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INTRODUCTION

Parameters of longevity, body size, and fecun-
dity/maturity receive the most attention when life-
history traits in elasmobranchs are considered, and
body size appears to be a suitable proxy to summa-
rize life-history traits, which in turn reflect the vul-
nerability of elasmobranchs to fishing (Jennings et al.
1998, Dulvy et al. 2000, Rogers & Ellis 2000, Stevens
et al. 2000, Frisk et al. 2001, García et al. 2008). As a
further aspect of life-history traits, the role of disper-
sal capabilities of sub-populations and as a corollary,
connectivity, between occupied habitats has only
begun to be understood in practice (see Fagan et al.

2001, Metcalfe 2006). Connectivity is an important
parameter to explain persistence of meta-populations
within migratory networks (Taylor & Hall 2011) and
thus changes in local abundance (Simpfendorfer et
al. 2002). As a prerequisite to connectivity between
patches, habitat quality within patches must be suffi-
cient to maintain sub-populations (Hodgson et al.
2009). Decreasing habitat quality due to human
impacts, an overall decrease of available habitat, and
thus weakened connectivity between suitable pat -
ches of habitats are considered to interact when pop-
ulations are driven towards extirpation (Hodgson et
al. 2009). Accordingly, habitat characteristics and ex -
change processes are important parameters to sup-
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port conservation planning (Botsford et al. 2003, Pa -
lumbi 2003).

The simplest meta-population model, Levin’s patch
occupancy model describing colonization and extinc-
tion processes with presence/absence data (in Hans ki
& Gilpin 1991), is well applied to discrete habitats
such as treeholes and their amphibian fauna (Etienne
et al. 2004). Connectivity is established through a
flow of specimens between all patches unconfined by
spatial structure and habitat quality, and extinction
and immigration are the main processes that maintain
a meta-population. Apart from these ‘classical’ meta-
populations, in fisheries biology a concept with a
stronger emphasis on local population dynamics is re-
quired, which is not dependent only on immigration
and extinction rates and which covers a wider range
of spatial scales (Kritzer & Sale 2004). Hence, a hier-
archical system of meso-populations nested into a
meta- population may be envisaged (Kritzer & Sale
2004), with a complex scheme of possible source−
sink relationships based, among other factors, on mi-
gration behavior and dispersal (Lipcius et al. 2008).
Dispersal takes place at the larval stage in terms of
population connectivity (Cowen et al. 2007, Bradbury
et al. 2008, Cowen & Sponaugle 2009) or at the adult
stage on a seasonal or multi-annual scale (known as
migratory connectivity) (Webster et al. 2002). Migra-
tory connectivity is strongly directional and links es-
sential habitats during the life cycle. Long-range mi-
gratory connectivity is known for several shark
species (spiny dogfish: Templeman 1984, McFarlane
& King 2003; whale shark: Sequeira et al. 2013),
whereas less va gile species such as skates undertake
shorter migrations, resulting in accordingly higher in-
ter-population differences in genetic structure (Che -
vo lot et al. 2006, Veríssimo et al. 2010). As a more rea -
listic tool, incidence function models incorporate
quality, size/ abundance, and spatial structure of ha -
bi tats, i.e. distance between patches, and with these
extensions, Levin’s meta-population model is also ap-
plicable to migratory species (Taylor & Hall 2011).

Several elasmobranch species have become extir-
pated in the southeastern North Sea (Wolff 2000),
and elasmobranch distribution in the North Sea has
changed considerably. Comparisons between histor-
ical compilations (Rijnsdorp et al. 1996, Rogers & Ellis
2000, Fock et al. 2014) and present North Sea survey
data (Walker & Heessen 1996, Ellis et al. 2004, Daan
et al. 2005) reveal a now conspicuous east−west gra-
dient with elasmobranch aggregations concentrated
along the east coast of England and Scotland. Avail-
able fishery-independent data indicate a severe de -
cline of elasmobranch populations in the southern

North Sea from the early 1900s to the present, while
commercial catch indicators reveal declines already
starting in the late 1880s (Lundbeck 1962, Fock et al.
2014), and bycatch and mortality analyses (Philippart
1998, Piet et al. 2009) show a consistently high pres-
sure on elasmobranch populations in the North Sea
up until the present day.

