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Abstract

The static chamber approach is often used for greenhouse gas (GHG) flux measurements,

whereby the flux is deduced from the increase of species concentration after closing the

chamber. Since this increase changes diffusion gradients between chamber air and soil air,

a nonlinear increase is expected. Lateral gas flow and leakages also contribute to non lin-

earity. Several models have been suggested to account for this non linearity, the most

recent being the Hutchinson–Mosier regression model (HMR). However, the practical appli-

cation of these models is challenging because the researcher needs to decide for each flux

whether a nonlinear fit is appropriate or exaggerates flux estimates due to measurement

artifacts. In the latter case, a flux estimate from the linear model is a more robust solution

and introduces less arbitrary uncertainty to the data. We present the new, dynamic and

reproducible flux calculation scheme, KAPPA.MAX, for an improved trade-off between bias and

uncertainty (i.e. accuracy and precision). We develop a tool to simulate, visualise and opti-

mise the flux calculation scheme for any specific static N2O chamber measurement system.

The decision procedure and visualisation tools are implemented in a package for the R soft-

ware. Finally, we demonstrate with this approach the performance of the applied flux calcu-

lation scheme for a measured flux dataset to estimate the actual bias and uncertainty. The

KAPPA.MAX method effectively improved the decision between linear and nonlinear flux esti-

mates reducing the bias at a minimal cost of uncertainty.

Introduction

For more than 30 years, trace gas emissions from soil have been measured with static (non-

steady state) chambers, especially for greenhouse gases (GHG) like nitrous oxide (N2O). There

are several guidelines available for the practical handling, chamber layout, experimental design

and determination of concentrations within the chamber during deployment [1, 2]. To calcu-

late a flux from the concentration measurements in the chamber headspace, researchers often

simply use linear regression (LR) [3, 4]. Such LR-based flux estimates are least sensitive to
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measurement uncertainty caused by analytical limitations or variations due to gas sampling in

the field [5]. However, the gas concentration in a static chamber theoretically follows a nonlin-

ear shape during chamber closure because of underlying processes from diffusion theory and

leakages [6]. When the nonlinear processes are ignored by applying a LR, a bias is introduced.

This bias usually underestimates the flux depending on the extend of nonlinear effects in a cur-

rent measurement setup. But on the other hand, estimating parameters for the nonlinear

behaviour of a flux curve introduces uncertainty. Depending on chamber height, deployment

time and soil physical properties (i.e. gas-filled porosity and bulk density), the estimated flux

may increase with the assumption of a nonlinear behaviour relative to the more conservative

LR [7]. Given a specific chamber system, uncertainty related to the flux calculation scheme is

the largest single error source for the estimated flux [8]. The magnitude of this error has not

been quantified reliably within the possible parameter space as it also depends on the chamber

properties, measurement precision and the level of emissions.

Venterea [9] present a comprehensive summary of the available nonlinear flux calculation

schemes (FCS) within the methodology guidelines by Klein et al. [1]. They list pro- and con-

tra-arguments for the commonly used procedures (conventional FCS: Linear regression (LR),

Hutchinson and Mosier (HM), Quadratic regression (QR); as well as advanced FCS: Non-

steady state diffusive flux estimator (NDFE, [10]), HMR (R script by Pedersen et al. [11], based

on the Hutchinson-Mosier equation) and chamber bias correction method (CBC by [12]).

Their review shows that none of the methods can directly be applied to a measured flux dataset

without additional tuning like manual screening with subjective decisions or arbitrary thresh-

olds. Whereas LR can produce a considerable bias [11], all nonlinear estimates have large

uncertainties for small fluxes [13] and deviation from the theoretical curvature. Venterea [9]

modelled this deviation by switching on and off different processes in a soil diffusion model

and compared the results to the available FCSs. They showed that under varying conditions

most commonly used FCSs tend to substantially underestimate the theoretically modeled flux.

Especially with increasing chamber enclosure time, nonlinear calculation methods perform

better than linear estimates [14]. The different nonlinear approaches have considerable theo-

retical differences among themselves i.e. HMR has certain limitations with regard to its

pseudo-steady state assumptions using Fick’s first law in a time-dependent model whereas the

NDFE and CBC methods are based on non-steady state diffusion.

If one aims at reducing bias on flux estimates, the user has to combine a linear with a non-

linear method depending on the properties of each single flux measurement within the dataset.

The HMR tool [11, 15] offers a manual screening of each flux and strongly recommends expert

knowledge to choose between HMR, LR or zero flux estimates. Because this is subjective and not

practical for large datasets, many users introduce some thresholds of certain indicators like

Fnonlinear/Flinear (g-factor) or statistical goodness of fit outputs like R2, p-values, standard errors

(SE) or the Akaike information criterion (AIC, see [16]). The choice of these thresholds is arbi-

trary, barely justified and rarely documented in publications. Especially with the typical small

sample size, statistical measures are biased or just not appropriate. A reliable criterion is

needed that takes the flux strength into account and is robust to uncertainty of the concentra-

tion estimate by a specific measurement system. Most critical for nonlinear estimates are flux

measurements that use only 4 time points with concentration measurements on a GHG gas

chromatography system by offline manual vial sampling. This is however an often used sam-

pling scheme. A commonly used calculation tool within the gas flux community of the Ger-

man Soil Science Society (Deutsche Bodenkundliche Gesellschaft, DBG) is the R-package

gasfluxes [17]. This tool offers different FCSs as well as an additional decision mechanism

described in [18]. In addition to LR and HMR, a robust linear regression [19] is implemented to

reduce the sensitivity of least square regression to outliers. Earlier selection schemes in the
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gasflux package chose between HMR, LR and robust linear depending on p-value and AIC of

the fits and does not allow the absolute value of the nonlinear estimate to deviate by more than

the g-factor (default is 4) from the absolute value of the linear estimate. Although this mixed

FCS has been used in some studies [20–22] and is easy to implement, its performance for dif-

ferent systems has not been analysed systematically. Still many researchers are struggling to

find a reliable method to use nonlinear GHG flux calculation schemes. Recent approaches

came up with complicated decision trees using linear, quadratic and HM schemes at the same

time depending on features in the chamber concentration values [23, 24].

