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Stability of buried carbon in deep-
ploughed forest and cropland soils 
- implications for carbon stocks
Viridiana Alcántara1,2, Axel Don   1, Lars Vesterdal3, Reinhard Well1 & Rolf Nieder4

Accumulation of soil organic carbon (SOC) may play a key role in climate change mitigation and 
adaptation. In particular, subsoil provides a great potential for additional SOC storage due to the 
assumed higher stability of subsoil SOC. The fastest way in which SOC reaches the subsoil is via burial, 
e.g. via erosion or deep ploughing. We assessed the effect of active SOC burial through deep ploughing 
on long-term SOC stocks and stability in forest and cropland subsoil. After 25–48 years, deep-ploughed 
subsoil contained significantly more SOC than reference subsoils, in both forest soil (+48%) and 
cropland (+67%). However, total SOC stocks down to 100 cm in deep-ploughed soil were greater than 
in reference soil only in cropland, and not in forests. This was explained by slower SOC accumulation in 
topsoil of deep-ploughed forest soils. Buried SOC was on average 32% more stable than reference SOC, 
as revealed by long-term incubation. Moreover, buried subsoil SOC had higher apparent radiocarbon 
ages indicating that it is largely isolated from exchange with atmospheric CO2. We concluded that deep 
ploughing increased subsoil SOC storage and that the higher subsoil SOC stability is not only a result of 
selective preservation of more stable SOC fractions.

Soil organic carbon (SOC) is currently receiving increasing attention in science and politics due to its great poten-
tial to act as a sink for atmospheric CO2 and thus mitigate climate change1. SOC may also help to adapt to climate 
change because of its beneficial effect on soil structure, water-holding capacity and nutrient retention2. SOC 
sequestration is generally achieved, when C inputs outbalance C losses through decomposition. Apart from land 
use conversions such as converting cropland to forest, SOC accrual can be achieved through implementation of 
certain management practices including conservation agriculture, cover crop cultivation and mulch farming, 
among many others3, 4. Currently, most SOC sequestration management measures are based on assessment of 
the increase in SOC content in the top layers of the soil. However, over half of world’s total SOC is located below 
30 cm depth, in the subsoil5, 6. Although SOC concentration decreases with depth, SOC stocks in subsoil are 
mostly greater than in topsoil because subsoil has a larger soil mass, and thus larger potential storage capacity, 
than topsoil.

Subsoil OC is reported to be more stable than SOC near the soil surface, a trend inferred from increasing 
apparent radiocarbon age with depth, indicating that deep SOC has prevailed in soils and has been excluded from 
exchange with the atmosphere for centuries to millennia7, 8. It has been widely suggested that subsoil has great 
potential to store additional SOC than topsoil9, 10 because of the large number of unsaturated mineral surfaces11 
and environmental conditions that slow SOC mineralisation12 (e.g. more constant moisture and temperature 
regime or oxygen limitation). Additional carbon inputs have been observed to decompose more slowly in subsoil 
than in topsoil13. These slower SOC mineralisation rates in subsoil have been attributed to the lower SOC content, 
which results in a lower density of decomposing microorganisms and thus a lower possibility of any SOC present 
being mineralised14. Also lower oxygen concentration in subsoils and less disturbance via drying-rewetting and 
freezing-thawing cycle and via tillage has been discussed as reasons for higher SOC stability in subsoils12.

Carbon enters subsoil mainly with aboveground and belowground litter, dead roots and root exudates, dis-
solved and particulate organic carbon (OC) transported via large pores or through biological soil reworking 
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(bioturbation)10. However, deeper burial of C-rich soil material, e.g. by deposition following erosion, generally 
leads to a long-term increase in landscape-scale SOC stocks15. Active anthropogenic SOC burial has rarely been 
studied, but is occasionally carried out through deep ploughing of agricultural and forest land. Although deep 
ploughing is not one of the most common agricultural practices, its implications on SOC sequestration have been 
analysed in the present study because of the direct impact on subsoil it entails.

