
Measuring and modelling soil carbon stocks and
stock changes in livestock production systems

Guidelines for assessment

VERSION 1

ADVANCED COPY

http://www.fao.org/partnerships/leap

CA2934EN/1/01.19





Measuring and modelling soil carbon stocks and 
stock changes in livestock production systems

Guidelines for assessment

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS
Rome, 2019

VERSION 1

ADVANCED COPY



Recommended Citation
FAO. 2019. Measuring and modelling soil carbon stocks and stock changes in livestock production systems – Guidelines for 
assessment. Version 1 – Advanced copy. Rome. 152 pp.
Licence: CC BY-NC-SA 3.0 IGO.

The LEAP guidelines are subject to continuous updates. Make sure to use the latest version by visiting  
http://www.fao.org/partnerships/leap/publications/en/

The designations employed and the presentation of material in this information product do not imply the 
expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations 
(FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or 
concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of 
manufacturers, whether or not these have been patented, does not imply that these have been endorsed or 
recommended by FAO in preference to others of a similar nature that are not mentioned.

The views expressed in this information product are those of the author(s) and do not necessarily reflect the views 
or policies of FAO. 

© FAO, 2019

 

Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 IGO licence 
(CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode/legalcode). 

Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial 
purposes, provided that the work is appropriately cited. In any use of this work, there should be no suggestion 
that FAO endorses any specific organization, products or services. The use of the FAO logo is not permitted. If the 
work is adapted, then it must be licensed under the same or equivalent Creative Commons licence. If a translation 
of this work is created, it must include the following disclaimer along with the required citation: “This translation 
was not created by the Food and Agriculture Organization of the United Nations (FAO). FAO is not responsible for 
the content or accuracy of this translation. The original [Language] edition shall be the authoritative edition.

Disputes arising under the licence that cannot be settled amicably will be resolved by mediation and arbitration 
as described in Article 8 of the licence except as otherwise provided herein. The applicable mediation rules will be 
the mediation rules of the World Intellectual Property Organization http://www.wipo.int/amc/en/mediation/rules 
and any arbitration will be conducted in accordance with the Arbitration Rules of the United Nations Commission 
on International Trade Law (UNCITRAL).

Third-party materials. Users wishing to reuse material from this work that is attributed to a third party, such as 
tables, figures or images, are responsible for determining whether permission is needed for that reuse and for 
obtaining permission from the copyright holder. The risk of claims resulting from infringement of any third-party-
owned component in the work rests solely with the user.

Sales, rights and licensing. FAO information products are available on the FAO website (www.fao.org/
publications) and can be purchased through publications-sales@fao.org. Requests for commercial use should 
be submitted via: www.fao.org/contact-us/licence-request. Queries regarding rights and licensing should be 
submitted to: copyright@fao.org.

Photo cover: ©FAO/Hoang Dinh Nam

This publication has been printed using selected products and processes so as to ensure minimal environmental impact and to 
promote sustainable forest management.



iii

Contents

Acknowledgements v

Abbreviations and acronyms xi

Glossary xii

Executive summary xiv

1. INTRODUCTION 1

1.1 Objectives and intended users 1

1.2 Scope 1
1.2.1 Land use systems 1

1.2.2 Soil carbon 2

1.3 Soil organic matter and soil organic carbon 2

1.4 Livestock systems and soil organic carbon 3

1.5 Land use change, land management and soil organic carbon stocks 7

2. DETERMINATION OF SOIL ORGANIC CARBON STOCKS 8

2.1 Introduction: The need to measure soil organic carbon stocks 8

2.2 Planning the sampling 10
2.2.1 Site heterogeneity and stratification 12

2.2.2 Sampling strategies 13

2.2.3 Compositing 16

2.2.4 Sampling depth 17

2.3 Errors and uncertainties 18

2.4 Soil processing and analysis 21
2.4.1 Drying, grinding, sieving, homogenizing and archiving soil samples 22

2.4.2 Bulk density 23

2.4.3 Coarse fraction of belowground organic carbon 27

2.4.4 Inorganic carbon 28

2.5 Analytical methods for total soil organic carbon determination 29
2.5.1 Dry combustion method 29

2.5.2 Wet digestion/oxidation of organic carbon compounds by dichromate ions (Cr2O7
2-) 30

2.5.3 Loss-on-ignition method 30

2.5.4 Spectroscopic techniques for soil organic carbon determination 31

3. MONITORING SOIL ORGANIC CARBON STOCK CHANGES – REPEATED 
MEASUREMENTS AGAINST A BASE PERIOD, AND MEASUREMENTS  
AGAINST A BUSINESS-AS-USUAL BASELINE 34