There is no general rule or understanding for the thresholds and statistical decision criteria.

It is very difficult for users of FCSs to estimate the impact of a certain FCS for their specific

measurement system and how to choose the appropriate parameters. For this reason, we pres-

ent i) a decision rule (KAPPA.MAX) that provides the best trade-off between uncertainty and bias

a FCS introduces to the dataset based on ii) a tool that allows for a better understanding of the

behaviour of the FCS used. We look for a relationship between measurement uncertainty

(standard deviation of the GC system) and a dynamic threshold that allows to distinguish the

LR and HMR regime in order to balance bias vs. uncertainty. The tool provides an automatic

procedure for a safe use of nonlinear FCS also for inexperienced users. Consequently, com-

monly used decision trees could be pruned and simplified.

Goals for optimised FCS decision rules

From visualising the behaviour of a certain FCS decision rule the appropriate procedure can

be identified for a specific chamber measurement system. In general, an optimised scheme

should fulfill the following goals:

1. The bias from the theoretically given nonlinear HMR shaped fluxes should be minimized but

balanced to the estimated uncertainty. The importance of this goal depends on the purpose

of the flux measurement, i.e. whether absolute fluxes need to be precise to come up with

emission factors or treatments need to be compared among each other. For the latter the

reduction of uncertainty (goal 4) may become more important than reducing bias (more

details about goal 1 and 2 see [5]).

2. The uncertainty of the flux estimate should be minimized. We express the uncertainty in

the simulated environment as difference between the 95% quantile and 5% quantile (IQ90).

In the first step the uncertainty from the simulations is considered within the model frame-

work and in a second step these uncertainties can be applied to the frequency of a real flux

dataset on the model frame. In addition we estimated the mean squared error (MSE = bias2

+ variance) in the model space to offer a balanced score between bias and uncertainty.

3. Arbitrary thresholds should be avoided because they are based on a subjective opinion of

the user or the experience from a specific measurement system that may not be applicable

to others.

4. An optimal decision scheme should be as simple as possible, i.e. use as few parameters as

possible for decision making (pruning decision trees). A pragmatic and simple use means

no additional measurements of temperature, bulk density or water content of the soil is

needed; no expert knowledge about how to set the thresholds and which method to choose.

5. The calculation and the threshold parameters should be based on statistical principles or

physical theories. If possible the parameter should have a meaningful unit and value.

Nonlinearity restriction for GHG flux calculations
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6. The desired FCS should provide a smooth transition from small to medium to large kappa
(the nonlinearity parameter, from being small means HMR can be used safely, to medium

leading to a significant increase from linear to HMR estimate and to large describing a poorly

defined nonlinearity where LR should be preferred). The threshold between the different

regimes should be smooth as there is an uncertainty in any threshold value.

7. The detection limit (fdet) should be small, i.e. similar to the estimate by linear calculation

method.

Methods

Model framework for FCS visualisation and testing

In a first step, a simulation framework scans through a common range of curved chamber con-

centrations and flux strength. The HMR parameterization [11] of the Hutchinson-Mosier equa-

tion [25] for nonlinear flux estimates is used as approximation for any nonlinear flux

curvatures.

CðtÞ ¼ φþ f0

expð� k tÞ
� k h

ð1Þ

where

C(t) is the gas concentration at time t,
φ is the constant source concentration in a certain depth below the chamber (the chamber

concentration converges towards this concentration, equal C(t =1),

f0 is the initial flux at time zero, when the chamber is closed hence the flux without chamber

effect

κ (kappa) is the nonlinear shape parameter that is required to be> 0 and is estimated by

the ordinary least squares method for −1< f0 <1.

t = time (after chamber closure)

h = chamber height

The HMR model was used to generate simulated data for a both logarithmic range of fluxes

and nonlinear shape parameter kappa [11]. Kappa could be tentatively related to soil texture

and moisture (dry/wet) that influence diffusion coefficients if assumptions are made regarding

the depth of the gas source [9]. However, in this exercise we just scanned through a commonly

observed range of kappa (Fig 1) without relating it to soil or chamber properties and the

underlying diffusion models that themselves are also prone to bias and uncertainty [9, 11]. It

was assumed that within the chosen range of kappa, the resulting concentration-time curves

capture any diffusion characteristics of a typical soil-air system at different water levels. For the

system specific input, a certain chamber area (i.e. 0.07 m2) and height (i.e. 0.14 m) were

defined without loss of generality. A measurement device (i.e. gas chromatography GC) preci-

sion was then assumed as a constant standard deviation over the calibrated concentration

range. Using this input data, a series (i.e. 25) of synthetic chamber concentrations were calcu-

lated for different flux sizes (i.e. f0; 0 − 5 nmol s−1 m−2) and nonlinear shapes (kappa from 10−6

to 10−2 s−1 logarithmic scale n = 25). Each of these replications followed the perfect HMR

derived flux curve but in addition a random noise according to the GCs precision is added to

each simulated gas sample concentration. The simulated sample concentrations were then fed

back to the flux estimation script (i.e. gasfluxes by Fuß [17]) which uses the HMR equation (by

Pedersen et al. [11]) again, applied with additional linear vs. nonlinear decision rules. In

Nonlinearity restriction for GHG flux calculations
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contrast to the original HMR implementation by Pedersen [11], gasfluxes uses a partial linear

least square algorithm, which requires starting values for numeric optimization but is much

faster.

