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Abstract
& Key message Aggregated, consolidated, and derived soil
physicochemical data of 286 ICP Forests Level II plots were
completed with soil hydraulic properties for integrated use

with forest monitoring data. Database access should be re-
quested at http://icp-forests.net. Metadata associated
available at https://metadata-afs.nancy.inra.fr/geo
network/apps/georchestra/?uuid=153e599e-6624-4e2b-
b862-8124386ea9cd&hl=eng
& Context The ICP Forests database is one of the most com-
prehensive forest ecosystem datasets in Europe and contains
the accumulated results of more than two decades of
harmonised forest monitoring all over Europe.
& Aims The aim of this paper is to share knowledge on the ICP
Forests Level II soil data for broader use among forest
scientists.
&Methods After standard analysis, quality checks, aggre-
gation, and calculation of derived variables (e.g. nutrient
stocks, base saturation, C:N ratio, and water retention
parameters), data have been gathered into a static data-
base (AFSCDB.LII.2.2), which will be updated to new
versions as soon as new measurements become
available.
& Results The database provides a basis for the combined
evaluation of up to 130 unique soil variables of 286 plots with
dynamic data on tree growth, ground vegetation, foliar chem-
istry, crown condition, tree phenology, leaf area index, ozone
injury, litterfall, soil solution chemistry, deposition, ambient
air quality, and meteorological data assessed on the same
plots.
&Conclusion The unprecedented comprehensiveness and lev-
el of detail in this newly aggregated database may overcome
existing restrictions so far impeding the realisation of large-
scale forest ecosystem studies in Europe.

Keywords Monitoring . Base saturation . C:N ratio . Cation
exchange capacity . Available water capacity . Soil water
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1 Introduction

1.1 European forest monitoring network

The In te rna t iona l Co-opera t ive Programme on
Assessment and Monitoring of Air Pollution Effects on
Forests (ICP Forests, www.icp-forests.net) acts since
1 9 8 5 und e r t h e Conv e n t i o n o n Long - r a n g e
Transboundary Air Pollution of the United Nations
Economic Commission for Europe (CLRTAP/UNECE).
The 42 participating countries monitor the condition of
forests in Europe on two different monitoring intensity
levels: Level I locations are more than 11,000 forested
points in a network of grid cells of 16 km× 16 km over
Europe (without instrumentation), and Level II locations
are actually 525 comprehensively instrumented plots in
selected forest ecosystems across Europe. While the
Level I network was constructed as a dense and spatially
representative grid of forest sampling points, the Level II
is dedicated to in depth investigations on relationships
between all relevant forest ecosystem traits and processes
in monitoring plots. The plots were selected by national
forest institutes for long-term permanent monitoring. The
investigations comprise continuous measurement surveys
on meteorology, ambient air quality, deposition, litterfall,
and soil solution chemistry (about monthly); annual sur-
veys on crown condition, tree phenology, leaf area index,
ground vegetation, ozone injury, and foliage compounds;
and biannual surveys on foliar chemistry, five-yearly sur-
veys on tree growth and ground vegetation, and repeated
characterisations of soil condition every 10–20 years.
The AFSCDB.LII.2.2 refers to the latest (second) soil
survey. All assessments are executed following the ICP
Forests Manual on Methods and Criteria for Harmonised
Sampling, Monitoring and Analysis of the Effects of Air
Pollution on Forests (ICP Forests 2006, 2010; Cools and
De Vos 2013), which is regularly updated with regard to
new methodological developments and field protocols.

1.2 European supporting project

Historically, information on soil condition was collected
by the participating countries since 1993, when the
European Commission for the first time supported a
harmonised monitoring programme on Level II plots in-
cluding a soil survey (European Commission 1994). The
first Level II soil condition survey, carried out between
1993 and 1995, provides the reference for the second soil
condition survey that started about 10–15 years later. The
countries continued, standardised, and extended their soil
assessments in the second soil condition survey during the
BioSoil demonstration project within the EU project
Forest Focus (Regulation (EC) No. 2152/2003 of the

European Parl iament and of the Counci l on 17
November 2003 concerning monitoring of forests and en-
vironmental interactions in the Community, 2006–2007,
127 Level II plots) and the EU Life+ project FutMon
(2009–2011, 118 Level II plots). During the BioSoil pro-
ject, it was also possible to deliver formerly collected soil
profile and horizon description information as long as the
measurement criteria were met for a specific variable.