3.1 Planning and implementing a monitoring strategy for soil organic carbon stock change 34

3.2 Introduction to soil organic carbon stock change assessment by measuring  
against a baseline 35

3.2.1 Sources of error and bias in soil organic carbon stock change monitoring 36

3.3 Sample size 37
3.3.1 Pre-sampling for soil organic carbon stocks and variability to guide sample size 37

3.3.2 Using minimum detectable difference to determine sample size 38



iv

3.4 Sampling frequency 41

3.5 Calculating soil organic carbon stock change 42
3.5.1 Equivalent soil mass 42

3.5.2 Calculating soil organic carbon stock changes 44

4. DATA MANAGEMENT AND REPORTING. SAMPLE ARCHIVING 50 

4.1 Handling data 50
4.1.1 Data gathering 50

4.1.2 Data processing 51

4.1.3 Data storage and retrieval 51

4.1.4 Data quality control 52

4.2 Reporting results 53

5. MONITORING SOIL ORGANIC CARBON CHANGES – NET BALANCE OF 
ATMOSPHERIC CARBON FLUXES 54

6. MODELLING SOIL ORGANIC CARBON CHANGES 58

6.1 Introduction 58
6.1.1 What is modelling and who is it intended for: decision support and reporting 58

6.2 The different modelling approaches 59
6.2.1 Level 1. Empirical models 59

6.2.2 Level 2. Soil process models 62

6.2.3 Level 3. Ecosystem models 65

6.3 Deciding on the approach 67
6.3.1 Technical capacity and activity data 69

6.4 Implementation 70
6.4.1 Data availability 70

6.4.2 Initialization of the model 73

6.4.3 Validation of results 74

6.5 Uncertainty and sensitivity analysis 76
6.5.1 Sensitivity and uncertainty - Introduction 76

6.5.2 Sensitivity analysis 79

6.5.3 Calibration 80

6.5.4 Uncertainty estimates from calibration and validation 80

6.5.5 Model prediction uncertainty 81

6.5.6 General guidance 81

7. SPATIAL INTERPRETATION AND UPSCALING OF SOC 83

7.1 Introduction 83

7.2 Sampling for spatial interpolation 84

7.3 Interpolating methods for soil organic carbon predictions 86

7.4 Geostatistics 88

7.5 Digital Soil Mapping 92

7.6 Practical application of interpolation techniques 93



v

8. INTEGRATING CHANGES IN SOIL ORGANIC CARBON INTO  
LIFE CYCLE ASSESSMENT 95

8.1 Introduction 95

8.2 Implications of including SOC stock changes in LCA 97
8.2.1 System boundaries and cut-off criteria 97

8.2.2 Representativeness and appropriateness of LCI data (SOC data or model) 98

8.2.3 Types, quality and sources of required data and information 98

8.2.4 Comparisons between systems 98

8.2.5 Identifying critical review needs 99

8.2.6 Emerging reporting requirements 99

9. APPENDIX ONE: TECHNICAL INFORMATION ON MODEL INITIALIZATION 101

9.1 Initialisation Challenges and Approaches 101

9.2 Initialisation of soil pool sizes is less important for comparisons between  
two or more concurrent scenarios 103

9.3 Guidance for Initialisation 104

10. APPENDIX TWO: TECHNICAL DETAILS OF MODEL CALIBRATION AND 
UNCERTAINTY EVALUATION USING MONTE CARLO APPROACHES 106

11. REFERENCES 107



vi

Acknowledgements

AUTHORSHIP AND DEVELOPMENT PROCESS
The Technical Advisory Group, (TAG) on soil carbon stock changes, hereafter 
called Soil Carbon TAG, is composed of experts from various backgrounds and 
areas of research and extension services, including soil science, ecology, livestock 
production systems, animal science, agriculture science, capacity development, and 
Life Cycle Assessment (LCA). The Soil Carbon TAG was formed by the Livestock 
Environmental Assessment and Performance (LEAP) Partnership.

These LEAP guidelines can be used in conjunction with other LEAP guidelines 
depending on goal and scope of the assessment.

These guidelines are a product of the Livestock Environmental Assessment and 
Performance (LEAP) Partnership. The following groups contributed to their de-
velopment:

The Soil Carbon TAG conducted the background research and developed the 
core technical content of the guidelines. The TAG was composed of 37 experts: Pete 
Millard (co-chair, Manaaki Whenua Landcare Research, New Zealand), Fernando 
A. Lattanzi (co-chair, Instituto Nacional de Investigación Agropecuaria - INIA, 
Uruguay), Aaron Simmons (Department of Primary Industries NSW, Australia), 
Amanullah  (Dept Agronomy, The University of  Agriculture Peshawar, Parkistan), 
Beáta Emoke Madari (EMBRAPA, Brazil), Bernard Lukoye Fungo (National Ag-
ricultural Research Organisation, Uganda), Beverley Henry (Queensland Uni-
versity of Technology, Australia), Bhanooduth Lalljee (University of Mauritius, 
Mauritius), Brian McConkey (Agriculture and Agri-Food Canada, Swift Current, 
Canada), Carolyn Hedley (Manaaki Whenua Landcare Research, New Zealand), 
Chiara Piccini (Council for Agricultural Research and Economics, Italy), Christo-
pher Poeplau (Thünen Institute of Climate-Smart Agriculture, Germany), Daniel 
Rasse (Norwegian Institute of Bioeconomy Research - NIBIO, Norway), Dario 
Arturo Fornara (Agri-Food & Biosciences Institute, UK), Denis Angers (Agricul-
ture and Agri-Food Canada, Canada), Ermias Aynekulu (World Agroforestry Cen-
tre, Kenya), Esther Wattel (National Institute for Public Health and the Environ-
ment, Netherlands), Francisco Arguedas Acuna (Instituto Nacional de Innovación 
y Transferencia en Tecnología Agropecuaria - INTA, Costa Rica), Gary John 
Lanigan (TEAGASC, Ireland), Guillermo Peralta (National Institute of Agricul-
tural Technology, Argentina), Johnny Montenegro Ballestero (Costa Rican Gov-
ernment, Costa Rica), Jorge Álvaro-Fuentes (Spanish National Research Council, 
Spain), Katja Klumpp (INRA, France), Martine J. J. Hoogsteen (National Institute 
for Public Health and the Environment, Netherlands), Mia Lafontaine (Friesland 
Campina, Netherlands), Miguel A. Taboada (National Institute of Agricultural 
Technology, Argentina), Miguel Mendonça Brandão (Royal Institute of Technol-
ogy, Sweden), Otgonsuren Avirmed (Wildlife Conservation Society of Mongolia, 
Mongolia), Prakaytham Suksatit (National Metal and Materials Technology Cen-
tre, Thailand), Roberta Farina (Council for Agricultural Research and Econom-



vii

ics, Italy), Roland Kroebel (Agriculture and Agri-Food Canada, Canada), Tantely 
Raza�mbelo (University of Antananarivo, Madagascar), Valério D. Pillar (Federal 
University of Rio Grande Do Sul, Brazil), Vegard Martinsen (Norwegian Univer-
sity of Life Sciences – NMBU, Norway), Viridiana Alcantara Cervantes (Food and 
Agriculture Organization of the United Nations / Federal Of�ce for Agriculture 
and Food, Germany), Xiying Hao (Agriculture and Agri-Food Canada, Canada), 
and Yuying Shen (Lanzhou University, China).