For each grid point of the model space, a number of flux measurements (i.e. 50) with sam-

ple concentrations varying according to the GC precision (sdGC) were simulated for each set of

parameters. A normal distribution with standard deviation of repeated measurements of an

ambient standard was used to model GC precision. To our experience the precision of the GC

is decribed best by a constant standard deviation, independent of the concentration level, espe-

cially for GC systems where ambient concentrations have a sufficient signal to noise ratio. To

the resulting sets of simulated concentration-time points the fitting procedure was applied.

The uncertainty of the flux estimated by any method can then be expressed as the IQ90 and

plotted for the whole parameter space.

Tested flux calculation schemes (FCS) on simulated data

Six different FCSs were selected that each apply different decision rules between linear and

nonlinear regression for the interpretation of chamber flux data. The synthetically generated

concentrations by the HMR equation (Eq 1) were then fed to the following calculation proce-

dures (FCS). Note that Pedersens HMR approach [11] itself is a decision rule on its own, because

it also uses linear regression for fluxes where no nonlinearity parameter (kappa) could be fit-

ted. Especially with the added noise from measurement uncertainty, the HMR decision rule

often cannot retrieve a flux even if concentrations were generated from the HMR equation. The

methods presented here are either commonly used as calculation procedure in publications

Fig 1. Example of simulated concentration-time curves depending on kappa and a specific flux size (chamber

height: 0.14 m), R2 of a linear fit for the simulated concentrations are given for 4 sampling time points.

https://doi.org/10.1371/journal.pone.0200876.g001
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with static chamber flux datasets or they were suggested to offer robust solutions to decide

between nonlinear and linear flux estimates:

• LR: This method applies linear regression (LR) by the least squares estimate.

• RLM: Robust linear regression method on the basis of the Huber M estimator is used as a

less outlier-sensitive linear regression [19]. This function never weighs down the first or last

time point with very few data points (min. 4).

• HMR: The nonlinear flux estimate by [11], kappa is estimated by minimising the mean

squared error (MSE). If no local optimum is found for any kappa, the tool chooses a linear

regression.

• AIC: The Akaike Information Criterion [16] can be used to compare the model quality and

decide for the linear or HMR option that has the lower AIC score. Based on information the-

ory AIC assesses the trade-off between goodness of fit and complexity of the model. It has

been used for the selection between linear and HMR static chamber fluxes in the gasfluxes R-

package [18, 26].

• g-factor: Fnonlinear/Flinear—the nonlinear flux calculation is not allowed to increase the linear

flux estimate by more than a user-defined factor. The default for a maximum factor of 4 is

used in the gasfluxes R-package and was used in [18]. This arbitrary chosen threshold con-

cept can be transferred to a threshold of R2 or kappa [26] that allows for HMR estimates to be

used. Many flux estimation procedures use this kind of fix and arbitrary threshold at a cer-

tain point.

• KAPPA.MAX (the new FCS!): see next section

KAPPA.MAX—An improved flux selection method restricting HMR’s

nonlinearity

Nonlinear HMR estimates are restricted by kappa being not allowed to exceed a certain thresh-

old, depending on flux size (flin), minimal detectable flux (fdet) and measurement time (tmeas):

kmax ¼
flin

fdet tmeas
; ð2Þ

Eq (2) can be derived by expressing the HMR equilibrium concentration φ as fdet (see below).

The KAPPA.MAX restriction follows the behaviour that kappa should be kept small when flin is

small or fdet is large and vice-versa. Hence less impact of nonlinearity is allowed for small fluxes

and for large uncertainties of the measurement system. The dimensionless ratio of these fluxes

is divided by the measurement time that gives kappa the correct dimension (per time). The

restriction of kappa depends on the ratio between minimal detectable flux and linear flux

estimate.

Mathematical derivation of KAPPA.MAX’s threshold value:

φ ¼ C0 �
f0

� k h
ð3Þ

Nonlinearity restriction for GHG flux calculations
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Eq 3 defines the end concentration φ in the HM model (see [11]). C0 is the concentration at

time zero.

fdet ¼
Ct:meas

f :det � C0

tmeas � t0

h ð4Þ

Eq (4) describes the (simulated) minimal detectable flux (fdet) at specific chamber measure-

ment time (tmeas = max(t)). There are different options to estimate fdet of a given system [1].

Our approach is described in the subsection “Estimation of fdet”. The expression Ct:meas
f :det is con-

sequently the concentration at the latest measurement time point following emissions at the

minimal detectable flux.

As a restriction of the nonlinearity parameter kappa, φ reflects the minimal detectable flux

(fdet) when flin = fdet, hence when the linear flux is equal to the detection limit at t = tmeas, φ is

equal to Ct:meas
f :det . Eq (4) can be solved for Eq (3) (where t0 = 0):

φ ¼ Ct:meas
f :det ¼

fdet

h
tmeas þ C0

ð5Þ

Eq (5), φ expressed at the fdet boundary condition and insert the new expression for φ into

Eq (3) where the linear flux estimate (flin) serves as pragmatic flux estimate of the HMR

equation (f0):

fdet

h
tmeas þ C0 ¼ C0 �

f0

� k h
ð6Þ

That can be solved for KAPPA.MAX to get to Eq (2).

Limiting kappa as decision criteria has a behaviour similar to other parameters and could

be translated into a certain R2 or a g-factor. By choosing higher and more pragmatic detection

limits, one can decrease uncertainty for a minimal cost in bias.