1.3 Evolution of sampling design

Soil sampling and analysis was carried out by national insti-
tutes in charge within the participating countries following the
Manual on Sampling and Analysis of Soil in the versions valid
in the respective years (Expert Panel on Soil and Forest Soil
Coordinating Centre 2006; Cools and De Vos 2010 including
the FutMon field protocol for the determination of soil water
characteristics). The Forest Soil Coordinating Centre of ICP
Forests (FSCC) processed all available Level II soil data after
the second soil survey (predominantly BioSoil and FutMon
data) and consolidated these data in a plotwise-aggregated
format in the Aggregated Forest Soil Condition Database of
the Level II 2nd soil survey version 1 (AFSCDB.LII.2.1,
Cools and De Vos 2014), which provided the basis for the
actually presented version 2 (AFSCDB.LII.2.2). The actual
version was extended to include soil hydraulic properties
and nutrient stocks and has undergone a number of additional
checks and corrections.

1.4 Database content

Using standard soil profile descriptions (FAO 2006; Expert
Panel on Soil and Forest Soil Coordinating Centre 2006)
and analysed soil samples that were mainly gathered between
2003 and 2010 from 286 Level II plots, AFSCDB.LII.2.2
contains the main soil variables of the forest floor (noted OL
and OFH layers on database), the horizons of the mineral soil,
and fixed depth layers noted M01, M12, M24, M48 (resp. 0–
10, 10–20, 20–40, and 40–80 cm) for mineral or peat soil.
Supplementing this dataset, next to the aggregated soil data,
the database contains derived soil variables that were calcu-
lated from raw data, e.g. base saturation, cation exchange ca-
pacity and C:N ratios, nutrient stocks, field capacity, perma-
nent wilting point, plant available water capacity, and the wa-
ter retention parameters of theMualem/van Genuchten model.
The RETC code (RETention Curve code, van Genuchten et al.
1991), was used for separate approximations of the Mualem/
van Genuchten model to the observed soil water retention data
series from each sample. A table of quality code is included in
the database; it permits to trace back the applied methods, the
quantification limits, and the ring-test proficiency of the lab-
oratories that produced the analytical data (König et al. 2013).
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2 Main features and potential use of the database

Two aspects of the AFSCDB.LII.2.2 make it a unique data-
base: Firstly, it applies a transnationally standardised method-
ology for comprehensive and quality controlled soil analyses
to a large number of forest soils across Europe, and secondly,
it combines this information with soil hydraulic properties
related to the same dataset. On the 286 plots, 318 profiles have
been dug, the database represents 2083 sampled pedogenetic
horizons and 1480 fixed depth layer samples with up to 100
soil variables determined and documented from each sample.
Geographical coverage of the database is well convenient,
extending over 35° of latitude from North to South and over
42° of longitude from East to West (Cools and De Vos 2014).
Plots cover nearly all member states of the European Union
from Cyprus to Ireland and from Northern Finland to
Southern Spain with a majority in Central Europe (Fig. 1).

As dominant characteristics of forest soils, the database
contains the parent material, the humus type, the texture, the
water retention capacity, and the availability of nutrients for
forest growth. The following section provides a summarising

description of these variables for the whole aggregated
dataset.

2.1 Parent material

The most abundant soil parent material among the Level
II plots is unconsolidated glacial deposits and glacial
drift (27 %). It represents with unconsolidated and the
eolian deposits about half of all plots considered. About
40 % of plots are based on consolidated bedrock of dif-
ferent origin (igneous, consolidated-clastic-sedimentary,
metamorphic, and sedimentary origin: 13, 10, 9, and
6 %, respectively). Only 2 % of the plots are located
on organic materials. For the remaining 12 % of the
plots, the parent material is unknown.

2.2 Humus type

Type and rate of organic material decomposition and its incor-
poration into the soil varies among forests due to different soil
and climatic conditions (Zanella et al. 2011). Hence, the

Fig. 1 Geographical distribution of Level II plots in the AFSCDB.LII.2.2 database
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humus type reflects the long-term development of these con-
ditions and has a direct impact on nutrient availability. Moder
is the dominant humus type on the Level II plots in the data-
base (Fig. 2), occurring on about 30 % of the plots. It is
followed by Mor (26 %) and Mull (18 %). Rare humus types
in the database are Histomor (3 %), Anmoor and Amphi
(1 % each). For 23 % of the plots, the humus type is not yet
available but is expected to be completed in future database
versions.

