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Abstract

In this paper, we analyse the drivers of farm structural change in the EU-27, applying
a novel analytical framework in the field of agricultural economics known as the
multiplicative competitive interaction (MCI) model. MCI offers a more parsimonious
specification for estimating models of regional farm group shares compared to the
often-applied Markov approach. The MCI framework enables farm group-specific
equations, which are used to account for drivers specific to certain farm groups. The
MCI framework explains farm group shares at the regional level taken from the Farm
Structure Survey (FSS) using socio-economic variables from the Farm Accountancy
Data Network (FADN) and other databases for the period 1989–2013. We consider
eight production specialisations and two size classes at the NUTS 2 regional level.
The results indicate that the past farm structure explains approximately 36 per cent of
the EU farm structure variation across regions and time, followed by natural condi-
tions (16 per cent), agricultural prices (14 per cent), macroeconomic variables
(9 per cent), subsidies (7 per cent), population (6 per cent) and agricultural income
(6 per cent). Further, we have run a simulation experiment where we derived elastici-
ties of structural change with respect to time-varying variables. The structural change
appears to be the most elastic with respect to income and macroeconomic variables.
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1. Introduction

European Union (EU) agriculture has undergone significant structural changes
over the last decades. The most evident and policy-relevant structural develop-
ments in EU agriculture are reflected in the declining number of farms, farm
size growth and production re-specialisation over time. For example, the num-
ber of farms in the EU declined by an average of 3.7 per cent annually
between 2005 and 2010. In contrast, average farm size expanded by 3.8 per
cent per year in the same period. As farm size grows, farms tend to specialise
in cereal cropping and grazing livestock and move away from permanent
crops, granivores and mixed farming (European Commission, 2013b).
Understanding the drivers of these past structural changes helps project future
developments and has significant policy implications, as one of the key prior-
ities of the Common Agricultural Policy (CAP) is to promote rural develop-
ment (European Commission, 2013a) and prevent the abandonment of
production in agricultural areas (European Commission, 2003).
The literature offers a multitude of determinants explaining farm structural

change. However, a comprehensive theoretical framework accounting for all
major drivers of structural adjustment in agriculture is not available. Important
drivers identified include technology (economies of scale) (Cochrane, 1958) and
productivity growth (Harrington and Reinsel, 1995), farm household and path
dependency (Balmann et al., 2006; Zimmermann and Heckelei, 2012), input and
output prices and macroeconomic conditions (e.g. unemployment rate)
(Zimmermann and Heckelei, 2012), regional characteristics, agricultural policies
(Chau and de Gorter, 2005; Ben Arfa et al., 2015) and competitive pressures
from non-agricultural sectors for resources (Alvarez-Cuadrado and Poschke,
2009). Recent studies highlight the importance of farm interaction for strategic
farm decisions due to the competition over land causing regional specific pat-
terns and spatial dependencies (Storm, Mittenzwei and Heckelei, 2015b).
One key distinction between studies attempting to assess the drivers of

structural change in agriculture is the use of either macro or micro data.
Studies using macro-level data exploit information regarding farm structure
(e.g. number of farms) at the regional or country level to explain its dynamics
(entry and exit of farms) and drivers over time (Goetz and Debertin, 2001;
Breustedt and Glauben, 2007). Meanwhile, studies based on micro data use
farm-level information to explain farm structural change, typically with farm
size growth models (Sumner and Leiby, 1987; Weiss, 1999; Bremmer et al.,
2004). For example, Röder et al. (2014) and Neuenfeldt et al. (2014) analyse
the impact of various socio-economic drivers on changes in farm specialisa-
tion based on farm-level data. Recent studies also combine micro and macro
data to make better use of the available information when identifying drivers
and predicting farm structural change (Storm et al., 2015a, 2016).
A second important distinction between studies is the methodological

approach applied. One strand of literature applies various econometric tools
(e.g. probit, panel data estimation) to explore a narrowly defined aspect of
farm structural change, such as farm exit/entry choices, farm growth etc. (e.g.
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Bremmer et al., 2004; Foltz, 2004). Another strand of applications – the most
widely used type – analyses structural change with a Markov transition prob-
ability model (e.g. Huettel and Margarian, 2009). Given the typically limited
number of observations, the Markov model requires imposing some a priori
assumptions on transitions between states to lower the number of parameters
estimated, particularly when the number of farm sub-groups is large. Several
studies use prior information or data combinations to overcome this ‘degrees-
of freedom’ problem (Zepeda, 1995; Huettel and Jongeneel, 2011;
Zimmermann and Heckelei, 2012; Storm et al., 2015a, 2016).

The aim of this paper is to develop and apply a novel analytical framework
in agricultural economics research – the multiplicative competitive interaction
(MCI) model – to identify relevant determinants and their quantitative impact
on farm structural change in EU-27 regions at the aggregated NUTS 21 level
using information from the FSS and FADN for the period 1989–2013. We
define farm structure by aggregated farm group shares at the regional level,
which are specified by combining eight production specialisations (farm
types) and two farm size classes into a total of 16 farm groups.

The proposed MCI empirical model relies on shares of aggregated farm
groups of the farm population defined across EU regions. We calculate aggre-
gated farm group shares at the NUTS 2 level from the FSS and calculate vari-
ous variables derived from the FADN and other statistics to identify how
farm group shares at the regional level are affected by farm characteristics,
input and output prices, subsidies, macroeconomic variables and natural con-
ditions. The MCI approach follows the theoretical framework underlying the
market share attraction model from the marketing literature (Cooper and
Nakanishi, 1988; Fok, Franses and Paap, 2002). The MCI approach allows
us to capture and conveniently analyse farm structure development by
regional shares of farm groups. This approach significantly reduces the par-
ameter dimensionality problem encountered in the Markov approach: the dis-
aggregated level of farm groups considered in this paper would result in
many transitions (up to 16 × 16) per region, causing significant parameter
identification issues for the latter approach. Compared to the Markov
approach, the MCI model reduces the number of parameters to be estimated
but still allows for the identification of determinants of and prediction of
farm group shares.

Our paper contributes to the existing literature on farm structural change in
four ways. First, we propose a dynamic utility model – the MCI approach –

as a novel analytical tool in this context. Second, the proposed analytical
framework depicts farm structural change in terms of the development of
regional farm group shares, but avoids the over-parameterisation problem of
the Markov approach when micro data or prior information are not available.

1 ‘The NUTS classification subdivides the economic territory of the EU Member States into terri-

torial units (regions) […]. The classification is made up of three hierarchical levels: each

Member State is divided into so-called NUTS 1 regions, which in turn are subdivided into NUTS

2 regions and then divided further into NUTS 3 regions’. (European Union, 2015: 4–5)
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This increased parsimony of the model specification allows us to better iden-
tify the effect of various drivers on farm structural change represented by
changes in farm group shares. Third, we estimate farm structural change
alongside two dimensions (i.e. by farm specialisations and farm size), which
to our knowledge, has only been done by Zimmermann and Heckelei (2012)
with a Markov approach. Finally, we aim to identify the main drivers of farm
structural change in the EU, assess their relative importance and derive corre-
sponding elasticities of farm structural change. The scale and possibility of
automation of the approach also opens up the possibility of incorporating
farm structural change into ex-ante policy impact analysis linking at a larger
scale, something often demanded but still rarely done in CAP assessments.
The remaining paper is structured as follows. The next section introduces

the MCI approach, while Section 3 explains the construction of farm groups
and the motivation of the set of explanatory variables. Section 4 presents the
empirical model specification. Section 5 presents the results regarding the
impact of determinants, explanatory contributions and elasticities of determi-
nants. The final section presents the conclusions.

2. MCI model: the market share attraction approach

2.1. The market share approach in marketing research

Market share models were initially developed in marketing literature to
explain the market shares of brands or products and investigate how they are
affected by firms’ own actions (e.g. marketing instruments and management
choices), the actions of competitors and other factors such as general eco-
nomic development or policy changes. This approach is also applied in the
literature to other sectors like hospital services (Erickson and Finkler, 1985)
and the financial sector (Banker and Kauffman, 1988; Banker et al., 2010).
The most straightforward and prominent market share model is MCI,

which analyses market shares in a competitive environment where the market
is divided in M submarkets (e.g. brands, groups of customers, time periods or
geographical regions). MCI models hypothesise that the determinant of mar-
ket share is the attraction (or utility), U, that consumers feel towards alterna-
tive submarkets (e.g. brands) when making a purchasing choice given the
available options. Following this consideration, the following relationship
between the attraction (or utility) of submarket i, U(i), and its corresponding
market shares, s(i), can be derived:

∑=
∑

= ( )
= =

s
U

U
s; with 1 1i

i

j
M

j i

M

i

1 1

Equation (1) implies that the submarket that is most attractive (or with the
highest utility) gains the largest market share. Another important implication
of the formulation of equation (1) is that it brings competitive interaction into
the model, which is provided by the normalisation in the denominator, which
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sums attractions over all brands. The result is a competitive model because
the submarket’s i market share depends on the actions of other submarkets.
In other words, the MCI model describes the method through which the mar-
ket is split among competitors given the effort allocation of each of them
(Bell, Keeney and Little, 1975; Kotler, 1984; Cooper and Nakanishi, 1988;
Monahan and Sobel, 1990).

The MCI literature does not provide or claim a profit maximisation theory
of the firms behind the MCI approach, as most profit maximisation models
for a firm or group of firms impose unrealistic assumptions on share models,
e.g. independence of irrelevant alternatives or non-satiety. Based on Cooper,
the purpose of applying MCI is rather to reflect the forces driving rich com-
petitive market interactions.2

2.2. Analysing farm structural change in the MCI context

We adopt the market share attraction framework developed in the marketing
literature to estimate drivers for competitive structures in agriculture (Cooper
and Nakanishi, 1988; Fok, Franses and Paap, 2002). More specifically, we
apply the MCI approach to analyse farm structural change in the EU-27 for
aggregated farm group shares distinguished by production specialisation and
farm size. The farm group shares are calculated as the percentage of the num-
ber of farms belonging to a particular group in the total farm population. In
contrast to our farm group share measure, market share is defined for a spe-
cific product/brand in the MCI formulation as represented in equation (1) –
usually approximated by its sales volume in relation to total market sales
(Cooper and Nakanishi, 1988). This difference between our group share mea-
sures and the MCI approach may pose inconsistencies for our estimation. We
identify the following minimum set of assumptions regarding farmers’ behav-
iour under which the MCI analytical framework given in equation (1) is con-
sistent with our farm group shares representation in terms of farm population
distribution:3

i. Farm-level production programmes and decisions on structural invest-
ments are made by utility maximisation of the farm-household. The deci-
sion regarding the farmer’s optimal production programme is made by
incorporating all relevant information, such as output and input prices,
subsidies, technological possibilities and other non-economic factors. We
assume that the farm-household’s utility maximisation depends on both
the production of private goods (e.g. generation of farm income and
long-term profitability) and the provision of environmental goods and ser-
vices, as well as non-pecuniary benefits.