In marine ecosystems, connectivity modeling as a
key parameter of meta-population dynamics was
often hindered through a lack of empirical data
(Cowen et al. 2007). We hypothesize that field data
can be used to track changes in spatial connectivity
and that this can be linked to declines and increases
in local populations. We refer to the rationale devel-
oped by Dulvy & Reynolds (2002) that the loss history
of species reflects population dynamics in the field,
that seasonal dynamics may be understood as an an -
nual cycle of immigration and emigration in meta-
populations (Buckley 2010), and that external replen-
ishment of a local population may be interpreted as
part of meta-population processes (Kritzer & Sale
2004). On the meta-population level, effects on con-
nectivity appear as losses of the distributional ranges
of species (Worm & Tittensor 2011) and population
diversity (Cardinale et al. 2011). Experimental evi-
dence exists (Dai et al. 2013) that the loss of spatial
connectivity serves as a prerequisite for the sub -
sequent collapse of sub-populations.Thus, trend ana -
lyses are supported by analyses of distribution and of
species diversity, and the analyses of seasonal differ-
ences are applied to infer meta-population processes
related to extirpations and local recoveries.

MATERIALS AND METHODS

Sampling and study area

Fisheries survey data from 3 historical periods
(1902−1908, 1919−1923, and 1930−32) were avail-
able with a total of 457 hauls for Quarters 2 and 3 of
the year (Fock et al. 2014). Hauls for Quarters 1 and 4
were less abundant and were missing in 1903−1905,
1921, and 1930−1932 (n = 111). Historical samples
encompass samples from the German Bight proper
and the German Exclusive Economic Zone except for
the first period, when samples from the Dogger Bank
area farther west were also available (See Fig. S1 in
 Supp lement 1 at www.int-res.com/articles/ suppl/ n025
p209 _supp.pdf). The methodology for calculating
historical time series and standardizing historical and
International Bottom Trawl Survey (IBTS) time series
data is given in Fock et al. (2014). Data were not sep-
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arated between day (n = 407) and night catches (n =
50) in Quarters 2 and 3 samples for diversity analysis.
For abundance time series, only daytime catches
were considered.

Historical data were compared to Quarter 1 data
from 1966 to 2009 and Quarter 3 ICES IBTS data from
1991 to 2009, respectively (see Rijnsdorp et al. 1996)
from rectangles representing the German Bight and
the coastal zone (Fig. S1). Seasonal differences were
analyzed for historical samples from Quarters 2 and 3
as compared to IBTS Quarter 3 data, whereas sam-
ples from Quarters 1 and 4 were compared to IBTS
Quarter 1 series.

Spatial distribution

Historic spatial distributions were calculated using
all samples from a selected period (Ellis et al. 2004,
see Daan et al. 2005), applying universal kriging to
account for non-stationarity in data. Distributions
were calculated for the periods 1902−1908 and
1930−1932 to reveal changes from the earliest period
with limited fishing effort and about 17% of un -
trawled ground to the period after which commercial
fisheries had increased considerably (Fock 2014a). In
the area under investigation, utilization of poorer-
quality habitat under increased fishing pressure was
evidenced for thornback ray (Fock 2014b this issue).

Diversity

A resampling method was applied to derive a di-
versity index based on presence/absence data unbi-
ased from sample coverage (for coverage see
Table S1 in Supplement 1 at www.int-res.com/articles/
suppl/n025p209 _supp.pdf). Years with fewer than 10
samples were excluded (1902, 1905, 1906); for all
other years, 200 bootstrap subsamples (each consist-
ing of 9 samples) were drawn, which is approximately
half the number of samples in years of low sampling
effort (e.g. 1903). The mean number of elasmobranch
species per sample was calculated as well as the cu-
mulative number of elasmobranch species in the
9-sample pool. The cumulative number of elasmo-
branch species is comparable to the diversity index of
Daan et al. (2005), with the difference that the cumu-
lative number is aggregated over space to account for
a temporal trend, whereas Daan et al. (2005) aggre-
gated samples over time to account for differences in
space. Prior to the calculation of diversity, each spe-
cies’ presence was corrected for trawl duration to ad-

just for the likelihood of encounter using a rarefaction
method (Fock et al. 2014) (see Supplement 4 at www.
int-res.com/articles/ suppl/ n025p209 _supp.pdf).

Incidence function model

We considered all elasmobranch populations to be
meta-populations, the individuals encountered in the
German Bight representing a sub-population of one
of these meta-populations. An incidence function
model was applied to analyze connectivity between
sub-populations, relating successful coloni zation
events to patch size or abundance (given that area A
is proportional to abundance N), distance to donor
patches, and immigration and extinction rates (Han-
ski et al. 1996, Hanski 1998).