The LEAP Secretariat coordinated and facilitated the work of the TAG, guided and 
contributed to the content development and ensured coherence between the vari-
ous guidelines. The LEAP secretariat, hosted at FAO, was composed of: Camillo 
De Camillis (LEAP manager), Carolyn Opio (Technical of�cer and Coordinator), 
Félix Teillard (Technical of�cer), Aimable Uwizeye (Technical of�cer) and Juli-
ana Lopes (Technical of�cer, until December 2017). Viridiana Alcantara Cervantes 
(Food and Agriculture Organization of the United Nations) supported the Secre-
tariat and was in charge of this LEAP work stream from the FAO Climate, Bio-
diversity, Land and Water Department (CB) under supervision of Ronald Vargas 
(Technical of�cer and Secretary of the Global Soil Partnership).

The LEAP Steering Committee provided overall guidance for the activities of the 
Partnership and helped review and cleared the guidelines for public release. During 
development of the guidelines the LEAP Steering Committee was composed of: 

Steering committee members
Douglas Brown (World Vision, until December 2016), Angeline Munzara (World 
Vision, since November 2016, South Africa), Richard de Mooij (European Live-
stock And Meat Trading Union, EUCBV; International Meat Secretariat, IMS), 
Matthew Hooper (Embassy of New Zealand, Italy, until 2018), Don Syme (Em-
bassy of New Zealand, Italy, since May 2018), Alessandro Aduso (Ministry for Pri-
mary Industries, New Zealand, since 2018), Victoria Hatton (Ministry for Primary 
Industries, New Zealand, since January 2017), Peter Ettema (Ministry for Primary 
Industries, New Zealand), Hsin Huang (IMS, France, LEAP Chair 2016), Gaelle 
Thyriou (Beef + Lamb, IMS, New Zealand), Ben O’ Brien (Beef + Lamb, New Zea-
land, IMS, from January to December 2017), Jean-Pierre Biber (International Union 
for Conservation of Nature, IUCN, Switzerland), María Sánchez Mainar (Interna-
tional Dairy Federation, IDF, since January 2018, Belgium), Caroline Emond (IDF, 
Belgium, since January 2018), Lionel Launois (Ministère de l’Agriculture, France), 
Pablo Manzano (IUCN, Kenya, LEAP Chair 2017), Nicolas Martin (European 
Feed Manufacturers’ Federation, FEFAC, Belgium; International Feed Industry 
Federation, IFIF), Frank Mitloehner (University of California, Davis, IFIF, the 
United States of America, LEAP Chair 2013), Anne-Marie Neeteson-van Nieu-
wenhoven (International Poultry Council, IPC, the Netherlands, until May 2018), 
Peter Bradnock (IPC, since May 2018), Edwina Love (Department of Agriculture, 
Food and the Marine, Ireland), Frank O’Mara (Teagasc –Agriculture and Food 
Development Authority, Ireland), Lara Sanfrancesco (IPC, Italy), Nicoló Cinotti 
(IPC, Italy, since May 2018), Marilia Rangel Campos (IPC, Brazil), Alexandra de 
Athayde (IFIF, Germany), Julian Madeley (International Egg Commission, IEC, 
United Kingdom), Dave Harrison (Beef + Lamb, New Zealand, IMS, until De-



viii

cember 2016), Paul McKiernan (Department of Agriculture, Food and the Marine, 
Ireland, until December 2016, LEAP Co-chair 2015), Representatives of the Inter-
national Planning Committee for World Food Sovereignty, Jurgen Preugschas (Ca-
nadian Pork Council, Canada, IMS), Nico van Belzen (IDF, Belgium, until Decem-
ber 2017), Elsbeth Visser (Ministerie van Economische Zaken en Klimaat, EZK, the 
Netherlands, from July 2015 to July 2016), Niek Schelling (EZK, the Netherlands, 
from July 2017 until July 2018), Henk Riphagen (EZK, the Netherlands, from July 
2016 until July 2017,), Kim van Seeters (Ministry of Agriculture, the Netherlands, 
since July 2018), Hans-Peter Zerfas (World Vision, until December 2017), Gianina 
Müller Pozzebon (Permanent representation of Brazil to FAO, Italy, since March 
2018), Felipe Heimburguer (Division of Basic Commodities, Ministry of Foreign 
Affairs, Brazil, since September 2017), Eric Robinson (Alternate Permanent Rep-
resentative of Canada to FAO, until September 2017), Tim McAllister (Agricul-
ture and Agri-Food Canada), Robin Mbae (State Department of Livestock, Kenya), 
Julius Mutua (State Department of Livestock, Kenya), Mauricio Chacón Navarro 
(Ministero de Agricultura y Ganadería, MAG, Costa Rica), Fernando Ruy Gil (In-
stituto Nacional de Carnes, INAC, Uruguay, LEAP Chair 2018), Walter Oyhant-
cabal (Ministerio de Ganadería, Agricultura y Pesca, Uruguay), Francois Pythoud 
(Permanent representative of Switzerland at FAO), Alwin Kopse (Swiss Federal 
Of�ce for Agriculture, FOAG, Switzerland), Jeanine Volken (FOAG, Switzer-
land), Martin Braunschweig (Agroscope, Switzerland, until December 2017), Jen-
nifer Fellows (Permanent Representation of Canada to FAO), Emmanuel Coste 
(Interbev, France, IMS), Beverley Henry (International Wool and Textile Organi-
zation, IWTO, Australia, from January 2016 to December 2017), Dalena White 
(IWTO, Belgium), Paul Swan (IWTO, Australia, since March 2018), Sandra Vijn 
(World Wildlife Fund, WWF, the United States of America), Pablo Frere (World 
Alliance of Mobile Indigenous Peoples, WAMIP, Argentina), Henning Steinfeld 
(FAO - LEAP Vice-Chair), Carolyn Opio (FAO, Italy, LEAP Secretariat Coor-
dinator since Jan 2015), and Camillo De Camillis (LEAP manager, FAO), Damien 
Kelly (Irish Embassy in Italy, until June 2018), Gary John Lanigan (Teagasc–Agri-
culture and Food Development Authority, Ireland), Paul McKiernan (Department 
of Agriculture, Food and the Marine, DAFM, Ireland, until December 2016, LEAP 
Co-Chair 2015), Roberta Maria Lima Ferreira (Permanent representation of Brazil 
to FAO, Italy, until October 2017), Renata Negrelly Nogueira (from October 2017 
until March 2018), Delanie Kellon (IDF, until December 2017), Aimable Uwizeye 
(FAO), Felix Téillard (FAO), Juliana Lopes (FAO, until December 2017).