2.3 Texture class

Some soil-derived properties are strongly dependent of soil
texture, for example, soil porosity (Bruand and Cousin
1995), soil bulk density (De Vos et al 2005), and soil hydraulic
characteristics (Saxton et al. 1986; Wösten et al. 2001; Toth
et al. 2015). Depending on the fixed depth layer, this informa-
tion is available for 60–80 % of the plots. “Loam” is the most
frequent texture class in the topsoil till 20 cm (20 % of the
plots), while “Sandy loam” is the most frequent texture class
in the lower layers (20–80 cm, 18–26 %, Fig. 3). “Sandy
loam” is also the second most important texture class in the
upper layers (about 18 %). The texture class “sand” is more
often found in the subsoil below 20 cm depth than in the top
soil, but this is the case for some of the clay dominated texture
classes (“clay,” “clay loam,” and “silty clay”) as well.

2.4 Plant available water

The soil water retention functions indicate the capacity of the
soil to retain water against gravitation (field capacity). The
water content at field capacity (pF=1.8) was on most plots
between 25 and 35 % of the soil volume, with minimum
values around 5 % and a maximum value above 70 %
(Fig. 4b). Values between 10 and 52 % would be expected
for Central European soils (AG Boden 2005), a range into
which about 90 % of the Level II plots in the database fall.
By definition, the available water content (AWC) is the

difference between the water contents at field capacity (FC)
and permanent wilting point (PWP, pF=4.2). For raw calcu-
lation without gravel content correction, most plots are includ-
ed on 10 and 20 % of the soil volume, ranging from 5 to 35 %
for 90 % of the plots (Fig. 4c).

The analysis of soil water retention measurements was
based on a conservative approach by applying approxi-
mations of the Mualem/van Genuchen function (van
Genuchten et al. 1991) to the measured data using the
software RETC. The stable S-form of this function guar-
antees a monotonically decreasing water content with
decreasing matric potential and is not sensitive to mea-
surement errors due to its limited flexibility. Unreliable
or too scarce measurement results were excluded from
the analysis. The use of RETC eliminates degrees of
freedom in the approximation procedure as residual wa-
ter content was always set to 0 and tortuosity to 0.5.
Samples for determination of soil water retention charac-
teristics usually originated from three soil pits per plot.
In many cases, one soil pit was identical to the pit for
the description of the soil profile. Three samples were
taken within each pit. Each soil water retention measure-
ment series was approximated separately with the
Mualem/van Genuchten function, so that up to 13 differ-
ent soil water retention results were obtained from the
replicate measurements within the same fixed depth layer
of a plot. The soil water retention function with the plot-
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Fig. 2 Humus type of the European forest soils in the database

Fig. 3 Relative contribution of the different texture classes in four depth
layers of European forest soils in the database: assessed mineral soil
layers range from 0 to 10 cm (M01), 10 to 20 cm (M12), 20 to 40 cm
(M24), and 40 to 80 cm (M48)
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representative Mualem/van Genuchten approximation
was selected based on its r2-value to all measurements
on the plot for a given depth layer in order to derive the
plot representative values.

2.5 Nutrient stocks

The database allowed to calculate nutrient stocks in for-
est floors and mineral soils which required organic layer
mass, bulk density, coarse fragments, layer thickness, and
soil depth in addition to the layer-based concentrations of
C, N, S, and P. The nutrient stocks of these elements
were quantified using the same methods as applied in
De Vos et al. (2015) for SOC stock estimations. Stock
of an element in the forest floor was determined for each
OFH and OL layer separately as the product of organic

layer mass and the concentration of the element. The
sum of both layers yielded the forest floor stock of the
element. For stocks in mineral soil, first, we calculated
for each depth fixed layer the nutrient density (in tons of
nutrient/ha/cm of soil depth) incorporating bulk density
and volume of coarse fragments. Secondly, we fitted on
depth by using mass-preserving spline functions (Odgers
et al. 2012). And thirdly, stocks in mineral soil were
determined by integrating the nutrient density values
from 0 cm to the reference depths of 30 and 100 cm or
to effective soil depth (e.g. lithic contact, see De Vos
et al. 2015). Spline functions were used to extrapolate
nutrient density values from the maximum sampling
depth of 80 to 100 cm.

