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Abstract

Existing assessments of biomass supply and demand and their impacts face various types of limitations and

uncertainties, partly due to the type of tools and methods applied (e.g., partial representation of sectors, lack of

geographical details, and aggregated representation of technologies involved). Improved collaboration between

existing modeling approaches may provide new, more comprehensive insights, especially into issues that involve

multiple economic sectors, different temporal and spatial scales, or various impact categories. Model collaboration

consists of aligning and harmonizing input data and scenarios, model comparison and/or model linkage.

Improved collaboration between existing modeling approaches can help assess (i) the causes of differences and
similarities in model output, which is important for interpreting the results for policy-making and (ii) the linkages,

feedbacks, and trade-offs between different systems and impacts (e.g., economic and natural), which is key to a

more comprehensive understanding of the impacts of biomass supply and demand. But, full consistency or inte-

gration in assumptions, structure, solution algorithms, dynamics and feedbacks can be difficult to achieve. And, if

it is done, it frequently implies a trade-off in terms of resolution (spatial, temporal, and structural) and/or compu-

tation. Three key research areas are selected to illustrate how model collaboration can provide additional ways for

tackling some of the shortcomings and uncertainties in the assessment of biomass supply and demand and their

impacts. These research areas are livestock production, agricultural residues, and greenhouse gas emissions from
land-use change. Describing how model collaboration might look like in these examples, we show how improved

model collaboration can strengthen our ability to project biomass supply, demand, and impacts. This in turn can

aid in improving the information for policy-makers and in taking better-informed decisions.
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Introduction

Bioenergy is often mentioned as an important element of

a more sustainable future global energy supply (IPCC,

2011; GEA, 2012). Biomass for the production of biochem-

icals, bioplastics, and modern biomaterials has also

received increased attention given its potential for reduc-

ing the products’ carbon footprints and the dependence

on finite and increasingly costly fossil fuels (e.g., EC,

2012). The economic activities related to biomass produc-

tion and subsequent conversion into energy, chemicals,

materials, and other products are termed biobased econ-

omy (also called bioeconomy). It aims at reducing the

dependence on fossil fuels and differentiates itself from

the traditional uses of biomass by applying advanced bio-

logical knowledge and tools (OECD, 2009; Zilberman,

2013). However, the sustainability of a biobased economy

has been debated in recent years because of the impacts

on the economy, environment, and society such as the

competition with food production, and land-use change

(LUC)-related greenhouse gas (GHG) emissions (Mitch-

ell, 2008; Searchinger et al., 2008; Tilman et al., 2009; Frit-

sche et al., 2010; Hertel & Tyner, 2013). The large diversity

of opinions and positions on the sustainability of the bio-

based economy can partly be explained by different per-

ceptions and interests of actors involved, but also by a

lack of data and comprehensive understanding of under-

lying processes (and how these are translated into model-

ing terms), and by different approaches used tomodel the

supply of biomass and its impacts (Dornburg et al., 2010;

Haberl et al., 2010; Batidzirai et al., 2012; Creutzig et al.,

2012). Another factor is whether approaches used tend to

be mono- or multi-disciplinary where for example a nar-

row perspective can yield misleading information about

problemswith broad systemic effects.

It is important to recognize that projecting the future

is inherently uncertain, and the purpose of a modeling

exercise is to gain insights into the processes of change

in response to actions that occur because of external fac-

tors such as a policy change. As we will argue in this

paper, reducing some of the uncertainties surrounding

the biobased economy could be achieved through model

collaboration. This may or may not lead to an ultimate

consensus, but can at least help improve the under-

standing of the processes of change and impacts, and as

a consequence make more informed decisions.

The already large body of literature provides impor-

tant insights into the potential size and sustainability of

a biobased economy. However, these studies faced vari-

ous types of limitations and uncertainties, partly due to

the type of tools and methods applied (e.g., partial rep-

resentation of sectors, lack of geographical details, and

aggregated representation of technologies involved).

Thus, recent scientific literature (Nassar et al., 2011;

Creutzig et al., 2012; Wicke et al., 2012) suggests further

developing and improving modeling toolboxes –

especially through better integration of detailed bottom-

up information and improved cooperation between the

different modeling approaches (hereafter referred to as

model collaboration). Model collaboration can take the

form of aligning and harmonizing input data, detailed

model comparison and/or model linkages. Model col-

laboration in its various forms can facilitate understand-

ing of discrepancies in results and underlying factors,

provide information about the robustness of results,

and strength and weaknesses of different approaches,

and improve validation and calibration of models. As a

result, it can provide new and more comprehensive

insights into biomass supply, demand and impacts, and

allows assessing the effects of policy and regulation. In

doing so, it can help in identifying necessary conditions

for the development of a sustainable biobased economy.

The main objective of this paper is to assess how

model collaboration can contribute to improved assess-

ment of biomass supply, demand, and their impacts. To

do so, a thorough understanding of existing approaches

is needed. Thus, we first characterize the applications,

strengths, and limitations of the main modeling

approaches, and then formulate key questions that

remain to be answered by any approach (Section 2). In

Section 3, we focus on model collaboration, the different

types, and opportunities and limitations it presents.

This is followed by three examples of key research areas

that can benefit from model collaboration and a descrip-

tion of what model collaboration might look like in

these cases (Section 4). The three examples relate to (i)

developments in the livestock production; (ii) availabil-

ity, use and impacts of agricultural residues; and (iii)

GHG emissions from land-use change. In Section 5, we

draw conclusions on model collaboration and other nec-

essary steps to enhance the assessment of biomass sup-

ply and demand and their impacts.

Strengths and limitations of existing approaches

Existing approaches for assessing biomass supply,

demand, and impacts can be broadly categorized into

the following categories: (i) computable general equilib-

rium (CGE) models, (ii) partial equilibrium (PE) models,

(iii) bottom-up models and analyses, and (iv) integrated

assessment models (IAM). As the following sections

also indicate, the categorization of models is to some

degree artificial because each model tends to have indi-

vidual characteristics and often includes elements of

more than one category [an overview of such integra-

tion activities related to energy-environment models is

given in the Energy Journal special issue ‘Hybrid

modeling of energy-environment policies: reconciling
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bottom-up and top-down’ (Hourcade et al., 2006)]. Still,

such a categorization is useful for defining strengths

and limitations of existing approaches. We discuss the

main applications and insights of these four approaches,

and their strengths and limitations for assessing bio-

mass supply, demand, and impacts (Section 2.1 to 2.4).

The key aspects of this discussion are presented in

Table 1. In addition to uncertainties and shortcomings

specific to the four approaches, there are also those that

are common to all approaches. These are presented in

Section 2.5.