Definition of KAPPA.MAX’s time factor tmeas. The time factor tmeas relates the measure-

ment time to kappa. tmeas should have the corresponding units as fdet and kappa (i.e. hour or

second). We suggest to use the time difference between the first and last datapoint from the

closed chamber. With this, all other parameters in KAPPA.MAX are derived during the flux calcu-

lation procedure.

Estimation of fdet (minimal detectable flux). fdet was simulated with the input of the stan-

dard deviation of the GC measurements (sdGC in ppb). For a pragmatic estimate of fdet the gen-

erated concentrations with the variability of the GC are calculated with the HMR scheme. A

zero flux was prescribed on the HMR equation and concentrations following a random variation

of sdGC were generated (i.e. for 1000 fluxes). From the generated concentrations the HMR flux

calculation was applied and the 97.5% quantile was used as fdet (similar to the approach of [13].

The higher the estimated fdet flux the less uncertainty by nonlinear flux estimates is introduced

but at the cost of an increase in potential bias.

Results

To validate the new approach with real measured data, we present a case study with data from

[22]. The aim wis to choose the appropriate FCS decision rules depending on the properties of

the measurement system (i.e. chamber size, sampling interval, measurement precision etc.).

Nonlinearity restriction for GHG flux calculations
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System specifications of a manual chamber measurement system

Chamber size, measurement intervals, user input:

Chamber volume (V): 0.014 m3

Chamber area (A): 0.07 m2

Sampling time (min): 0, 12, 24, 36 min
Precision of the measurement device (sdGC): 3 ppb SD (taking into account the handling of

the vials, assumed to be constant for the usual concentration range, actual precision of the GC

used by [22] rather between 1-3 ppb)

Model input and assumptions Atmospheric N2O concentration (c0): 325 ppb
Simulated flux (fmax): 0 − 5 nmol s−1 m−2 (logarithmic scale according the distribution of

the measured fluxes)

Number of simulated flux levels: 25

Sequence of simulated κ (kappa): 10−6 to 10−2 s−1 logarithmic scale n = 25

Number of simulations per parameter combination (nMC): 50

Minimal detectable flux (simulated): 0.067 nmol s−1 m−2 (using 95% quantile for HMR calcu-

lated zero fluxes)

The chamber design of the sample dataset was described in [27] in detail. It consisted of a

base ring that were permanently installed in the field and an opaque chamber with 30 cm

diameter and 12 cm height. A stainless steel vent was installed for pressure equilibration. Addi-

tional rings could be installed between base ring and chamber to account for the actual plant

height. In this case, a fan was installed to assure gas mixing in the larger chamber volume. Fur-

ther details about the field experiment and sampling method can be found in [22]. The N2O

flux measurements [22] provide an exemplary dataset from a reliable static chamber system.

The almost 5500 fluxes were measured over more than two years from a very regular setup and

under realistic agronomic field conditions. This dataset with its underlying chamber and GC

setup were used to show the impact of the six different calculation methods described in the

simulation framework.

The medians (Fig 2) of the simulation results show that the linear model provide a smooth

transition from large kappa (very high nonlinearity) to small kappa (close to linear behaviour).

Fig 2. Median of the simulated fluxes for 6 different flux calculation schemes described in the method section. On

the y-axis logarithmic values for kappa (about 10−5.7 to 10−2 s−1) are plotted against x-axis with predefined HMR flux (f0;

0-5 nmol N2O s−1 m−2). The colour code shows the median of the flux estimates for the given concentrations

predefined by f0 and kappa. The assumed measurement uncertainty for simulations was 3 ppb, nMC = 50.

https://doi.org/10.1371/journal.pone.0200876.g002
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Whereas the uncertainties are stable (Fig 3) the bias increases with increasing kappa. This bias

can be seen as drop in flux estimates from the predefined flux shown for small kappa values (at

the bottom). In contrast the “always for HMR” decision reflects the prescribed nonlinear flux up

to large kappa but gets unstable for kappa > 0.01 s−1. KAPPA.MAX accepts nonlinearity up to a

certain point (roughly kappa = 0.001 s−1) and especially prefers linear estimates for small

fluxes, depending on the measurement precision. The HMR and AIC methods look the same

just as the ordinary linear and robust linear are roughly the same too (Figs 2 and 3). The g-fac-

tor decision criterion leads to a well defined break at a certain kappa value (in this case just

above kappa > 0.001). It did not take into account that for small fluxes nonlinear regressions

should be applied more restrictively.

There are large differences in the uncertainty for flux estimates between the different meth-

ods (note the logarithmic IQ90 scale). Especially for large values of kappa, the pure HMR esti-

mate can get instable and introduce large variations to a dataset. Whereas linear estimates have

a low IQ90 and hence uncertainty, HMR and AIC show much larger uncertainties especially

with very high kappa values. KAPPA.MAX did balance the two approaches and reduced the uncer-

tainty (Fig 3) and bias (Fig 2) considerably. Any introduction of nonlinear HMR estimates

increases the uncertainty tremendously. However, the scope of this uncertainty is driven by

the precision of the measurement instrument (see sdGC).

Model application to the measured flux dataset

After exploring the model space in the relevant range of kappa and flux sizes, we apply the dif-

ferent calculation methods to the introduced dataset of a two years field measurement cam-

paign [22]. The results of the different calculation methods are shown in Table 1. For the total

number of 5470 fluxes the Table shows for each method its resulting geometric mean flux, the

number of fluxes that used HMR, the relative difference to the linear calculation (mean flux

method / mean flux linear), the mean IQ90, bias (deviation from HMR estimate) and MSE

(squared bias + variance) estimate. The last column in Table 1 shows the estimated fdet from

the 0.975 quantile (95% CI) of 1000 simulated zero fluxes and a sdGC of 3 ppb for each method.

