for the mapping 
of organic carbon (Corg) in riparian forests due to their considerably high carbon storage 
capacity. Despite the importance of floodplains for carbon sequestration, a sufficient 
scientific foundation for creating large-scale maps showing the spatial Corg distribution is 
still missing. We estimated organic carbon in a test site in the Danube Floodplain based on 
RapidEye remote sensing data and additional geodata. Accordingly, carbon distribution 
maps of vegetation, soil, and total Corg stocks were derived. Results were compared and 
statistically evaluated with terrestrial survey data for outcomes with pure remote sensing 
data and for the combination with additional geodata using bias and the Root Mean Square 
Error (RMSE). Results show that SOM and kNN approaches enable us to reproduce spatial 
patterns of riparian forest Corg stocks. While vegetation Corg has very high RMSEs, 
outcomes for soil and total Corg stocks are less biased with a lower RMSE, especially when 
remote sensing and additional geodata are conjointly applied. SOMs show similar 
percentages of RMSE to kNN estimations. 
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1. Introduction 

In recent decades, machine learning approaches have been introduced to manage the vast amount of 
data produced by various scientific disciplines, including environmental sciences such as forestry. One 
of the most intricate and specific neural networks techniques are self-organizing maps (SOM), which 
combine a high level of biological plausibility with applicability to numerous information processing 
and optimization problems. SOM allows one to reduce high dimensional information. The term 
“maps” refers to the low dimensionality and does not necessarily imply a spatial or geographical 
application; in fact, the technique emerged from neurosciences and there are a many examples from 
biosciences and engineering applications [1–3]. It has been described as an unsupervised learning 
technology [4]. 

A different approach to the spatial classification of data is the k-nearest neighbor (kNN) technique; 
this so-called instance-based, ‘lazy’ learning algorithm often serves as a benchmark for other  
methods [4]. It has been applied in a number of forest inventories, e.g., in Finland [5,6], New Zealand [7], 
Austria [8] or Ireland [9]. Some studies explicitly used kNN to estimate Corg [10–12]. The majority of 
studies are based on the use of Landsat data, few of them used VHSR (very high spatial resolution) 
satellite data.  

Lek and Guégan [13] give a broad overview of applications in ecological and environmental 
sciences; recent applications include monitoring of river quality [14,15], urban modelling [16] and 
forestry applications [17,18]. Li et al. [19] applied an artificial neural network based approach for 
predicting soil matter across China. For the estimation of Corg, Stümer et al. [12] successfully applied 
SOM and compared it with the kNN algorithm for the assessment of biomass (and thus Corg) in 
Thuringian forests. 

In the wake of the climate change discussion, it has become an essential task not only to decrease 
carbon emissions but also to identify natural carbon sinks in ecosystems all over the globe. Among 
terrestrial ecosystems, mangroves, peat lands and wetlands have especially shown an increased 
potential to sequester organic carbon in addition to other ecosystem services. For the case of riparian 
wetlands, several studies have underlined the high storage capacity [20–23]. 

The sequestration potential of floodplains is dependent both on vegetation (including forests, reed 
beds, and meadows), and soils. The important link between Corg stocks of forests and underlying soils 
has been demonstrated by a whole range of studies inside [24–26] and outside Europe [27,28]. 

Even though the value of riparian ecosystems has been recognized [22], the scientific underpinning 
for mapping large-scale carbon stocks is yet to be established. On a global scale [29], as well as on the 
national level [30,31], Corg maps have been produced and validated; however local validation of results 
is typically not obtainable. Various remote sensing analyses of Corg stocks have been utilized for  
non-floodplain habitats, especially forests [32–34], but most of these studies have focused either on 
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Corg stocks in soil or vegetation. To all of our knowledge, detailed Corg maps of floodplain areas have 
seldom been produced, apart from Suchenwirth et al. [35,36] and Güneralp et al. [37]. 