Computable general equilibrium models

Computable general equilibrium models have been used

to analyze macro-economic consequences of different

types of policies over the last 25 years. Models were ini-

tially used to analyze policies related to taxation and trade

(Shoven &Whalley, 1984), but progressively expanded to

analyses of diverse topics such as spread of human dis-

eases (Kambou et al., 1992), international labor migration

(Borjas, 2004), climate change adaptation (Block et al.,

2006), and land-use change (van Meijl et al., 2006). In

recent years, CGE models have also been used to analyze

the implications of biomass and bioenergy policies. For

example, Taheipour & Tyner (2012) have studied the

implications of the United States’ (US) Energy Indepen-

dence and Security Act of 2007, Banse et al. (2008) and

Laborde & Valin (2012) have analyzed land-use changes

and greenhouse gas emissions resulting from European

biofuels policies, and vanMeijl et al. (2012) have analyzed

the macro-economic impacts of a biobased economy in

Table 1 Overview of the four modeling approaches for assessing biomass supply, demand and impacts: Their applications, typical

timeframes, key strengths, and limitations

CGE model PE model Bottom-up analysis IAM

Application Economy-wide impacts of

biomass and bioenergy policies,

including subsequent effects

on land-use change and GHG

emissions induced by these

policies.

Indirect substitution, land use

and rebound effects due to

multiple sectors and production

factors

Sectoral impacts of

bioenergy policies on

agriculture, forestry,

land-use change,

energy system and

GHG emissions

Wide variety of specific

(technical) aspects of

biomass production,

conversion and use.

Validation of other

studies with a broader

scope, such as PE and

CGE models, and IAMs

Bioenergy resource

potentials under different

assumptions (incl.

sustainability criteria).

Possible contribution of

bioenergy to long-term

climate policy.

Impacts of bioenergy

policies on global land

use, water and biodiversity

Typical

timeframe

Short to medium term Short to long term Short to long term Long term

Strengths Comprehensive coverage of

economic sectors and regions

to account for interlinkages.

Explicit modeling of limited

economic resources.

Measuring the total economy

wide and global effects of

bioenergy policies (including

indirect and rebound effects)

Detailed coverage of sectors

of interest with full market

representation.

Explicit representation of

biophysical flows and

absolute prices.

Usually more details on

regional aspects, policy

measures and environmental

indicators

Detailed insights into

techno-economic,

environmental and

social characteristics

and impacts of

biobased systems

Integrating different

relevant systems in one

modeling framework.

Possibility to analyze

feedbacks between human

and nature systems, and

trade-offs and synergies of

policy strategies.

Built around long-term

dynamics

Limitations Level of aggregation that may

mask the variation in the

underlying constituent elements.

Scope of CGE

models necessitates simplified,

representation of agent

choices, in particular favoring

smooth mathematical forms

and reduced number of

parameters required to

calibrate the models.

Often no or little explicit

representation of quantities

for biophysical flows

Optimization of agent

welfare, but only the

sectors represented

in the model.

No consideration of macro-

economic balances and

impacts on not-represented

sectors.

Need large number of

assumptions for long-term

projections

No inclusion of

indirect and induced

effects outside the

boundaries of the study,

i.e. often deliberately

ignore interactions

with other sectors

High level of aggregation

or too complex systems.

Unsuitable for short-term

assessments.

Large number of

assumptions (and the

communication of these

to the public)
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Malaysia. CGE models have often been used for analyz-

ing the agricultural market adjustments and land-use

change at global scale, thanks to the Global Trade Analy-

sis Project (GTAP) research consortium that provides a

general global CGE framework and database (Narayanan

& Walmsley, 2008). Hertel et al. (2011) have provided

multiple examples of how the land-use representation of

the GTAP database was expanded with the agro-ecologi-

cal zones (AEZ) framework and applied in various CGE

assessments.

A key insight from CGE studies into biofuels is the

strong impact of the use of first-generation biofuels on

national and international food markets, and the associ-

ated total net impacts on land use and greenhouse gas

emissions. Biofuels increase the link between energy

and agricultural market prices that may affect welfare

and trade patterns (Bouet et al., 2010; Hertel & Beck-

man, 2010; Hertel et al., 2010). For example, domestic

production of biofuels can decrease foreign oil imports,

while the use of crops for biofuels may lead to lower

exports of agricultural products. Results from CGE

models also show that the effects on land use will

depend on trade policy scenarios. For instance, Laborde

(2011) calculated for the EU biofuels mandate that with

liberalization of trade barriers, more cropland is needed

than without liberalization. This is primarily due to a

shift in production to regions with lower crop yields

and also reduced intensification resulting from lower

prices.

The principle strength of CGE-based studies is their

comprehensiveness in terms of key economic relation-

ships, including market price adjustments and associ-

ated changes in terms of trade, market balances, and

factor markets. The CGE models are ‘deep’ structural

models in that they explicitly solve the maximization

problem of consumers and producers, assuming utility

maximization and profit maximization with produc-

tion/cost functions that include factor inputs [see

Robinson et al. (2014)]. CGE models are capable of

informing policy-makers of the overall economic effects

of existing and potential policies. For example, Tahei-

pour & Tyner (2012) investigated the economic impacts

of biofuel use in the United States. The results show the

importance of considering interaction between biofuel

policies and other economic sectors via impacts on pet-

rol tax, income tax, and agricultural subsidies. Further-

more, there is an obvious strong relationship between

first-generation biofuels and food crops, and thereby

food security and land-use changes. However, there are

less obvious links between the prices of biofuels, fossil

fuels, and governmental support policies. They are

nevertheless critical for policy impacts. For instance,

Laborde (2011) shows that the leakage effect of the EU

biofuel policy is significant: for 1 MJ of fossil fuel saved

in the EU, thanks to the biofuel consumption, only

0.7 MJ is saved at a global level. CGE models can

account for such interlinkages by their comprehensive

coverage of sectors, production factors, and regions. In

addition, measuring the overall welfare effects of

bioenergy support programs in specific countries can

only be understood when viewed in conjunction with

the entire set of support programs of these countries.

CGE models make this possible because they encom-

pass the entire range of economic activity rather than

particular markets, and they explicitly model the fact

that economic resources (such as labor, land, and capi-

tal) are limited (Banse et al., 2008; Taheipour & Tyner,

2012). The comprehensive coverage of sectors, produc-

tion factors, and agents then allows assessing (i) pro-

duction factor and market price adjustments and

associated changes in trade and market balance, (ii)

economy-wide accounts and consumer welfare indica-

tors that are used to derive the full cost/benefit of a bio-

energy policy, (iii) consequences on income, growth,

and job markets, and (iv) the distribution of benefits

and burdens of policies on consumers and producers

both within and among countries. CGE models are par-

ticularly useful for studying the impacts of significant

bioenergy deployment in the short/medium term, espe-

cially when they are used and designed with a high

level of disaggregation, and when sectoral and regional

interlinkages are relevant.