The average stocks in forest floors were 23 tC ha−1,
0.93 tN ha−1, 0.052 tP ha−1, and 0.102 tS ha-1. The carbon
stocks till 1 m depth (if soil was not shallower) ranged from 17
to roughly 400 tC ha−1 for 90 % of the plots, reaching over
800 t ha−1 for peat soils (Fig. 5a). Most plots stored between
50 and 150 tC ha−1. Nitrogen stocks reached values up to
35 tN ha−1, with most plots lying in the range of 0.7 to
10 tN ha−1 (Fig. 5b). Phosphorous stocks were in most cases
below 3 tP ha−1, reaching a maximum value of about
11 tP ha−1 (outlier: 24 tP ha−1) (Fig. 5c). Sulphur stocks could
only be calculated on about half of the plots. They typically
were in the range of 0.3–2 tS ha−1, with maximum values over
8 tS ha−1 (Fig. 5d).

2.6 Reference soil group

Despite the fact that AFSCDB.LII.2.2 covers almost all EU
member states, it may not in all aspects provide representative
information for European forest soils. When comparing with
the Level I dataset as a geographically representative dataset
for European forests, AFSCDB.LII.2.2 shows a generally
similar distribution of world reference base (WRB) soil
groups, but certain reference soil groups (Leptosols,
Regosols, and Histosols) are underrepresented, while others
(Luvisols, Podzols and Arenosols) are overrepresented in the
dataset (Fig. 6).

2.7 Tree species repartition

Major differences are also visible with regard to tree species:
While the major tree species on the Level I grid are Pinus
sylvestris and Picea abies, with Fagus sylvatica and
Quercus robur being much less abundant, AFSCDB.LII.2.2
contains mostly plots with P. abies as dominant tree species,
followed by P. sylvestris and F. sylvatica, that cover almost
similar shares of plots. The proportion of beech is twice as
high as compared to Level I (Fig. 7).
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Fig. 4 Frequency distribution of soil moisture at permanent wilting point
(a), soil moisture at field capacity (b), and available water content (c) over
all fixed depth layers on all Level II plots in the database
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2.8 Representativeness of database

Scaling up of the results obtained on Level II to the
European level may be mediated using the spatially sys-
tematic soil inventory on Level I, where similar defini-
tions are applied in less intensive monitoring campaigns,

comprising a limited set of parameters. Due to the partial
non-representativeness of the AFSC Level II database in
spatial terms, it is in many cases not adequate to use
generalising statistical deduction methods based on the
whole dataset. Instead, we recommend using upscaling
methods based on the covariance between Level II and
Level I variables to achieve larger spatial coverage. In
those cases where statistical deduction methods are nec-
essary, it is possible to use some kind of bias correction
for the AFSCDB.LII.2.2 data, if the frequency distribu-
tions of the most sensitive variables at the target scale
are available.

Reasons for the partial non-representativeness of the
dataset with regard to tree species or soil type may be
found in the criteria for the selection of the Level II
plots (European Commission 1994). The plots had to
be located in such a way that the more important forest
tree species and more widespread growing conditions in
the respective country were represented. The plots had to
be easily accessible at all times and with limited restric-
tions for sampling and observations. Consequently, re-
mote areas (such as boreal marshes, high-altitude moun-
tains, and swamps) are underrepresented and with them
those tree species and soil types that prevail in these
areas. On the other hand, it was important to include
forests with high vulnerability to acid deposition. Such
forests usually grow on acid soils such as Podzols and
Arenosols.

2.9 Potentiality of database

Many options are available to evaluate this database.
First of all, the database provides an exhaustive set of
soil variables that may be used to study relationships
between different soil traits. Secondly, the large amount
of chemical soil variables allows to investigate the fate
and behaviour of substances drop off on the forest eco-
system (Ranger and Turpault 1999; Augustin et al. 2005;
De Vries et al. 2007; Waldner et al. 2015). Thirdly, the
data were obtained in a long-term monitoring programme
providing time series of ecosystem variables. This offers
many options for integrated evaluations of soil data with
other temporal assessments on the same plots such as
crown condition, foliar chemistry, or tree growth,
allowing in-depth analyses with mechanistic models
(e.g. van der Salm et al. 2007; Reinds et al. 2008;
Jochheim et al. 2009; Mol Dijkstra et al. 2009) in order
to better understand cause-effect relationships in forest
processes and responses to environmental impacts
(Lorenz and Fischer 2013).