In the presented study, we estimate Corg above and below ground in a test site in the Danube 
Floodplain based on a SOM and kNN classification of VHSR RapidEye data and ancillary geodata. 
Both results are compared to field survey data. In contrast to Stümer’s application of SOM and kNN 
for Thuringian forests [12], we consider the vegetation (above ground), soil (below ground) and total 
Corg in a floodplain area on a more detailed spatial resolution. Vegetation below ground (e.g., plant 
roots) is not separately considered, yet calculations can be done according to guidelines by the  
IPCC [29]. Besides remote sensing data, we introduce additional auxiliary geodata as input source data 
for both algorithms. In this way, we compare the outcomes for remote sensing (RS) input information 
with the results for RS and additional information. We decided to apply SOM and kNN for the Corg 
models, as previous methods such as the derivation of Corg stocks from classified vegetation types [35] 
or the derivation via quantiles in a classification and regression tree (CART) approach [36] had only 
limited success. 

The specific aims of this paper are as follows: 

(1) to create distribution maps of vegetation, soil, and total Corg stocks in a riparian forest, based on 
SOM and kNN algorithms and compare the results; 

(2) to compare and evaluate results with previous estimation techniques; 
(3) to evaluate the influence of additional geodata on estimation quality. 

2. Material and Methods 

2.1. Study Area 

The research area is located inside the Danube Floodplain National Park (Nationalpark Donauauen) 
in Austria (16.66° E, 48.14° N). The area is a pristine floodplain area with few human impacts. Human 
activities included hunting in previous centuries, the construction of the Marchfeld dike in the 19th 
century, and the plantings of hybrid poplars (Populus × canadensis). Apart from these cottonwood 
plantations, the area is characterized by riparian vegetation, such as softwood forests (dominated by 
Salix alba, Acer negundo), hardwood forests (dominated by Quercus robur, Fraxinus excelsior and 
Acer campestre), as well as meadows and reed beds. Our study area (11.7 km2) is limited by the 
Marchfeld dike (locally named Hubertusdamm dike) in the north, and the main river course towards 
the south. Geographic coordinates are given in Figure 1. 

The area was chosen for our study due to its high protection status, a good base of geographic data, 
and previous research in the area [38–40]. Mean Corg storage in the area was estimated at 359.1 Mg ha−1 
by Cierjacks et al. [41], and as 428.9 Mg ha−1 by Suchenwirth et al. [35]. Figure 1a presents a 
RapidEye scene of the Danube Floodplain area. Red color indicates pixels with high content of active 
biomass, i.e., trees and bushes in comparison to bare soils and impervious areas. Figure 1b shows the 
distribution of existing vegetation types. 
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Figure 1. (a) Research area depicted as RapidEye Near-Infrared (NIR) composite with 
terrestrial survey data (green dots; above) and (b) vegetation classification (derived  
from [35]; below). 

 

2.2. Data 

We obtained a cloudless satellite image from RapidEye (acquired on August 1, 2009 in level 3A 
with a spatial resolution of 5.0 m [42]; Figure 1 above, Table 1). The image was provided by the 
German Aerospace Center, in the UTM WGS 1984 reference system. We reprojected the image into 
the Austrian MGI M34 projected coordinate system, as local data were mainly available in the local 
reference system. Atmospheric correction was not performed as we did not work with time series. 
RapidEye data were used as the high spatial resolution reflects the spatial heterogeneity of carbon 
distribution in floodplains. Notably, the RedEdge channel has already been successfully applied to 
improve classifications of vegetation [43]. 

Table 1. Available geodata and derived parameters. 