However, there are also many important uncertainties

and limitations to CGE modeling analyses (Hertel,

1999). The price for their comprehensiveness is in gen-

eral a high level of aggregation, which masks variation

in and economic interactions between the underlying

constituent elements, and limits the degree to which

bottom-up information and data can be effectively

integrated within the larger model (Hoefnagels et al.,

2013). The same is true for temporal aggregation: CGE

models provide a new equilibrium after a certain

‘shock’, and usually do not provide a temporal trend.

Also, the representation of technology and technological

change is usually limited; especially advanced options

of the biobased economy (e.g., modern biomaterials) or

alternative feedstocks and land resources (such as pro-

duction on degraded land or residues) have hardly been

assessed in CGE studies. However, recent advances

with regard to a broader representation of bioenergy

have been made in some GTAP model versions, intro-

ducing ethanol, biodiesel and their by-products (Banse

et al., 2011; Laborde, 2011), the agricultural residue corn

stover, and the energy crops switchgrass and miscan-

thus for second-generation ethanol production (Taheri-

pour & Tyner, 2013b) and palm oil residues (van Meijl

et al., 2012). There is a trend of disaggregating

agricultural, forestry and energy sectors within a CGE
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model to obtain the needed detail for policy questions

(Woltjer, 2013). The scope of CGE models also necessi-

tates simplified, behavioral assumptions to be able to rep-

resent aggregated behavior using smooth mathematical

functions and to be able to calibrate the models with lim-

ited datasets. Although, it is possible to add data and

behavioral detail to a CGE model in terms of new sectors

and more complex relationships, in practice, mathemati-

cal relationships in CGE models remain highly aggre-

gated and simplified. For example, Laborde (2011)

acknowledges limitations that affect the substitution of

proteins and carbohydrates and the inability to provide

an entirely correct substitution matrix across crops and

their yield consequences – a problem shared by most

CGE models. He therefore calls for the use of more flexi-

ble functional forms and sensitivity analyses. In addition,

the uncertainties related to CGE modeling increase in

case of major structural and technological changes, which

makes them more suitable for short- to medium-term

assessments than longer timeframes as described above.

Partial equilibrium models

Partial equilibrium models are economic models follow-

ing the same neo-classical framework as CGEmodels, but

in which not all economic sectors and factors are repre-

sented. PE models are often adopted to address questions

specific to some sectors (e.g., agriculture and energy) and

for which interrelation with others parts of the economy

are secondary. As for CGEmodels, themain characteristic

of PE models is the assumption that markets are at equi-

librium and return to equilibrium after an economic

shock, i.e. at any time, demand price adjusts to equal mar-

ginal producer cost. The simplest form of PEmodels is the

stylized single product demand–supply model generally

used to analyze welfare and other impacts of a policy or

technology change. PE models have largely been used to

analyze first-order effects of policy intervention on a feed-

stock market when developing bioenergy [see, for exam-

ple, De Gorter & Just (2009) for corn ethanol and Babcock

et al. (2011) for second generation]. More sophisticated

models however exist, such as the Common Agricultural

Policy Regionalised Impact (CAPRI) model (Shrestha

et al., 2013), encompassing a large number of sectors and

regions, and providing a high level of detail in the supply

and demand representation. In the context of bioenergy,

typically two sets of PE models are relevant: (i) food mar-

ket models and (2) energy system models. Examples of

the first set are the POLYSYS model (De La Torre Ugarte

& Ray, 2000) and the FASOMGHG model (Beach et al.,

2012), and an example of technology-rich PE models in

the energy arena is MARKAL-TIMES (originally from

IEA; Clarke et al., 2009), but there are many others. Here,

we focusmostly on the foodmarket category.

Although many PE models share some characteristics,

their structure can vary strongly depending on their

economic assumptions. The biggest difference comes

from the formulation of the welfare function to opti-

mize. Some models represent agents’ behavior around

the equilibrium under the form of reduced top-down

functions similar to CGE ones, without explicit repre-

sentation of the technology and production costs. In that

case, quantities are adjusted in response to variation of

relative prices with respect to certain price elasticities.

For instance, the IMPACT model (Rosegrant et al., 2012)

has been used to assess the effect of first-generation bio-

fuel development on world food prices (Msangi et al.,

2007). The multi-commodity market model FAPRI-

CARD uses an approach where supply functions are

precisely derived for each raw agricultural market, as

well as for the biofuel sectors (Elobeid & Tokgoz, 2008;

Fabiosa et al., 2010). The FAPRI-CARD model in partic-

ular has been used in the seminal raising awareness of

indirect land-use change through Searchinger et al.

(2008).

Some other PE models follow linear optimization

techniques to determine the level of production on

the basis of explicit production cost calculation using

bottom-up information and explicit prices with a

much more detailed geographic representation [for

the US, ASMGHG and BEPAM, see Schneider et al.

(2007) and Chen et al. (2012), respectively; or at the

world level GLOBIOM, see Havl�ık et al. (2011)]. In

this latter category of PE models, supply functions for

biomass distinguish a wide variety of feedstocks

sourced from agricultural crops or perennials and for-

est products, with different management approaches.

Depending on the production costs and policy incen-

tives, the models allocate the production across

regions and products along structurally bottom-up

supply curves that are very close to the ones pro-

duced by engineering models. This allows determin-

ing the optimal portfolio of GHG emission mitigation

measures for a certain carbon price (Schneider et al.,

2007) or comparing the projected GHG emission effect

of different feedstocks under different land-use

change policies (Havl�ık et al., 2011). The impact of the

US Energy Independence and Security Act has, for

example, been investigated with FAPRI-CARD and

FASOMGHG. Chen et al. (2012) investigated land-use

impacts in the United States at county level and Mos-

nier et al. (2013), the overall land-use GHG emissions

at international level. Both of these analyses in partic-

ular allowed comparing different shares of second-

generation biofuels in detail; pathways that have little

been studied by CGE models because they are not

present in the initial state of the economy (Taheripour

& Tyner, 2013b).
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The advantage of PE models comes from their high

level of flexibility in incorporating a large amount of

detail in process representation and input data. While

CGE models require a large quantity of information (in

particular for the input–output tables), this information

is only needed for sectors covered in the PE models,

which removes the need for lengthy and distortive full

rebalancing of the dataset [although procedures are

developed to automatize these processes in CGE models

(see, e.g., Woltjer, 2013)]. Additionally, in the case of

linear optimization models, the performance of solvers

allows incorporating a very large number of technolo-

gies at a detailed grid-cell level (e.g., up to 200 000 spa-

tial units in GLOBIOM). These models are particularly

well fitted for a fully, spatially explicit representation of

sector dynamics and particularly adapted to land use-

related questions. Depending on their design and

calibration elasticities, PE models can be well fit for

short- to medium-term analyses (for instance, market

outlook models such as FAPRI-CARD or AGLINK from

OECD) or long-term analyses (e.g., GLOBIOM applies a

time horizon up to 2050 or even 2100).