A combination of the 286 plots with other surveys conduct-
ed in the forest monitoring programme shows good overlap
with long time series of variables in the surveys of crown
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condition, foliar analyses, tree growth, deposition, and mete-
orological measurements (up to 200 plots available), and even
the lowest overlap (survey on continuous soil moisture mea-
surements) provides more than 40 plots for combined analysis
with the aggregated soil data (Table 1). For this survey, there
are additional data available via the national institutes partic-
ipating in ICP Forests. Additional options emerge since the
focus of ICP Forests broadened from air pollution impact on
forests to a more integrated environmental monitoring pro-
gramme for forests including biodiversity and climate change
aspects. Due to continuous improvements, more parameters
are assessed, providing new information for the same plots.
Finally, since the soil survey at Level II plots follows the same
manual as for Level I plots, the database offers additional
options for spatially explicit upscaling on the European scale.

3 Structure of the database and metadata

3.1 Database content

The AFSCDB.LII.2.2 database contains both measurements
from horizon-based sampling (up to 88 unique soil variables)
and from fixed depth layer composite sampling (about 73 soil
variables plus 14 variables on laboratory quality). In addition,
18 more variables describing soil water retention are related to
both sampling strategies. All these variables are combined
with explanatory variables like geographical location and date
of sampling and analysis, so that they may be linked with
other information collected on the same plots.

On each plot, horizon-based sampling, layer based sam-
pling, or both have been performed. Up to three profiles were
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classified per plot following IUSS WRB Working Group
(2007). On 95 % of the profiles, between 3 and 12 horizons
were described following international reference guidelines
(FAO 2006) and samples were taken for laboratory analysis.

The layer-based sampling comprises 1480 records (i.e.
layers) with laboratory analyses performed on the composite
samples taken at fixed depths. The median number of sam-
pling points per plot was 24, consisting of three replicates per
layer with eight subsamples each. Data availability is best for
the upper 10 cm of the soil profile and is decreasing with
depth. The soil variables belong to the following categories
(in parentheses: numbers of available horizon-specific/layer-
specific variables): horizon or layer structure and designation
(31/4), parent material (3/3), soil physics (6/3), texture (6/6),
hydraulic properties (10/10), groundwater (4/5), international
soil classification (13/13), humus layer (1/2), stocks of chem-
ical compounds (3/23), exchangeable cations (13/15), extract-
able elements (2/18), and roots (6/2). The explanatory vari-
ables refer to geographical-, plot-, and profile-related location
of the measurements (23/21), date of measurements and anal-
yses (10/10), measurement method (14/16), and statistical or
ring-test-based analytical quality of the results (12/13).

While not all of these variables are yet available for every
single plot, it remains the ultimate objective of the ICP Forests
community to complete and extend the dataset in coming
versions of the database. The current database version is there-
fore available as a permanent archive via the ICP Forests
programme-hosted repository. Updated versions will be added
in the future.

3.2 Derived data

The layer-based dataset contains a number of derived soil
variables such as the C:N ratio, the sum of the basic (BCE)

and acid exchangeable cations (ACE), the base saturation
(BS), and the cation exchange capacity (CEC). In order to
allow calculations with small concentrations below the limit
of quantification (LOQ), they have been replaced by half the
value of the median LOQ of all labs participating in the FSCC
interlaboratory ring tests (Cools et al. 2003, 2006, 2007; Cools
and De Vos 2009). The layer-based analytical results have
been recalculated to obtain one layer-specific mean value
per plot for each variable. Data availability is best for the soil
variables pH-CaCl2, organic carbon, and total nitrogen.

Nutrient stocks in forest floors could be quantified for 263
out of 286 Level II plots for C and N, and on 185 and 156 plots
for P and S stocks, respectively. Carbon and nitrogen stocks in
mineral soils were determined for 239 level II plots (84 %), P
stocks on 188 plots (66 %) and S stocks on 147 plots (52 %).

Soil water retention characteristics (FC, AWC, and PWP)
are layer representative and horizon representative. One thou-
sand six hundred fifty-two measured pF-curves were used to
derive plot-representative soil water retention functions for
353 fixed depth intervals of 103 Level II plots.