In meta-population dynamics, ‘straying’ individu-
als in search of unoccupied patches are essential to
broaden the range of a population, and immigration
to unoccupied patches increases with overall meta-
population abundance, referred to as the ‘mass’
effect to enhance sub-population persistence (Hanski
1998, Smedbol & Wroblewski 2002, Leibold et al.
2004). Density-dependent modification of migration
and extinction rates, known as the ‘rescue’ effect to
reduce or the ‘Allee’ effect to increase extinction
probabilities, requires a specific parameterization
which is not accounted for (e.g. Hanski & Gilpin
1991, see ‘Discussion’). Immigration for a single spec-
imen is determined by migration rate m0 and dis-
tance D between sites (Hanski 1991):

m = m0e−αD (1)

where parameter α equals the inverse of the migra-
tion range (Hanski 1998).

Consider sub-populations in patches i with i = 1,2,  3,
…, and the meta-population N = Ni + Σj ≠iNj. Connec-
tivity Ci to patch i is understood as the sum of migra-
tions from patch j to patch i across distance Di,j

weighted by the donor population Nj (after Hanski
1998):

(2)

Connectivity (Eq. 2) is described analogous to ex -
tinction probability, where temporal differences in
observations are considered instead of spatial dis-
tances (Solow 2005, his Eq. 16, McPherson & Myers
2009). The incidence J or probability π of patch i to be
colonized in relation to Ci is (Hanski 1998):

(3)
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where E and M are annual extinction and migration
processes. The shape of the probability function pi

(Eq. 3) depends on regression parameter y. This term
can be rearranged as the product of y × m0

−1 (i.e. pro-
portional to the inverse of m0), and pi increases both
with m0 and Ĉ (see Fig. S2 in Supplement 2 at
www.int-res.com/articles/ suppl/ n025p209 _supp.pdf).

To qualitatively assess connectivity for a single spe -
cies, it is convenient to rearrange Ci so that changes
in connectivity can be analyzed without knowledge
of m0, which is constant at the species level:

(4)

Ĉ depends on migration range and neighbor patch
abundance (Eq. 2). Assuming that migratory connec-
tivity takes place as sequential events (see Taylor &
Hall 2011), the nearest neighbor Nj can be described
as a multiple of Ni, i.e. as a ratio of seasonal differ-
ences in abundance at patch i, given that migration
in either direction is proportional to patch abun-
dance:

(5)

where Nir is the resident, i.e. smaller remaining pop-
ulation in patch i and Nim is the larger population
after seasonal migration has taken place, given that
ΣNj comprises several patches similar to Ni (Fig. 1).
Nir exchanges portion ΔNir with the meta-population
and receives ΔNir + (Nim − Nir) from the surrounding
patches Nj. The quantity ΔNir remains unknown and
therefore Ĉ can only be assessed as a proxy. Assum-
ing that the entire resident population migrates, Nj is
the ratio of seasonal abundances multiplied by the
resident term. We applied the more conservative
proxy (Nim − Nir) / Nir. Connectivity from patch j to -
wards patch i is lost, i.e. becomes negative, when the
seasonal value of the resident population is larger
than the abundance after (potential) immigration has
taken place. The maximum negative value is −1.

A second case is considered when the resident
population is 0 (= patch unoccupied at certain times
of the year), and connectivity is solely dependent on
the donor patch, so that Ĉ proxy is defined as:

(6)

Considering the case for several species k, long-term
average conditions for Ĉ proxy should reflect differ-
ences in migration rate m0,k and migration range Rk.
The rationale is that in a closed system where no new
Nj can emerge, and due to averaging in a long
enough time series over all realizations of Ni and Nj

and all possible distances between Ni and Nj (Eq. 5),
these terms appear as constants for all species k.

Hence the average for Ĉ proxy increases with migra-
tion range R with α = 1/R and m0 (see Eq. 2):

(7a)

Assuming a relationship between m0 and R, replac-
ing m0 with R and 1/R with x, approximating the de -
nominator xex by Taylor expansion, considering the
expansion term for n = 0:

(7b)

Analysis of trends

Differences in seasonal trends, i.e. Ĉ proxy, are
analyzed by linear tools with regard to their intersec-
tion on the time axis, i.e. first or last occurrence, and
slope parameters, whereas after substituting Eq. (3)
into Eq. (4), Ĉ is modeled as:

(8)

where πi is treated as a function of elapsed time
assuming that probabilities are a function of time
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Fig. 1. Seasonal model of immigration and emigration for a
local population Ni, its resident part Nir, and the portion with
increased abundance after seasonal migration has taken
place (Nim), in relation to the donor population Nj. A much
larger donor population Nj* at a larger distance Dij* or a
smaller donor population Nj separated by distance Dij yield
the same seasonal migration effect at Ni. The non-linear in-
crease of Nj with distance is indicated by the connecting 

curve between Nj and Nj*
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according to external pressures such as fisheries (e.g.
thornback ray Raja clavata, see Fock 2014b). Addi-
tionally, the error term ε may contain a linear trend.
Outlier sensitive regression and non-linear regres-
sion are applied (procedures ROBUSTREG and
NLIN, SAS Institute 2010).