When the methods simulated in Figs 2 and 3 are applied on a representative large flux data-

set [22], the geometric mean flux varies from +0% for robust linear to +264% if HMR and/or

Fig 3. Uncertainty visualization as IQ90 of the simulated model space (same as Fig 2) for the 6 different methods

shown on a logarithmic scaled colour code. Simulated measurement precision (sdGC) is 3 ppb, nMC = 50.

https://doi.org/10.1371/journal.pone.0200876.g003
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AIC is used (Table 1). The difference in the mean flux is related to the number of HMR fluxes

selected, but between methods there are considerable differences in which fluxes are effectively

selected. The large deviation from the linear flux in the HMR and AIC shows the urgent need to

restrict the use of HMR. But apparently the AIC is not an appropriate criterion because the

choice is too relaxed towards HMR. With an increase of only 12% from linear methods KAPPA.

MAX has the smallest deviation compared to all other nonlinear schemes. The few percent dif-

ference in the overall mean of the dataset is still considerable because this is the effect of a few

major fluxes that dominate the dataset. The additional method ‘RF2017’ (not shown in Figs 2

and 3) is an example for an actual use of the gasfluxes package published recently. ‘RF2017’

chooses nonlinear regression if kappa < 20 as arbitrary chosen threshold [26]. The method

shown in [22] indicated a 20% increase from the linear to nonlinear estimate of N2O but this is

derived from a two months shorter dataset and results from interpolated cumulative emis-

sions. The IQ90, bias and MSE estimates are calculated from the measured flux dataset pro-

jected on the simulation grid to its corresponding kappa and flux level, assuming the original

fluxes are actually based on the model input parameters. The IQ90 is the smallest for the linear

methods, while roughly two times the linear IQ90 for KAPPA.MAX and HMR/AIC have almost 6

times higher uncertainties in this dataset than linear estimates. Looking at the estimated bias,

‘RF2017’ achieves the lowest bias whereas the linear methods have the largest negative bias. In

combination of bias and uncertainty, the MSE shows that KAPPA.MAX scores the middle value

together with the g-factor method. Finally, the minimal detectable flux of KAPPA.MAX is as small

as the linear methods, whereas all other ones result in much higher uncertainty for very small

fluxes.

Fig 4 visualises the fluxes from the dataset as histogram in the model space (already shown

in Figs 2 and 3). Bar height indicates the number of fluxes that were measured within the

range of flux sizes and kappa determined by the model space. Fluxes that exceeded the mod-

elled range (> 5 nmol h−1 m−2) where set to the maximum value available on the simulated

framework (and show up in upper right row). This gives a sense of what the impact of the large

fluxes to bias and uncertainty potentially is. If kappa could not be fitted the fluxes are counted

in the row of the largest modelled kappa (showing up with low uncertainty at the upper-left

row). The uncertainty associated with these fluxes is small, because they are calculated with lin-

ear regression. The colour code shows the uncertainty as logarithmic IQ90 of the simulation

for the KAPPA.MAX method (see Fig 3). The KAPPA.MAX decision algorithm separates the fluxes

that could be fitted by HMR and the ones that could not. This reduces the uncertainty of the

dataset considerably. On the left (dark blue colours) are the nonlinear fluxes that are not

Table 1. Effect of different method of gas flux calculation on the example dataset (total number of fluxes is 5470), with estimated mean IQ90, bias and MSE having

same unit as the mean flux and fdet.

FCS Mean flux # HMR fluxes deviation from mean IQ90 mean bias mean MSE fdet

Method [nmol s−1 m−2] selected linear estimate estimate estimate estimate [nmol s−1 m−2]

LR 0.197 0 1.00 1.15E-3 -8.71E-2 5.99E-3 0.028

RLM 0.197 0 1.00 1.16E-3 -8.71E-2 5.98E-3 0.028

HMR.f0 0.719 3271 3.64 7.08E-3 -5.89E-2 4.68E-2 0.052

AIC 0.714 2656 3.62 7.06E-3 -5.90E-2 4.68E-2 0.033

g-factor 0.241 3001 1.22 4.90E-3 -6.05E-2 2.93E-4 0.040

KAPPA.MAX 0.221 1925 1.12 3.28E-3 -6.62E-2 3.76E-4 0.028

RF2017 [26] 0.323 3248 1.64 6.07E-3 -5.89E-2 6.77E-5 0.046

https://doi.org/10.1371/journal.pone.0200876.t001
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trusted whereas on the right (light blue to yellow) they are trusted with a mostly acceptable

modelled uncertainty. With this visualisation, critical fluxes (yellow-red colours) can be identi-

fied that need special attention.

KAPPA.MAX’s sensitivity to precision and measurement time

The driving parameters for the KAPPA.MAX HMR-restriction function are the measurement preci-

sion sdGC and the chamber measurement time tmeas. Figs 5 and 6 show a series of different val-

ues for these parameters tested in the simulated model framework introduced above. The sdGC

was used to simulate the minimal detectable flux (fdet, see method section) that is then used in

the quotient with the linear flux estimate to restrict HMRs nonlinearity parameter kappa. Also

sdGC is used for all simulated concentrations of the model framework. Fig 5 shows that sdGC

influences both the uncertainty for the linear as well as nonlinear estimates. It also impacts the

threshold where the algorithm switches from HMR to linear estimates. For smaller measure-

ment uncertainties HMR fluxes are trusted up to higher kappa, whereas for higher sdGC linear

estimates are favoured.

Similar to sdGC, tmeas as the duration of the chamber measurement changes the uncertainties

for the linear and nonlinear flux estimates, as well as the threshold line between the two

(Fig 6). Because the same measurement uncertainty is used, this variation is distributed among

a shorter time of measurement, hence the shorter the chamber time, the higher the uncertainty

of the flux estimate. This applies to the linear regression as well because the elapsed time

increases the robustness of the fit.