Available geodata Derived parameters Abbreviations 
RapidEye image  
(1 August 2009) 

Blue channel (440–510 nm)  
Green channel (520–590 nm)  
Red channel (630–685 nm)  
Red edge channel (690–730 nm)  
Near infrared channel (760–850 nm) 

B  
G  
R  
RE  
NIR 

Digital elevation model Elevation above river level altitude 
Ground water model Ground water level MGW 
Topographic map 1:50,00 (ÖK 50) Distance to river distance 
Corg ground survey data from 2008 
and 2010 

Above ground carbon stocks  
Below ground carbon stocks  
Total carbon stocks  

Corg_veg 

Corg_soil 

Corg_tot 
  

(a) 

(b) 
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A digital elevation model (DEM) derived from LiDAR data was used to compute altitude above 
river level; a groundwater model indicating median ground water depth was provided by the Vienna 
University of Technology. Distance to river (main stream) was derived from a topographic map. The 
topographic map is issued and updated every seven years by the Austrian Federal Office of Metrology 
and Surveying (Bundesamt für Eich- und Vermessungswesen). 

A total of 104 in situ inventory plots (10 × 10 m) for vegetation and soil were established within 
two terrestrial surveys in 2008 and 2010. The point selection based on a stratified sampling design, 
described in detail by Cierjacks et al. [41] and Rieger et al. [44], who also measured and calculated 
Corg content of soil and vegetation for each sample point. In a nutshell, soil samples were extracted 
from 0–100 cm using an auger, with each soil horizon was sampled separately and carbonate 
concentration and the concentration of Corg were determined. For vegetation, height and circumference 
were measured at breast height of all trees >15 cm in circumference. 

Based on these data, stem number per ha, mean height, and mean diameter was calculated. Total 
Corg consists of Corg in soil, vegetation, and dead wood on the ground. 

2.3. Self-Organizing Maps (SOM) 

The SOM approach is used to produce maps of Corg stocks in riparian forests of the Danube 
Floodplain. The method has been described in detail by Kohonen [45,46], and has frequently been 
used and described by other authors [4,12,18]. 

The application of SOMs is generally divided into two modes or phases: a learning (or training) 
phase and a classification or mapping phase. SOMs structure the neurons in the form of rectangular or 
hexagonal arrays or grids of nodes with n dimensions, with an associated weight vector attached to 
each node. The procedure of placing a vector from the high-dimensional data space into the two 
dimensional map space is performed by identifying the node with the closest associated distance to the 
presented data space vector, i.e., the winner pixel or best matching unit (BMU) is selected; its position 
within the grid is the excitation centre. Subsequently, differences between the weight vector and the 
data space vector are reduced. Afterwards, vectors in the neighborhood are adapted. The distance of 
the feature space is defined as the Euclidean distance. The learning process of the winner selection and 
adaption process is iteratively repeated until no further adaption is necessary, as the initial learning rate 
is much smaller than in the first stage and a stable state is reached. At this moment, the learning phase 
is completed. 

In the mapping phase, the input vector for which the prediction is necessary is presented to the map; 
distances from this location to all neurons are calculated. As a result, the BMU of the map is selected, 
providing a representative group of data samples to which the predicted input is most similar. 

In our approach, we applied the algorithm programmed by Stümer et al. [12]. We use the RapidEye 
scene with additional geodata (see data section) for our classification as the initial layer. For the 
analysis, we used the following standard parameters: A feature space distance of five or eight 
(depending on the number of used channels/parameters), a start distance δstart of 100,000 and an end 
distance δend of 100, and five iterations (tmax) were applied. It is necessary to set the start distance high 
in order to sufficiently consider the terrestrial samples, while at the end only the necessary neighbors 
shall be regarded. 
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2.4. k-Nearest Neighbor (kNN) 

To compare the operational applicability of SOM we use the kNN method to provide spatially 
explicit results. It is described as the simplest, intuitively understandable and purely data-driven 
algorithm and is applied frequently for classification or regression tasks, or to provide a quick 
visualization or benchmark. It classifies a point by calculating the distances between the point and the 
points in the training data set. Then, the point is assigned to the class which is most common among its 
k-nearest neighbors (with k being an integer number). There is no learning phase, since all training 
examples are simply stored in the memory for further predictions. The method was described by 
several authors [4,47,48]. We follow the method applied by Stümer et al. [12]. 