Deep ploughing is a land management operation performed mostly only once, with the purpose of loosen-
ing the subsoil, enhancing water infiltration and root penetration capacity and thus improving plant growing 
conditions. Further subsoil management techniques, such as deep mixing, deep ripping, deep rototilling and 
deep loosening are performed more than once or even on a regular basis. In this study, we studied solely sites 
that has been deep ploughed only one time. Through the action of deep ploughing, SOC-rich topsoil is buried at 
60–120 cm depth and SOC-poor subsoil material is brought up to the surface. The latter also transports nutrients 
from the less weathered subsoil to the surface, making them more easily available to plants. As a preparation 
measure for afforestation (active forest establishment on previous non-tree land that has not supported trees for 
several decades), deep ploughing leads to a higher survival rate of planted trees because of better weed control, 
with weed seeds being buried, and better water availability when the OC-rich A horizon with high water-holding 
capacity is placed deeper in the soil16.

Deep ploughing was promoted in Europe after the invention of the steam plough in the late 19th century17, 18,  
enabling ploughing depths of 60 to 120 cm since 1950. Peatlands were largely frequently deep ploughed to facil-
itate their cultivation, but in this study we focus only on mineral soils. Deep ploughing was performed in heath-
land soils to break up the hard pan of Podzols in order to facilitate making them cultivatable. The pursued effects 
of deep ploughing also related to erosion reduction in Luvisols through mixture of clay-rich subsoil material to 
the silt-dominated topsoil19. Deep ploughing has become less common since the 1970s. Nevertheless it is still 
applied for hard pan or plough pan break-up, in order to enlarge the rooting zone or as a preparation measure 
for afforestation in several countries: Canada20, Denmark16 The Netherlands21, Sweden22 China23 and USA24. In 
Northern Germany around 10% of the croplands have been deep ploughed during the last 60 years.

Deep ploughing of cropland is reported to be a very effective long-term SOC sequestration measure25. At 10 
cropland sites on mineral soils, deep ploughing led to a 42% increase in SOC stocks after 45 years because carbon 
in the buried topsoil was not entirely mineralised, if at all, and additional SOC was continuously accumulated in 
the “newly formed” topsoil mixed with subsoil material.

Because deep ploughing translocates large amounts of SOC to the subsoil and also facilitates deep rooting, 
subsoil SOC stocks can be expected to increase over the long-term, including in forests. Deep ploughing of forest 
soil also leads to burial of the organic layer that forms on top of the mineral soil – the forest floor - with its addi-
tional carbon. Rooting patterns are also different in forest compared with cropland with deeper and more roots in 
forest soil26. In the present study, we investigated the effect of carbon burial through deep ploughing in forest and 
cropland soils that were deep ploughed 25 to 53 years before sampling. In addition, because biomass removal is 
four-fold more intense for crops than for forests27, SOC in the newly formed topsoil of deep-ploughed soil can be 
expected to accumulate faster in forest soil than in cropland. On the other hand, fertilisation, liming and tillage of 
cropland may stimulate SOC accumulation in topsoil of the deep-ploughed arable soils. The following hypotheses 
were tested in this study:

	 1.	 SOC stocks increase on a long-term basis after deep ploughing compared with non-deep-ploughed refer-
ence soil. This SOC accrual is greater in forests than in cropland.

	 2.	 Buried SOC is more stable to mineralisation than non-buried SOC in reference topsoils.

Results
Depth distribution of SOC contents and stocks.  Buried topsoil stripes in deep-ploughed forest soil had 
higher SOC contents (16 ± 4 g C kg−1) than the corresponding depth layer in adjacent subsoil stripes (4 ± 1 g C 
kg−1) and the reference subsoil (7 ± 2 g C kg−1) (Fig. 1). This was also observed for the cropland soils studied 
(16 ± 5 g C kg−1 in buried topsoil stripes, 3 ± 0.4 g C kg−1 in the adjacent subsoil stripes and 4 ± 2 in the reference 
subsoil). At two sites, SOC content in the buried topsoil was comparable to that in the reference topsoil: for the 
Schwenow forest site these values were 29 ± 10 g C kg−1 in the buried topsoil and 26 ± 4 g C kg−1 in the refer-
ence topsoil, and for the Essemühle cropland site they were 17 ± 6 g C kg−1 in the buried topsoil and 23 ± 1 g C 
kg−1 in the reference topsoil. At all other sites, SOC content in the buried topsoil stripes was reduced by 11% 
(Hemmelsberg cropland site) to 95% (Lindenburg forest site) in comparison with the non-buried reference top-
soil. Assuming that, before deep ploughing, the SOC content in the buried topsoil stripes was similar to that in the 
current reference topsoil, the fastest decrease in SOC content in buried topsoil stripes following deep ploughing 
was at the Lindenburg (mean annual decrease 2.6% over 37 years) and Rebberlah (mean annual decrease 2% over 
36 years) forest sites.