Observers
Margarita Vigneaux Roa (Permanent representation of Chile to FAO), Zoltán 
Kálmán (Hungarian Embassy in Italy), István Dani (Ministry of Agriculture, Hun-
gary, since December 2017), Of�cers of the Permanent Representation of Italy to 
the UN Organizations in Rome, Yaya Adisa Olaitan Olaniran (Embassy of Nigeria 
in Italy), Of�cers of the United States of America Embassy in Italy and of USDA, 
the United States of America, Ian Thompson (Sustainable Agriculture, Fisheries 
and Forestry Division, Australia), Rosemary Navarrete (Sustainable Agriculture, 
Fisheries and Forestry Division, Australia), Mark Schipp (Department of Agri-
culture and Water Resources, Australia), María José Alonso Moya (Ministerio de 
Agricultura, Alimentación y Medio Ambiente, Spain), Wang Jian (Department of 



ix

Livestock Production, Ministry of Agriculture, People’s Republic of China), Li 
Qian (Department of International Cooperation, Ministry of Agriculture, People’s 
Republic of China), Tang Liyue (Permanent Representation of People’s Repub-
lic of China to the United Nations Agencies for Food and Agriculture in Rome), 
Nazareno Montani (Permanent Representation of Argentina to FAO), Margarita 
Vigneaux Roa (Embassy of Chile in Italy), Keith Ramsay (Department of Agricul-
ture, Forestry and Fisheries, South Africa), Madan Mohan Sethi (Embassy of India 
in Italy), Lucia Castillo-Fernandez (European Commission, Directorate-General 
for International Cooperation and Development, Belgium), Rick Clayton (Health 
for Animals, Belgium), Eduardo Galo (Novus International), Coen Blomsma (Eu-
ropean Union vegetable oil and protein meal industry association, Fediol, Belgium), 
Jean-Francois Soussana (INRA, France), Fritz Schneider (Global Agenda For Sus-
tainable Livestock), Eduardo Arce Diaz (Global Agenda for Sustainable Livestock), 
Harry Clark (Global Research Alliance), Angelantonio D’Amario (EUCBV, Bel-
gium, IMS), Brenna Grant (Canadian Cattlemen’s Association, IMS), Philippe Bec-
quet (DSM, Switzerland, IFIF), Maria Giulia De Castro (World Farmers Organiza-
tion, WFO, Italy), Danila Curcio (International Co-operative Alliance, Italy), Mat-
thias Finkbeiner (International Organization for Standardization, ISO; TU Berlin, 
Germany), Michele Galatola (European Commission, Directorate-General for 
Environment, Belgium), James Lomax (UN Environment), Llorenç Milà i Canals 
(Life Cycle Initiative, UN Environment), Paul Pearson (International Council of 
Tanners, ICT, United Kingdom), Primiano De Rosa (Unione Nazionale Industria 
Conciaria, ICT, Italy), Christopher Cox (UN Environment), Gregorio Velasco Gil 
(FAO), James Lomax (UN Environment), Franck Berthe (World Bank), Patrik 
Bastiaensen (OIE), An de Schryver (European Commission, Directorate-General 
for Environment, Belgium), and Brian Lindsay (Global Dairy Agenda for Action), 
Judit Berényi-Üveges (Ministry of Agriculture, Hungary), Csaba Pesti (Agriecon-
omy research institute, Hungary), María José Alonso Moya (Ministerio de Agricul-
tura, Alimentación y Medio Ambiente, Spain), Pierre Gerber (World Bank), Rogier 
Schulte (Wageningen University, the Netherlands, LEAP Co-Chair 2015 on behalf 
of Ireland), Peter Saling (ISO, since February 2018; BASF), Erwan Saouter (Eu-
ropean Food Sustainable Consumption and Production Roundtable), Ana Freile 
Vasallo (Delegation of the European Union to the Holy See, Order of Malta, UN 
Organisations in Rome and to the Republic of San Marino, until September 2016).

Although not directly responsible for the preparation of these guidelines, the 
other Technical Advisory Groups of the LEAP Partnership indirectly contributed 
to this technical document.

MULTI-STEP REVIEW PROCESS 
The initial draft guidelines developed by the TAG over 2017 and 2018 went through 
an external peer review before being revised and submitted for public review. Mat-
thew Brander (ISO, The University of Edinburgh), Jean-Baptiste Dolle (IDELE, 
France), Wim de Vries (Wageningen University), Marie Trydeman Knudsen (Aar-
hus University, Denmark), Budiman Minasny (University of Sydney), Bruno José 
Rodrigues Alves (Embrapa, Brazil) and the Intergovernmental Technical Panel on 
Soils peer reviewed these guidelines in early 2018. 

The LEAP Secretariat reviewed this technical guidance before its submission for 
both external peer review and public review. The LEAP Steering Committee also 



x

reviewed the guidelines at various stages of their development and provided addi-
tional feedback before clearing their release for public review. The FAO Climate, 
Biodiversity, Land and Water Department (CB), WWF, Agriculture and Agri-Food 
Canada, Hungary, and Costa Rica provided feedback.  The public review started 
from May, 23rd 2018 and lasted until August, 22nd 2018. The review period was 
also announced to the public through an article published on the FAO website. 
The scienti�c community working on life cycle assessment and the accounting of 
greenhouse gas (GHG) emissions and removals from livestock was alerted through 
national networks of  the Global Research Alliance, “the 4 per 1000” initiative, and 
through the Livestock and Climate Change Mitigation in Agriculture Discussion 
group on the forum of the Mitigation of Climate Change in Agriculture (MICCA) 
Programme, the Global Alliance for Climate-Smart Agriculture (GACSA), IDF 
Scenv, and the LCA list held by PRé Consultants. Experts in soil carbon stocks 
assessment, carbon sequestration were informed through mailing lists, announce-
ments, articles in social networks, and newsletters.  