2 E-mail correspondence with Lee Cooper in 2017.

3 In Stokes (2006), another analytical framework – the Markov chain model – is also used to ana-

lyse farm structural change without explicitly relating the analytical framework to single farm

behaviour. Instead, reasonable assumptions and conditions to link theory and methodology are

derived.
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ii. A stratification of the farm population by production specialisation and
size class encompasses groups with similar socio-economic and produc-
tion characteristics. We assume that the resulting groups capture the pro-
duction behaviour of all farms in the group.

iii. Farm group shares, rather than the absolute number of farms belonging to
a group, better reflect the distribution of groups at the regional level and
enable comparability of farm structure between regions.

iv. Market signals such as prices, subsidies and other relevant factors exist at
the aggregated farm group level and are consistent with those that drive
individual farmers’ production choices and thus also determine the farm
group shares.

The first assumption ensures that farmers’ production decisions are consist-
ent with the standard assumption of profit (or utility) maximisation usually
considered in agricultural literature. The second assumption states that the
individual farms belonging to a group are somehow homogenous. The third
assumption normalises the farm groups in a region to allow comparability
between regions. The last assumption requires that market signals at the farm
group level are consistent with those that drive individual farmers’ production
choices. In other words, we assume that when a price, for example, signals
individual farms to increase a specific production activity, it is likely that sev-
eral individual farms in that farm group will change their production and
hence their farm group classification. As a result, both the regional shares of
the original farm group and the farm group to which the individual farms
move change.
The theoretical justification of farm structural change in the MCI context

would make it necessary to analytically relate farm group shares in the popu-
lation to the distribution of farm production choices and show that this rela-
tionship is equivalent to the MCI model formulation in equation (1).
However, such a derivation is not straightforward because the model formu-
lation is highly discontinuous given that the classification of farms into spe-
cific groups is based on income thresholds at the farm level (i.e. it is based
on income shares for the production specialisation classification and total
farm income for the farm size classification). For this reason, we illustrate the
consistency of the theoretical concept numerically using a simulation experi-
ment for a synthetic farm population.
The numerical experiment assumes the profit maximisation of farms (see

the GAMS code in Appendix A.4 in supplementary data at ERAE online).
For each farm, production choice is simulated using an individual mathemat-
ical programming model that maximises individual farm profits. We run two
experiments: one that considers 1,000 farms and a second one with 10,000
farms, to check the sensitivity of the results to the size of the farm popula-
tion. The farm models are parameterised by randomly drawing prices, yields
and land endowments for each farm. Subsequently, we run several price
scenarios with a vector of price changes that result in different production
choices by farmers in line with profit maximisation behaviour. We classify
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farms by production specialisation into four farm groups using fixed income
thresholds: cereal, sugar beet, potato and mixed farms. The number of farms
in each group is divided by the total farm population to obtain the farm group
shares.

We split the sample of simulated farms into a training set and a test set. We
apply the MCI estimation to the training set using the aggregated farm group
shares for the given prices. Finally, we compare both shares generated from the
farm-level simulation model and those projected by the MCI model of the test
set. The results are reported in Table 1, in which we show the coefficient of
determination between the shares derived in the farm-level simulation model and
the MCI approach. The high fit (greater than 87 per cent) shows that MCI is cap-
able of reflecting/explaining the profit maximising behaviour of single farms
well at the aggregated farm group level. The results are similar for both farm
populations considered, although a higher population size slightly improves the
fit between the farm-level simulation model and the MCI approach. These results
confirm that our representation of farm group shares in terms of farm population
distribution can be estimated with relatively high accuracy using the MCI
approach as specified in equation (1).

2.3. The specification of the MCI framework for structural change

Following the market share attraction models applied in the marketing literature,
three different model specifications can be identified: simple effects, differential
effects and the fully extended model. The simple effects model assumes the
same impact of a given explanatory variable on all market shares across all farm
groups considered (e.g. the price of cereals has the same marginal impact on the
share of dairy farms and cereal farms). The differential model allows the impact
of explanatory variables to differ across farm groups’ market shares (e.g. the
price of cereals may have a different impact on dairy farm shares than cereal
farm shares). In the fully extended model, the own- and cross-farm-group effects
of explanatory variables may differ between farm group share equations. This
approach permits analysing the impact of explanatory variables (e.g. age)
observed in one farm group (e.g. cereal farms) on other farm group
shares (e.g. dairy farms, permanent crop farms) (Cooper and Nakanishi,
1988; Gocht et al., 2012).

Table 1. Coefficient of determination between the farm-level simulation model and the
MCI approach

Farm group For 1,000 farms For 10,000 farms

Cereals 0.960 0.964
Sugar beet 0.912 0.972
Potatoes 0.996 0.999
Mixed 0.872 0.942
All together 0.969 0.988
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In this paper, we employ the differential effect model. In line with equation
(1), a farm group share in a region is defined by the aggregated utility gener-
ated from farming activities by farm group relative to the total utility obtained
by all farm groups.

=
∑

( )
=

s
U

U
2i t

i t

j
M

j t
,

,

1 ,

where i and j are farm group indices, t is time, Ui,t is the utility of farm group
i in t, si,t is the share of farm group i in all farm groups in t, M is the number
of farm groups considered at the NUTS 2 level.
We assume that farm size and farm specialisation reflect different orienta-

tions in carrying out farming depending on different factors (explanatory
variables), such as required investment strategies, policy measures, natural
constraints or farm characteristics. Consider, for example, a region charac-
terised by large cereal farms and small pig fattening farms. An increase in
cereal price is expected to have a positive effect on large cereal farms and a
negative one on small pig fattening farms. This means that the utility of large
cereal farms increases relative to the utility of the pig fattening farms with
increasing cereal prices. Consequently, and following equation (2), we
observe an increase of the share of large cereal farms and a decrease of the
share of small pig fattening farms. Note that the share of a farm group may
decrease even when its utility increases if the absolute values of a farm
group’s utility changes less than for other farm groups (e.g. when cereal price
increase has a greater positive effect on cereal farms than on mixed farms).
According to Cooper and Nakanishi (1988: 28), market share models must

comply with two consistency requirements: (i) estimated market shares from
the model are non-negative and (ii) they must add up to one. Two types of
models fulfil these requirements: MCI and multinomial logit models. For this
paper, we apply the MCI model, which formulates utility as a multiplicative
function of explanatory variables:

∏ ε= ( ) ( )α β( )

=

U e f X 3i t

k

K

k k i t i t,

1

, , ,i k i,

where K is the number of explanatory variables, Xk,i,t is the kth explanatory
variable explaining the utility of farm group i in t, βk,i is the coefficient meas-
uring the influence of the kth explanatory variable on the utility of farm group
i in t, αi is a farm group-specific parameter, fk is the positive, monotone trans-
formation of Xk,i,t and εi,t is the error term.
Nakanishi and Cooper (1982) and Cooper and Nakanishi (1988: 26–31,

108–110 and 128–130) have shown that one can estimate equations (2) and
(3) by a dummy regression model defined by
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where i, j are farm group indices, dj is a dummy variable for farm group j
(with dj = 1 if j = i and 0 otherwise).4

After estimating equation (4), we calculate the shares of the farm groups
using the normalisation procedure of the estimated dependent variable, as
suggested by Nakanishi and Cooper (1982). That is, if we allow ŷi,t to be the
estimate of the dependent variable in equation (4), the estimated farm group
share, ŝi,t, is given as follows:

ˆ =
(ˆ )

∑ (ˆ )
( )

=

s
y

y

exp

exp
5i t

i t

j
M

j t

,
,

1 ,

Farm group share i is calculated as the share of the inverse logarithm of
the estimate divided by the sum of all the inverse logarithm estimates of the
dependent variable over all farm groups.5

The subsequent normalisation renders it unnecessary to impose constraints
on parameters ensuring that the shares add up to one. A further advantage is
that farm group-specific sets of explanatory variables can be used to specify
equation (4) for estimation. This advantage is particularly important in the
presence of heterogeneous farm groups because different farm group shares
may be affected by a variety of drivers. For example, coupled subsidies under
the CAP are granted for selected production activities that are directly rele-
vant for certain farm groups but not for others.

3. Data

3.1. Construction of farm groups

We use the Farm Accountancy Data Network (FADN) typologies to con-
struct farm groups. FADN is a European system of sample surveys conducted
each year that collect detailed structural and accountancy data on EU farms.
The FADN data are unique in the sense that it is the only source of harmo-
nised and representative farm-level microeconomic data for the whole EU.
Farms are selected to take part in the surveys on the basis of sampling frames
established at the level of each region in the EU. The yearly FADN samples
cover approximately 80,000 farms and approximately 90 per cent of the uti-
lised agricultural land in the EU-27 (European Commission, 2010). The
FADN data we employ in the paper cover the period 1989–2013.