RESULTS

Abundance and distribution

Four shark species and 3 skate species were en -
countered in the German Bight in trawl surveys. Due
to their rarity, smoothhound Mustelus spp. were not
considered further (Table 1), since only 5 specimens
determined as M. mustelus were indicated in 1907,
and this species was often mistaken in historical data
(Daan et al. 2005). Summer presence of lesser spotted
dogfish Scyliorhinus canicula was only observed in
the recent period 2001−2009, whereas all other spe-
cies were frequently observed in 1902−1932 and
1991−2009 (Fig. 2).

Abundance has declined sharply for all species
considered except for lesser spotted dogfish and
starry ray Amblyraja radiata (Fig. 2). Before 1930, the
largest summer abundances were found for spiny
dogfish Squalus acanthias and tope shark Galeo -
rhinus galeus. Abundances of both sharks declined
sharply in the period 1930−1932, and both were pre -
sent in the periods after 1991, with spiny dogfish
abundance declining almost to 0 after 2001 and a
similarly rigorous decline observed for tope sharks.
Summer abundance of thornback rays increased
slightly after 1919 to drop significantly towards 1932.
During 1919−1932, thornback rays were the most
common elasmobranch species in the area, where -
as only 4 specimens were encountered after 1991.
While common skates Dipturus batis disappeared,
starry rays increased significantly in the period
1991− 2009. A first increase was observed in 1930−
1932, when the second and third highest historical
values were recorded. In all 3 years with high sum-
mer abundance of starry rays, thornback ray abun-
dance was low.

With regard to distribution patterns in the period
1902−1908 (Fig. 3), thornback rays (Fock 2014b),
spiny dogfish, and tope sharks (see Fig. S3 in Supple-
ment 3 at www.int-res.com/articles/ suppl/ n025 p209
_supp.pdf) were distributed in the entire German
Bight, although a gradient towards the eastern and
northeastern areas is evident. Peak abundance was
modeled for coastal waters. For 1902−1908, abun-

dance over the Dogger Bank was only indicated in
the northern section, in particular for thornback rays
and spiny dogfish. Only local presence remained for
spiny dogfish in 1930−1932. One area of abundance
was located in deeper waters in the central German
Bight, while the other patch was found to be in asso-
ciation with coastal waters in the eastern part of the
German Bight. The same decline in range with only a
remaining eastern patch was observed for thornback
rays. In turn, a patchy distribution for common skates
was found in both historical periods and appeared to
be spatially stable, i.e. 1 central patch, 1 northern
patch, and 1 patch around the island of Helgoland in
conjunction with coastal waters. In 1902−1908, starry
rays were distributed along the northern edge of the
investigation area. In 1930−1932, only 1 tope shark
specimen was recorded.

Historic diversity trends

The observed decline in abundance was paralleled
by a decline in diversity (Fig. 4). Whereas the aver-
age number of species per haul showed a slight
increase in 1919, the cumulative number of species in
9 hauls declined almost steadily from 1902 to 1932.
By 1932, the average number had dropped to 0.5 per
haul and the cumulative number to <2 per 9 hauls.
For the IBTS Quarter 1 data series after 1977, cumu-
lative diversity in the study area dropped further to
about 0.5 species encountered per 20 hauls (Daan et
al. 2005).

Connectivity

In the period 1902−1932, the seasonal pattern for
spiny dogfish and tope sharks featured high summer
abundances and almost 0 abundances in Quarters 1
and 4 (Table 2). For tope sharks, this pattern per-
sisted in the period 1991−2009, although at lower
summer abundance levels. In turn, all skates and
lesser spotted dogfish and spiny dogfish showed
higher winter time abundances, the latter 2 species
for the period after 1991. Average Ĉ proxy, which
is assumed to be proportional to migration range
(Eq. 7), ranged from low values of 0.3 (spiny dogfish,
1991−2000) to 0.6 (common skate, 1902−1932), indi-
cating a moderate migration range, to 1.2 to 1.5
(starry ray, lesser spotted dogfish) and 5.2 to 6.3
(thornback ray). Highest values of >40 were found
for tope sharks and spiny dogfish, for the latter in the
early period only. Rates for average Ĉ proxy for
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thornback and starry rays in both periods were very
similar despite highly different abundances, and
rates for small sharks at relatively low average abun-
dances (<0.1 specimens per 30 min) were similar to
those of skates. For spiny dogfish, the rate declined
with abundance, and the seasonal pattern changed
accordingly from high abundances in summer in the
early period to relatively high abundances during
winter after 1991. The similarity in ratios between
skates and small sharks at low abundances probably
indicates that the mig ration tendency for small
sharks has a density-dependent component in rela-
tion to schooling be havior (see Viscido et al. 2004),
since schooling and/ or aggregation may hinder free
and unconstrained selection of sites, a prerequisite
for populating empty patches. Overall, the long-term

averages for Ĉ proxy are correlated with reported
migration ranges in accordance with Eq. (7b) (corre-
lation p < 0.001 considering mean ranges, see Fig. 5).