Newly formed topsoil on deep-ploughed cropland soil (57 ± 5 Mg C ha−1) had 8% lower SOC stocks than the 
reference topsoil (64 ± 6 Mg ha−1, p = 0.02). An even larger difference of 37% was observed in forest soils (20 ± 1 
in the topsoil of the deep-ploughed plots and 32 ± 3 Mg ha−1 in the topsoil of the reference plots, p < 0.0001). 
Forest floor followed the same trend, but differences were only significant in the F + H-horizons (6 ± 1 Mg ha−1 
in deep-ploughed and 15 ± 3 Mg ha−1 in reference plots, p = 0.03). On average, the difference between topsoil 
SOC stocks in deep-ploughed and reference soils relative to the number of years since deep ploughing was −0.16 
Mg ha−1 yr−1 in cropland and −0.31 Mg ha−1 yr−1 in forest soil. Moreover, the nitrogen (N) stocks in topsoil 
of deep-ploughed soil were substantially lower than in reference soil in forests, while at five out of eight crop-
land sites studied, the topsoil of deep-ploughed soils contained more N than reference topsoil (Supplementary 
Table 1).
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Total SOC stocks down to 100 cm were significantly greater (p < 0.0001) in deep-ploughed (105 ± 8 Mg C 
ha−1) than in reference cropland soil (92 ± 8 Mg C ha−1, Fig. 2). Below 30 cm down to deep-ploughing depth, 
deep-ploughed cropland subsoil (40 ± 3 Mg C ha−1) contained 67 ± 17% more SOC than reference subsoil (24 ± 3 
Mg ha−1, p < 0.0001). In contrast, total SOC stocks in deep-ploughed forest soil (including forest floor) were not 
significantly greater than in reference soil (103 ± 11 and 105 ± 9 Mg ha−1, respectively, p = 0.2). However, SOC 
stocks in forest subsoil were 49 ± 25% greater in deep-ploughed than in reference soil (64 ± 9 and 43 ± 6 Mg ha−1, 
respectively, p = 0.0002). The SOC stocks below the deep-ploughed horizon did not differ between treatments 
within forest or cropland sites.

Potential SOC mineralisation.  Buried SOC stability was assessed through one-year incubation experi-
ments, which enabled comparison of SOC turnover in buried topsoil stripes and reference topsoil under stand-
ardised laboratory conditions eliminating possible oxygen or water limitations. The fraction of mineralised SOC 
was 32% lower in incubated buried topsoil than in reference topsoils (Fig. 3, p < 0.0001). Forest soils had the 
highest mineralisable SOC fraction, both in buried topsoil stripes (56 ± 13 mg CO2-C g−1 SOC) and in reference 
topsoil (77 ± 22 mg CO2-C g−1 SOC). Sandy cropland buried topsoil stripes (27 ± 4 mg CO2-C g−1 SOC) and ref-
erence topsoil (40 ± 6 mg CO2-C g−1 SOC) had the lowest mineralisable SOC fraction. There was a weak positive 

Figure 1.  Depth distribution of mean SOC content in deep-ploughed (⚬ •) and reference plots (). Topsoil 
SOC content in soil profiles and cores (N = 6). Deep-ploughed plots consist of alternating buried topsoil (•) and 
subsoil stripes (⚬). Dashed arrows and percentages indicate the relative difference between average topsoil SOC 
and average SOC in buried topsoil stripes.
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correlation between the relative difference in specific cumulative SOC mineralisation and the relative difference 
in SOC content for the buried topsoil stripes and the reference topsoil (Rho = −0.6, p = 0.04).

Carbon input and SOC fractions.  The relative distribution of different SOC fractions provided informa-
tion about the degree of stabilisation of carbon in the buried topsoil stripes and the reference topsoil. The free 
light fraction (fLF) is usually the youngest and most labile SOC fraction. However, the fLF fraction was not 
consistently lower in buried topsoil stripes than in reference topsoil, but rather ranged between 65% lower and 
19% higher indicating that topsoil burial with deep ploughing did not always resulted in losses of fLF (Fig. 4). 
Similarly, we found buried SOC stabilisation to be not a result of SOC aging and selective preservation since the 
correlation between the burial effect on specific SOC mineralisation rates and the burial effect on fLF mass was 
very weak and not significant (Rho = −0.3, p = 0.3). Also the occluded light fraction (oLF) was between 90% 
lower and 70% higher in buried topsoil stripes than in the reference topsoil. The most stable heavy fraction (HF) 
did not consistently contain most of the SOC in buried topsoil. Instead, SOC in the HF was between 28% lower 
and 79% higher in the different sites in buried topsoil compared with reference topsoil.