The FADN classifies farms by production specialisation (principal type of
farming) and farm size (economic size class). The number of farms in each

4 For a comprehensive derivation of this equation, see Appendix A.1.

5 Note that the estimated dependent variable in this paper is the logarithm of the farm group

share value. Consequently, we have to take the inverse of the logarithm of the estimated

dependent variable before normalisation.
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typology is derived from the surveys of farm population available from the
Farm Structure Survey (FSS). Each farm group in our paper is a combination
of farm specialisation and size class. We consider eight farm specialisations
and two size classes as provided in Table 2, i.e. we have 16 (8 × 2) farm
groups in total. Farm specialisation (principal type of farming) is defined in
terms of the dominant farm activity, or that which has a share of standard
output (SO) in total farm SO larger than a certain threshold defined by the
European Commission (2010). We define two size classes: small farms with
SO smaller than 250,000 Euros and large farms with SO greater than
250,000 Euros (see Table 2).
The methodology for constructing farm typologies in the FADN changed in

2009. The methodology switched from the old system based on the Standard
Gross Margin (SGM) to the new system using SO. The SGM is the average
value of output minus certain specific costs of each agricultural product in a
given region calculated over the reference period of three successive years. SO is
the average monetary value of the agricultural output valued at farm-gate price
for each agricultural product in a given region calculated over a reference period
of five successive years. The SGM (SO) of a farm is calculated as the sum of

Table 2. Farm classification

Code Name Description

Production specialisation types (TF)
TF1 Field crops Specialist cereals, oilseed and protein crops;

general field cropping (e.g. root crops, field
vegetables)

TF2 Horticulture Specialist market garden vegetables; specialist
flowers and ornamentals; general market
garden cropping

TF3 Permanents Specialist vineyards; specialist fruit and citrus
fruit; specialist olives; various permanent crops
combined

TF4 Grazing livestock Specialist dairying; specialist cattle-rearing and
fattening; cattle-dairying, rearing and fattening
combined; sheep, goats and other grazing
livestock

TF5 Granivores Specialist pigs, poultry, granivores combined
TF6 Mixed cropping Mixed cropping (e.g. field crops and permanent

crops, field crops and market gardening)
TF7 Mixed livestock Mixed livestock, mainly grazing livestock; mixed

livestock, mainly granivores
TF8 Mixed both Field crops and grazing livestock combined;

various crops and livestock combined
Farm size class (ESG)
ESG8 Small farms Farms with SO smaller than 250,000 Euros
ESG9 Large farms Farms with SO greater than 250,000 Euros
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the SGM (SO) of each agricultural product produced on the farm multiplied by
the production level. Thus, the economic size of farms is calculated as the farm
size expressed in Euros of SGM or SO, whereas the production specialisation is
determined by applying thresholds for the dominant farm activities of farm
groups based on share of SGM or SO.

Table 3 summarises the number of observations available for each farm
type and size class by MS and aggregated at the EU-27 level for the period
1989–2013. The second column summarises the total number of observations
by country; the remaining columns provide the available observations by
farm specialisation (or type) (columns 3–10) and size class (columns 11 and
12). Countries with a larger number of NUTS 2 regions, such as France and
Germany, have many observations (6,783 and 9,903, respectively) compared
to countries with few NUTS 2 regions, such as Denmark (with only 336
observations).

Additionally, old Member States (EU-15) have more observations than
new Member States (EU-12) because they have FADN data for a longer peri-
od. For example, EU-12 countries that joined the EU in 2004 or later6 have
at least six observations per farm specialisation, while EU-15 countries have
at least 21 observations. Overall, at the EU-27 level, there are 49,630 obser-
vations in our dataset.

3.2. Variable choice and definition

The dependent variable – farm group share, si,t – used in estimating equa-
tion (4) is defined as the ratio of the number of farms in a given farm group
to the total farm population calculated at the NUTS 2 level and annually for
the period 1989–2013. Each farm in the FADN is assigned a weighting factor
that measures the number of farms it represents in the total farm population.
This weighting factor is used to calculate the dependent variable. The weight-
ing factor in the FADN is derived from the number of farms in the popula-
tion, available from the FSS, and the number of farms surveyed in the
FADN. The FSS employs the same farm typology as the FADN. Hence, a
farm group share is obtained as the sum of weighting factors across all farms
in the FADN belonging to the farm group divided by the total number of
weighting factors in the FADN.

The methodology change for the calculation of farm typologies in the
FADN complicates the construction of farm groups, as no unique farm classi-
fication is available for the whole period 1989–2013. However, the FADN
database offers classification from 2004 onwards for the SO approach and
until 2009 for the SGM approach, resulting in five years of overlap. To
extend the SO classification to years previous to 2004, one would need to re-
classify the population and the FADN sample. This extension would require
the availability of FADN and FSS data at the farm (micro) level, which is not
possible due to the confidentiality issues. To overcome this problem, a

6 Bulgaria and Romania joined the EU in 2007.
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Table 3. Number of observations by farm group used in the estimation: farm specialisation and economic size class

Farm specialisations (type of farming)
Economic size
class

All
Field
crops Horticulture

Permanent
crops

Grazing
livestock Granivores

Mixed
cropping

Mixed
livestock

Mixed
both

Small
farms

Large
farms

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

BL 3,339 441 399 378 462 420 357 441 441 1,701 1,638
DK 336 42 42 42 42 42 42 42 42 168 168
DE 9,903 1,345 1,135 927 1,366 1,345 1,074 1,345 1,366 5,174 4,729
EL 2,247 396 375 291 333 189 270 123 270 1,869 378
ES 4,675 585 626 563 710 605 542 521 523 2,588 2,087
FR 6,783 924 882 798 882 882 756 819 840 3,591 3,192
IR 357 84 84 21 84 84 189 168
IT 6,300 798 819 798 840 777 798 672 798 3,339 2,961
NL 3,780 483 504 441 504 462 462 441 483 1,848 1,932
AT 1,035 120 60 120 165 180 90 150 150 705 330
PT 1,638 231 252 168 231 252 231 105 168 1,071 567
SE 1,305 180 165 240 225 105 180 210 705 600
FI 750 105 120 45 120 120 75 75 90 465 285
UK 3,108 462 357 231 462 378 294 462 462 1,533 1,575
CZ 672 96 84 72 84 84 78 84 90 348 324
HU 660 84 78 84 84 84 84 78 84 336 324
PL 1,284 186 156 102 180 192 120 162 186 768 516
SI 90 12 12 6 12 12 12 12 12 48 42
SK 318 48 12 48 42 42 42 36 48 156 162
EE 84 12 12 6 12 12 6 12 12 48 36
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LT 90 12 12 6 12 12 12 12 12 48 42
LV 84 12 12 6 12 12 6 12 12 48 36
CY 84 12 12 12 12 12 12 6 6 48 36
MT 72 6 12 6 12 12 6 12 6 48 24
BG 273 36 36 33 36 36 36 27 33 144 129
RO 363 48 48 45 45 48 42 39 48 192 171
EU27 49,630 6,760 6,222 5,228 6,984 6,456 5,552 5,952 6,476 27,178 22,452

Source: Authors’ calculation based on FADN data. BL = Belgium and Luxembourg aggregated.
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transition probability matrix is calculated based on the time span for which
both classifications are available.7 It provides the probability that a farm with
a certain SGM class falls into a specific SO class. An example of the calcula-
tion is provided in Appendix A.2. With this transition probability matrix, all
farms based on the SGM classification are reclassified into the SO classifica-
tion. An example of the resulting time series of farm groups for the
Netherlands (NL) is illustrated in Figure 1. The left-hand panel reports the
total number of represented farms by farm groups, while the right-hand panel
presents the farm group shares. The farm group shares are used as the
dependent variable in the MCI model (inverse logarithm of the dependent
variable of equation (5)).
We use seven sets of explanatory variables, Xk,i,t, in our analysis: (i) input

and output prices, (ii) population, (iii) subsidies, (iv) a dummy for decoup-
ling, (v) income, (vi) macroeconomic variables and (vii) natural conditions.
Tables 4 and 5 contain the descriptive statistics. The sources of the explana-
tory variables are the FADN, CRU TS 1.2 (Mitchell et al., 2003),
EUROSTAT (EUROSTAT, 2012, 2013, 2014), World Bank (Worldbank,
2014), CAPRI, Corine land cover (EEA European Environment Agency,
2014) and EUGIS (EUGIS data base et al., 2008). Note that the data source
also determines the regional resolution of the explanatory variables. FADN-
based variables are farm group- and NUTS 2-specific. The highest resolution
of other data sources is the NUTS 3 regional level. For example,
EUROSTAT- and CAPRI-based variables are at the country level, while
EUGIS variables are at the NUTS 3 level and FADN variables are at the
farm level. The NUTS 3 and farm-level variables were aggregated to be farm
group- and NUTS 2-specific, respectively.8

We consider input and output prices from CAPRI at the country level and
FADN prices at the farm group level (Table 4). Alongside country-level
prices, we also include farm group-specific output prices from the FADN, as
they may capture the possible differences in price level across different farm
groups induced by product quality differences and other factors (e.g. time of
sale, marketing channel used). Prices probably differ in their impacts on farm
group shares depending on the production specialisation. Farm group shares
are expected to increase when prices of products in which the groups are spe-
cialised increase, while prices of substitutes are expected to decrease the
shares. Input prices are expected to have a negative impact on farm group
shares and this effect increases with the importance of a given input in the
production process.
Managerial ability often determines the dynamics of structural processes

because it is a key factor determining the allocation of farms’ resources and
the adoption of innovative technologies (Boehlje, 1992; Goddard et al.,
1993). We include the variable age of farm holder to partially capture

7 We use 6-year averages of the yearly transition probabilities.

8 Only the country-level variables are equal for each NUTS 2 region and farm group, the remain-

ing variables are entirely NUTS 2- and farm group-specific.
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Fig. 1. Number of represented farms and shares by farm group in the Netherlands, 1989–2013.
Note: Farm group shares before 2004 are estimated using the transition matrix. Note that the farm group shares are calculated at the NUTS 2 level,
while the shares presented in the figure are at the country level; they are weighted averages over NUTS 2 shares.
Source: Own calculation based on FADN data from the EU Commission-FADN Unit.