However, PE models also have some limitations. The

first one comes from the absent links with other sectors.

Bioenergy being at the nexus between agricultural/for-

estry and energy sectors, models only focusing on one

of the two groups of sectors miss feedbacks from the

other group. There are attempts to circumvent this issue

by incorporating two PE models and solving them

simultaneously (Msangi et al., submitted), by extending

their model to a simplified representation of fossil fuel

markets (Chen et al., 2012), or by establishing links

between the various model approaches (see Section 2.4

on integrated assessment models and Section 3 on

model collaboration). Another issue is the absence of

macro-economic closure, which can introduce some bias

when sectors have a big role in an economy. For exam-

ple, in developing countries, the link between agricul-

tural income and the final consumer demand is

generally missing because the supply and the demand

side are not linked by the revenue cycling; a PE model

is therefore more limited to study food security benefits

for smallholders to develop bioenergy projects. Addi-

tionally, for oil-exporting countries, the effect of produc-

tion and trade on the exchange rates and the feedback

from government revenues on welfare and consumption

are often neglected, which prevents PE models from a

full welfare analysis of biofuel policy impacts.

Bottom-up analyses and models

Bottom-up analyses and models begin with detailed

descriptions and modeling of technologies, processes,

agents, or resources. They include a wide variety of

analyses that can entail detailed assessments of current

conditions as well as long-term projections. As opposed

to the CGE and PE models described in the previous sec-

tions, they do not model economic markets or calculate

market prices endogenously. Various subgroups of bot-

tom-up assessments have been developed for assessing

biomass supply potentials and impacts, for example:

● Process-based technical models (including life-cycle

analysis), such as the GREET model (Wang et al.,

2012) or the BioGrace model (BioGrace, 2011);

● Process-based biophysical models to assess crop

suitability and growth (Fischer et al., 2010; Trabucco

et al., 2010) or impacts [erosion risk evaluation tools

(Muth & Bryden, 2012)], water impact evaluation

analysis (Berndes, 2002), land use/management

emission analysis [e.g., with the MITERRA model,

see de Wit et al., 2014)], or a combination of these

(Marohn & Cadisch, 2011);

● Land-use allocation models that combine land

availability, land suitability and land-use change at

a spatially detailed level (Cai et al., 2010; van der

Hilst et al., 2012; Kurka et al., 2012);

● Bioenergy supply and demand mapping (Masera

et al., 2006);

● Statistical scenario analyses of biomass resource

availability (Smeets et al., 2007);

● Cost–benefit analysis (Wiskerke et al., 2010);

● Multi-criteria assessments (Scott et al., 2012);

● Prospective studies (e.g., learning curve studies [de

Wit et al., 2010; van den Wall Bake et al., 2009)].

Many more, both simple and complex bottom-up

models and tools are directly or indirectly relevant when

evaluating (sustainable) biomass supply, demand and

impacts.

A key characteristic of bottom-up models and tools is

the focus on specific aspects, processes, technologies, or

agents. As a result, these models typically have a well-

defined system boundary in terms of geographic scope,

sectorial coverage, and technology. They typically take

advantage of up-to-date data and detailed parameters,

which make them suitable to conduct prospective analy-

ses of latent technologies. Bottom-up models provide

detailed information involving specific technologies and

their performances (e.g., energy use, emissions, and

environmental impacts) within their system boundary.

Disadvantages of this type of models are that they

typically do not take into account indirect and

induced effects outside the boundaries of the system

under investigation, such as price responses, competi-

tion and replacement effects, as well as technological or

structural changes outside the system boundaries (e.g.,

© 2014 John Wiley & Sons Ltd, GCB Bioenergy, 7, 422–437

MODEL COLLABORATION FOR BIOMASS ASSESSMENT 427



Britz & Delzeit, 2013). This makes bottom-up tools less

suitable for policy impact assessments.

The advantages and disadvantages of bottom-up

studies can be illustrated by the analysis of GHG emis-

sions of bioenergy systems. A large number of bottom-

up life-cycle analysis (LCA) studies have been carried

out, which include detailed assessments and compari-

son of different bioenergy systems and provide

thorough understanding of the factors that determine

life-cycle emissions, such as the fertilizer application

rate and nitrous oxide emissions, the assumed crop

yields, the transportation distance from field to factory,

etc. (Macedo et al., 2008; Kendall et al., 2009; Smeets

et al., 2009; Hoefnagels et al., 2010). These results pro-

vide important information on how to differentiate

good vs. bad performers, and to improve the GHG bal-

ance and sustainability performances of bioenergy

through policy regulations and sustainability certifica-

tion systems. However, the narrow system boundary of

bottom-up LCAs also means that indirect effects are

ignored, such as indirect land-use change and leakage

effects of biofuels. This means that bottom-up LCAs

need to be supplemented with economic models and

approaches when evaluating the total net impact of bio-

energy systems [see also Creutzig et al. (2012)].

Integrated assessment models

Integrated assessment models (IAMs) are designed to

describe the interactions between human activities and

(global) environmental change processes. They, there-

fore, include a description of the human system and

natural system and the interaction between the two. For

their application in assessments of a biomass supply,

demand and impacts, the results of IAMs not only cover

the energy system implications (e.g., which energy

sources are replaced?) but also point out the limitations

and implications with respect to natural systems such

as water use, land use (e.g., where is bioenergy pro-

duced and what could be the consequences?), and the

interactions with the global carbon cycle in the atmo-

sphere, oceans, and biosphere in a complete, integrated

manner. As such, they cover a broad range of disci-

plines, including energy analysis, economics, agriculture

analysis, and biophysical sciences. The approaches dis-

cussed in Section 2.1 to 2.3 often form a part of an IAM

(although often deliberately simplified compared to the

stand-alone forms to allow for integration). The agricul-

tural and/or energy economic components are normally

represented by a CGE or PE model. However, in IAMs

these are combined with a simultaneous representation

of the physical system, implying that IAMs not only

describe emissions of agricultural production but also

land use and the full chain of climate change (GHG

concentrations, temperature change). This also means

that, to some degree, IAMs are already representative of

the model collaboration that we are investigating in this

paper. But, given their special role in the literature and

their focus on simplification, it is still useful to take

stock of the current status of this model category. For

the model integration referred to in Section 3, we focus

on the cooperation between different stand-alone mod-

els allowing their representation in their original forms.

Much of the development and application of global

IAMs has been in the context of global climate change

assessment, where for example the emissions scenarios

used by climate models were developed by IAMs (IPCC

SRES, 2000; van Vuuren et al., 2011). However, many glo-

bal IAMs have also been used to study global land use

and land-use change [see e.g., overview by Smith et al.