3.3 Quality control and assurance

A limitation of the dataset may be seen in the fact that analyses
were carried out by different national laboratories in Europe
instead of one central lab. Even after detailed cross-checks of
every variable, it cannot be excluded that there are still incon-
sistencies in the database. However, extensive ring test and
training activities have been carried out during the soil survey
and show convincing results (König et al. 2013). Furthermore,
national labs are trained and specialised in the analysis of local
soil types and have high experience in the interpretation and
validation of the analytical results. Layer-based data submitted
from the survey year 2009 onwards are accompanied by

Table 1 Number of plots with coinciding aggregated soil data in the AFSCDB.II.2.2 and forest ecosystem monitoring data series till 2010

Year 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10

Crown condition 6 20 8 10 37 128 156 173 179 172 169 191 142 163 205 183 202 223 184 242 242

Foliar analysis 2 4 12 20 129 69 132 47 166 35 182 69 129 37 192 30 160 59 201 78

Deposition analysis 4 5 17 19 53 120 146 145 152 156 158 138 173 170 187 200 201 194 209 221

Growth and increment 16 9 16 45 58 63 34 10 81 83 11 11 18 87 92 20 20 22 159 50

Meteorology 2 3 3 4 12 43 69 77 98 103 99 92 100 111 111 130 134 129 178 176

Soil solution analysis 2 8 6 7 17 47 65 81 90 88 95 82 105 115 110 127 131 122 152 155

Ground vegetation 19 46 17 77 67 52 66 34 77 49 55 59 40 6 145 84

Air quality 1 21 21 56 55 57 40 64 77 87 144 137

Litterfall 23 30 37 52 51 81 61 144 155

Phenology 16 25 37 41 46 43 46 91 114

Ozone injury 30 32 29 21 24 33 31 93 90

Leaf area index 95 133

Ground vegetation nutrients 89 74

Soil water content 1 46 49
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information on quality assurance and quality control (Tables 2
and 3). The laboratory methods are provided by a detailed
coding system. Information on the within-laboratory quality
programme is provided together with information on the per-
formance of the laboratory for the concerning soil analytical
variable in the FSCC interlaboratory ring tests.

3.4 Recommendation database use

The verification of database contents has been done as far as it
was possible over years, and the remaining insecurity of the
measured values is very small. However, we recommend to
report singularities, i.e. unexpected relationships of single
measurements that may only become visible in combined
evaluations with other variables to the FSCC in order to verify
the specific background of a certain measurement. This way,
the database content can successively be brought to perfection
and thereby profit from its use in research projects.

A goal in the database set-up was also to enable the users to
directly access the original measured values. For this reason
and since there are different preferences in the aggregation of
results over several layers or horizons, it was explicitly
avoided to establish fixed links between horizon-based quan-
tities and layer-based quantities. The users themselves can
establish this link in the way and with the preferences they
need it, based on the available information to the measured
extension of horizons or sampling depths. Also, in those cases
of summarising variables, where the number of missing values
was high, the user should decide how to treat this based on the
specific needs of the actual evaluation.

3.5 Organisation of database

Figure 8 shows the relationships between tables of the
database and the primary keys necessary to link tables:

The horizon-specific measurements (table PFH) are al-
ways linked to their respective soil profile information
(PRF) and to the plot information (PLS). Independent
from that, layer-based sampling results (table SOM),
which were made in a plot-representative way, are direct-
ly linked to the plot describing variables in PLS. An
automated link between data from both sampling strate-
gies is not possible, though it may be constructed by the
user based on assumptions on the plot representativeness
of the horizons described in the soil profile. The labora-
tory analytical quality variables (table LQA) refer to the
layer-based measurements. The pF-curve data (SWA)
from different profiles on the plot were taken in the most
representative horizon of the respective depth interval
and are, thus, linked to layer-based variables as well as
to horizon variables. The same is true for the plot-
representative soil water retention variables (SWR) that
are based on the most representative pF-curve for a given
layer and horizon. The plot aggregated nutrient stocks
(STO) are derived from layer-based variables along with
profile information (e.g. effective soil depth) and relate
directly to the plot information.