E
xplaining

farm
structural

change
in

the
E
uropean

agriculture
727

D
ow

nloaded from
 https://academ

ic.oup.com
/erae/article/46/5/713/5183522 by Bundesforschungsanstalt fuer Landw

irtschaft user on 13 April 2021



Table 4. Descriptive statistics for the economic explanatory variables used in the estimation for the EU-27

Variable category Variable group and name Mean
Standard
deviation Median Unit

Regional
resolution Source

Macroeconomic
variables

Interest rate (interest rate) 2.13 3.92 2.28 Per cent Country
level

EUROSTAT

GDP growth rate (growth rate) 5.99 7.49 4.91 World Bank
Unemployment rate (total) 8.78 10.55 7.95 EUROSTAT
Unemployment rate (total, female) 9.63 11.75 8.46
Unemployment rate (total, male) 8.25 9.99 7.40
Unemployment rate (total, age >25) 7.36 8.93 6.42
Unemployment rate (total, age ≤25) 19.49 23.66 19.13

Population Age of holder 48.8 23.2 48.3 Years Farm group
specific

FADN

Population density 275.3 57.2 135.0 Inh. p. km2 NUTS 3 EUROSTAT
Input and output prices CAPRI Beef 2,998.4 4,626.7 2,983.9 € per ton or

index
Country
level

CAPRI
CAPRI Cereals 140.2 216.3 134.0
CAPRI Eggs 1,067.2 1,646.7 1,023.0
CAPRI Electricity 1,041.1 1,606.5 1,000.0
CAPRI Fruits 789.5 1,218.3 612.6
CAPRI Fuels 649.5 1,002.3 604.9
CAPRI Grass 15.0 23.1 13.1
CAPRI Heating gas and oil 481.8 743.4 455.5
CAPRI Maintenance buildings 991.2 1,529.5 1,000.0
CAPRI Maintenance materials 977.4 1,508.1 996.1
CAPRI Oil seeds 357.7 551.9 309.1
CAPRI Other animals output 1,000.8 1,544.2 991.9
CAPRI Other crops 998.3 1,540.3 999.6
CAPRI Other industrial crops 1,179.2 1,819.5 1,000.0
CAPRI Other inputs 1,027.0 1,584.7 1,000.0
CAPRI Pharmaceutical inputs 1,013.6 1,564.1 1,000.0
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CAPRI Plant protection 1,060.5 1,636.3 1,004.2
CAPRI Pork meat 1,457.2 2,248.4 1,437.0
CAPRI Potatoes 170.5 263.1 141.6
CAPRI Poultry meat 1,219.7 1,882.0 1,161.2
CAPRI Raw milk at dairy 332.8 513.5 316.8
CAPRI Renting of milk quota 817.7 1,261.7 810.0
CAPRI Seed 1,027.6 1,585.6 996.9
CAPRI Services input 966.6 1,491.5 987.8
CAPRI Sheep and goat meat 3,800.7 5,864.7 3,543.9
CAPRI Sugar beet 41.9 64.7 42.2
CAPRI Vegetables 491.5 758.4 417.7
PC of animal and crop input prices
(INPO)

3,814.9 5,886.6 3,725.5

PC of animal and crop input prices
(EGAS)

3,290.1 5,076.8 3,206.8

PC of animal input prices −162.2 250.3 −34.7
PC of crop input prices 1,624.1 2,506.0 1,564.3
PC of other crop input prices (FRUI) 1,721.1 2,655.8 1,465.8
PC of other crop input prices (OCRO) 882.0 1,361.0 881.8
FADN Barley 146.6 70.8 141.6 Farm group

specific
FADN

FADN Cereals 160.2 75.6 149.8
FADN Dairy milk 321.5 154.7 312.2
FADN Eggs 1,276.7 701.3 1,013.7
FADN Oats 148.5 74.9 137.6
FADN Oil seeds 330.8 179 250.7
FADN Other animals 1950.3 1026.9 1002.1
FADN Other arable crops 430.4 202.8 202
FADN Potatoes 217.6 103.7 176
FADN Rape seed 270.3 157.1 235.5
FADN Rye and meslin 151.1 86.9 140.1
FADN Soft wheat 158 77.4 149.9

(continued)
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Table 4. (continued)

Variable category Variable group and name Mean
Standard
deviation Median Unit

Regional
resolution Source

Income and subsidies Farm net value added per farm 49,887.2 23,323.5 35,529.6 €/Farm Farm group
specific

FADN
Farm net value added per AWU 23,828.3 11,140.3 21,864.1 €/AWU
Farm net value added per UAA 1,298.1 606.9 821.3 €/ha
Total subsidies per farm 20,995 9,864.3 12,627.5 €/Farm
Total subsidies per AWU 9,634.3 4,526.6 7519.4 €/AWU
Total subsidies per UAA 335.4 157.6 270.2 €/ha

Note: Mean and standard deviation of FADN price of other arable crops omitted due to several outliers. PC, principal component.
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Table 5. Descriptive statistics for explanatory variables regarding natural conditions

Variable category Variable group and name Mean Standard deviation Median Unit Regional resolution

Corine land type
characteristicsa

Arable land 0.294 0.273 0.271 Share of total
land

NUTS 3
Artificial land 0.097 0.089 0.054
Forest and semi natural areas 0.347 0.320 0.330
Heterogeneous agricultural areas 0.117 0.108 0.096
Pastures 0.105 0.100 0.064
Permanent crops 0.035 0.040 0.009
Bodies of water 0.019 0.018 0.007
Wetlands 0.017 0.019 0.004
PC of Corine 2000 data (artificial) −0.085 0.078 −0.115
PC of Corine 2000 data (forest) 0.030 0.028 0.026
PC of Corine 2000 data (pastures) −0.103 0.095 −0.151
PC of Corine 2000 data (permanents) −0.036 0.033 −0.061
PC of Corine 2000 data (water) −0.042 0.039 −0.047

Topography and
climate conditionsb

Aridity index 0.739 0.682 0.767 [0…1]
Degree
days (DD)

NUTS 3
AV grow. DD (10°C)(WGT10_mean) 1,050.4 968.6 880.6
SD grow. DD (10°C)(WGT10_sd) 2,159.1 1,991.0 1,810.0
AV grow. DD (5°C)(WGT5_mean) 2,155.7 1,987.9 1,913.4
SD grow. DD (5°C)(WGT5_sd) 4,431.1 4,086.1 3,932.9
AV veg. (10°C)(veg_period_10Celsius) 180.7 166.7 169.9 Days
SD veg. (10°C)(_sd) 104.7 96.6 97.5
AV veg. (5°C)(veg_period_5Celsius) 259.5 239.3 250.1
SD veg. (5°C)(_sd) 153.0 141.1 144.4
Elevation 100 m raster 242.8 223.9 175.9 Metre
Slope 100 m raster 6.3 5.8 5.3 Per cent

Source: aCorine 2000 land use classification from Corine 2000 database (2005). bData derived from EUGIS database and CRU TS 1.2;
AV, arithmetic average of; SD = standard deviation of; PC, principal component with variable name of highest correlation with PC
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managerial ability (Table 4). We obtain this variable from the FADN, calcu-
lated as the weighted average over all farm holders of a given farm group.
The impact of farmers’ age on structural change is probably ambiguous. Key
and Roberts (2006) argue that older farmers possess more knowledge and
experience and are better endowed financially (i.e. are less credit con-
strained), which is expected to lead to stronger performance of farm groups
with older farm holders. On the other hand, farm holder age could have a
negative impact on performance, as older farmers are often less likely to
adopt new technologies or invest. Farmers’ willingness to invest also depends
on the availability of a successor. Unfortunately, this information is not avail-
able in the FADN.
We considered three variables related to income: farm net value added

either per hectare, per total labour or per farm (Table 4). The aim of value
added variables is to capture productivity, production intensity and financial
performance of farms. Farm group shares are expected to be positively
related to the farm group’s value added.
Another set of explanatory variables includes subsidies granted under the

CAP, a decoupling dummy and total subsidies measured either per hectare,
per total labour or per farm. Total subsidies are calculated based on the
FADN, and thus are farm group-specific. The decoupling dummy captures
the effect of decoupling of direct payments introduced in 2005. Subsidies
may affect farm structural change through negative and positive impacts on
productivity, with the overall direction of these being open. The negative
impact of subsidies on productivity may result from allocative and technical
efficiency losses due to distortions in production structure and factor use
(especially in the case of coupled subsidies), soft budget constraints, policy
constraints (e.g. environmental requirements) and the shift of subsidies to
less productive farms. The positive impact of subsidies may be due to
investment-induced productivity gains caused by interactions of credit and
risk attitudes with subsidies (subsidy-induced improved credit access, lower
cost of borrowing, reduction in risk aversion) (Rizov, Pokrivcak and Ciaian,
2013). For example, Gocht et al. (2012) find a significant influence of agri-
environmental payments and total subsidies on most of the farm groups ana-
lysed. Breustedt and Glauben (2007) and Goetz and Debertin (2001) argue
that farm support increases farms’ profitability and reduces farm exit. Ciaian,
Kancs and Swinnen (2008) show that decoupled CAP payments may con-
strain farm structural change, as incumbent farms possessing rights to
decoupled payments may have better access to land compared to new
entrants. Rizov, Pokrivcak and Ciaian (2013) find CAP subsidies have a
negative impact on farm productivity in the period before the decoupling,
while after the decoupling the effect of subsidies on productivity appears to
be positive.
Macroeconomic and population density variables aim to capture the

impact of general economic conditions and competition for resources. We
consider the unemployment rate, population density, interest rate and GDP
growth rate (Table 5). The unemployment rate and population density capture
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competition for labour with the non-agricultural sector in several dimensions.
Off-farm employment opportunities may attract labour from agriculture and
accelerate farm exit (Hallam, 1991; Harrington and Reinsel, 1995; Weiss,
1997; Hofer, 2002). On the other hand, off-farm income earned by family
members may increase farmers’ household income and, in particular, stabilise
small farm businesses or part-time farmers in the short term (Goddard et al.,
1993; Harrington and Reinsel, 1995; Gebremedhin and Christy, 1996). We
measure (lack of) off-farm employment opportunities by the unemployment
rate and distinguish it by gender, since males, who are more likely to be
heads of farm households, may respond differently to off-farm employment
opportunities than females. Population density reflects another aspect of
labour market competition: higher population density may imply a more
industrialised region and thus stiffer competition for hired labour (e.g. sea-
sonal workers) and may favour farm groups specialised in labour extensive
products. Furthermore, a higher population density may increase urban
demand for land, which, in turn, increases land rents (Binswanger, Deininger
and Feder, 1993). An increased demand for land could favour farm groups
that can afford to pay higher land rents. We expect the interest rate to nega-
tively affect farm groups specialised in capital-intensive activities, such as
granivore (poultry and pig fattening) production. GDP growth reflects the
general dynamics of the macroeconomic environment, capturing general
effects, such as demand for agricultural commodities, technical progress and
competition for resources.

Important determinants of agricultural specialisation across regions are nat-
ural conditions. For instance, Fezzi and Bateman (2011) present some vari-
ables, such as growing degree days or altitude, in their analysis of land-use
changes related to natural conditions. Uleberg et al. (2014) also discuss some
climate variables affecting agriculture. Climate change recently became a
focus of analysis of the determinants of structural changes. Mandryk,
Reidsma and van Ittersum (2012) provide a short overview of literature
investigating climate change as a cause of structural changes. Climate change
refers to changes in climatic conditions or climate variability that affect crop
productivity, farmer income and land use (Olesen and Bindi, 2002;
Bradshaw, Dolan and Smit, 2004; Berry et al., 2006; Reidsma et al., 2009;
Bindi and Olesen, 2011). We consider variables indicating land types as well
as those measuring topography and climate conditions (Table 4). All vari-
ables describing natural conditions are time-invariant, as they usually change
minimally within the medium-term time horizon considered in this paper.