(2010)], bioenergy supply potentials (Hoogwijk et al.,

2005; van Vuuren et al., 2009; Acosta-Michlik et al., 2011;

GEA, 2012), and water and biodiversity consequences of

biomass production (e.g., Chaturvedi et al., 2013). Often,

IAMs have a global coverage and focus on long-term

processes in the order of decades to a century.

In general, IAMs deliberately aim to simplify the rep-

resentation of individual model components to prevent

the model as a whole becoming too complex. Most

IAMs used to support bioenergy policies, however, tend

to be among the more complex IAMs. This is because

they need to have a more detailed representation of the

human and earth system processes relevant to assess

global environmental change. As discussed earlier, this

means that IAMs often include CGE or PE models to

represent (parts of) the economy. For example, IIASA’s

integrated assessment modeling framework involves the

PE model GLOBIOM, connected to several activity

models for agriculture (EPIC, RUMINANT) and forestry

(G4M) and is further linked to the energy model MES-

SAGE for full integrated assessment (Reisinger et al.,

2013). The IMAGE model uses results of the CGE model

LEITAP (now called MAGNET) or the PE model

IMPACT, and integrates the PE energy model TIMER;

other model components include the climate model

MAGICC and carbon cycle and land-use representations

(PBL, 2014). Other examples of model clusters include

AIM (Kainuma et al., 2003), REMIND-MAgPIE-LPJmL

(Popp et al., 2011) and GCAM (Wise et al., 2009).

The obvious strength of IAMs is that they integrate

information on the different relevant systems in a com-

prehensive modeling framework. In such a framework,

trade-offs and synergies of policy strategies can be

assessed, and feedbacks between different domains can

be studied. Such feedbacks, for instance, relate to the cli-

mate impacts on crop growth or the GHG emissions

associated with bioenergy production and use. How-

ever, there are also some limitations to this approach.
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The broad and interdisciplinary coverage can go at the

expense of detail (but this is only a problem where

details matter, while a high level of detail may also only

provide a false sense of precision). Too complex IAMs

(that include considerable detail) may in fact lose

transparency. Finally, most IAMs are built to capture

long-term dynamics, and are therefore less suitable for

short-term policy assessments. As in other models,

assumptions on technical change in the energy and agri-

cultural system form a key input and uncertainty in

IAMs. However, due to the long-time horizon, these

assumptions are even more important in IAMs than in

studies with short-time horizons, and much of the tech-

nical potential of future biomass supply depends on the

assumed technical change in agriculture and livestock

management (Dornburg et al., 2010).

In the context of bioenergy studies, IAMs have mostly

been used to assess the possible contribution of bioener-

gy to global climate strategies (see for instance Rose

et al. (2012)). In such studies, information on the techni-

cal potential (based on biophysical parameters) is com-

bined with data on technology development, the costs

of other energy sources, and the climate policy regime.

Due to its focus on a long-time horizon, IAM results

typically show low or no use of first-generation bioener-

gy crops, but instead project large use of agricultural

residues, dedicated woody or herbaceous energy crops,

and forest residues (Kraxner et al., 2013; Rose et al.,

2013). Other reasons for the low application of first-gen-

eration biofuels in IAM studies is the carbon tax-driven

application of biofuels, which does not stimulate biofu-

els that result in only a small greenhouse gas saving

compared to fossil fuel use.

A second application of IAMs is the estimation of bio-

mass potentials. In these studies, IAMs mostly try to

estimate sustainable supply potentials. Typically, it is

assumed that bioenergy crops can be grown when land

is not used for food or fiber production or is not

restricted by sustainability constraints like high-carbon

content of natural vegetation or high biodiversity (van

Vuuren et al., 2009; Beringer et al., 2011). The main

sources of land-based bioenergy resources in such stud-

ies are dedicated production of energy crops on surplus

agricultural land or abandoned land, and agricultural

residues with a total global potential of 50–1000 EJ yr�1

(Chum et al., 2011). According to several studies, the

high end of that range is inconsistent with sustainability

criteria and a value of 100–150 EJ in 2050 seems more

realistic (van Vuuren et al., Schubert et al., 2009; Haberl

et al., 2010). Some IAMs apply a ‘food/fiber first’ princi-

ple, which represents the possible effects of sustainabil-

ity criteria on biomass resource availability and its

impacts. But this ignores interaction with the food mar-

kets and competition for land.

Key research areas across approaches

In addition to the limitations and uncertainties specific

to the different modeling approaches described in the

previous sections, there are key uncertainties that are

common to these different approaches and there are

important questions that remain to be answered by any

approach. These uncertainties and questions are

described extensively in the literature (Schubert et al.,

2009; Dornburg et al., 2010; Edwards et al., 2010; Chum

et al., 2011; Batidzirai et al., 2012). Here, we only pro-

vide an overview of key questions to be answered to

better understand a biobased economy and its impacts:

● Can large-scale biomass production and supply be

organized over time, in a way that unsustainable

price impacts on food markets or undesired LUC

are avoided? And if so, how?

● What are the impacts of different degrees of ambi-

tiousness of sustainability targets on future biomass

availability and costs?

● How do the various applications of biomass for a

biobased economy compete with each other and

with (fossil) alternatives, now and in the future?

● What are the effects of different trajectories of

developments in agricultural crop and livestock pro-

duction (e.g., intensification vs. extensification, fertil-

izer application, irrigation) on biomass supply and

its impacts over time?

● What is the net potential contribution of biobased

products in mitigating GHG emissions when

including emissions related to changes in land use,

agricultural production, and the energy system?

● What is the energetic potential of agriculture and

forestry residues? What and how large are the com-

peting uses? What are possible changes in agricul-

tural and forestry technologies, and management

over time and how would these affect the potential?

What are the impacts (especially for soil conditions

but also current uses and users) of extracting resi-

dues for energy use?

● What are the GHG emissions of LUC induced by a

biobased economy? And how does it affect or is

affected by other drivers?

● How may climate change affect the potential for bio-

energy production?

Some of these questions relate to factors that include

some fundamental uncertainties (such as the rate of tech-

nological development or future governance structures).

But, as will be shown in the following sections, the better

use and collaboration of models (while being aware of

their limitations) allow exploring these questions in a
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meaningful way primarily because different approaches

can provide complimentary information.

Addressing open questions with model

collaboration

Improved cooperation between the different

approaches described in Sections 2.1 to 2.4 offers possi-

bilities to reduce some of the shortcomings of the dif-

ferent modeling types, narrow the knowledge gaps

highlighted above (Section 2.5) and strengthen our

ability to project (both direct and indirect) the impacts

of given bioenergy policies. Thereby, model collabora-

tion can aid in improving the quality of information

for policy-makers and contribute to better-informed

decision-making.