Considering connectivity and Ĉ proxy in terms of
seasonal dynamics as differences of abundance be -
tween resident populations and immigrating compo-
nents (Eq. 5) shows a clear pattern of declining and
increasing local populations (Table 3, Fig. 6). In par-
ticular, Ĉ can be analyzed when connectivity is lost or
reversed. Decreasing Ĉ from patch j to patch i can be
linked to either increasing distance between sub-
populations and/or decreasing abundances in the
donor patches. The lower limit for Ĉ proxy is −1,
when no seasonal migration towards patch i is ob -
served. It appears that for declining populations,
Ĉ proxy was declining and the modeled trend be -
came negative (Fig. 6C2,D2), whereas for increasing
populations, Ĉ proxy appeared fairly constant
(Fig. 6A2) or was increasing (Fig. 6B2), and modeled
trends were positive. With regards to common skate
(not shown), spiny dogfish and thornback ray, the
decline in Ĉ proxy was reflected by a more rapid
decline in wintertime abundance (dashed linear
trend line in Fig. 6C1,D1) as compared to summer
abundance (bold trend line). Differences in slopes
between summer and wintertime trends were signif-
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icant for thornback rays and spiny dogfish, but the
models for these 2 species in general are of poor fit.
The intersection with the time axis (x-axis) indicates
that abundance during the migrating phase becomes
0, and that all species are apparently migrating out of
the area. This can be interpreted such that connectiv-
ity to donor patches by means of negative Ĉ proxy
was lost prior to the collapse of the resident sub-pop-
ulation itself. However, despite significant differ-
ences in slopes, differences in the intersection with

the time axis are not significantly different (see
Fig. 6C1 as indicated by CIs for both regressions).
The opposite is observed for increasing populations.
Connectivity by means of Ĉ proxy increases, and
slopes for the migrating stage are steeper than in the
resident stage (Fig. 6A,B). In line with the interpreta-
tion of the case of population decrease, connectivity
is established before the site is effectively populated.
There is a further effect related to population density.
For starry rays and common skates in the period
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Fig. 4. Historical distribution patterns of common skates Dipturus batis and spiny dogfish Squalus acanthias. Biomass contours
in kg per 30 min trawling (survey catch per unit effort). Left panels cover the period 1902−1908 including the Dogger Bank
area, right panels cover the period 1930−1932. Due to low abundances of these species in particular after 2000, no data are 

shown for the period 1991−2009
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1902−1932, and lesser spotted dogfish
after 1991, wintertime abundances
were often smaller than summer
abundances or 0, indicating that emi-
gration took place turning Ĉ proxy
into negative values. In turn, when
species were abundant (thornback
rays in the period 1902–1932, starry
rays after 1991), Ĉ proxy was mainly
positive, either de clining (thornback
ray) or increasing (starry ray).

DISCUSSION

Trends in local elasmobranch abun-
dances and elasmobranch diversity in
the German Bight were analyzed in
terms of meta-population dynamics,

i.e. as connectivity, by means of a proxy based on
seasonal dynamics derived from an incidence func-
tion model (IFM) with the aim to understand extirpa-
tion and recovery. The applicability of the meta-pop-
ulation approach is scale dependent with regard to
the dispersal capabilities of the species and the size
relationship between the local sub-population and
the regional meta-population (Hanski & Gilpin 1991,
Kritzer & Sale 2004). Elasmobranchs exhibit distinc-
tive spatial behavior. Spatial behavior is a prerequi-
site for the design of spatial models and is evidenced
for elasmobranchs either in terms of migratory con-
nectivity (McFarlane & King 2003, Sequeira et al.
2013), aggregation on feeding grounds (Domeier &
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Species Part of Model Intersection Difference Slope Year of Year of 
population fit (r2) on x−axis in parameter first last 
modeled yrNir, occurrence observation observation 