The Corine land use variables (Corine 2000, 2005) provide the percentage
shares of the different land categories (e.g. arable land, pasture land) in a
given region. These variables are locational factors and are expected to have
diverse impacts on farm group shares. For instance, in regions endowed with
arable land, we expect a greater share of the farm groups specialised in arable
cropping.

The topography and climate variables are derived from the EUGIS data-
base and include aridity, vegetation period, growing degree days, slope and
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elevation. The climate-related variable aridity is calculated as an average
annual precipitation (in millimetres) divided by five times the average annual
temperature, truncated from above at 1 and from below at 0.9 The higher the
value, the less arid the region. Slope and elevation variables derive from a
100 m raster, and we expect them to have a positive impact on farm groups
specialised in dairy production and suckler cows and a negative impact on
cereal farms. The variables related to growing degree days (WGT) and the
length of the vegetation period (veg_period) are calculated for each region
for the thresholds of 5 and 10°C as the mean and standard deviation across
observed years. The variable WGT is a measure of heat accumulation and is
calculated as the sum of the days in which monthly average temperatures are
above the threshold of 5 and 10°C, multiplied by 30. The variable veg_period
measures the number of days with average temperatures above the threshold,
thus capturing differences in duration and, by considering two thresholds,
also the ‘quality’ of growing conditions between regions. The mean and the
standard deviation values of WGT or veg_period are expected to have a dif-
ferent impact on farm groups. For instance, if the vegetation period is long
(i.e. high mean value), dairy farms are likely positively affected because the
grazing period increases. However, a high standard deviation of vegetation
period increases the risk of growing crops that require a longer vegetation
period, and hence, those farm groups specialised in these crops are expected
to be negatively affected because a higher risk level may reduce their invest-
ments, leading to a decrease in their share relative to other farm groups.

4. Empirical model specification

We adjust the Xk,i,t in equation (4) to include not only the contemporary ver-
sion of the variables introduced in the last section, but also the lagged values
of independent and dependent variables to account for dynamic adjustments
in farm structures over time. The adjustment of farm structures to changes in
market and policy conditions is not instantaneous, and it typically takes time
for full response to be realised. The delayed adjustment of farm structures
may occur due to factors such as asset specificity, sunk costs, changing
opportunity costs for labour, adjustment costs and the capital-intensive nature
of agricultural production, which prevents farmers from switching costlessly
and instantaneously between different production types (Zimmermann and
Heckelei, 2012). We consider up to four lags for all variables except prices
and natural conditions. Prices are lagged for only 1 year. Variables describing
natural conditions are time-invariant and are primarily used to control for the
regional heterogeneity of growing conditions and suitability of agricultural
production across various farm groups.
Based on equation (4), the resulting model specification used in estimation

is as follows:

9 The calculation of the aridity index is inspired by the Walter and Lieth climate diagrams (Walter

and Lieth, 1967).
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Equation (6) implies a total of K × m × R + m parameters to be estimated,
where r is the lag index and R is the total number of lags considered in the
model.10 Note that, for MS, which joined the EU later, the time series used
are shorter (e.g. 2004–2013 for countries that joined the EU in 2004). To
reduce the dimension of the estimated models (in total, we consider 119 + 4 =
123 variables),11 we apply a forward selection algorithm for statistically signifi-
cant variables. If we were to specify equation (6) with the same explanatory
variables for all farm groups, it is very likely that most variables would be stat-
istically insignificant for all farm groups. Therefore, we opt to estimate 16
(farm group) models per country, with one model for each combination of
farm specialisation (or type) and size class. Hence, starting with the same over-
all set of variables, the forward selection is applied separately for each esti-
mated model (farm group) and consequently may imply that the final set of
explanatory variables with statistically significant coefficients will ultimately
differ between farm group models. The resulting model specification for each
farm group i separately is as follows:

∑ ∑α β ε( ) = + ( ) + ∈ = …

( )
= =

− − −s X s X i Mlog log , and 1, 2, ,

7

i t i

k

K

r

R

k i r k i t r i t k i t r k i t r,

1 0
, , , , , , , , ,

We estimate equation (7) with the OLS estimator for each farm group i
and country using yearly observations across NUTS 2 regions. The forward
selection begins with only an intercept and one of the available variables at a
time and adds the variable, which increases the most the Bayesian informa-
tion criterion (BIC) of the model. This process is repeated with the remaining
variables until the resulting model can no longer be improved.12 The esti-
mated dependent variable of this resulting model is then transformed and nor-
malised (equation (5)) to obtain the estimated farm group shares across
NUTS 2 regions.

To measure the goodness of fit of the estimated farm group shares com-
pared with the observed shares, we calculate the following coefficient of
determination, which is farm group-specific:

10 Except for variables regarding prices and natural conditions.

11 For all variables in Tables 4 and 5 and their respective lags (119) and the four lagged farm group

shares for each model.

12 Note that due to the path dependency problem in the forward selection algorithm, the model

with the highest predictive power may not be necessarily selected. To avoid this, we would

have to estimate all models with all possible combinations of explanatory variables, which is

not possible computationally.
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where s̄i t, is the average farm group share belonging to group i at time t, and
T is the total number of available years.13

5. Results and discussion

5.1. Summary results of the farm group models

As mentioned above, we estimate up to 16 models for each farm group and
country. We refrain from presenting all the estimated coefficients and instead
report some statistics of fit of the estimated regressions and the summary of
the decomposition results of the drivers of farm structural change. We also
present the elasticities of farm structural change with respect to the variable
sets considered in the estimations.
Table 6 reports the mean, median, minimum and maximum value for the

coefficients of determination over the 16 farm groups for 16 countries.14 The
coefficient of determination (R2, see equation (8)) is on average relatively
high, ranging between 80 per cent in Spain and 96 per cent in France.15 For
countries with a coefficient of determination of almost 100 per cent (see foot-
note 14), the number of observations is very low, hence resulting in a nearly
perfect fit due to the forward selection. Most of these countries have only one
NUTS 2 region. Nevertheless, most of the remaining countries show rela-
tively high coefficients of determination, indicating a very good representa-
tion of farm structural development across countries, although a small
number of farm groups, such as some in the Czech Republic (34 per cent) or
Hungary (47 per cent) (see the minimum values in Table 6), are not so well
explained through our estimated models.

5.2. Comparison of estimated and observed farm group shares

Next, we compare the estimated (predicted) and observed farm group shares
for selected countries over the considered period. Note that the reported peri-
od may differ by country depending on its date of EU accession as well as

13 In equation (5), the starting value of time index t is set equal to five, because the estimated mod-

els include up to four lags and therefore the fifth observation in time is the earliest possible

point at which to compare the observed and the predicted shares.

14 The remaining countries (Denmark, Slovenia, Slovakia, Estonia, Latvia, Lithuania, Cyprus,

Malta, Bulgaria and Romania) are not reported because they have a median of one or almost

unity and show only little variation between farm groups, as they have shorter time series or

fewer NUTS 2 regions.

15 For Germany, we tested for heteroskedasticity with the Breusch–Pagan test and detected het-

eroskedasticity for some farm groups. As most of the estimates were significant at a 5 per cent

significance level (using heteroskedasticity corrected standard errors), we refrained from any

correction procedure to achieve higher estimator efficiency. As the variable selection process is

based on the BIC rather than on the p-value for each estimate, the heteroskedasticity issue is

not relevant in this context.
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Table 6. Summary results of the farm group-specific coefficient of determination by country

Country Mean Median Min Max Country Mean Median Min Max

BL 0.919 0.926 0.791 0.988 AT 0.926 0.967 0.703 0.998
DE 0.932 0.94 0.862 0.966 PT 0.898 0.913 0.696 0.999
EL 0.917 0.939 0.778 0.999 SE 0.851 0.894 0.559 0.998
ES 0.798 0.794 0.584 0.988 FI 0.914 0.939 0.799 0.999
FR 0.958 0.976 0.809 0.996 UK 0.81 0.86 0.517 0.986
IR 0.909 0.976 0.673 1 CZ 0.852 0.915 0.342 0.974
IT 0.863 0.894 0.698 0.98 HU 0.868 0.931 0.467 0.996
NL 0.874 0.888 0.679 0.978 PL 0.902 0.929 0.768 0.991

Source: Authors’ calculation based on FADN data from the EU Commission-FADN Unit.
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the lags considered for the dependent variable. Due to the large amount of
data, we focus only on selected countries: the UK and the Netherlands. The
results are reported in Figures 2 and 3. For each selected country, we present
the observed and estimated farm group shares (maximum 16 classes) at the
country level (weighted average over NUTS 2 regions) (upper panel of each
figure) and NUTS 2 level (middle panel), as well as the percentage point dif-
ference between the observed and estimated share at the NUTS 2 level (bot-
tom panel). Visual inspection of the figures shows that there is a large
heterogeneity in farm structure, both across countries and between NUTS 2
regions within a given country. The results indicate that the observed farm
group shares are relatively well recovered with the estimated models.
Although the deviations between predicted and observed shares at the aggre-
gated country level appear to be small, at NUTS 2, they are larger. For
example, in the case of the UK, the largest deviation between observed and
estimated shares is visible for some farm groups in UKC, UKE and UKF
NUTS 2 regions (e.g. field crops and grazing livestock) where the difference
is slightly above 5 per cent in some years (e.g. in 2005 and 2010–2012). For
the rest of the farm groups and regions, the difference is almost always within
the ±5 per cent interval (Figure 2, bottom panel). Regions with a fewer num-
ber of farm groups (UKN and UKL) clearly show a smaller deviation than
other regions. For the Netherlands, the deviation between observed and esti-
mated shares across farm groups and NUTS 2 regions remains within the
±10 per cent interval or less (Figure 3, bottom panel).
In general, the estimations capture the trends regarding farm structure

development observed in the actual data relatively well. For example, at the
country level in the Netherlands and UK, we observe an increase in the farm
group grazing livestock of large size (SO >250k) largely at the expense of
small-sized (SO ≤250 k) grazing livestock in both the observed and estimated
data. We also observe that, for most of the farm groups, both size classes
(small and large) are present in these two countries (Figures 2 and 3). In the
Netherlands, we observe a very heterogeneous farm structure across NUTS 2
regions. There are regions that are dominated by horticulture (NL33), grass-
land production (NL12, NL21, NL22, NL31) and field cropping (NL23)
farms in the Netherlands. The estimation recovers this regional heterogeneity
of farm groups relatively well (Figure 3).