Model collaboration can come in a number of forms

(Fig. 1). Alignment and harmonization of models focus

mainly on input data, level of aggregation, and scenario

definitions. Model comparison focuses on the methods,

representation and parameterization of biomass supply

chains, assumptions and uncertainties in input data,

and/or on results and sensitivities to uncertainties in

underlying data and approaches. Model comparison

can guide and improve alignment and harmonization of

models. Conversely, under the condition of harmonized

input data and scenarios, model comparison allows a

better understanding of the results, its drivers and the

differences across models (Lotze-Campen et al., 2014). It

can also reveal information about the robustness of the

results when tested under different paradigms, about

model biases and artifacts, and about strengths and

weaknesses of different approaches. Thereby, model

comparison can be used to further improve and cali-

brate the individual models. Model comparison can also

help expose the causes of differences and similarities in

model output, which is important for interpreting the

results for policy-making.

Linking or integrating models takes collaboration a

step further and can help assess issues that involve mul-

tiple economic sectors, different temporal and spatial

scales and/or various impact categories and their link-

ages and trade-offs. It can thereby provide a more com-

prehensive picture of the impacts of a certain policy.

Model linkages can be of a number of forms, including

using the results from one model as input to another

model, iterating inputs from different models, partially

integrating models by using a simplified form of one

model in another model or fully integrating models and

solving them simultaneously (Fig. 1). IAMs (Section 2.4)

are examples of partially or fully integrating different

modeling approaches. However, the more generic

model collaboration discussed here can also refer to the

cooperation between two stand-alone models and does

not require the analysis to be conducted in one inte-

grated system.

Alignment and harmonization of models
• Input data
• Level of aggregation (e.g. number of 

economic sectors)
• Scenarios

Comparison of models
• Methods
• Representation and parameterization of 

biomass supply chain
• Assumptions and uncertainties
• Results
• Sensitivities to underlying uncertainties

Integration of models
• Feeding results from one model as input into 

another model (one way data exchange)
• Iterations of inputs (two way data exchange)
• Partial integration (simplified form of one 

model integrated into another model)
• Full integration

Fig. 1 Typology of model collaboration. Model collaboration can come in a number of forms, here three categories are distinguished:

alignment and harmonization of models, comparison of models, and integration of models. Bullets present examples of how models

can be aligned, harmonized, compared or linked. Each type of model collaboration can benefit from the others. For example, a basic

alignment and harmonization of scenarios is needed to allow comparison of models, while a comparison or integration of models can

identify the factors that require alignment.
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An alternative distinction in linking models is often

made between so-called soft links (models are connected

exogenously by transferring the outcomes of scenario

model runs from one component or model to another)

and hard links (in which models exchange information

and solve iteratively, so the solutions are internally

consistent between models). Each type of link has its own

advantages and disadvantages: hard links allow more

consistent representation of the systems but increase com-

plexity and reduce transparency, while soft links allow

linking more components but data flows must be very

carefully coordinated otherwise inconsistencies between

models can either or go unnoticed and not reported

(Leimbach et al., 2011).

Collaborations will not be ideal for every application.

It is sometimes difficult to achieve full consistency or

integration in assumptions, structure, solution algo-

rithms, dynamics, and feedbacks. Also, since models are

built around a certain paradigm (e.g., economic or engi-

neering), especially hard-linking them may be methodo-

logically inconsistent due to different use of definitions

and semantics, and ‘double-counting’ some subsystems

by representing them in both models in different ways.

Although internal consistency may be essential for some

applications, having internal consistency frequently

implies a trade-off in terms of resolution (spatial,

temporal, and structural), and/or computation. Further-

more, inconsistency may also arise when data

exchanged between models is dependent on a set of cri-

teria, which are not applied consistently across the mod-

els. Also, if one of the models produces poor results, the

projections of the other model might be worse instead

of better than stand-alone projections.

On the contrary, exchange of good data can improve

coupled models. If the first of the coupled models is cal-

ibrated with real data, its outcomes are improved and

might become more accurate than the input data that

the second model uses when running independently.

This is especially true when the first model, after it is

calibrated, is used to project outcomes for future scenar-

ios. This is because these are impossible to measure and

are harder to estimate than present-day variables. The

same applies for the exchange of information on uncer-

tainty. Running the first of the coupled models stochas-

tically, e.g., using Monte Carlo simulation (Verstegen

et al., 2012), provides the second model with confidence

intervals for its input data. This information can be used

for error propagation through the coupled models.

Key research areas that can benefit from model

collaboration

We selected three key research areas from the list of

open questions (Section 2.5) to illustrate how model

collaboration can provide additional ways for tackling

some of the shortcomings and uncertainties in existing

assessments of biomass supply, demand, and impacts:

(i) developments in livestock production and impacts

on land availability for bioenergy crop production, (ii)

availability, use, and impacts of agricultural residues

for energetic purposes, and (iii) GHG emissions from

land-use change induced by bioenergy crop production.

These areas are important for defining biomass resource

availability and performance. The importance of each

research area is explained in more detail in the follow-

ing sections.

Given that there are many different types of bottom-

up assessments and models (Section 2.3), in the follow-

ing sections, we refer to the subtypes of bottom-up

approaches (such as land-use allocation models or bio-

physical assessments) rather than using the more

generic, overarching term of bottom-up assessment.

Developments in livestock production

Several studies have emphasized the importance of

agricultural crop productivity (developments) for the

assessment of biomass for energy or material purposes

(Keeney & Hertel, 2009; Dornburg et al., 2010; Mosnier

et al., 2013). But also livestock productivity (and its

developments over time) is a key factor influencing the

biomass resource availability. This is because much lar-

ger areas of land are needed for feed than for food crop

production. Still, livestock has received much less atten-

tion than agricultural crops.

Several studies have shown that large areas of land

can be freed through livestock management system

transitions, particularly from a pasture- to a crop-based

feeding system (Bouwman et al., 2005; Smeets et al.,

2007; Lapola et al., 2010; Martha et al., 2012; Havl�ık

et al., 2013). Such changes will impact production costs,

efficiency, animal welfare and the environment in dif-

ferent ways (also depending on the type of management

applied), and conditions necessary for such changes are

poorly studied. Also, where the intensification is likely

to take place and what the impacts would be is not well

understood. An improved analysis of developments in

livestock production and their consequences for bioe-

nergy would need to include two components. First, the

understanding of current livestock system and the

options for further intensification and its impacts need

to be improved. This entails improvement of current

assessments of pasture use and management (Robinson

et al., 2011). It also entails a spatially specific assessment

of where and to what degree pasture productivity and/

or livestock density can be increased, what the drivers

are and what the environmental and socio-economic

impacts of the intensification are (Neumann et al., 2011).
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Results from this analysis can be used, for example, to

provide better information on the drivers of change in

pasture productivity, and the relationship with prices.