yrNim(year) (yr) in in
Δyr = yrNir periods periods

−yrNim

Amblyraja radiata Nim 0.37 1899 0.00699*** 1906
Nir 0.55 1924 25 0.00222 1902

Scyliorhinus canicula Nim 0.24a 1983 0.0056*** 1991
Nir 0.16 1989 6 0.0022 2001

Squalus acanthias Nim 0.03a 2004 −0.00465*** 2002
Nir 0.04a 2007 3 –0.00255 2008

Raja clavata Nim 0.06a 1927 −0.2214* 1923
Nir 0.07a >2000 >50 −0.00114 1932

aModels with higher tolerance to outliers

Species Period Mean abundance Ratio
Summer Winter

Amblyraja radiata 1902−1932 0.018 0.04 1.2
1991−2009 0.30 0.76 1.5

Dipturus batis 1902−1932 0.05 0.08 0.6
1991−2009 0 0 0

Raja clavata 1902−1932 0.53 3.29 5.2
1991−2009 0.003 0.022 6.3

Scyliorhinus canicula 1902−1932 0 0 0
1991−2009 0.04 0.095 1.4

Squalus acanthias 1902−1932 0.33 0.008 40.2a

1991−2000 0.055 0.072 0.3
Galeorhinus galeus 1902−1932 0.3 0 ∞a

1991−2009 0.134 0.001 133a

aSummer:winter ratio; spiny dogfish migrations are mainly temperature
driven (McMillan & Morse 1999)

Table 2. Long-term average Ĉ values. Mean abundances are given as n per 
30 min. Ratio is winter to summer relationship, except where indicated 
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Table 3. Analysis of seasonal dynamics assigned to the resident (Nir) and migrating part (Nim) of the local population Ni. 
See Fig. 5 for data used in regressions. Slope parameters also show model significance (*p = 0.95, ***= 0.999); periods of ob-

servation are 1991–2009 or 1902–1932
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Nasby-Lucas 2008), in marine reserves and over
reefs (Man et al. 1995, Robbins et al. 2006), or in nurs-
eries (Garla et al. 2006, Franks 2007). In turn, sharks
in particular show a range of variability in terms of
migration and dispersal (Benson et al. 2001, and ref-
erences there in), and features such as strong site
fidelity to mating grounds (white shark: Jorgensen et
al. 2010; stingray: Le Port et al. 2012) would infringe
on exchange processes between sub-populations

and thus limit the applicability of the meta-
population approach. The low migration
range of common skates has also been
reported in terms of site fidelity (Wear-
mouth & Sims 2009), and this species likely
indicates the transition between species
with migratory connectivity and those with
high site fidelity (see average Ĉ proxy in
Table 2). Strong site fidelity refers to the
case of ‘closed populations’ according to
Kritzer & Sale (2004) with almost no inter-
population exchange. On the other hand,
meta-population dynamics also do not
apply to populations with large migration
ranges and high migration rates, for which
tope sharks may be the linking species be -
tween species with high migratory connec-
tivity and species with extraordinary
migration capabilities. In the latter case,
overall ‘mixing’ overrules local population
dynamics, reducing the capabilities of the
IFM to predict connectivity (see Kritzer &
Sale 2004).

The home range of fish species in creases
with body size (Kramer & Chapman 1999)
or planktonic larval duration (PLD, Brad-
bury et al. 2008). PLD does not apply to
elasmobranch species with an oviparous or
viviparous mode of reproduction (see
Table 1). Taking into account the strong
correlation between migration range and
average Ĉ , the body size rule applies fairly
well to lesser spotted dogfish, spiny dog-
fish, and tope sharks. In turn, for the 3
skates, it is likely that their benthic living
mode makes them an exception to the rule
(see Table 1).

Applying linear methods to the analysis
of seasonal trend components may be
regarded as tentative, but appears appro-
priate for the purpose of detecting pat-
terns. In fact, model fits for 2 species with
declining population trends, i.e. spiny dog-
fish and thornback rays, were not good

(Table 2), probably indicating stochastic influences
that are not accounted for. As mentioned earlier, the
‘rescue’ effect was incorporated into Levin’s model in
terms of a quadratic term that penalizes the extinc-
tion parameter with increasing probability of patches
being occupied (Hanski & Gilpin 1991). In turn, it
could be possible that depensating effects at low
densities also need to be considered, i.e. Allee effects
(thornback ray: Whittamore & McCarthy 2005; cod:
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Fig. 6. Analysis of connectivity for (A) lesser spotted dogfish Scyliorhinus
canicula, (B) starry ray Amblyraja radiata, (C) thornback ray Raja clavata,
(D) spiny dogfish Squalus acanthias. Left panels: trends in seasonal abun-
dances (circles, bold line: summer; crosses, dashed line: winter), right
 panels: connectivity parameter Ĉ proxy and modeled trend according to 

Eq. (8). CPUE: catch per unit effort
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Swain & Chouinard 2008). However, IFMs according
to Eq. (2) neither account for the rescue effect at high
nor the Allee effect at low densities (Etienne et al.
2004), which could in part explain the poor model
fit for the above-mentioned species. Ĉ proxy is defi-
nitely non-linear (see Fig. 6A2, B2,C2,D2), and simi-
larly, sighting records have been modeled for de -
clining populations (Solow 2005, McPherson &
Myers 2009).