Fig 4. Histogram of the flux dataset projected onto the modeled kappa/f0 space with shading of the log(IQ90)

using the KAPPA.MAX method. Fluxes larger than the simulation range (> 5 nmol h−1 m−2) are summed up in the largest

flux column on the upper-right side. Where HMR could not be fitted, the fluxes are counted for the largest kappa value

(upper-left). Whereas the range and units on the kappa and flux axis are the same than for antecedent figures, the z-

axis with the flux counts within the range of the model grid reaches from 0 to 160 counts.

https://doi.org/10.1371/journal.pone.0200876.g004
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Discussion

The newly introduced approach to improve balanced estimates for static chamber fluxes,

KAPPA.MAX, offers substantial improvements compared to other methods used in literature [1].

Most importantly our data shows, that large deviations (> 20% increase) from the linear esti-

mates are questionable. Furthermore the KAPPA.MAX method avoids the need for expert knowl-

edge and arbitrary thresholds. Introducing the minimal detectable flux to the decision

strengthens the practice to actually calculate and report the precision of a measurement sys-

tem. The potential bias and uncertainty introduced by the flux calculation can be estimated

with the presented simulation framework. Its calculation will be implemented into the R-

script. Bias and uncertainty can thus be reported in upcoming studies accordingly. The

Fig 6. Sensitivity analysis of the maximal chamber time (t.max = time of the final gas sample—t(max)) using the

KAPPA.MAX calculation method. The six plots use t(max) values of 13, 30, 45, 60, 75 and 90 minutes to calculate

maximal allowed kappa in the HMR flux estimate. sdGC = 3 ppb for all plots.

https://doi.org/10.1371/journal.pone.0200876.g006

Fig 5. Sensitivity analysis of measurement precision (sdGC = standard deviation of a GC measurement) using the

KAPPA.MAX calculation method in the simulation framework. The six plots use sdGC values of 0.5, 1, 3, 6, 9 and 15 ppb
to calculate the minimal detectable flux (fdet) that is then used to restrict kappa estimates of HMR. t(max) = 60 min for all

plots.

https://doi.org/10.1371/journal.pone.0200876.g005
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different methods for the flux calculation highlight the driving factors of a static chamber sys-

tem. The gas sampling scheme needs to be optimised for the expected flux size depending on

chamber dimensions. The model framework can be used to simulate and visualise the impact

for the specific parameters of a certain measurement system. After visualising the performance

of the flux calculation method for the system (Figs 2 and 3), the user can also check in which

region of the f0/kappa space the data is gathered (Fig 4).

1. Bias

Linear or robust linear schemes have a large bias that is stable over the tested range of preci-

sion. In our simulation framework a zero bias cannot be achieved because the HMR algorithm

itself collapses with increasing kappa estimates (sharp increase in uncertainty, see Fig 3).

According to how the FCS bias was estimated, the decision rules perform in the order: HMR >

AIC> g-factor > KAPPA.MAX > robust linear = linear (Fig 2 and Table 1). KAPPA.MAX is the only

procedure that varies its bias with measurement precision. Clearly, one cannot simply aim for

the lowest bias in this framework, because large kappa cannot be estimated reliably and the

flux can be overestimated excessively.

2. Uncertainty

The smallest uncertainty is achieved by the linear or robust linear flux estimate. The use of HMR

needs restrictions to prevent unstable estimates which introduce a large uncertainty to the

dataset. The method ranking with respect to uncertainty is: linear = robust linear > KAPPA.MAX

> g-factor > AIC = HMR. Our results imply that the AIC is a too relaxed criteria for the linear-

nonlinear decision and does not sufficiently reduce the uncertainty from the HMR approach.

The g-factor (<= 4) method seems to be a reasonable threshold for this system, but does not

change with measurement precision. Also it does not take into account that smaller fluxes at

critical levels of kappa need to be treated with more caution than larger fluxes. The reduction

in uncertainty is provided at a comparable low cost of bias with the proposed KAPPA.MAX

scheme.

3. Arbitrary thresholds

KAPPA.MAX was developed to overcome the frequently used approach to apply arbitrary thresh-

olds based on expert knowledge. However, many studies used thresholds for R2 (i.e. > 0.8 in

[24]), kappa (i.e. kappa < 20 h−1 in [26] or g-factor < 4 [18, 22]) that are arbitrarily chosen

from some experience. Our simulation showed that these thresholds have a similar effect on

the nonlinear flux selection and can consequently be translated into each other (i.e. for the sys-

tem at a sdGC of 3 ppb, the results are similar for R2 < 0.8; kappa < 5 h−1 and g-factor < 4.5).

Also statistical performance indicators like AIC, p-value or SE are rather arbitrary because it is

not clear how these statistical expressions should decide between linear and nonlinear calcula-

tion. The newly suggested KAPPA.MAX method tries to replace the arbitrary threshold by apply-

ing a dynamic one that is derived from important parameters of the measurement system. The

KAPPA.MAX approach shows that such a more reasonable threshold leads to better results than

the arbitrary ones and is furthermore based on physical logic.

4. Simplicity of the method

In terms of simplicity the ranking of the screened methods is: LR > robust linear > HMR >

AIC = g-factor > KAPPA.MAX (> CBC, [12]). With less statistical assumptions the linear

approach is the most robust. The less additional information is needed the easier it can be
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applied. However when nonlinear effects dominate the concentration measurement in a

chamber, the measurement precision should be used as additional input to balance bias and

uncertainty for nonlinear regressions (like KAPPA.MAX). A system with an unknown measure-

ment precision cannot handle the optimal choice between linear and nonlinear schemes. In

contrast the CBC (see introduction, [12]) would additionally need measurements of the soil

water content and bulk density from the field, thereby introducing additional sources of

uncertainty and bias. Another recent example of a highly complex flux calculation scheme was

suggested by [23]. Similar to [24] they developped a flow chart that distinguishs between differ-

ent flux calculation methods depending on certain patterns in the chamber concentration

measurements. In contrast our results show that a dynamic threshold for kappa allows for a

nonlinear approach for the whole range of fluxes, especially around the minimal detectable

flux.