Second, the representation of substitution between

pasture- and crop-based feeding systems in existing

model frameworks still needs to be improved because

the current approaches do not guarantee that the energy

and protein balances in animal feeding are satisfied

(Stehfest et al., 2013). This entails primarily more and

improved bottom-up data on feed requirements, feed

compositions and substitution possibilities between dif-

ferent types of feed. Some PE models have already

incorporated a high level of detail on livestock system

description (Havl�ık et al., 2014), but it might be useful

to apply their results to determine how changes in live-

stock production can be better modeled in the more

aggregated CGE models. Applying these improvements

also to CGE models or linking the PE to the CGE model,

it becomes possible to (i) assess how increased pressure

on land through bioenergy mandates affects the live-

stock sector and what the necessary conditions are

under which changes in the livestock sector can mini-

mize undesired LUC, and/or (ii) investigate the econ-

omy-wide impacts of bioenergy mandates under

different livestock (productivity) development scenar-

ios. Given variable impacts of the intensification of the

livestock sector, additional environmental indicators

based on bottom-up and biophysical models, such as

GHG emissions, would also be needed to assess the full

impact from pasture intensification and change in

feeding systems.

Availability, use, and impacts of agricultural residues for
energy purposes

Many studies have indicated that residues from agricul-

ture and forestry activities form a significant part of the

total primary biomass resource base and may play a

crucial role in bioenergy supply (Smeets et al., 2007;

Dornburg et al., 2010; Haberl et al., 2010; Chum et al.,

2011). Residues are an attractive source of biomass since

they are a by-product of other activities and are often

considered underutilized. Thus, in principle, they do

not require additional land use or interfere with the

production of other commodities. Furthermore, IAMs

have indicated the large deployment of residues in sce-

narios with large GHG emission reductions due to their

assumed low costs and large supply (Rose et al., 2013).

The projected use of residues is based on a primary

potential whose availability and low cost is assumed as

a matter of fact. However, the potential sources, techni-

cal and economic aspects of supply, competition with

other uses or services, and environmental impacts of res-

idue removal (particularly of soil organic carbon levels

and soil erosion) are still not well understood (Schubert

et al., 2009; Dornburg et al., 2010; Chum et al., 2011;

Kenney et al., 2014). With different agricultural/forestry

techniques or economic conditions, the fraction of resi-

dues available for a biobased economy without nega-

tively affecting the environment and livelihood of

communities is likely to vary (Haberl et al., 2010). This

leads to an inadequate and highly variable assessment

of the technical, economic and sustainable potential of

residues and, in turn, results in a large range of residue

use in different studies.

Model collaboration for better assessing residue avail-

ability could take the following forms. Bottom-up, pro-

cess-based technical assessments can identify and

parameterize the factors that define residue removal

rates under different climate conditions, crop or forest

management systems [e.g., the combination of cover

crops with residue removal (Pratt et al., 2013)] and sus-

tainability constraints. Biophysical models can use this

information to determine the residue potential under

different scenarios for these factors. Determining collec-

tion costs structures in bottom-up assessments [see e.g.,

Leal et al. (2013) for sugarcane residues in Brazil] and

linking this with removal potentials from biophysical

models allow calculating the economic residue potential

(including cost-supply curves specified e.g., per region

and per agro-ecological zone). Next, PE, CGE, and IAM

models could assess the commodification and usage of

residues from a systems perspective. This would

include assessment of the impacts on agricultural and

energy systems as well as the social/economic effects of

their diversion from current uses. More specifically, in

CGE or PE model application one could look into the

potential effects of diverting residues to energetic uses,

be it reduction in land requirement due to an apparent

land-free resource, or expansion of land use due to com-

modification of residues. This can also help with the

assessment of crop prices under a certain biofuel target,

and the role residues can play in this setting. Output

from this analysis (e.g., amount and types of residues

that can be used economically, region of origin, and

effects on fertilizer use and costs) can be fed into an

IAM, which can then determine the broader, long-term

implications for the sustainability of climate mitigation

strategies of residue use for energetic purposes, includ-

ing GHG emissions and nutrient and erosion dynamics.

Combining environmental and economic assessments of

large-scale residue use for energy, including different

scenarios on residue removal restrictions, could thus

give a more comprehensive picture of the effects of

energetic use of residues than is currently available. In

addition, the combination of different models as pro-

posed here also allows assessing effects at multiple

timeframes, with e.g., CGE models’ main strength at
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short- to medium-term and IAMs at long-term assess-

ments (Section 2).

GHG emissions from land-use change

Land-use change induced by bioenergy feedstock pro-

duction and associated GHG emissions have fueled a

heated debate about the sustainability of bioenergy

(Searchinger et al., 2008). Several methodologies and

models have been developed to explore LUC-related

GHG emissions. Approaches based on CGE models have

received much attention because they capture the inter-

sectoral and inter-regional market linkages within an

integrated economy (Section 2.1). This enables the assess-

ment of shifts in production of commodities toward other

regions as a result of the expansion of bioenergy produc-

tion. However, the results of these modeling efforts entail

large uncertainties related to the magnitude, type [refer-

ring to the conversion from one type of land use to

another (e.g., forest to agriculture; grasslands to agricul-

ture; or more detailed from one crop to another)], timing

and location and therefore also the impacts of LUC (Yeh

&Witcover, 2010; Wicke et al., 2012).

Computable general equilibrium model estimates of

LUC and related GHG emissions are heavily dependent

on the assumptions on yield levels (how much land is

required to meet the supply of commodities), land sup-

ply functions (how much land is available), conversion

elasticities (how easily one type of land use is converted

to another), and GHG emissions per conversion type.

CGE models generally apply regional aggregates for

land productivity, and are therefore not able to

differentiate the yield response to less or more suitable

biophysical conditions. Although for a given agro-

ecological zone (AEZ) and country, the representation

of average productivities of cropland and other land

uses in CGE models might provide a reasonable esti-

mate, more research is needed to assess how accurate

these aggregates are for assessing LUC induced by bio-

energy. The land availability in CGE models takes into

account the land that is not suitable for agricultural land

use and land that is excluded for conversion because of

policy reasons (e.g., conservation). However, several

categories of land that should be excluded may spatially

overlap (e.g., a conservation area on steep slopes) which

can be missed when assessing land availability in a sta-

tistical way. Despite recent refinements to differentiate

conversion elasticities for different regions and types of

LUC (Laborde & Valin, 2012; Taheripour & Tyner,

2013a), these models cannot account for the complex

interactions driving LUC between social, economic and

biophysical drivers (such as neighboring land use,

access to infrastructure, distance to markets, and land

suitability) operating at multiple temporal and spatial

scales and varying for different crops (Verburg et al.,

1999). Thus, the ability to project LUC from a sole eco-

nomic driver, as is currently done in CGE models, may

be limited (Plevin et al., 2010).