For our kNN classification, we used standard settings to compare classifications: k = 5 neighbors; 
Euclidean distance d(x1,x2), of 2, and a distance weight w(i),p of 2. These parameter settings were often 
described as a compromise between a limited number of neighbors and a sufficient accuracy in other 
studies [9,10]. In order to prove the appropriate number of k neighbors, a sensitivity analysis (Figure 2) 
showed that RMSE strongly declined between k = 1 and k = 5, and showed a very gentle decrease for  
k>5. In order to establish a tradeoff between low error and readability and applicability of data, the  
k value of 5 was chosen. 

Figure 2. Sensitivity analysis based on Root Mean Square Error (RMSE) for k = 1 to k = 30. 

 

2.5. Validation 

The reliability of Corg estimates obtained by the SOM- and kNN- approach is quantified by the bias 
and the root mean square error (RMSE). The bias is calculated as the difference between measured and 
estimated Corg stock; the RMSE includes variance of estimated Corg stock and the bias. The % RMSE 
facilitates comparisons between Corg measurements. In order to use terrestrial samples for both 
calibration and validation we used the Leave-one-out (L1o) cross-validation [49,50]. 
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3. Results 

The SOM and the kNN approach were used in the Danube Floodplain National Park. We produced 
two types of results: (1) spatially explicit maps of the vegetation, soil and total Corg stocks per unit  
(Mg Corg ha−1), and (2) statistical estimates for vegetation, soil and total Corg stocks. The maps obtained 
by the SOM-approach were compared to alternative maps based on the kNN-approach. Terrestrial  
data were used as a basis for comparison of the statistical estimates obtained by the SOM- and  
kNN-approaches. 

3.1. Corg Stock Estimations 

Corg stock maps of vegetation, soil and total carbon, -based on the SOM method are displayed in 
Figure 3a,b. Corg maps based on the kNN method are presented in Figure 4a,b. Corg stocks in the maps 
are displayed in a color range from yellow to red where lower stocks are indicated in light yellow, 
higher stocks in dark red, and for total Corg stocks color tones with higher values are in brown tones. 
All figures show the same detail of the area. The Corg stocks is given in tons per ha (Mg Corg ha−1). 

We can see from the satellite image and the vegetation map (Figure 1a and b) that the wooded area 
has a dispersed distribution, with a high variation of vegetation within a small scale. This results in 
fragmented Corg stock maps. It is apparent that Corg stocks in soils are generally classified higher and 
with fewer divisions than those in vegetation. A comparison of the maps shows that forest areas are 
indirectly classified by both approaches due to higher concentrations of vegetation Corg. Stocks over 
100 Mg Corg ha−1 are found mainly in areas recognizable as forests in the satellite imagery. 

Comparing outcomes from SOM and kNN, we can identify a more distinct spatial pattern in SOM 
classifications. This is evident in the classification of soil Corg, where, while kNN classifications show 
a highly homogeneous surface with tiny differences, SOM classifications exhibit clear differences 
between forested areas and meadows and reed beds. 

Comparing the maps generated by pure remote sensing data and the combination of remote sensing 
and auxiliary data, we can observe greater details for classifications with combined data, which is 
especially visible for classifications of total Corg stocks, where the range of possible values is much 
more highlighted. 

The review of the SOM- and kNN approach was complemented by a comparison of statistical 
estimates for the test area. Table 2 shows the results of Corg stock provided by the SOM- and  
kNN-approaches. The results presented are based on the entire set of point estimates used for 
producing the test area maps. The differences between SOM- and kNN-based estimates range between 
3.87 Mg ha−1 (soil and total Corg stocks) and 46.14 Mg ha−1 (total Corg stocks). 