Fine root biomass was used as an indicator for carbon input as labile SOC. In general, root biomass was 
10 to 100 times lower in cropland than in forest soil (Fig. 5a). Throughout the entire soil profile, root biomass 
in cropland did not differ between deep-ploughed and reference plots. In contrast, root biomass in forest top-
soils tended to be lower in deep-ploughed plots than in reference topsoil (13 ± 3 and 15 ± 3 g kg−1, respectively). 
Deep-ploughed forest subsoil had 65% higher root biomass than reference subsoils (1.5 ± 0.3 and 0.9 ± 0.11 g kg−1, 
respectively, p = 0.04). At the Viborg forest site only, relative root mass was very similar in subsoil of both plots. 
Root biomass in the deep-ploughed subsoil was highly correlated to the fLF content (Fig. 5b).

Radiocarbon content.  The radiocarbon (14C) content of the SOC fractions oLF and HF provided informa-
tion about the mean residence time of carbon in the soil. Longer residence times are generally characterised by 
a low 14C content. The oLF had higher 14C content than HF indicating faster turnover of the oLF (−71‰ in the 
oLF and −76‰ in the HF). The oLF of the buried topsoil stripes had was depleted in Δ14C compared to reference 
topsoils at all sites except the Viborg forest site and the Halchter loamy cropland site (Fig. 6, −120 ± 23‰ in the 
Viborg forest site and −22 ± 15‰ in the Halchter loamy cropland site). The 14C content in the oLF was lower in 
buried topsoil stripes than in reference topsoil, by 96‰ in forest, 45‰ in sandy cropland and 133‰ in loamy 
cropland. This pattern of lower 14C content in buried SOC compared with reference topsoil was also observed for 
HF (−117 ± 14‰ in the buried SOC and −34 ± 18‰ in the reference topsoil SOC). The 14C content in HF was 
lower in buried topsoil stripes than in reference topsoil with on average 74‰ in forests, 30‰ in sandy croplands 
and 121‰ in loamy croplands. For both fractions, in buried topsoil stripes as well as in reference topsoil, Δ14C 
was higher in forests than in croplands (Fig. 6). Forested reference topsoil was mostly enriched in 14C compared 
to preindustrial reference, indicating the influence of 14C from nuclear weapons testing since the 1960s (oLF: 
−6 ± 15, HF: 12 ± 16‰).

Figure 2.  SOC stocks at different soil depth increments in deep-ploughed and reference plots. Bars represent 
average SOC stocks in soil cores (n = 5), whiskers show standard error. Subsoil and buried topsoil stripes were 
not sampled separately. Total SOC stock sums for forest sites include forest floor.
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Discussion
The first part of this section will look into the effects of deep ploughing on SOC stocks in subsoils, topsoils and the 
full assessed first meter of the soil. The second part will look discuss the stability of buried SOC and its possible 
mechanisms.

The SOC stocks in subsoil were significantly greater in deep-ploughed soil than in reference plots (Fig. 2). 
The data revealed that topsoil SOC was partly preserved upon burial in subsoil up to 53 years ago in both, forest 
and cropland soils (Table 1). In colluvial deposition areas under cropland, topsoil buried to 30–70 cm depth 
has been found to contain more SOC 50 years after burial than the corresponding topsoil in upslope areas28. In 
subsoil environments, SOC mineralisation presumably takes place over a timescale of centuries, with 50% of the 
buried SOC mineralised after ca. 250–300 years29. On a short-term basis (5 years), farmyard manure buried to 
60 cm depth has been observed to at least double the SOC content in subsoil by preserving approximately 80% 
of the buried SOC30. This has been attributed to the lack of physical disturbance in deeper soil layers, e.g. by 
freeze-thawing, drying-rewetting cycles or regular tillage.

Although SOC content and stocks in forest and cropland subsoil were found to be enhanced over the 
long-term through deep ploughing, total SOC stocks in deep-ploughed forest soil were not greater than in refer-
ence soil. This is contrary to the observations made for the deep-ploughed cropland soils25. An important mech-
anism contributing to SOC sequestration in deep-ploughed soil is continuous SOC accumulation in the newly 
formed topsoil. The recovery and build-up of new SOC-rich topsoil was much slower in forest than in cropland 
soil.