Spatially disaggregated modeling of LUC (e.g., land-

use allocation models based on cellular automata) are

not only spatially but often also temporally more

detailed than CGE models. These types of models are

used to allocate the different land uses (including those

for energy crop production) over time, applying several

biophysical and socio-economic drivers. Given the spa-

tial variation in biomass and soil carbon stocks, spatial

and bottom-up models are in many ways better tools to

assess the impacts of LUC on carbon stocks. The use of

this type of model could result in drastically different

land-use conversion patterns and related GHG emis-

sions compared to models at spatially more aggregated

levels (van der Hilst et al., 2014; Yui & Yeh 2013). How-

ever, our understanding of the drivers of LUC and how

they vary across time and space is still limited (Lambin

et al., 2001; Verstegen et al., 2012). In addition, the finest

spatial resolution is not always the best, as this depends

on the scale of the modeled processes, and the proper-

ties and quality of the input data (Hengl, 2006; Kim,

2013). A potential solution is multi-scale modeling,

which links models with different scales to account for

feedbacks between different scales, for example the

effect of global developments on local level impacts

(e.g., Verburg & Veldkamp, 2004; Hellmann & Verburg,

2011).

Model collaboration of economic, land-use allocation

and biophysical models and better integration of bot-

tom-up information can help to reduce (some of) these

shortcomings and uncertainties and could therefore

improve the estimations of LUC-related GHG emis-

sions. For example, the CGE and land-use allocation

models could be compared in terms of land excluded

from LUC, average yield levels, and average GHG emis-

sions per type of land conversion. A next step could be

to align and harmonize these key features in the

models. Thereafter, a comparison could be made on the

aggregated results of the models on amount and type of

land-use change and the related GHG emissions. A

more advanced way of model collaboration is the inte-

gration and iteration between models by exchanging

data between CGE, land-use allocation, and process-

based biophysical models and bottom-up assessments

of economic performance. An illustration of how

models can collaborate to achieve a more accurate

estimation of biofuels-induced LUC and related emis-

sions is depicted in Fig. 2. Such a modeling framework

would also allow assessing how a limitation to carbon

stock changes (such as a carbon policy) can affect LUC

and its emissions.
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Conclusions

This article assesses model collaboration as one option

for improved assessments of biomass supplies and their

impacts. Existing modeling approaches adopt different

perspectives (e.g., short term, long term; local, global;

and economic, physical) and have unique applications

and strengths. However, limitations specific to the mod-

eling approaches exist, which are partly related to the

type of tools and methods applied (e.g., partial repre-

sentation of sectors, lack of geographical details, and

aggregated representation of technologies involved). At

the same time, key questions related to a biobased

economy also remain to be answered in more compre-

hensive ways than has so far been possible. Model col-

laboration is an important method for addressing these

limitations and open questions. For example, model

comparison can reveal new insights into the drivers and

differences in results across approaches. However,

model comparison may not always be sufficient in the

case of major structural and technological change con-

cerning the agricultural system, land use, and the econ-

omy. Model integration is taking collaboration between

models a step further and can help provide more

comprehensive insights into linkages, feedbacks and

trade-offs between different systems and impacts (e.g.,

economic and natural). But ensuring consistency of data

and methodology within models, and balancing the

complexity of model integration, collaboration and vali-

dation on the one hand and credibility of results on the

other hand are examples of key challenges for this type

of work.

Given the different types of model collaboration and

their opportunities and limitations outlined in this

paper, for the specific question being asked, it must be

evaluated if and in what form model collaboration is an
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Fig. 2 Illustration of model integration for the assessment of GHG emissions from land-use change. Data exchange can occur in sev-

eral ways. A crop growth model (1) can provide information on the spatial variation in yield levels. This information can be used in a

land-use allocation model (2), as it is essential for calculating the amount of hectares required to meet the demand [which is derived

from the CGE model (3)]. Iteration (4) between the land-use allocation model and the CGE model can be applied to harmonize the

average yield level to account for crop productivity that changes for the specific land allocated for conversion. A bottom-up economic

assessment (5) addressing the spatial variation in production costs could be used as an input for the land-use allocation model and

for the CGE model to assess the competition between land uses in every location. Also, calculated prices from CGE models could be

used as inputs to the land-use allocation model. A bottom-up model to calculate the change in carbon stocks (6) could be linked to a

land-use allocation model. It could be used to exclude land with high-carbon stocks for land conversions, which determines the land

availability in the land-use allocation model and the land asymptote in the CGE model. It could also be linked to the land-use alloca-

tion model, calculating the GHG emissions resulting from land-use change over time as demonstrated by van der Hilst et al. (2014).

Process-based technical data and other bottom-up information (7), for example, on crop productivity, economic performance of land

uses (cost-supply), transportation costs and GHG emissions related to the change in soil and biomass carbon emissions and costs of

production and transportation, feed into various other models.
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appropriate and useful tool. In those cases that full inte-

gration is considered useful, a key research challenge

relates to developing these coupled models. Such cou-

pled model systems most likely need to include

functionality for disaggregation or aggregation of infor-

mation (as socio-economic information might be pre-

sented at a different spatial and/or temporal resolution

than, for instance, land use information). Tools to cou-

ple different models are under development, but using

them in an effective way is still a challenge. First, there

are quite some technical obstacles in coupling models

from different disciplines as described in this paper.

Second, modelers might want to reconsider how to best

communicate their results of increasingly complex tools

to policy-makers. This is especially important in the

multifaceted and political debate about bioenergy. Now

policy-makers are often confronted with seemingly con-

trasting results of different studies. At least partly, these

differences originate from key assumptions made in the

analysis regarding, for instance, society’s ability to

implement sustainability criteria. Only if modelers are

successful in communicating how their results and

assumptions fit into the larger picture, will they contrib-

ute to the debate and decision-making in a constructive

manner.

Three examples of research areas that can benefit from

model collaboration are presented in this paper (devel-

opments in the livestock production; availability, use

and impacts of agricultural residues; and GHG emis-

sions from land-use change) and show how this cooper-

ation between models can strengthen our ability to

project biomass supply, demand, and impacts. This in

turn can aid in improving the information for policy-

makers and in taking better-informed decisions. The

examples also indicate that improved assessments neces-

sitate (i) a better understanding of underlying processes

to ensure proper representation of these processes in the

models, (ii) increased calibration and validation of mod-

els to increase accuracy and reliability, and (iii) extended

uncertainty analysis (including uncertainty propagation

throughout the whole modeling chain) to identify and

quantify the key input uncertainties, interpret the model

results, and prioritize future research activities.
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