The kNN approach with the RapidEye dataset provides generally higher values in comparison to the 
SOM approach. The differences between the two approaches including additional data do not indicate 
a one-sided bias structure. Estimations of vegetation, soil and total Corg stocks are independent from 
each other, so vegetation and soil Corg stocks do not necessarily add up to total Corg stocks. In order to 
analyze the accuracy in comparison with the field data, we have to consider the error estimates. In 
general, values are slightly lower than values of previous results [35,41]. 
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Figure 3. (a) Corg stocks in vegetation (above), soil (middle) and total (below), calculated 
by SOM method based on RapidEye; (b) Corg stocks in vegetation (above), soil (middle) 
and total (below), calculated by SOM method based on RapidEye and additional data. 

(a)  

(b)  
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Figure 4. (a) Corg stocks in vegetation (above), soil (middle) and total (below), calculated 
by kNN method based on RapidEye; (b) Corg stocks in vegetation (above), soil (middle) 
and total (below), calculated by kNN method based on RapidEye and additional data. 

(a)  

(b)  
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Table 2. SOM- and kNN-based estimates for vegetation, soil and total Corg stocks in the 
Danube Floodplain. 

Dataset Approach 
Vegetation Corg: Mg Corg in 

total study area (Mg C ha−1) 

Soil Corg: Mg Corg in total 

study area (Mg C ha−1) 

Total Corg: Mg Corg in total 

study area (Mg C ha−1) 

RapidEye 
SOM 144043.49 (127.47) 198390.17 (175.57) 393735.41 (348.44) 

kNN 158791.28 (140.52) 238362.66 (210.94) 398114.52 (352.31) 

RapidEye + altitude 

+ MGW + distance 

SOM 168056.05 (148.72) 198635.46 (175.78) 389228.63 (344.45) 

kNN 122856.37 (108.72) 203001.62 (179.65) 337092.95 (298.31) 

3.2. Error Estimates 

In order to evaluate their performance, SOM and kNN point estimates that coincided with terrestrial 
survey plots were each used to carry out an error analysis using the Leave-one-out (L1o)  
cross–validation [49,50] for the estimation of the average growing stock per unit area (Table 3). The 
values assessed on the field plots served as control values. In the research area, in total 104 terrestrial 
plots were available for calculating the bias and RMSE, with normalized values for bias, RMSE and % 
RMSE. Additionally, for each run of SOM and kNN scatterplots of estimated and observed survey 
plots are shown (Figure 5a,b). For vegetation Corg measurements, the approaches had positive  
and negative biases (SOM: −4.26; 11.41; kNN: 39.52; −0.94). In soil Corg assessments, SOM 
approaches yielded positive biases (3.01; 0.28), while kNN yielded positive bias for RapidEye 
estimation only (18.22; −4.28). 

Table 3. Error estimates from SOM and kNN for vegetation, soil and total Corg stocks in 
the Danube Floodplain (SOM: start distance δstart of 100,000 and an end distance δend of 
100, and have five iterations (tmax); kNN k: 5; Euclidean distance d(x1,x2): 2; distance  
weight w(i),p: 2). 

Dataset Approach 
Vegetation Corg stocks  

(average 149.65 Mg C ha−1) 
Soil Corg stocks  

(average 192.1 Mg C ha−1) 
Total Corg stocks 

(average 361.52 Mg C ha−1) 
  Bias RMSE % RMSE Bias RMSE % RMSE Bias RMSE % RMSE 

RapidEye 
SOM −4.26 229.12 146.99 3.01 113.26 58.99 −7.08 262.98 70.85 
kNN 39.52 177.45 158.32 18.22 85.34 48.27 73.92 210.45 72.52 