FAO of�cers were encouraged to participate in the public review through the 
FAO Livestock Technical Network Newsletter and through invitations to the FAO 
Climate, Biodiversity, Land and Water Department (CB) and the Secretariat of the 
Global Soil Partnership and its Intergovernmental Technical Panel on Soils. The 
LEAP Secretariat also publicized the 2018 LEAP public review through invitations 
to the Life Cycle Initiative and oral speeches in international scienti�c conferenc-
es and meetings, including those arranged by the Global Agenda for Sustainable 
Livestock, European Food Sustainable Consumption and Production Roundtable, 
World Farmers’ Organization, and the European Commission’s Product Environ-
mental Footprint. The following have participated in the public review and contrib-
uted to improving the quality of this technical document: Brenna Grant (Canfax Re-
search Services, Canadian Cattlemen’s Association), Amanullah (Dept Agronomy, 
The University of Agriculture Peshawar, Parkistan), María Sánchez Mainar (IDF), 
and Hans Blonk (Blonk Consultants). The latter was invited to check consistency 
with other LEAP guidelines and reference technical guidance documents recom-
mending approaches to account for GHG emissions from direct land use change.

SPONSORS, ADVISORS AND NETWORKING
FAO is very grateful for all valuable contributions provided at various levels by 
LEAP partners.  articular gratitude goes to the following countries that have con-
tinually supported the Partnership through funding and often in-kind contribu-
tions: France, Ireland, the Netherlands, New Zealand, Canada, Switzerland, and 
Uruguay. Appreciation also goes to the French National Institute for Agriculture 
Research (INRA) for in-cash and in-kind contribution to LEAP Partnership. Par-
ticularly appreciated were the in-kind contributions from the following civil soci-
ety organizations and non-governmental organizations represented in the Steering 
Committee: the International Planning Committee for Food Sovereignty, the Inter-
national Union for Conservation of Nature (IUCN), The World Alliance of Mobile 
Indigenous People (WAMIP), World Vision and the World Wildlife Fund (WWF). 
The following international organizations and companies belonging to the LEAP 
private sector cluster also played a major role by actively supporting the project via 
funding and/or in-kind contributions: the International Dairy Federation (IDF), 
the International Egg Commission (IEC), the International Feed Industry



xi

Federation (IFIF), the International Meat Secretariat (IMS), the International 
Poultry Council (IPC), the International Council of Tanners (ICT), the Interna-
tional Wool and Textile Organization (IWTO), European Union vegetable oil and 
protein meal industry association (Fediol), Health for Animals, Global Feed LCA 
Institute (GFLI), DSM Nutritional Products AG and Novus International. Sub-
stantial in-kind contribution came from the Intergovernmental Technical Panel on 
Soils (ITPS) of the Global Soil Partnership and New Zealand. Last but not least, 
the LEAP Partnership is also grateful for the advisory provided by the Interna-
tional Organization for Standardization (ISO), UN Environment and the Euro-
pean Commission, is glad to network with the Global Research Alliance, Life Cycle 
Initiative, Global Soil Partnership, 4 per 1000 initiative, the Global Alliance for 
Climate-Smart Agriculture (GACSA), and to share achievements in the context of 
Global Agenda for Sustainable Livestock.



xii

Abbreviations and acronyms

C carbon

ESM equivalent soil mass

GHG greenhouse gas

IPCC Intergovernmental Panel on Climate Change

LCA life cycle assessment

MDD minimum detectable difference

MRV monitoring, reporting and veri�cation

OC organic carbon

SIC soil inorganic carbon

SOC soil organic carbon

SOM soil organic matter

UNFCCC United Nations Framework Convention on Climate Change



xiii

Glossary

Bias: In general terms, deviation of results or inferences from the truth, or pro-
cesses leading to such deviation. More speci�cally, the extent to which the statistical 
method used in a study does not estimate the quantity thought to be estimated or 
does not test the hypothesis to be tested.

Carbon estimation area (CEA): The area, composed of strata, for which SOC 
stocks will be estimated.

Confidence interval: A range of values, calculated from the sample observations, 
that is believed with a particular probability, to contain the true parameter value. 
A 95% con�dence interval, for example, implies that where the estimation process 
was repeated again and again, 95% of the calculated intervals would be expected 
to contain the true parameter value. Note that the stated probability level refers to 
properties of the interval and not to the parameter itself which is not considered a 
random variable. 

Grazing intensity: Grazing intensity can be considered as a combination of the 
number of animals per unit area, coupled with the duration of their presence. So, 
the de�nition you might use for a steppe, with wide areas over which animals can 
move, might well be different than for an intensively managed farm with high stock 
numbers per unit area and frequent rotation of animals.

Measurement error: Errors in reading, calculating or recording a numerical value. 
The difference between observed values of a variable recorded under similar condi-
tions and some �xed true value.

Random sampling: Either a set of n independent and identically distributed ran-
dom variables, or a sample of n individuals selected from a population in such a way 
that each sample of the same size is equally likely.

Sample: A set of sampling units, that is, a selected subset of a population, chosen by 
some process usually with the objective of investigating particular properties of the 
parent population. In these Guidelines, samples refer to soil cores taken in the �eld.

Sample size: The number of sampling units to be included in an investigation. Usu-
ally chosen so that the study has a particular power of detecting an effect of a par-
ticular size.

Composite sample: A sample in which the sampling units are pooled together and 
homogenised. Thus, a composite sample is taken as a sampling unit in a sample 
comprising several composite samples.
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Sampling: The process of selecting some part of a population to observe, to esti-
mate something of interest about the whole population. To estimate the amount 
of recoverable oil in a region, for example, a few sample holes might be drilled, or 
to estimate the abundance of a rare and endangered bird species, the abundance 
of birds in the population might be estimated on the pattern of detections from a 
sample of sites in the study region. Some obvious questions are how to obtain the 
sample and make the observations and, once the sample data are to hand, how best 
to use them to estimate the characteristic of the whole population.

Sampling design: The procedure by which a sample of units is selected from the 
population.

Sampling error: The difference between the sample result and the population char-
acteristic being estimated. In practice, the sampling error can rarely be determined 
because the population characteristic is not usually known. With appropriate sam-
pling procedures, however, it can be kept small and the investigator can determine 
its probable limits of magnitude.

Sampling frames: The portion of the population from which the sample is selected. 
They are usually de�ned by geographic listings, maps, directories, or membership 
lists.

Soil: The upper layer of earth in which plants grow, typically consisting of a mix-
ture of organic remains, silt, sand, clay, and rock particles.