SOC stock differences between deep-ploughed and reference topsoils were twice as high in forest soil as in 
cropland soil indicating slower topsoil SOC accumulation in forests compared to croplands after deep ploughing 
(Supplementary Table 1). The average time since deep ploughing was longer at the cropland sites (on average 
46 years, Table 1) than at the forest sites (on average 38 years, Table 1), resulting in a shorter SOC accumulation 
period for deep-ploughed forest topsoils. Nevertheless, even when dividing SOC stock differences by the number 
of years between deep ploughing and sampling, SOC accumulation rates in forest topsoils were smaller than in 

Figure 3.  Specific cumulative SOC mineralisation after one year of incubation. Bars represent mean values 
from laboratory replicates (n = 3), whiskers show standard error.
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croplands. This may be due to the fact that in cropland soil, carbon inputs in the form of crop residues and leaf lit-
ter are directly incorporated into the mineral soil through regular tillage operations. In forest soil, on the contrary, 
aboveground litter first ends up in the forest floor and is thereafter only partly transferred into the mineral soil31. 
Because the forest sites studied here had acidic pH values (between 3 and 5) and Pinus sylvestris was one of the 
dominant tree species (Table 1), litter decomposition and SOC incorporation into the mineral soil has probably 
been slow and limited31. This supported by the observation that SOC stock differences in the L-horizon between 
deep-ploughed and reference soils were not significant while the F + H-horizon and topsoil had significantly 
less SOC in deep-ploughed than in reference soil (Fig. 2). This also indicated faster decomposition of litter in the 
deep-ploughed plots than in the reference plots, possibly related to less acid topsoil in the deep-ploughed plots 
because of admixture with previous subsoil material. However, the topsoil pH values were only slightly different 
in deep-ploughed and reference plots at the Schwenow forest site.

In the deep-ploughed forest topsoil, the amount of N needed to build up SOC stocks to a level comparable 
to that in reference topsoil would be between 0.09 and 0.74 Mg ha−1 (Supplementary Table 1). However, forests 
are usually not fertilised with mineral N, so the N input is mainly derived from atmospheric N deposition. For 
European forests, an average atmospheric N deposition of approximately 20 kg ha−1 yr−1 has been reported32. 
This shows that the maximum possible SOC sequestration in forest soil was restricted by the available N supply, 

Figure 4.  Relative proportion of free light fraction (fLF), occluded light fraction (oLF) and heavy fraction (HF) 
of total SOC in buried topsoil stripes and reference topsoil.

Figure 5.  (a) Root biomass at different soil depth increments in deep-ploughed and reference forest soil. Bars 
represent average root biomass in soil cores (n = 5), whiskers show standard error. (b) Correlation between root 
biomass in deep-ploughed subsoil and fLF mass calculated as Spearman’s rank correlation.
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whereas N restriction was less probable in cropland soil due to a 4- to 15-fold greater N input by mineral and 
organic fertilisers25. The build-up of SOC stocks in the near-surface forest topsoil, which were lowered because of 
mixing with SOC- and N-poor subsoil material as a result of deep ploughing, thus encounters a certain N limita-
tion compared with cropland topsoil. We hypothesised that under such relatively N-poor conditions, there was 
enhanced mineralisation by microorganisms of organic matter that reached forest topsoil in order to obtain N (N 
mining33). Thus, N mining might have further slowed SOC accumulation.

Having discussed the effects on SOC stocks, the further paragraphs will now review the effect of topsoil bur-
ial through deep ploughing on SOC stability and its possible mechanisms. Topsoil burial by deep ploughing 
increased SOC stability at all study sites (Fig. 3). Higher stability to mineralisation has also been observed on SOC 
buried via depositional processes compared to reference surface soil SOC34. In the present study, we determined 
potential SOC stability via laboratory incubation under standardised temperature and soil moisture conditions. 
Thus, it can be concluded that the stability of buried SOC is not solely caused by environmental conditions at 
greater soil depth, such as temperature, oxygen or water limitations.