3.6 Metadata

Metadata to the whole database are given at https://metadata-
afs.nancy.inra.fr/geonetwork/apps/georchestra/?uuid=153
e599e-6624-4e2b-b862-8124386ea9cd&hl=eng. The
metadata file includes several tables: (1) a documentation on
data provision and discovery, (2) information on the origin
and context of the database, and (3) a technical documentation
of the meaning of all variable names (short explanations) with
automated links to their occurrence in the data table headlines
and vice versa. Next to this, the eight soil data tables (PLS,
PRF, PFH, SOM, STO, SWA, SWR, and LQA) are followed
by 28 key code tables that provide a list of those values that
coded variables may exhibit (e.g. altitude is classified as a
coded variable exhibiting 51 possible values). Wherever the
name of a coded variable appears, the key code tables are
accessible via automated links.

Additional supplementary material comprises (1) a com-
plete list of the tables in the database and the data format of
their variables, (2) an entity relationship model of the data-
base, and (3) a data dictionary.

The data dictionary provides the most exhaustive infor-
mation on methodological aspects and original definitions
of each variable at the time of measurement. It is a pdf file
with automated text links to the relevant parts of most of the
original manuals that were followed during the description,
sampling, and analysis of the forest soils (PCC 2012; IUSS
Working group WRB 2006, 2007; FAO 2006; Expert Panel
on Soil and Forest Soil Coordinating Centre 2006;
Cools and De Vos 2010; AG Boden 2005; König et al.

Table 2 The number and type of soil layers contained in the dataset
with the “sampling and analysis at fixed depths” (SOM) information

Code of layer Depth of the layer Mean thickness (cm) N° layers

OL Variable 1.7 (0.5; 4)a 190

OFH Variable 4.1 (1; 13)a 244

M01 0–10 cm 10 254

M12 10–20 cm 10 253

M24 20–40 cm 20 241

M48 40–80 cm 40 204

H01 0–10 cm 10 6

H12 10–20 cm 10 6

H24 20–40 cm 20 5

H48 40–80 cm 40 1

a 95 % range
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2010). References are given to those manuals where impor-
tant other information originates from (Finke et al. 2001;
Munsell 1975).

4 Data access and data policy

The database is archived at the Programme Co-ordinating
Centre (PCC) of ICP Forests in Eberswalde, Germany.
Access to these aggregated data can be requested via the offi-
cial project homepage: http://icp-forests.net. Under the menu
“Plots and data - data requests” the official data request form is
provided. The requesting part has to provide an abstract on the
scientific purpose and approach to PCC, which will be evalu-
ated by the ICP Forests Expert Panel on Soil and Soil Solution
(e-mail: FSCC@inbo.be). A positive evaluation will usually
imply the condition to invite one or more of the authors of the
database to collaborate in the use of the data. For data usage in
announced collaboration with the expert panel, PCC will

Table 3 Number of aggregated data in the SOM dataset for the concerning variables and layers (OL, OFH, M01, M12, M24, M48) available on the
286 Level II plots contained in the AFSCDB.LII.2.2