5.3. Decomposition of the estimated effects

To better identify the importance of various drivers of farm structural change,
we decompose the variance of the dependent variable – farm group shares –
into the relative contributions of each explanatory variable for all country
models using the approach first proposed by Fabbris (1980). According to
Grömping (2015), this measure is the metric of choice when the estimated
effects are to be decomposed, as it meets almost all of the key requirements
for describing relative importance of explanatory variables and is less
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Fig. 2. Observed and predicted farm group shares at country and NUTS 2 levels and absolute difference at NUTS 2 level in the UK.
Source: Authors’ own compilation.
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Fig. 3. Observed and predicted farm group shares at country and NUTS 2 levels and absolute difference at NUTS 2 level in the Netherlands.
Source: Own compilation.
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computationally demanding than alternative approaches. We report the results
by MS and aggregate them at the EU-12, EU-15 and EU-27 levels for the fol-
lowing variable sets: prices, population (population density and age of
holder), macro variables, decoupling dummy, subsidies, income (added
value), natural conditions and farm structure (lags of dependent variables).

Figure 4 shows that the past farm structure (i.e. the lagged farm group
shares) is the main determinant of the farm structure in the EU-27. The past
farm structure explains approximately 36 per cent of the variance of the farm
group shares. Past farm group shares strongly influence current ones, indicat-
ing that adjustment processes carry on over several years. Natural conditions
are also important drivers of farm structure, explaining approximately 16 per
cent of the variance of farm group shares. The remaining variables explain
48 per cent of the total variance in the EU-27, with prices explaining 14 per
cent, macro variables 9 per cent, subsidies 7 per cent, population 6 per cent,
income 6 per cent and dummy decoupling 6 per cent.

Figures 4 and 5 reveal a striking difference between the EU-15 and EU-12
in the contribution of various drivers to farm structural change. The main dif-
ference between the EU-15 and EU-12 is the importance of lagged farm
group shares in explaining the regional difference and evolution of farm
groups. The past farm structure explains almost 52 per cent of the variance of
farm group shares in the EU-15, while its contribution is much smaller in the
EU-12, at approximately 19 per cent. In other words, these results imply a
more rigid farm structure in the EU-15 than in the EU-12. This difference

Fig. 4. Variance decomposition by country in the EU-15.
Notes: Belgium and Luxemburg are treated as one MS.
Source: Authors’ own compilation.
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could be attributed to stronger structural changes taking place in the EU-12
due to their recent EU accession and the ongoing transition process. The
countries with the largest impact of past farm structure (more than 70 per
cent) are France, Italy and Germany, where farm structure is highly rigid and
relatively inert to external drivers. In the EU-12, only Poland has a rigid farm
structure comparable to the EU-15 average. The most dynamic farm structure
tends to be observed in Malta, Lithuania, Latvia, Slovenia, Denmark and
Estonia.
Natural conditions (land type and topography and climate) appear to be

equally important in explaining farm structures across regions and structural
change in both the EU-12 and EU-15, although with some variation across
individual countries. They explain approximately 16 per cent of the variance
of farm group shares in the EU-15 and EU-12, which is in line with our
expectation that factors such as climate, slope and vegetation period reflect
the diversity of growing potential across regions in the EU and thus deter-
mine the comparative advantage of various farm specialisations.
Subsidies and income have a stronger impact on farm structural change in

the EU-12 than in the EU-15. Subsidies, the decoupling dummy and income
contribute 5 per cent, 5 per cent and 4 per cent in the EU-15 and 10 per cent,
7 per cent and 9 per cent in the EU-12, respectively. The combined contribu-
tion of subsidy and the decoupling dummy variables is 10 per cent in the
EU-15 and 17 per cent in the EU-12, which appears to suggest that future
CAP reforms may exercise a significant influence on the development of
farm structure, particularly in new Member States.

Fig. 5. Variance decomposition by country in the EU-12.
Source: Authors’ own compilation.
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Macroeconomic variables (e.g. unemployment indicators, GDP growth
rate, interest rate) and population variables (population density and farmers’
age) account for 7 per cent and 4 per cent of the variation in farm group
shares in the EU-15 and 11 per cent and 8 per cent of the variation in farm
group shares in the EU-12, respectively. Macro variables are particularly
important drivers in Malta, Latvia, Slovenia, Denmark and Greece.
Population density and age explain a larger portion of structural change in
countries such as Cyprus, Estonia, Ireland, Hungary, Bulgaria and Sweden.

Finally, input and output prices explain structural change by 8 per cent in
the EU-15 and 20 per cent in the EU-12. Compared to other variables, we
would expect prices to have greater importance in driving farm structures.
However, income variables may explain part of the price effects.

Figure 6 shows the variance decomposition by farm specialisation. The
left-hand panel presents the results for the EU-15 and the right-hand panel
for the EU-12. In general, there are no significantly different patterns
observed between the farm specialisations, only that lagged farm group
shares tend to contribute less to driving farm structure in mixed cropping and
mixed livestock farms compared to other farm specialisations, particularly in
the EU-15. Consistent with the results shown in Figure 4, past farm structure
has a considerably stronger impact on different farm specialisations in the
EU-15 than in the EU-12.

5.4. Long-run elasticities of farm structural change

The impact of individual exogenous variables on farm structure as measured
through their contribution to prediction may be misleading when analysing
structural change, as it includes variation across regions in a country and
does not show the full dynamic adjustments implicit in the estimated models.
The estimated models are dynamic because they include lagged variables for
both exogenous and dependent variables. To better account for dynamic
adjustments in farm structure, we introduce shocks to selected exogenous
variables in the estimated models and predict the future response of farm
group shares until the year in which the annual change in a farm group share
aggregated at the country level is below 0.5 percentage points. We use the
predicted results to calculate elasticities that measure the response of farm
group shares to different exogenous variables. Note that we do not perform
predictions (and hence also elasticities) for natural conditions, as these vari-
ables are time-invariant in our model. Additionally, we only take into account
those variables that have a statistically significant impact in our regressions.

To calculate elasticities, we run two scenarios: baseline (no shock) scen-
arios and scenarios with shocks. We define an autoregressive development as
baseline, for which we predict the future development of farm group shares
using the estimated models by assuming that no shock is applied to any
explanatory variable. Note that even without introducing a shock to the
exogenous variables, the farm group shares will change over time due to the
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Fig. 6. Variance decomposition by farm specialisation in the EU-15 (left panel) and EU-12 (right panel).
Source: Authors’ own compilation.
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autoregressive process considered in the estimated models. In scenarios with
shocks, we introduce a shock separately for each statistically significant
explanatory variable, keeping other variables unchanged, and then use the
estimated models to generate predictions for farm group shares. The shock
for each explanatory variable is introduced over the whole simulated period,
i.e. until convergence is reached. The variables are shocked in the year 2013,
and this shock is permanently maintained for this variable over the whole
simulation period. The shock impacts each farm group in 2014 at the earliest
if the variable is lagged 1 year and in 2017 at the latest if the variable is
lagged 4 years. Therefore, the simulation must run for at least 4 years to
ensure that the impact of each variable is taken into account in the predicted
values.

Elasticities are calculated as the ratio between the net percentage change in
predicted farm group shares after convergence and the permanent percentage
change in the shocked explanatory variable. The net percentage change is the
difference between the relative change in predicted farm group shares after
convergence in the shock scenario ( Δˆ )s% i k, , minus the relative change in pre-
dicted farm group shares in the (autoregressive) baseline, Δŝ% i.
Consequently, we obtain

⎛
⎝⎜
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where Ei,k is the elasticity for farm group i with respect to explanatory vari-
able k and ΔX% k is the relative change in the exogenous variable over the
simulation period.

Table 7 presents the elasticities calculated using equation (9) and aggre-
gated at the EU-15 and EU-12 levels. We calculate the average of the abso-
lute values of elasticities.16 This indicates how much a specific category of
explanatory variables influences farm group shares across all estimated mod-
els without taking into account the sign of the effects. The displayed values
indicate that, on average, the farm group shares change in the range of
between 29 and 117 per cent in response to a 100 per cent permanent change
in a given explanatory variable. Income has the greatest impact on farm
group shares in the EU-15, followed by macro variables (between 0.62 and
0.75). Subsidies and price variables have the smallest impact. In the EU-12,
income has the greatest impact, followed by macro variables (between 0.51
and 1.17), whereas prices, subsidies and population variables have the smal-
lest impact.

16 Elasticities for farm group shares smaller than 2.5 per cent (the average for the last four

observed years, 2010–2013) are excluded from calculations reported in Table 7. This means that

only more dominant farm groups are considered. As a result of this consideration, elasticities

for mixed livestock farms in the EU-15 are excluded. After this adjustment, still some elasticities

might be very high because of the high relative changes obtained for some small farm groups.

To avoid distortion in the elasticities, these farm groups are also not considered in the calcula-

tions reported in Table 7.
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Figures 7 and 8 present the distribution of elasticities across NUTS 2
regions by farm specialisation for the five categories of explanatory variables
(income, macro variables, population, prices and subsidies) in the EU-15 and
EU-12.17 In the EU-15, the elasticities with respect to income variables
appear to have the largest magnitudes, followed by macro variables. In the
EU-12, elasticities with respect to income and population variables have the
largest magnitudes. In the EU-15, half of the elasticities are negative for
almost all variable categories, while the other half are positive.18 On the other
hand, in the EU-12, some shocked variable categories, such as income, show
for some farm groups that the majority of elasticities are greater than zero.
Note that income variables are calculated as the net value added per farm,

per hectare and per total labour (annual working unit: AWU), and they are
region- and farm group-specific. Contrary to expectations, these income vari-
ables tend to have negative impacts on the farm group shares at the median.
The mean value for the EU-15 and for EU-12 is positive, while the median is
almost zero for the former and negative for the latter. These counterintuitive
results could be explained by the following: first, higher income levels may
encourage production diversification even in the absence of overall farm
expansion (e.g. when renting or buying additional utilised agricultural area
(UAA) is expensive), causing a contraction in some production specialisa-
tions and an increase in others. Second, it is possible that the net value added
per hectare alone may decrease, while the total agricultural area of certain
farm groups expands (e.g. due to decreasing returns to scale).
The interpretation of the estimated coefficients for variables is not straight-

forward, particularly with respect to the direction of the effect. This is

Table 7. Summary of elasticities of farm structural change in the EU-15 and EU-12

EU aggregate Category
Absolute mean value
of elasticities

EU-15 Macro variables 0.62
Population 0.35
Prices 0.30
Subsidies 0.29
Income 0.75

EU-12 Macro variables 0.51
Population 0.44
Prices 0.29
Subsidies 0.34
Income 1.17

Source: Authors’ own calculation based on FADN data from the EU Commission-FADN Unit.