Selective preservation of certain SOC fractions with higher stability35 could theoretically explain the preser-
vation of SOC that has been buried for several decades. The labile fractions of SOC would then be mineralised 
leaving the most stable fraction as buried SOC. However, this mechanism could not fully explain the results 
obtained in the present study, because great SOC loss after burial did not concomitantly result in increased sta-
bility of the remaining SOC (Fig. 7a). Contrary to our expectations, at three sites (Essemühle, Hemmelsberg 

Figure 6.  Δ14C values obtained for occluded light fraction (oLF) and heavy fraction (HF) of SOC in buried 
topsoil stripes and reference topsoil. Positive values signify that nuclear test- derived 14C was incorporated into 
the SOC fraction (young apparent 14C age). Negative values indicate that soil fraction carbon exchange with the 
atmosphere has been slow and that significant radioactive decay has occurred (old apparent 14C age)35.
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Land use Site

Deep 
ploughing 
year

Years between 
deep ploughing 
and sampling

Deep 
ploughing 
depth [cm]

Dominant tree 
species or crops Soil type

Sand 
[%]

Silt 
[%]

Clay 
[%] pH Former land use

Forest Lindenburg 1977 37 60
Pinus sylvestris, 
Quercus robur, 
Fagus sylvatica

Spodic Cambisol 86 9 5 4.5 ± 0.3 Forest

Forest Rebberlah 1978 36 58 Pinus sylvestris, 
Picea abies Lamellic Podzol 84 11 5 3.1 ± 0.1 Heathland/Forest

Forest Schwenow 1961 53 60

Quercus 
rubra (deep 
ploughed), 
Pinus sylvestris 
(reference)

Haplic Podzol 89 11 0 4.4 ± 0.7 Heathland

Forest Viborg 1989 25 62
Quercus robur, 
Pinus sylvestris 
(during first 24 
years)

Haplic Cambisol 86 9 5 4.8 ± 0.2 Heathland, Cropland

Cropland Elze 1968 46 55 Oilseed rape, 
rye, potato Dystric Cambisol 84 12 4 5.3 ± 0.1 Cropland

Cropland Essemühle 1968 46 75
Oilseed rape, 
potato, barley, 
rye, maize

Dystric Cambisol 88 8 4 4.8 ± 0.1 Heathland

Cropland Hemmelsberg 1978 36 80 Oilseed rape, 
rye, potato Dystric Cambisol 94 3 3 5.3 ± 0.05 Peatland

Cropland Banteln 1965 48 85 Sugar beet, 
wheat, maize Haplic Luvisol 5 82 13 6.6 ± 0.1 Cropland

Cropland Drüber 1966 48 87 Oilseed rape, 
wheat, barley Haplic Luvisol 3 82 15 6.6 ± 0.04 Cropland

Cropland Halchter 1966 48 70 Sugar beet, 
wheat, barley Haplic Luvisol 3 83 14 6.5 ± 0.1 Cropland

Cropland Salzgitter 1966 47 90 Sugar beet, 
wheat Haplic Luvisol 3 83 14 6.9 ± 0.03 Cropland

Cropland Warberg 1966 48 65 Sugar beet, 
wheat, barley Fragic Luvisol 3 80 17 6.0 ± 0.1 Cropland

Table 1.  Site characteristics. Soil properties refer to the topsoil in reference plots (texture: n = 1, pH: n = 6). 
Cropland data as published previously25.

Figure 7.  Correlation between ratio of specific cumulative SOC mineralisation in buried topsoil stripes to 
that in reference topsoil. (a) ratio of SOC content in buried topsoil stripes to that in reference topsoil as well as 
(b) ratio of fLF mass in buried topsoil stripes to that in reference topsoil. Sites abbreviations: LB - Lindenburg, 
RB -Rebberlah, SW - Schwenow, VB - Viborg, EZ - Elze, EM - Essem¨uhle, BT - Banteln, DB - Dr¨uber, HT - 
Halchter, SZ - Salzgitter and WB – Warberg.
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and Schwenow), we observed only slight losses of buried SOC. At the same time, stability of buried topsoil SOC 
was 50–60% higher than that in reference topsoil. This high SOC stability is most likely related to the land use 
history as heathland or peatland (Table 1). Former heathland soils have been observed to contain very stable 
SOC possibly related to a high content of hydrophobic and toxic substances for decomposers25, 36, 37. In contrast, 
at the Banteln (loamy cropland), Drüber (loamy cropland), Lindenburg (forest) and Rebberlah (forest) sites we 
observed an SOC loss of more than 50%, but only minor increases in SOC stability, with the maximum stability 
increase in the remaining SOC being 36%. These results underline that stability is not an intrinsic property of 
SOC, e.g. via poorly degradable compound classes, but might be controlled by environmental factors that are not 
yet fully understood for subsoil OC10. The large variability of the density fraction results could not be related to 
soil properties such as texture or pH, as these were not substantially variable within land use types (Table 1). The 
differences in texture between sandy and loamy cropland soils were also not consistently related to the difference 
in the fractionation results.