For thornback rays, declines were linked to fishing
pressure (Wolff 2000, Fock 2014b). Declines in abun-
dance were also associated with reductions in spatial
distributions which apply to common skates, thorn-
back rays, and spiny dogfish in the period 1902−
1932, coinciding with a significant decline in elasmo-
branch species diversity (Fig. 3). Likewise, for lesser
spotted dogfish, increases were linked to range ex -
tensions, since this species was not encountered in
the period until 1932 but after 1990. Because Ĉ proxy
for lesser spotted dogfish has been relatively stable
since 1991 with 1 exceptionally high value (Fig. 6A2),
the increase in range took place before 1991.

The interpretation of connectivity depends on the
correct understanding of immigration and emigra-
tion, which in turn is confined by the availability of
data in terms of summer and winter surveys. It also
depends on the time period analyzed. With the
exception of starry rays, processes were either ana-
lyzed in the historic period or in the period after 1990.
The in crease in starry rays as indicated over both
periods is in line with the interpretation of their trend
in the North Sea, where this species benefited from
the decline in thornback rays in terms of competitive
release (Stevens et al. 2000). Besides consistent
changes in Ĉ across the 4 species investigated in
detail, a consistent pattern appeared for slopes, in
that slopes assigned to migrating components either
increased faster with increasing resident populations
or decreased more steeply for decreasing resident
populations. The effect of selection of the time period
analyzed can be shown for lesser spotted dogfish: the
slope of the migrating population would be smaller
than that of the resident population if the entire
period of the IBTS Quarter 1 survey were considered
(see Fig. 6A1), but then slopes for the migrating and
resident populations would not be fully comparable.

Migration aspects have been widely ignored in
conservation planning for migratory species, and
migration parameters should be treated as key life-
history traits (Small-Lorenz et al. 2013). The relation-
ship between migration range (see Table 1) and the
long-term average of the connectivity parameter in
the meta-population model enables us to consider as -

pects of migration in line with life-history traits to
analyze local dynamics in terms of migration effects
between inhabited patches in an area. Warm-water,
i.e. Lusitanian, species such as lesser spotted dogfish
and thornback rays have the potential to cope with
climate-change-induced warming of the southern
North Sea. Starry rays and spiny dogfish exhibit a
widely boreal and temperate distribution pattern and
penetrate well into subarctic waters (Fock 2008, H.
Fock unpubl. data). Thus, environmental warming
could dampen the prospect for boreal species in the
southern North Sea and German Bight and could be
responsible for the overall stagnant trend in starry
rays for the North Sea (ICES 2012), even if fishing
pressure could be reduced significantly. Species’ vul-
nerability to fishing pressure is mainly compensated
through earlier maturation rather than through
changes in fertility (Frisk et al. 2005). In this respect,
starry rays with their small size at maturity and early
age at maturity have an advantage over thornback
rays (Table 1). However, if fishing pressure could be
reduced, fecundity in terms of litter size and Lusitan-
ian affiliation would offer thornback rays an oppor -
tunity to recover. Wolff (2000) stressed that over -
exploitation was the main driver for extirpations of
lesser spotted dogfish, thornback rays, common
skates, and smoothhound Mustelus spp. in the south-
eastern North Sea up until 2000. The recovery of
lesser spotted dogfish after 2000 despite a lack of
fisheries management shows that these extirpations
due to overexploitation should be reversible with
appropriate management (Lotze et al. 2005).

Connectivity was analyzed in terms of the surro-
gate parameter Ĉ for which approximations were
developed for intra-annual as well as inter- and long-
term dynamics derived from IFMs. IFMs appear
robust in the analysis of connectivity relationships,
even for highly fragmented habitats with explicit
consideration of local (Ni) and source (Nj) populations
and considering their separating distance Dij (Moila-
nen & Nieminen 2002). The application of Ĉ was due
to constraints of sampling design, mainly in the his-
torical period, and circumvents complications from
 different concepts of connectivity either including
donor and recipient patch sizes (Hanski & Ovas -
kainen 2000) or only donor patch sizes as shown here
(Eq. 2) (Etienne et al. 2004). Average values for Ĉ
(Table 2) were apparently stable between the early
period and 1991−2009 for starry and thornback rays
and are interpreted as being proportional to migra-
tion range; differing conditions for small sharks were
suggested to be a density-dependent effect in rela-
tion to schooling. This could indicate that schooling
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behavior generates a positive feedback loop in
migrations between successfully occupied patches.
With regard to Ĉ, extirpations were associated with a
decline in Ĉ and vice versa. These observations may
be interpreted as changes of Ĉ in relation to the dis-
tance parameter Di,j and donor patch size Nj: (1) Prior
to an extirpation (common skates, spiny dogfish,
thornback rays), connectivity is lost before resident
populations collapse. This was evidenced by steeper
slope parameters and earlier intersections with the
time axis (Table 3). This loss of connectivity can be
due to a collapse in adjacent donor patches and
accordingly increased distances D. For thornback
rays, a collapse of the early donor patch off the Dutch
coast (Fig. 7B, patch c) as evidenced by ICES (2002)