Forest floor Fixed depth Forest floor Fixed depth

Layer/variable OL OFH M01 M12 M24 M48 Layer/variable OL OFH M01 M12 M24 M48

CLAY 188 190 219 168 BCE 30 227 246 245 243 185

SILT 188 190 219 168 ACE 26 216 242 241 239 182

SAND 188 190 219 168 CEC 30 227 246 245 243 185

BD 195 184 172 143 BS 30 227 246 245 243 185

BDEST 27 29 29 28 EXTRAL 124 183 203 161 157 116

CFMASS 67 62 62 24 EXTRCA 134 229 224 202 196 143

CFVOL 188 186 171 172 EXTRCD 132 218 228 158 156 122

ORGLAY 183 224 EXTRCR 120 191 204 158 157 116

PHCACL2 59 243 259 259 245 188 EXTRCU 133 230 246 173 169 127

PHH2O 47 211 223 218 216 161 EXTRFE 131 203 222 169 166 124

OC 130 242 260 259 244 187 EXTRHG 39 49 58 38 36 36

TON 128 242 260 259 244 187 EXTRK 134 230 224 202 196 143

CN 128 242 259 256 229 160 EXTRMG 134 230 224 202 196 143

EXCHACID 25 213 237 235 233 174 EXTRMN 133 230 225 203 198 145

CARBONATES 4 24 34 36 37 33 EXTRNA 107 178 196 148 146 104

EXCHAL 26 212 242 241 238 181 EXTRNI 121 193 207 161 160 119

EXCHCA 30 227 246 245 243 186 EXTRP 134 230 224 203 198 145

EXCHFE 26 212 242 241 239 182 EXTRPB 133 230 246 172 169 127

EXCHK 30 227 247 246 244 188 EXTRS 123 172 191 152 150 106

EXCHMG 30 227 247 246 244 188 EXTRZN 133 230 246 171 167 125

EXCHMN 30 223 247 246 244 188 REACAL 26 71 166 165 166 125

EXCHNA 30 227 247 246 244 188 REACFE 26 71 166 165 166 125

FREEH 27 218 243 242 239 182

Variables for particle size fractions, bulk density (BD), coarse fragments (CF), the organic layer’s dry weight, pH values, organic carbon content (OC),
total organic nitrogen (TON), carbonates, exchangeable cations, and extractable elements are considered in this table

Plot (PLS)

Profile 
(PRF)

Horizon (PFH)Plot_ID, 
CODEPROFILE

Layer 
(SOM)

Soil Water 
Retention (SWR)

Plot_IDPlot_ID

Plot_ID, 
CODEHORIZON

Plot_ID, 
CODELAYER

Laboratory 
Quality Analysis 
(LQA)

Plot_ID, 

Plot_ID

Stocks

(STO)

Plot_ID

Plot_ID

Soil Water Assessments 
(SWA)

Plot_ID, 
CODELAYER

Plot_ID

Plot_ID, 
CODELAYER 
SW_ID

Plot_ID, 
CODEHORIZON

Fig. 8 Relationships between the data tables in the database. Horizon-
specific properties (PFH) are linked to profile descriptions (PRF) on the
plots (PLS), while the plot-representative results from layer-based
sampling (SOM) as well as the nutrient stock calculations (STO) relate
directly to the plots (PLS). The plot-representative soil water retention
properties (SWR) and the data for their derivation (SWA) relate to data
from both sampling strategies. Deeper insights in the relationships
between tables are available in electronic supplementary material format
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usually provide the database within a few days (maximum
2 weeks after submission of the data request).

5 Conclusions

A main advantage of the database is the accessibility of de-
tailed soil information that was sampled in a harmonised way
over such a large and fragmented area as Europe. A lack of
such detailed and harmonised information had been identified
by several studies (Köhl et al. 2000; De Vries et al. 2007;
Morvan et al. 2008; Clarke et al. 2011; Danielewska et al.
2013). A specific asset is the combination of physicochemical
and structural soil variables with laborious-to-measure soil
hydraulic properties, which enables the investigation of
pedotransfer functions for soil hydraulic characteristics
(Wösten et al. 2001; Teepe et al. 2003).

The combination of these soil data with long-term time
series of various other forest ecosystem variables measured
on the same plots makes this database an interesting source
of information for integrated forest ecosystem studies (Ferretti
et al. 2014; De Vries et al. 2014). The comprehensive picture
of processes and state variables in a forest that may be provid-
ed this way is indispensable for a quantitative understanding
of ecosystem processes based on ecosystem models:
Statistical models can be validated with time series over more
than 10 years in most cases. The application of parameter-
demanding mechanistic and dynamic ecosystem models is
possible as well as the calibration or validation of non-
dynamic models. Even the slow dynamics behind soil models
(e.g. carbon balance models) may be validated by a combina-
tion with older data, since the data of the first soil survey that
took place between 1989 and 1995 are available for 184 of the
286 plots. Every year of further assessments on each of the
common plots extends these possibilities due to longer time
series. It is this kind of quantitative understanding that enables
forest researchers to estimate the responses of forest ecosys-
tems to changing climate, pollution, and other conditions that
may be expected for the future.

Upsca l ing of re su l t s f rom the eva lua t ion o f
AFSCDB.LII.2.2 information to the forested area of Europe
is possible using the spatially representative Level I informa-
tion. This enables proper upscaling approaches using e.g. tree
species or soil groups as stratification criteria.

Based on the enhanced efforts for quality control and as-
surance, we believe that this dataset reaches an unprecedented
degree and quality of harmonisation of forest soil data. We
hope this aggregated soil database will be widely used, and
we encourage the users to report eventual errors or inconsis-
tencies to the FSCC in order to improve database quality.
Future updates of this aggregated soil database are also
planned to include externally derived data.
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