The fLF of SOC has previously been found to be the most easily mineralisable SOC fraction38, and it can be 
expected to be mineralised within one decade. However, our observations did not consistently show this trend, 
since at four out of 12 sites studied more than 50% of the fLF persisted in the buried topsoil stripes (Fig. 4). 
Surprisingly, we observed conflicting results with on the one hand, increased stability of buried SOC compared 
with the reference topsoil OC without a concomitant loss of fLF (Fig. 7b). This is similar to previous observations in 
buried colluvial soil of Canada, which were found to contain equal or greater mass of LF carbon than surface soil34.  
On the other hand, at eight out of 12 sites in the present study, fLF decreased upon burial by 50–80%, with only 
a slight increase in SOC stability of at most 42% (Fig. 7b). Thus, it can be concluded that the burial induced SOC 
stability was not driven by fLF loss with selective preservation of stabilised SOC. These findings underline that 
particulate organic matter (LF) at our sandy sites can be quite stable which is also confirmed by low 14C values (see 
below), likely due to the heathland history.

Higher fLF content in buried topsoil stripes than in reference topsoil was observed at the Schwenow forest 
site and the Hemmelsberg sandy cropland sites (Fig. 7 and Supplementary Fig. 1). At both sites more than 75% 
of SOC in buried topsoils was particulate organic carbon in the fLF fraction (Fig. 4). For Schwenow, the high 
fLF could be attributed to abundant roots in the buried topsoil stripes and related carbon inputs (Fig. 5b). At the 
same time, the Schwenow and Hemmelsberg sites showed a high degree of topsoil SOC preservation since burial 
(99% and 89%, respectively) and high SOC stability in the buried topsoil stripes (37% and 51% higher than in the 
reference topsoil). Under the assumption that roots are the main source of fLF at both sites, these findings indicate 
that (i) additional carbon inputs from roots growing in buried topsoil stripes do not lead to additional loss of the 
buried SOC via priming (stimulation of SOC mineralization after addition of fresh C input) and (ii) the roots 
themselves may promote total SOC storage in the subsoil. This is in line with findings that root-derived carbon 
persists over twice as long in soils before being decomposed than shoot-derived carbon39.

Roots grew preferentially in the buried topsoil stripes in the subsoil of deep-ploughed soil. We suggest that this 
is attributable to the higher organic matter content providing nutrients and water retention. This was confirmed 
by the visible presence of roots in deep-ploughed forest soil compared with reference soil (Fig. 5). Roots are a 
major source of subsoil SOC39, 40, both as exudates and in particulate form41. It has also been reported that subsoil 
loosening, another subsoil melioration option, promotes root proliferation into deeper soil layers23. In the pres-
ent study, this could be confirmed for the forest sites but not for croplands because root biomass sampling at the 
cropland sites was conducted mainly during winter or after harvest. Also, cultivated crops were not particularly 
deep rooting plants (Table 1).

The depletion in Δ14C observed in buried topsoil stripes than in reference topsoil confirm the higher stability 
of buried SOC but also reflect the fact that input of carbon with dissolved organic carbon and roots into these 
soil fractions was drastically reduced due to burial. Buried SOC is relatively isolated compared to near surface 
SOC, which might be the key for its high stability. Buried topsoils were dominated by carbon that was older than 
the nuclear weapon testing in the 1960s and 1970s42 and recent carbon input from crop residues of the last years 
(negative Δ14C values). Reference topsoils at the forest sites and the loamy croplands mostly displayed positive 
Δ14C values (Fig. 7), indicating the influence of nuclear bomb test-derived carbon. In contrast, sandy croplands 
topsoils were dominated by old C, maybe remaining of the former land use as heathlands. The low 14C content 
at the Viborg forest site as compared to other forest sites is likely due to the former arable land use at this site just 
before deep ploughing.

In summary, deep ploughing can lead to increased SOC storage comprising two aspects: (i) greater stability of 
buried SOC and (ii) additional SOC accumulation in the “newly established” topsoil.