5. Calculation based on statistical principles and physical theories

Although HMR equations reflect the diffusion from a constant source concentration φ in depth

d below soil surface, they don not represent a sophisticated diffusion model. Venterea [9]

describes the deviation of nonlinear FCSs towards the theoretical curvature. Compared to the

other methods tested, HMR has an average performance and generally underestimates the theo-

retically modeled flux. The advantage of HMR is that it can represent very small to larger devia-

tions from the linear estimate with the estimation of just one parameter (kappa). Fitting kappa
to the concentration measurements estimates any combination of physical effects and soil het-

erogeneity, that lead to a flattening of the concentration increase. In addition to the decreasing

concentration gradient, chamber leakage or lateral gas transport in soil leads to a reduced

slope with time. These effects are influenced by the diffusivity of the soil that is again driven by

the water content. That is why approaches like the CBC [12] use data about soil water content

and soil bulk density. However, we expect that the HMR deviation from theoretical diffusion

models only introduce a minor bias to the flux estimates. Rather factors like the measurement

precision, vial handling and random fluctuation in the chamber concentration from wind

gusts etc. superimpose model deficiencies [3, 28]. The theoretical diffusion models themselves

are just approximations and cannot describe the dynamics below the chambers in detail (i.e.

cracks, bioturbation or soil heterogeneity in general). Using the HMR procedure allows the

numerics to fit the kappa parameter to match all these unknown factors best to the measure-

ments. The challenge is to find the limits to the underlying assumptions and consequently use

LR for those cases, as it is suggested by the KAPPA.MAX method. In comparison to g-factor and

AIC, KAPPA.MAX has a stronger link to physical parameters because the precision can be mea-

sured objectively.

6. Smooth transition between nonlinear and linear regression methods

Linear methods perform well with respect to a smooth transition from nonlinear to linear esti-

mates. Most other schemes suddenly drop from HMR to linear and create large uncertainty. By

using our simulation framework and a histogram of the flux dataset (Fig 4) it should be verified

if a significant number of fluxes lies close to a sudden transition between linear and nonlinear

regimes. The uncertainty in the estimate of HMR’s kappa can introduces variations of several

100 percents of the flux estimate. KAPPA.MAX leads to a better defined separation of linear and

nonlinear fluxes (Fig 4).
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7. Low detection limit

The detection limit is related to the uncertainty for low fluxes. The most stable approach is

using linear or even a robust linear regression. A combination of linear and nonlinear schemes

needs to detect fluxes close to detection limit and appoint them to linear regression. The com-

pared methods perform in terms of low detection limit as follows: robust linear = linear =

KAPPA.MAX > AIC> g-factor > HMR (Table 1). Note that the original fdet used to calculate

KAPPA.MAX’s dynamic threshold, is derived from the HMR method. KAPPA.MAX methods perform

as good as the linear ones, whereas AIC seems to be superior to g-factor or HMR. [13] has stud-

ied the effect of the flux calculation regression on detection limits in detail and found that qua-

dratic regressions had a lower detection limit than HMR as well. This is mainly because the HMR

method urgently needs additional restrictions especially for small fluxes.

The gasfluxes package offers a simulation function for the detection limit that is similar to

the approach of [13].

Limitations and further needs for research

The HMR equations are able to fit a nonlinear flux estimate assuming certain diffusion condi-

tions. But there can be a considerable theoretical flux underestimation by the Hutchinson-

Mosier model as shown by [12] and [9]. Models that are more closely linked to detailed soil

gas diffusion processes suffer in practice from unmet assumptions like one-dimensional verti-

cal diffusion in the soil profile or that soil is vertically uniform with respect to physical proper-

ties [9]. However, one could try to involve measurements of soil water content and use this

information to improve the KAPPA.MAX decision accordingly. It needs to be explored systemati-

cally how soil water content influences the nonlinearity parameter kappa.

We showed that a combination of linear and nonlinear flux calculation by the use of the

KAPPA.MAX restriction equation (Eq 2) is a very practical and pragmatic approach. There is still

a need for further testing with different system, especially for datasets with more than 4 data

points in chamber time. KAPPA.MAX is designed for measurement systems with low timely reso-

lution and limited precision (n = 4, like [29]) but was also tested on a system with higher reso-

lution (n = 11, [30]). Further investigations could be done on the tmeas parameter in the KAPPA.

MAX decision criteria to improve the application for varying measurement duration. HMR’s esti-

mates of φ and C0 as well as chamber height h could be a helpful source of information to test

the reliability of the nonlinear fit. There are reasonable arguments that kappa should increase

with increasing measurement time but not actually decrease as in the KAPPA.MAX equation (Eq

2). On the one hand, for shorter measurement times, the chance is higher that the measure-

ment stays in the regime that can be approximated with linear regression, but on the other

hand the regression gets more robust with increased time. Starting from our simple suggestion

of how to restrict kappa, a user may still adjust its calculation procedure to the specific features

of his system, using our simulation framework. Especially tmeas can still be tweaked to improve

the selection algorithm as this value is not yet perfectly defined. The simulation framework is

provided as function to the gasfluxes R package [17].