Soil organic carbon content: The amount of carbon in a soil sample relative to the 
total mineral content of the sample. Soil organic carbon content is expressed as a 
(mass) percentage. 

Soil organic carbon stocks: The mass of carbon in a sample of known bulk density. 
Soil organic carbon stocks are generally expressed in tonnes or Mg per hectare for a 
nominated depth and commonly restricted to the fraction <2mm in size. 

Standard error: The standard deviation of the sampling distribution of a statistic. 
For example, the standard error of the sample mean of n observations is, where σ2 
is the variance of the original observations.

Strata: The areas of a carbon estimation area that results from the strati�cation 
process

Stratification: The division of a population into parts known as strata, particularly 
for the purpose of accounting for variation for a drawn sample.

Strati�ed random sampling: Random sampling from each strata of a population 
after strati�cation.

Stratum: Each subpopulation of strata.
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Executive summary

These guidelines aim to give a harmonised, international approach for estimating 
soil organic carbon (SOC) stock and stock changes in livestock production systems. 
Despite the attention given to SOC, current knowledge remains limited regarding 
SOC baselines and changes, the detection of vulnerable hot spots for SOC losses 
and opportunities for SOC gains under both climate and land management chang-
es. Accurate baselines are still missing for many countries and estimates of carbon 
�uxes due to changes in SOC stocks in the global carbon cycle are associated with 
large uncertainties. Global SOC stocks estimates do exist, but there is high vari-
ability in reported values among authors, caused by the diversity of data sources 
and methodologies. 

The intended uses of this document are wide, due to the range of objectives and 
scales for SOC stock change studies, for example:

•	Global or regional accounting for GHG emissions and removals from the land 
sector as a component of climate change accounting

•	Monitoring, reporting and verification obligations for the United Nations 
Framework Convention on Climate Change 

•	Analysis of the climate change impact of livestock products
•	Evaluation of the environmental impacts of grazing land management for 

animal agriculture
•	Assessment of the mitigation potential of agricultural practices at an industry, 

region or farm scale
•	Implementing mitigation options in an emissions trading or other market 

mechanism where payments for SOC sequestration depend on accurate and 
verifiable quantification

•	Research into soil and biological processes affecting SOC stocks and dynamics
In principle, anyone who has an interest in quantifying soil carbon stocks or stock 
changes should �nd these guidelines helpful. A set of methods and approaches are 
recommended for use by individual farmers or land managers, by those undertak-
ing life cycle assessment of livestock products, policy makers, or regulators at local, 
regional or national scales. The guidelines are a product of the Livestock Envi-
ronmental Assessment and Performance (LEAP) Partnership, a multi-stakeholder 
initiative whose goal is to improve the environmental sustainability of the livestock 
sector through better methods, metrics and data.

The table below summarises the major recommendations of the technical ad-
visory group for measuring soil C stocks and stock changes and for integrating 
these changes into lifecycle assessments to evaluate SOC stock changes in reporting 
environmental performance of livestock production on rangelands and grasslands. 
It is intended to provide a condensed overview and information on the location of 
speci�c guidance within the document. LEAP guidance uses a precise language to 
indicate which provisions of the guidelines are requirements, which are recommen-
dations and which are permissible or allowable options, that intended users may 
choose to follow. The term “shall” is used in this guidance to indicate what is re-
quired. The term “should” is used to indicate a recommendation, but not a require-
ment. The term “may” is used to indicate an option that is permissible or allowable.
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DETERMINATION OF SOIL ORGANIC CARBON STOCKS

Minimum measurement 
requirements

To determine SOC stocks, the user shall quantify within a speci�c soil 
sampling depth: (i) SOC content of the �ne earth mass (< 2 mm size), (ii) 
coarse mineral fraction content (> 2 mm size) and, (iii) soil bulk density. 
Sampling depth shall be at least 30 cm, and should be as deep as possible 
where soil depth is greater than 30 cm. All samples shall be georeferenced. 
Appropriate error and uncertainty should be reported.

2.1

Soil sampling strategy To identify the most appropriate approach for soil sampling, the user shall 
make key decisions considering: (i) purpose and linked requirements, (ii) 
strati�cation and representativeness, (iii) soil depth, and (iv) land management. 
The sampling strategy should be based on a decision tree, such as the one 
provided in Figure 2.

2.2

Sampling strategy in 
relation to the environment

To sample a study area in a representative way, the user shall identify a 
minimum of three sampling strata (relatively homogeneous units) based on 
the main environmental factors determining SOC variability, including –
depending on the scale– climate, soil type, hydrology, topography, land use 
and management and land use history, amongst others.

2.2.1.1

Composite sampling Within each homogeneous unit (stratum) at least 5 soil cores should be 
collected to form a composite sample. Composite samples should represent 
the total area of the unit/strata and be collected in the same day. 

2.2.2

Report SOC stocks to 30 
cm depth

Soil organic carbon stocks should be reported for the 0–30 cm layer to comply 
with IPCC recommendations, and appropriate error and uncertainty should 
be reported. Soils less than 30 cm deep should be sampled as deep as possible 
and stocks extrapolated to 30 cm. Soils more than 30 cm deep should be 
sampled as deep as possible, and the SOC stock in the 0–30 cm layer shall be 
reported separately. Sampling to depths greater than 30 cm or subsampling 
the 0-30 layer may be warranted, however the impact of increased costs and 
potential increase in uncertainty need to be considered. 

2.2.3

Estimation of error The sampling approach shall be consistent with standard operating procedures 
to reduce the variability originating from the sampling itself. Suf�cient 
laboratory duplicates and randomising the order of sample analysis should 
be carried out to allow quanti�cation of combined �eld and laboratory 
measurement errors. Whenever suf�cient data and resources are available, an 
uncertainty analysis may be performed following the 2006 IPCC guideline.

2.3

Soil processing Soil processing for SOC analysis shall follow standard procedures. 
Consistency control of procedures shall be observed during the project 
and if the analyses are done in more than one laboratory, or more than one 
equipment/machine is measuring the same soil property, consistency check 
shall be carried out between them.