RapidEye 
+ altitude 
+ MGW + 
distance 

SOM 11.41 198.85 143.29 0.28 108.22 56.42 3.15 226.18 63.11 

kNN −0.94 182.15 118.46 −4.28 81.26 40.79 −8.23 196.66 52.67 

Both approaches had a positive and a negative bias for estimations of total Corg stocks (SOM: −7.08; 
3.15), kNN was positive and negative (73.92; −8.23). The positive biases are higher than the negative 
biases. In most cases, apart from vegetation Corg with additional data, the kNN approach is more biased 
than the SOM results. Furthermore, the kNN approach exhibits a trend of slight overfitting when using 
additional geodata but strong underfitting when using RapidEye only. The SOM approach shows an 
overfitting performance when additional geodata were utilized. If only the spectral information of 
RapidEye is included, SOM has no clear direction of estimation. 
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Figure 5. (a) Scatterplots of kNN (above) and SOM (below) estimated and observed 
survey plots for Corg stocks in vegetation (left), soil (central) and total (right) based on 
RapidEye only; (b) Scatterplots of kNN (above) and SOM (below) estimated and observed 
survey plots for Corg stocks in vegetation (left), soil (central) and total (right) based on 
RapidEye and additional data. 

   

   
(a) 

   

   

(b) 
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Discerning between SOM and kNN, the RMSE does not show a clear tendency. In some 
estimations, SOM has lower RMSE, in other cases kNN estimation is more accurate. The %RMSE of 
the SOM-approach ranged between 56.42% and 146.99% and had a smaller range than for the kNN 
approach (40.79%–158.32%). Biases are smaller for SOM estimations. 

Regarding the use of additional geodata, there is a lower RMSE for the estimations based on 
additional geodata, than for estimations based on pure RapidEye datasets. Especially for kNN 
estimations, the error is notably lower (8%–40%), whereas for SOM estimations, errors are only 
slightly lower (2%–6%). Apart from the SOM approach on vegetation Corg, the bias is smaller for 
predictions using additional geodata. 

4. Discussion 

SOM and kNN have been applied for spatially explicit estimates of Corg stocks above and below 
ground in riparian forest zones. Terrestrial measurements and satellite data as well as additional 
geodata served as input data to carry out the learning and training process of a neural network. Results 
show that both methods, SOM and kNN, are able to mimic spatial patterns of vegetation, soil and total 
Corg stocks. Both provide spatially detailed estimates, only limited by the spatial resolution of the  
used imagery. However, the SOM approach supplies a far more distinct spatial pattern of the Corg 
distribution, while the kNN method results in rather average, homogeneous patterns. 

In comparison with existing estimations, values for total Corg stocks are comparable to the results of 
Cierjacks et al. [41], but are considerably lower than results classified by Suchenwirth et al. [35].  
This would support the assumption that the SOM and kNN methods can substitute a field-based 
calculation [41] better than a mere classification of vegetation types to estimate Corg stocks [35]. 

In detail, estimations of vegetation Corg stocks (both kNN and SOM, based on satellite sensors and 
additional data) have an apparently higher RMSE than estimations of soil Corg stocks and total Corg 
stocks. This is not the case for bias, which is in several cases higher for the estimation of total Corg 
stocks. The RMSE of our estimations of soil (ranging from 40.79%–58.99%) and total Corg (ranging 
between 52.67% and 72.52%) are in line with results of other studies using SOM [12,19,51] or  
kNN [9] to classify Corg, where values range between 44.85% and 70.49%. RMSE for vegetation Corg 
is higher (118.46%–158.32%) in our estimation. 

The reason for the higher RMSE within the vegetation classification can be explained by the more 
complex natural structure and the resulting diversity inside riparian forest vegetation and the national 
park area in comparison to the structure of conventional working forests and timberland monocultures. 