Methods
Study sites and sampling.  Twelve experimental sites were selected for sampling, namely four forest sites 
and three cropland sites on sandy soils and five cropland sites on loamy soils (Table 1). Each site comprised a 
deep-ploughed plot and an adjacent reference, non-deep-ploughed plot with plot size 20 m by 40 m. All other site 
factors, such as forest and cropland management, soil characteristics, tree species and crops were equal or very 
similar in both plots (Table 1). Deep ploughing was conducted once 25 to 53 years before sampling, which repre-
sent the number of years in which a new topsoil was formed. Rebberlah was the only site that was not an exper-
imental field site, but was partially deep-ploughed after a wildfire. The Lindenburg43 and Schwenow sites were 
clear-cut and partially deep-ploughed for experimental purposes regarding soil loosening and thus improvement 
of tree growth conditions. The Viborg site, located in Jutland, Denmark, is part of an experimental site studying 
different site preparation measures for afforestation of former arable land. The other three sites were located 
in northern and eastern Germany (Supplementary Table 1). The eight cropland sites were located in Northern 
Germany. At each site one field was partly deep ploughed. The remaining field was used as reference plot. All sites 
the topsoil was conventionally tilled using mouldboard ploughs.
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We analysed four forest sites and eight cropland sites, five loamy and three sandy sites. Parts of the cropland 
sites data were also reported in a previous study25. All these twelve sites were sampled as described above. Soil 
sampling was conducted by taking five soil cores in each plot down to 100 cm to assess SOC stocks. These cores 
were divided into four depth increments: (1) topsoil (2) subsoil down to deep ploughing depth (Table 1), con-
sisting of alternating buried topsoil stripes and subsoil stripes in the deep-ploughed plots (3) deep-ploughing 
depth + 10 cm and (4) deep subsoil down to 100 cm. Forest floor was sampled prior to coring with 25 cm by 25 cm 
metal frames separating horizons into L (undecomposed leaf litter) and F+H (partly decomposed organic mat-
ter). After drying at 65°, sieved roots and stones were weighed to obtain root biomass (Fig. 5) and fine soil mass. 
In addition, representative soil samples from each soil depth increment were taken for chemical analyses from soil 
profiles. This enabled separated sampling of the buried topsoil stripes.

Chemical and microbiological analyses.  Basic chemical and microbial characterisation was conducted 
for all twelve sites25. SOC mineralisation was assessed in a one year batch incubation at 22° of 100 g soil dry matter 
in triplicate gas-tight 250 mL glass flasks. Water content was initially adjusted to 60% of the water-holding capac-
ity of each soil and gravimetrically readjusted periodically to the initial water content. CO2 production was meas-
ured at day 1, 3, 8, 14, 31, 127, 195, 269 and 365 after incubation start. CO2 concentration in sampled 20 mL vials 
was measured with a gas chromatograph (Series GC-2014; Shimadzu Deutschland GmbH, Duisburg, Germany). 
Specific CO2 production per g SOC as a cumulative sum of the total incubation year was computed.

Density fractionation44, 45 of SOC was performed by suspending 30 g soil dry matter in 120 mL of 1.6 g cm−3 
sodium polytungstate (SPT) to separate a free light fraction (fLF). Dispersion by ultrasound with an energy 
input46 of 400 J ml−1 and resuspension in SPT was applied to obtain an occluded light fraction (oLF). A heavy 
fraction (HF) remained as sediment. Radiocarbon content in oLF and HF was assessed by acceleration mass 
spectrometry with preceding sample preparation47 and calibrated to Fraction Modern48.

Calculations and statistics.  Calculated SOC stocks49 (Mg ha−1) were corrected for different masses to 
enable comparison on an equivalent mass basis50. Due to the uneven and diagonal distribution of buried topsoil 
stripes, SOC contents were reported instead of SOC stocks when analysing buried topsoil stability in compari-
son with adjacent subsoil stripes and reference subsoil. Data analysis to identify significant differences between 
deep-ploughed and reference soils was performed with R51 version 3.3.1. Normality of data was first checked with 
the Shapiro-Wilk test. If data sets were normally distributed, differences were evaluated with paired Student’s 
t-tests. Otherwise, Wilcoxon Rank Sum and Signed Rank tests were applied. When repeated observations per 
site were made, i.e. sampling of five cores per plot in each site, linear mixed effect models using package nlme52 
were computed with plot (reference and deep-ploughed) as fixed effect and site as random effect. If necessary, 
variances were weighed to ensure homoscedasticity. Correlations between stability indicators were examined with 
Spearman correlation tests. Fraction Modern values of 14C were converted to absolute Fraction Modern42 and 
then to Δ14C using R package SoilR53 version 1.1-23.
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