Conclusion

Large uncertainties can be introduced by the flux calculation method. The situation of each

specific measurement system should be analysed to choose the best combination of linear

regression (enhancing bias/reducing uncertainty) and HMR (enhancing uncertainty/reducing

bias). We recommend the use of KAPPA.MAX approach elaborated in this publication that should

optimally balance bias and uncertainty with respect to measurement precision and the cham-

ber setup. We show the practical performance of this FCS decision rule in a representative
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example dataset. It can be applied without expert tuning or additional field data. The deviation

from linear estimates is significantly smaller with KAPPA.MAX than other nonlinear methods.

Finally, the potential bias and uncertainty of a certain dataset can be estimated with the simula-

tion framework.

Acknowledgments

Many thanks to the contributors and reviewers that have improved the manuscript with their

comments. We are grateful to numerous people that sampled greenhouse gases outside in the

field all year round.

Author Contributions
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Writing – review & editing: Raphael Felber, Johan Six, Jens Leifeld, Roland Fuß.

References

1. de Klein C, Harvey M. Nitrous Oxide Chamber Guidelines; Global Research Alliance on Agricultural

Greenhouse Gases [WWW document]. URL www.globalresearchalliance.org/research/livestock/

activities/nitrous-oxide-chamber-methodology-guidelines/ [accessed on 16 June 2014]. 2013;.

2. Collier SM, Ruark MD, Oates LG, Jokela WE, Dell CJ. Measurement of Greenhouse Gas Flux from

Agricultural Soils Using Static Chambers. Journal of Visualized Experiments. 2014;(90). https://doi.org/

10.3791/52110 PMID: 25146426

3. Rochette P, Eriksen-Hamel NS. Chamber Measurements of Soil Nitrous Oxide Flux: Are Absolute Val-

ues Reliable? Soil Science Society of America Journal. 2008; 72(2):331. https://doi.org/10.2136/

sssaj2007.0215

4. Conen F, Smith KA. An explanation of linear increases in gas concentration under closed chambers

used to measure gas exchange between soil and the atmosphere. European Journal of Soil Science.

2000; 51(1):111–117. https://doi.org/10.1046/j.1365-2389.2000.00292.x

5. Venterea RT, Spokas KA, Baker JM. Accuracy and Precision Analysis of Chamber-Based Nitrous

Oxide Gas Flux Estimates. Soil Science Society of America Journal. 2009; 73(4):1087. https://doi.org/

10.2136/sssaj2008.0307

6. Anthony WH, Hutchinson GL, Livingston GP. Chamber Measurement of Soil-Atmosphere Gas

Exchange: Linear vs. Diffusion-Based Flux Models. Soil Science Society of America Journal. 1995; 59

(5):1308. https://doi.org/10.2136/sssaj1995.03615995005900050015x

7. Venterea RT, Baker JM. Effects of Soil Physical Nonuniformity on Chamber-Based Gas Flux Estimates.

Soil Science Society of America Journal. 2008; 72(5):1410. https://doi.org/10.2136/sssaj2008.0019

8. Levy PE, Gray A, Leeson SR, Gaiawyn J, Kelly MPC, Cooper MDA, et al. Quantification of uncertainty

in trace gas fluxes measured by the static chamber method. European Journal of Soil Science. 2011;

62(6):811–821. https://doi.org/10.1111/j.1365-2389.2011.01403.x

9. Venterea RT. Theoretical Comparison of Advanced Methods for Calculating Nitrous Oxide Fluxes using

Non-steady State Chambers. Soil Science Society of America Journal. 2013; 77(3):709. https://doi.org/

10.2136/sssaj2013.01.0010

10. Livingston GP, Hutchinson GL, Spartalian K. Trace Gas Emission in Chambers. Soil Science Society of

America Journal. 2006; 70(5):1459–1469. https://doi.org/10.2136/sssaj2005.0322

11. Pedersen AR, Petersen SO, Schelde K. A comprehensive approach to soil-atmosphere trace-gas flux

estimation with static chambers. European Journal of Soil Science. 2010; 61(6):888–902. https://doi.

org/10.1111/j.1365-2389.2010.01291.x

Nonlinearity restriction for GHG flux calculations

PLOS ONE | https://doi.org/10.1371/journal.pone.0200876 July 26, 2018 16 / 17

http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
http://www.globalresearchalliance.org/research/livestock/activities/nitrous-oxide-chamber-methodology-guidelines/
https://doi.org/10.3791/52110
https://doi.org/10.3791/52110
http://www.ncbi.nlm.nih.gov/pubmed/25146426
https://doi.org/10.2136/sssaj2007.0215
https://doi.org/10.2136/sssaj2007.0215
https://doi.org/10.1046/j.1365-2389.2000.00292.x
https://doi.org/10.2136/sssaj2008.0307
https://doi.org/10.2136/sssaj2008.0307
https://doi.org/10.2136/sssaj1995.03615995005900050015x
https://doi.org/10.2136/sssaj2008.0019
https://doi.org/10.1111/j.1365-2389.2011.01403.x
https://doi.org/10.2136/sssaj2013.01.0010
https://doi.org/10.2136/sssaj2013.01.0010
https://doi.org/10.2136/sssaj2005.0322
https://doi.org/10.1111/j.1365-2389.2010.01291.x
https://doi.org/10.1111/j.1365-2389.2010.01291.x
https://doi.org/10.1371/journal.pone.0200876


12. Venterea RT. Simplified Method for Quantifying Theoretical Underestimation of Chamber-Based Trace

Gas Fluxes. Journal of Environment Quality. 2010; 39(1):126. https://doi.org/10.2134/jeq2009.0231

13. Parkin TB, Venterea RT, Hargreaves SK. Calculating the Detection Limits of Chamber-based Soil

Greenhouse Gas Flux Measurements. Journal of Environment Quality. 2012; 41(3):705. https://doi.org/

10.2134/jeq2011.0394
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