2.4

Sample storage Fresh soil samples should not be stored at temperatures higher than 4°C 
or for more than 28 days after collection. Soil samples shall be thoroughly 
homogenized. SOC content analysis shall be done in the �ne earth (< 2mm) 
fraction. For archiving, dried soil samples should be stored in a dark, cool and 
dry room for potential future use and veri�cation.

2.4.1

Bulk density measurements Soil bulk density should be determined in the same core in which SOC 
concentration is measured. For estimating bulk density, direct measurement 
methods should be used, speci�cally the undisturbed (intact) core method 
and the excavation method, because these can provide the most accurate 
determination of bulk density. The clod method should not be used because 
for SOC stock measurements the bulk density of soil layers or horizons has to 
be represented.

2.4.2

SOC and SIC 
measurements

To measure the SOC correctly, contributions from SIC shall be removed. A 
small-scale acidi�cation technique using HCl followed by automated dry 
combustion is recommended. In some soils SIC could represent a signi�cant 
and dynamic portion of soil carbon (e.g. calcareous, irrigated, and amended 
soils), and may be quanti�ed by direct determination of total inorganic carbon 
or by the difference between total soil C and SOC.

2.4.4

Laboratory accreditation SOC content analysis shall be performed in a laboratory that has well 
established quality control and assurance systems.

2.5
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SOC measurement The dry combustion method shall be used for measuring SOC content when 
possible. If not available, wet oxidation may be used, except on weathered 
soils or when charcoal is present. If dry combustion is not available, loss-on-
ignition may be used on organic soils.

2.5.3

Spectroscopic 
measurements

Spectroscopic techniques -which show promise for estimating the SOC 
content and which enable the analysis of large numbers of samples- may 
be used when technical capacities for adequate chemometric calibration are 
available.

2.5.4

MONITORING SOIL ORGANIC CARBON CHANGES

Identi�cation of errors In planning a SOC stock change study, a process of identi�cation of potential 
sources of error and bias in SOC stock estimation shall be undertaken and 
steps should be taken to minimise their impact, as described in Chapter 2. 
Consistent methodologies and practices should be used to minimise the 
minimum detectable difference (Eq. 9) and the number of samples required to 
obtain it (Eq. 10).

3.2.1

Design of a sampling 
strategy

To analyse lateral and vertical spatial variability of SOC stock, a pre-sampling 
(5 to 10 cores per strata) of the area of interest may be undertaken to get an 
indication of the SOC stocks mean value and variability in SOC stocks and, 
therefore, attainable minimum detectable difference for a given sampling 
effort. This information should be used to guide estimation of the number 
of samples needed to determine SOC stock change with an acceptable level 
of uncertainty. Based on estimated SOC stocks and variability from the 
pre-sampling and the maximum number of analyses that can be afforded, a 
decision on whether individual or composite sample cores are analysed should 
be made.

3.1.1

Minimal detectable 
difference

Minimum detectable difference calculations shall be used to estimate the 
number of samples needed to detect the expected SOC stock change (or 
alternatively the number of years required for a given rate of change in SOC 
to produce a statistically detectable change). The number of samples may 
differ between sampling campaigns (repeated measurements with baseline at 
t0) or treatments (paired plots with assumed business-as-usual baseline). This 
reduces sampling effort when the baseline was estimated with a large sampling 
size.

3.3.2

Frequency of repeated 
measures

For repeated measurements to capture SOC stock change related to 
management activities, sampling shall typically occur 4 to 5 years apart. 
Sampling strategies shall always consider the estimated minimum detectable 
difference (Eq. 9) and corresponding number of required samples (Eq. 10). 
A sampling campaign should take no longer than 60 days within the same 
season, i.e. all sampling should occur no more than 30 days before/after the 
median day and month of the baseline sampling round. The record of each 
sampling round shall include the day (or days), the month (or months), the 
year (or years), and the median day.

3.4

Equivalent soil mass To consider possible changes in bulk density over time or due to management, 
comparisons of SOC stocks shall be made on an equivalent soil mass basis 
(ESM). Samples from at least three discrete, contiguous and successive 
soil layers should be available to describe how bulk density and SOC 
concentrations change from the surface layer downward. Only the lowermost 
layer in any nominated ESM must be based on assumed rather than directly 
measured bulk density and SOC concentration. An exception may be made 
only when estimating SOC stock changes for a relatively small and uniform 
area without strati�cation, in which case ESM may be neglected and the 
lowest mass of all samples may be taken at baseline. When using ESM 
for repeated SOC measurements or point-in-time comparisons, estimates 
shall be made for the same point (i.e. spatial and depth) or area over time. 
For sampling schemes where individual samples are taken, these should be 
aggregated to ensure they represent the same point or area. The method for 
calculating ESM shall remain consistent across all sampling times.

3.5.1
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Comparisons of land use 
or management change

To calculate changes in SOC stock, soil samples shall be collected and 
analysed with a consistent sampling protocol (Chapter 2). Further, a baseline 
that corresponds to the aim of the study should be chosen using Figure 8. (i) 
Changes in SOC stocks estimated over time shall be calculated in accordance 
with recommended methods and use of statistical tools (e.g. regression 
analysis), and in some cases knowing the ‘natural’ baseline might be necessary. 
(ii) Changes in SOC stocks estimated from paired-plot comparisons of new 
land use or management conditions against a business-as-usual baseline shall 
only be made when the starting point is consistent (i.e. same soil properties, 
climate, and prior land use and management); the conditions de�ning the 
land use or management states shall be thoroughly described. In both cases, 
estimated relationships should not be extrapolated beyond the period of the 
last measurement, as changes in SOC cannot be assumed to be constant over 
time

3.5.2

DATA MANAGEMENT AND REPORTING

Complementary data The geographical coordinates of the sampling location and of the boundaries 
of the represented area shall always be documented. When planning the 
assessment of SOC stock changes, possible complementary data from the 
�eld, such as net primary productivity, soil texture and pedoclimatic data, 
should be considered and collected as required.

4.1.1

Data storage Data shall be stored in a suitable format, such as the template (tab- or comma-
delimited text, .txt. csv), and include all necessary data for identi�cation (e.g., 
year, �eld, replicates, soil layers, etc.), variables for estimates (coarse fragment, 
roots, residual humidity), sample treatments (CaCO3, sieving, drying, etc.).