17 The boxplots are restricted to lie within −1.5 and 1.5. Additionally, the mean is inserted with a

white dashed line. The y-axis is limited for presentation reasons. For some boxplots, the mean

or some whiskers are not displayed because of large outliers.

18 The median of the elasticities is indicated by the thick black line.
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because, as argued in Section 2.3, the share of the farm group may increase
even if the utility decreases. As the magnitude of the effect depends on the
development of all farm group shares, as shown above, we have simulated
the elasticities of the statistically significant variables driving farm structural
change. However, a comparison of our results with the literature findings
turned out to be cumbersome, as many of the existing studies neither consider
farm group shares nor report elasticities.

In Appendix A.3, Tables A.2 and A.3, we attempt to report the number of
variables driving structural change based on their impact on elasticities simu-
lated by country and farm group, respectively. We have disaggregated the cat-
egory of population variables into age of farmers and population density; the
category of prices into input and output prices and the category of macro vari-
ables into unemployment rates, GDP growth rate and interest rate. This disag-
gregation allows us to better differentiate between the drivers of farm structural
change. The variables most frequently reported over the countries and farm
groups in the EU-15 and EU-12 can be identified and compared to the most
relevant variables driving structural change considered in the literature.

Both tables show that output prices, income and subsidies are the most fre-
quent drivers of farm structural change in the EU-15 and EU-12, as they are

Fig. 7. Distribution of elasticities for EU-15 for variable categories and for all farm types
across NUTS 2 regions.
Source: Authors’ own compilation. Values for outlier elasticities are left out for presenta-
tion reasons. Mixed livestock are not considered (see footnote 16).
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found statistically significant in most countries. The same is valid for farm
groups across the countries, which can be partially explained by a particular
relationship present between certain variables. For example, the GDP growth
rate and interest rate variables show the same pattern, both for countries as
well as for farm groups. Unemployment rates play a more prominent role in
the EU-15 and age and population density are found statistically significant
only in around half of countries, both in the EU-15 and EU-12. All these
variables were found in the literature to be important drivers of farm struc-
tural change (e.g. Hallam, 1991; Goddard et al., 1993; Harrington and
Reinsel, 1995; Gebremedhin and Christy, 1996; Key and Roberts, 2006).

6. Conclusions

In this paper, we analyse the drivers of farm structure across regions and
time in EU agriculture. We adopt a novel analytical framework – the MCI
model – to analyse farm structural change following the theoretical frame-
work developed for explaining market shares in the marketing literature. The
advantage of this approach compared to the often-applied Markov analysis is
the reduced number of parameters to be estimated, as only ‘net’ changes in
each farm group are considered, rather than bilateral transitions between all

Fig. 8. Distribution of elasticities for EU-12 for variable categories and for all farm types
across NUTS 2 regions.
Source: Authors’ own compilation. Values for outlier elasticities are left out for presenta-
tion reasons.
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farm groups. The increased parsimony of the model specification allows us to
better identify the effect of various drivers on farm structural change repre-
sented by changes in farm group shares. Another significant contribution of
the paper is the application of the approach to all EU-27 countries using
FADN data for the period 1989–2013. This comprehensive analysis offers
the opportunity for an unprecedented comparative analysis of farm structural
change across the EU. The scale and possibility of automation of the
approach also opens up the possibility of incorporating farm structural
change into ex-ante policy impact analysis linking at a larger scale – some-
thing often demanded but still rarely done in CAP assessments.

We define farm groups at the regional level by combining the production
specialisation and size class characteristics of farms. Overall, we consider
eight production specialisations and two size classes, generating a maximum
of 16 (8 × 2) farm groups in a NUTS 2 region. To identify the drivers affect-
ing farm structural change, we regress for each farm group and country the
annual observed farm group share over seven types of explanatory variables
at the NUTS 2 unit of observation: prices, population, subsidies, income, a
dummy for decoupling, macroeconomic variables and natural conditions.

The results show that the largest share of the variance of farm group shares
across regions and time is explained by past farm group shares, indicating the
importance of historic specialisations over longer periods. At the EU level,
lagged farm group shares explain approximately 36 per cent of the total vari-
ance of farm group adjustment. However, there is a sharp difference between
old and new Member States. New Member States (EU-12) tend to have a
more dynamic farm structure. Past farm group shares explain almost 52 per
cent of farm structural change in the EU-15, while in the EU-12, its contribu-
tion is approximately 19 per cent. This difference could be attributed to the
more pronounced structural changes taking place in the EU-12 due to their
recent EU accession and ongoing transition process.

The results further suggest that, in new Member States, other drivers, such as
subsidies, prices, macroeconomic and population variables, play a more promin-
ent role in driving farm structural change compared to in old Member States.
Indeed, subsidies explain 10 per cent of the variance in farm group shares in the
EU-12 compared to 5 per cent in the EU-15, which seems to suggest that future
CAP reforms may have a stronger impact on the development of farm structure
in the new Member States and to a lesser extent in old Member States.
Similarly, macroeconomic and population variables contribute to the explan-
ation of farm share changes by 7 and 4 per cent in the EU-15 compared to 11
and 8 per cent in the EU-12. Consequently, ongoing macroeconomic develop-
ments, alongside population developments, explain relatively more changes in
farm structure in new Member States compared to old Member States.

Contrary to our expectations, only relatively small impacts of input and
output prices on farm structural change in the EU could be identified. They
jointly explain structural change by 8 per cent in the EU-15 and 20 per cent
in the EU-12. These relatively small effects could be due to included income
variables capturing part of the price effects as well as the merely short-term
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consideration of price fluctuations in the model. Income variables explain
approximately 4 per cent and 9 per cent of farm structural change in the EU-
15 and EU-12, respectively. Hence, the combined importance of income and
price effect explaining past farm structural change is 12 per cent in the EU-
15 and 29 per cent in the EU-12.
As expected, the estimated results show that natural conditions are import-

ant determinants of farm structure in the EU. They explain approximately 16
per cent of farm structure variation in the EU-15 and EU-12 across regions
and time and appear to be equally important in both the EU-15 and EU-12.
This is in line with expectations that farming structures are significantly
determined by natural conditions, which determine the comparative advan-
tage of various farm specialisations across EU regions.
To further analyse the importance of various drivers of structural change,

we have computed elasticities representing the response of farm group shares
to shocks introduced through explanatory variables. Here, we have con-
sidered only the time-varying variables related to the category of macroeco-
nomic variables, population, prices, subsidies and income. The results
suggest that farm group shares are the most elastic with respect to income
variables followed by macro variables.
The elasticities showed a very heterogeneous picture across farm groups in all

EU countries. For some elasticities, counterintuitive negative income elasticities
for some farm groups and regions may be explained by four factors: first by pro-
duction diversification with higher income levels even in the absence of overall
farm group expansion. Second, decreasing average net value added per hectare
could be attributed to expansion of total agricultural land. Third, the regional
share of a farm group may remain unchanged while the agricultural area used to
maintain status quo decreases due to productivity growth. Fourth, the income
measure from the FADN represents factor income, rather than net profits.
Our results are subject to several limitations. First, our estimates may be

affected by regional heterogeneity in social capital and formal and informal
land market institutions, which we were not able to fully control for. These
factors may play a prominent role in determining the functioning of rural
markets; as a result, competitive pressures may be distorted and structural
adjustments might not take full effect, which may partially explain the rela-
tively high persistence of farm structures revealed by our analysis. In particu-
lar, land markets in some EU countries (e.g. France, the Netherlands, Poland,
and Belgium) are heavily regulated, which may restrict farm adjustments.
Land regulations may affect land size adjustment in particular, as they tend
to distort land relocation among farms (Ciaian, Kancs and Swinnen, 2010;
Swinnen, Van Herck and Vranken, 2014). Second, some EU regions show
inconsistent dynamics of farm group development in the FADN data, which
may have affected the farm structure evaluation over time and its statistical
analysis. A country-specific rather than unique EU-27 farm group stratifica-
tion could possibly better account for specific farm structures in more
country-targeted analyses and would lead to a higher model fit for the spe-
cific farm groups. Finally, in this paper, we have focused on farm structural
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change related to farm group shares of different production specialisations
and sizes in EU regions. We did not analyse the number of farms (total and
for each group), which is another key element of farm structural change. This
lack of analysis could be remedied by making a separate prediction of the
total number of farms (for example, see Jongeneel, 2014, 2015) and combin-
ing this with the MCI shares to calculate the evolution of farm numbers in
each farm group. Another approach would be to consider farms that exit the
sector in the estimation beside active farms, which is derived as the differ-
ence between the maximum number of active farms in the time series and the
number of active farms in a particular year. Despite these limitations, the
paper has illustrated the application of a novel approach to studying farm
structural change and, in particular, it has provided a comprehensive perspec-
tive on the key drivers of farm structural change in the EU.

Supplementary data

Supplementary data are available at European Review of Agricultural
Economics online.
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Appendix A

A.1 The derivation of the estimation procedure of the differential effects
MCI model

In this Appendix, we show the estimation procedure of the simple effects
MCI model and switch later to the differential effects MCI model that we
have applied in this paper.