Comparing the results of kNN and SOM-based estimations, we can find that both provide similar 
results. kNN has smaller RSME estimates for soil Corg and for estimations of vegetation and total Corg 
stocks based on RapidEye and additional data, yet has higher RMSE estimates for estimations of 
vegetation and total Corg based solely on RapidEye. In general, we can state that kNN have a better 
performance regarding RMSE than SOM estimates, which is also consistent with Stümer et al. [12]. 
Contrarily, the kNN results are much more biased than the results of the SOM. Moreover, the visual 
impressions of the SOM-generated maps are more distinct; this distinguishes our results from Stümer’s 
results who found a smaller bias and a higher level of detail of structures such as roads, planting rows 
and stand boundaries for kNN results. In conclusion, we can state that in our study, kNN provides on 
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average better estimates for Corg, but only within the restricted range of values within the test area. For a 
possible transfer of the method to other regions, the less biased SOM approach might be the       
preferable algorithm. 

Both presented approaches provide greater spatial detail than comparable classifications based on 
object-based image analysis (OBIA) of the area [35,36,39]. Even though OBIAs have the advantage of 
working with distinct image objects, the process of segmentation can be challenging and even 
misleading for continuous objects, such as natural vegetation or ecosystems in an intricate floodplain 
area, and may thus be a source of error, as stated by Rocchini et al. [52]. In comparison to other remote 
sensing techniques, such as Principal Component Analysis (PCA), SOM has shown demonstrably 
better performance [14,53]. 

However, some issues may yet occur when using SOMs, as they are not self-explanatory and are 
generally treated as a “black box” due to unknown weights and the non-linearity of the activation 
functions. While Hsu and Halgamuge [54] mention the obliqueness of rectangular lattices as major 
sources of topographic errors, Klobucar and Subasic [53] count the repeatability of the method among 
the problems of SOM. The time needed to calibrate and validate neural networks should not be 
underrated and the decision about the termination of the learning process may be difficult. 

The application of kNN did not impose greater issues, and their applicability to forest and 
biomass/Corg inventions has often been proven, even though the majority of studies have worked with 
Landsat data which have a lower spatial resolution and thus provide coarser imagery; the application of 
VHSR data is not so common yet, while the combination with auxiliary geodata has barely been used. 
Among the commonly mentioned disadvantages of kNN are excessive validations of each distance, 
and the sensitivity towards irrelevant or noisy attributes as well as towards unbalanced datasets. For 
our application, however, it has served as a valuable alternative to the application of SOMs. 

The use of additional geodata improved the performance of both algorithms, in that all RMSE 
values improved, as well as the bias (with the exception of SOM assessment on vegetation Corg). 
Especially for kNN, the notable improvement of RMSE underlines the importance of combined data 
approaches. This also confirms previous findings of Suchenwirth et al. [35]. 

Comparing the study’s method with previous methods to quantify Corg in the Danube floodplain, 
our study uses a “direct remote sensing” approach including machine learning [55], while  
Suchenwirth et al. [35] used a “stratify and multiply” approach, and Suchenwirth et al. [36] used a 
“combine and assign” approach [55]. 

5. Conclusions 

In general, we see our study as a contribution to high-detailed Corg analyses and large scale maps of 
intricate ecosystems such as riparian forests or similar wetland areas with interfering aquatic and 
terrestrial environments, as they impede ground survey measurements through their restricted 
accessibility and require advanced methods to estimate biomass and organic carbon, such as remote 
sensing or machine learning. 

For prospective applications, we envisage comparable studies with extensions of start distances and 
numbers of iterations, as the focus of this study lies in the comparative estimations of Corg stocks in 
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vegetation, soil, and total, with varying parameters and with two methods, and not with different 
settings of SOM and kNN. 

Another improvement for future research on the estimation of Corg with remote sensing data may be 
to include imagery with an even higher spatial resolution, as e.g., provided by the commercial sensors 
Ikonos (1 m), QuickBird 2 (0.64 m), or Worldview (0.5 m). The inclusion of further datasets such as 
surface models including tree height, e.g., based on LiDAR, and other auxiliary data is able to 
additionally improve the performance. 
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