resulted in an increase in D from
about 150 nautical miles (n miles) to
about 300 n miles from the patches off
the English east coast (Fig. 7B, patches
a and b). Accordingly, the value of the
exponential term in Ĉ (Eq. 2) would
drop from 0.22 to 0.05, in the case of a
migration range R of 100 n miles
(Table 1). Thus, the loss of 1 intermit-
tent sub-population could only be
compensated for by a 5-fold increase
in size in the remaining substitute
patches, which is not likely to have
occurred at that time (see Fig. 2 with
the declining trend). (2) In turn, an in -
crease in one of the para meters Di,j

and Nj, would increase Ĉ, resembling
the patterns found for lesser spotted
dogfish and starry rays. Lesser spotted
dogfish increased in abundance in the
North Sea while not changing their
distributional pattern between 2010−
2011 and 2005−2009, i.e. forming hot -
spots in the Channel and along the
English east coast (ICES 2012). Thus,
Di,j is much larger than the small
migration range of about 50 n miles
buffering the increase in Nj, since in
the first stage of immigration from dis-
tant patches the exponential term
increases only  little. Starry rays popu-
late the central and northern North
Sea directly adjacent to the German
Bight (ICES 2012). From the 1980s to
2006, starry rays concentrated over
the central North Sea (ICES 2007),
where they were also abundant in the
period 1902−1908 (Fig. 7A, patch a).

The concentration is shown as the ratio of regional to
overall normalized abundances (Fig. 8). This concen-
tration led to an effective decrease of Di,j in relation
to the part of the population living in the German
Bight (Fig. 7A, patch b) now being fairly equal to the
migration range and to an apparent increase in donor
patch size Nj. This decrease in Di,j and increase in Nj

led to a positive immigration tendency into the Ger-
man Bight over a short distance and increasing Ĉ
proxy (Fig. 8) despite decreasing overall abundance
since 2001 (ICES 2012). This ra tionale applies to
other species as well, e.g. an increase in Nj led to a
recolonization of the Wadden Sea for grey seals (Rei-
jnders et al. 1995). For thornback rays, establishing
stepping stones in line with historical patches
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Fig 7. Distribution in 1902−1908 for (A) starry ray Amblyraja radiata and (B)
thornback ray Raja clavata, and the corresponding interpretation of popu-
lation patches in the southern North Sea and German Bight for both spe-
cies. a, b: existing patches; c, d: patches known from historical distribu-

tions. Biomass contour levels as in Fig. 4
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(Fig. 7B, patch c) could facilitate reintroduction to the
German Bight.

This analysis shows how seasonally re solved survey
information can be used to deduce migrations and
principal mechanisms in meta-population dyna mics
in the sea, even if supporting tagging information is
lacking (see Metcalfe 2006). The analysis based on
trend slopes for seasonal abundances, Ĉ proxy, and
migration range provides a reasonable interpretation
of local dynamics in terms of meta-population dy-
namics with regard to parameters Nj and Di,j. This al-
lows planning for stepping stones to recover extir-
pated sub-populations (e.g. for thornback rays, Fig. 7)
or clarification of complex regional shifts in abun-
dance (e.g. for starry rays, Fig. 8). The theoretically
derived relationship between average Ĉ proxy and
migration range further augments the applicability of

the meta-population approach (Fig. 5, Eq. 7a,b).
However, the best fit for the comparison of average Ĉ
proxy and migration range was obtained for a power
function with a power of 1.4 (Fig. 5), indicating that
the form obtained in Eq. (7b) is only an approximation
given the correct interpretation of the underlying
data. The merits of the meta-population approach in
the interpretation of local abundance dynamics were
underlined by Kritzer & Sale (2004, and references
therein), who stressed the potential of the meta-popu-
lation approach for analytical purposes rather than as
a set of fixed criteria and definitions.
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