Based on Nakanishi and Cooper (1982) and Cooper and Nakanishi (1988:
26–31, 108–110 and 128–130) and given the equations (2) and (3), the fol-
lowing equation of the simple effects MCI can be established (see Nakanishi
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and Cooper, 1982: equation 2 and Cooper and Nakanishi, 1988: 26,
equation 2.7):
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where the farm group share si depends on the utility of farm group i relative
to the sum of the utility of all farm groups, Xk,i is the kth explanatory variable
of farm group i, βk is the coefficient measuring the influence of the kth
explanatory variable, αi is the intercept for farm group i, fk is the positive,
monotone transformation of Xk and υi are the error terms.
Equation (A.1) produces non-negative market shares that sum up to one

and may be transformed into a linear form in the parameters by taking the
logarithm of both sides (see Cooper and Nakanishi, 1988: 28–29):
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If we sum up equation (A.2) over i (i = 1,2,…,M) and divide by M, we get
(see Cooper and Nakanishi, 1988: 29):
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where ˜ ˜s X, k and υ̃ are geometric means of si, Xk and υi, respectively.
Subtracting equation (A.3) from equation (A.2) gives (see Cooper and
Nakanishi, 1988: 29):
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where α α α= ( − ¯)⁎
i i and υ υ υ= ( ˜)⁎ log /i i . Equation (A.4) is now linear in the

parameters and is called the ’log-centring’ transformation of si (see Cooper
and Nakanishi, 1988: 29).
Equation (A.4) can also be written as:
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where = ( ˜)⁎s s s/i i , = ˜⁎X X X/k i k i k, , and ε υ= ⁎
i i . This is in line with the formula-

tion in Nakanishi and Cooper (1982: equation 10). The intercept α1 is set as
arbitrary and the remaining farm group intercepts are α α α= −i j 1 for
( = … )i M2, 3, , and a dummy variable dj, which is equal to 1 if j = i and 0
otherwise.
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If we let ˆ⁎yi be the estimate of the dependent variable of equation (A.5), we
can use the so called ‘inverse log-centring’ and obtain (see Nakanishi and
Cooper, 1982: equation 11):
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which gives us an estimate for each farm group share i.
According to Cooper and Nakanishi (1988: 109) equation (A.5) can be

extended by an additional index t (time). For our example, we would add the
time dimension as our farm group shares are observed over time. This gives
us the following equation (Cooper and Nakanishi, 1988: 109 equation 5.7):
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Equation (A.7) can be re-transformed to the following formulation:
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which in turn can be reformulated as (see Nakanishi and Cooper, 1982:
equation 7):
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According to Nakanishi and Cooper (1982: equation 8), we can let:
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where γt is independent of farm group i. Nakanishi and Cooper (1982: appen-
dix) show that given equations (A.9) and (A.10), the regression equation can
be formulated without the log-centring transformation that yields the equa-
tion, which uses the non-transformed data (see also Cooper and Nakanishi,
1988: 110 equation 5.9):

19 Cooper and Nakanishi (1988) changed the way they treated the error. In their article at the

beginning, the error was part of the multiplicative function (see p. 26 equation 2.7) whereas later

in the article, the error was part of the exponentiation with the intercept αi (see p. 103 equa-

tion 5.1). To our knowledge, this difference has no effect on the estimation of αi and βk.
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where dummy variable Du take the value 1 if u = t and 0 otherwise. With
this formulation there is no need for pre-processing of the data via log-
centring.
The equation (A.11), which is the regression formulation of the simple

effects MCI model can be easily extended to the differential effects MCI
model,. According to Cooper and Nakanishi (1988: 128 equation 5.13), from
(A.11) and our equations (2) and (3) the following dummy regression formu-
lation describes the differential effects MCI model (see Cooper and
Nakanishi, 1988: 129, equation 5.17):

∑ ∑ ∑ ∑α α γ β ε= + ′ + + + ( )
= = = =

s d D d Xlog log A.12i t

j

M

j j

j u

T

u u

k

K

j

M

k i j k i t i t, 1

2 1 1
, , , ,

in which the sum of the dummy variable d over j = 1,2,…,M is added in the
4th summand of equation (A.11), dj is one if i = j otherwise 0, as well as βk,i
is the coefficient measuring the influence of the kth explanatory variable on
utility of farm group i.
In our paper, we want to analyse differential effects of many explanatory

variables on each farm group. Therefore, we are likely estimating a lot of
explanatory variables and in order to do not lose too many degrees of free-
dom, we drop the time dummy variable from our model and hence, or final
estimation model of the differential effects MCI model has the following
form:

∑ ∑ ∑α α β ε( ) = + ′ + ( ) + ( )
= = =

s d d Xlog log 4i t

j

M

j j

k

K

j

M

k i j k i t i t, 1

2 1 1
, , , ,

A.2 Example of the calculation of the transition matrix between SGM
and SO classification of the farms
To extend the classification for SO before 2004, one should re-classify the

population and the FADN sample. This is only feasible when both the
FADN and the FSS data are available. Unfortunately, we have no access to
the FSS micro data. To overcome this problem, a transition probability matrix
is calculated based on the time span for which both classifications, the SO
and the SGM, are available. Based on this data, we derive the probability
that a farm with a certain SGM class falls into a specific SO class. The prob-
ability matrix multiplied with the weighting factors therefore defines the
share of represented farms in the SGM 13 classification falling into the corre-
sponding 20 SO class. The transition matrix is presented in Table A1. The
table reads as follows: 80.5 per cent of the farms between 2004 and 2009
with the SGM class 13 (specialised cereals, oilseed and protein crops) were
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Table A1. Transition of SGM to SO classification for Germany

SGM_13 SGM_14 SGM_20 SGM_31 SGM_32 SGM_34 SGM_41 SGM_44 SGM_50 SGM_60 SGM_45 SGM_70 SGM_80

SO_15 0.805 0.040 0.001 0.000
SO_16 0.051 0.776 0.001 0.029 0.012
SO_21 0.000 0.548
SO_22 0.000 0.290 0.004
SO_23 0.161 0.535 0.031
SO_35 0.990 0.007 0.005
SO_36 0.001 0.000 0.943 0.005 0.001
SO_38 0.003 0.009 0.422 0.001
SO_45 0.002 0.003 0.001 0.925 0.019 0.003 0.118 0.050 0.065
SO_46 0.001 0.000 0.107 0.505 0.022 0.072
SO_47 0.001 0.005 0.067 0.045 0.316 0.008 0.022
SO_48 0.006 0.813 0.007 0.000 0.015
SO_51 0.001 0.003 0.001 0.001 0.892 0.004 0.140 0.251
SO_52 0.000 0.095 0.000 0.011 0.009
SO_53 0.008 0.005 0.005
SO_61 0.001 0.005 0.001 0.005 0.031 0.012 0.414 0.001
SO_73 0.000 0.000 0.006 0.014 0.008 0.047 0.410 0.043
SO_74 0.001 0.005 0.079 0.001 0.308 0.033
SO_83 0.047 0.053 0.000 0.085 0.001 0.001 0.313
SO_84 0.089 0.111 0.012 0.024 0.000 0.001 0.336 0.000 0.043 0.160

Source: Own calculation based on FADN data from the EU Commission-FADN Unit.
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classified in the SO class 15. The probabilities over all SO classes sum up to
one. The transition matrix is calculated for each NUTS2 region using the
farm weighting factor and is accordingly normalised.
The transition matrix is then applied to each farm for the years before

2004 to recover the SO share matrix. This is done by multiplying at the
regional NUTS2 level the weighting factor of the sample farm with the prob-
abilities from the transition matrix to obtain the population share belonging
to the SO class. Problems with missing regional transitions are avoided by
using instead the countrywide transition.

A.3 Detailed results regarding variables driving farm structural
change
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Table A2. Overview of number of variables driving farm structural change per country based on the analysis of elasticities

EU
aggregate Country Age

Population
density Unemployment

GDP growth
rate

Interest
rate

Input
prices

Output
prices Income Subsidies

EU-15 AT 1 1 7 2 3
BL 1 1 4 10 6 2
DE 1 1 2 1 3 2 9 2 1
DK 1 2 9 1 2 10 22 9 4
EL 2 2 1 4 2 2
ES 1 4 1 2 3 1 3
FI 2 4 1
FR 2 6 3 4 3 6
IR 3
IT 1 1 2 2
NL 1 3 2 2 1 6 2 3
PT 3 1 1 3 2 7
SE 1 1 2 2
UK 1 1 3 1 1 3 5

Sum 10 8 34 11 13 20 77 34 39

EU-12 BG 1 3 1 9 7 6
CY 3 1 1 3 4 2
CZ 2 1 6 6 4
EE 1 1 1 1 3 1 2

(continued)
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Table A2. (continued)

EU
aggregate Country Age

Population
density Unemployment

GDP growth
rate

Interest
rate

Input
prices

Output
prices Income Subsidies

HU 3 1 3 1 1 1 15 10 10
LT 1 1 6 2
LV 2 1 1
MT 3 1 1 3 1 2
PL 1 1 5 4 3
RO 1 3 5 3
SI 2 1 3 3
SK 2 2 2 1 1 2 8 4 6

Sum 12 10 13 7 5 7 65 44 40

Source: Author’s contribution.
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Table A3. Overview of number of variables driving farm structural change per farm group based on the analysis of elasticities

Farm group

EU
aggregate

Farm
specialisation Size class Age

Population
density Unemployment

GDP growth
rate

Interest
rate

Input
prices

Output
prices Income Subsidies

EU-15 Field crops ≤250k SO 4 3 6 4 3 4 27 9 16
Horticulture ≤250k SO 1 1 2 1 1 1 2 3
Permanents ≤250k SO 2 1 5 1 2 2 15 7 5
Grazing
livestock

≤250k SO 1 10 2 4 5 18 8 7

Mixed
cropping

≤250k SO 1 2 2

Mixed both ≤250k SO 1 1 7 2 1 4 6 5 3
Horticulture >250k SO 1 1
Grazing
livestock

>250k SO 2 2 1 3 2

Granivores >250k SO 1 1 2 1 3 5 3

All farm groups 10 8 34 11 13 20 77 34 39

EU-12 Field crops ≤250k SO 1 1 2 2 1 3 8 12 7
Horticulture ≤250k SO 1 1 3 1 4
Permanents ≤250k SO 1 1 2 7 5 4
Grazing
livestock

≤250k SO 6 2 4 2 1 2 17 8 7

(continued)
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Table A3. (continued)

Farm group

EU
aggregate

Farm
specialisation Size class Age

Population
density Unemployment

GDP growth
rate

Interest
rate

Input
prices

Output
prices Income Subsidies

Granivores ≤250k SO 1 5 2 2
Mixed
cropping

≤250k SO 1 1 3 4 3

Mixed
livestock

≤250k SO 1 1 1 6 1

Mixed both ≤ 250k SO 2 3 2 1 1 12 9 10
Field crops >250k SO 1 1 1 3 2 2
Grazing
livestock

>250k SO 1 1 1 1 1

All farm groups 12 10 13 7 5 7 65 44 40

Source: Author’s contribution.
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