4.1.4

Data reporting Data/results reporting shall include a detailed description of methods 
including site of stored data and metadata. Reported results should be 
accompanied by an estimate of error or uncertainty.

4.2

MONITORING CARBON CHANGES – NET BALANCE OF ATMOSPHERIC CARBON FLUXES

The use of eddy covariance 
measurements

When using a full-system carbon budget approach as an alternative to 
repeated physical measurement methods to determine SOC stock changes, it 
shall �rstly be established that adequate funds and equipment and a research 
team with the required expertise can be dedicated to the project. For eddy 
covariance measurements to determine SOC stock changes, assessment 
of site suitability shall be undertaken to determine that the spatial area is 
suf�ciently large (4 to 8 hectares, minimum, depending of wind direction) 
to fully quantify contributions to �uxes of all material carbon sinks and 
sources (e.g. harvest, leaching, animal products). Established research groups 
and networks (e.g. Fluxnet, Ameri�ux, NEON, ICOS) with experience in 
use of eddy covariance methods should be consulted when seeking to set up 
instrumentation and programs using full carbon budget methods.

5.0

MODELLING SOIL ORGANIC CARBON CHANGES

Use of models Models shall be used when the objective is to estimate or extrapolate changes 
in carbon stocks in or to conditions in which they have not been measured e.g. 
soil type, climate and management. As a guiding principle, the complexity of 
the model should be aligned to the context.

6.1.1

Use of level 1 models Level 1 modelling without modi�cation may provide a �rst indication to 
predict the magnitude or direction of carbon stock changes. Level 1 modelling 
should be used when there is access to data-based factors that have been 
speci�cally determined for the system of interest (e.g. IPCC factors that can 
be adapted based on region-speci�c experiments). Users should note that 
Level 1 models can be used for reporting or claims but the simplicity of these 
models translate into limited accuracy if region speci�c factors are not used. 

6.2.1

Use of level 2 models Level 2 modelling should be used when regional factors for SOC change and 
factors affecting the change (e.g. humi�cation coef�cients) are not available, 
but data about plant carbon inputs and environmental parameters affecting 
carbon losses, that are needed to feed the model, are available.  

6.2.2
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Use of level 3 models Level 3 modelling shall be used when the objective is to integrate the 
feedbacks from multiple soil-plant-atmospheric processes on SOC dynamics. 
They should be used to investigate multiple impacts between agricultural 
management, crops and soils and to estimate the impacts of climate change 
feedbacks between crop productivity and SOC dynamics. They may be used 
to estimate the trade-offs between SOC change and other environmental 
indicators.

6.2.3

Choice of model The choice of modelling approach should consider the purpose and spatial 
scale of the study, as well as the availability of quality data to run the model. 
The complexity of the model should be aligned to the context, but the 
simplest, locally validated model is preferred. Internal calibration of a model 
(based on region-speci�c data), where model “factors” are adapted based 
on experiments, leads to more accurate results, regardless of the level of 
assessment.

6.3

Modelling requires a 
signi�cant investment

Signi�cant investment should be made in improving and engaging existing 
modelling expertise in making decisions for validation, calibration and 
implementation of selected models. This includes setting up input data to 
reduce uncertainty for sound scienti�c practice for the speci�c application. 
Users should recognise that without this investment, using a model carries a 
large risk that project results will not be accepted upon professional review.  

6.3.1

Check data availability Data availability for both model input parameters and to test model outputs 
shall be investigated before choosing a modelling approach.

6.4.1

Preliminary data The amount and type of SOC shall be used to initialise the model to produce 
reliable estimates of SOC amount over the simulation period. Good estimates 
of the SOC and C input from the vegetation and land use and conditions for 
many decades prior to the simulation period should be used to improve the 
ability to accurately predict the initial SOC, by calibrating model parameters 
where needed.

6.4.2.1

Preliminary check of the 
model

Before any other evaluation, preliminary model results should be graphed 
to see if they look approximately similar to the measured values. Once the 
model output appears to give a good simulation of the measured data, a full 
evaluation should be performed.   

6.4.3

Model validation and 
calibration

To minimize model uncertainty, the model shall be validated for the 
conditions (e.g.: country or climatic zone) in which it will be applied when 
possible. If a model is not validated for the region of interest, the model 
should be calibrated using local time series of SOC stocks. Thereby, only 
a limited number of parameters should be modi�ed and only those that 
do not have many interdependencies with other parameters. Guidance on 
model calibration and validation and advanced methods of sensitivity and 
uncertainty analysis can be found in the appendix of this document. Because 
soil carbon turnover models are most sensitive to initial SOC stocks and 
carbon inputs, a measured baseline of SOC stock shall be used whenever 
available, and C inputs should be estimated as accurately as possible..

6.5.1

Sensitivity analysis A model sensitivity analysis and uncertainty assessment should be conducted 
to inform decisions about the suitability of the model, and provide valuable 
information on which model inputs and processes are most important.. 

6.5.4

SPATIAL INTERPRETATION AND UPSCALING OF SOIL ORGANIC CARBON

Geostatistical sampling 
design

There is no universally best sampling design approach. For geostatistical 
analyses, collecting samples on a regular grid allows directional variograms 
over several different directions to be calculated easily, mostly along the 
axes of the grid (for regular grids, where the lag distances and directions are 
known and the number of pairs per lag interval is a function of grid spacing). 
A rule of thumb is not to estimate semivariances for lags greater than half 
the maximum distance of the sampled area. The main disadvantage of regular 
grids is that resolution is limited by grid spacing. We strongly recommend 
adding more closely spaced pairs of points at some randomly selected grid 
nodes, so that the form of the variogram at the most critical short distances 
and the nugget variance can both be better estimated.

7.2

Suitability of data When using kriging to perform a geostatistical interpolation, it should be 
checked that the data used follows a normal distribution and are spatially 
auto-correlated.

7.4
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Digital soil mapping There is no spatial prediction method which is generally best for any case. The 
best method for SOC mapping should be selected on a case by case basis.

7.5

Reporting geostatistical 
analyses

When up-scaling SOC stock change estimates, an overview of the data 
integration and spatial modelling procedure as well as the related uncertainty 
should be documented and reported together with the produced maps.

7.5
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1. INTRODUCTION 

1.1 Objectives and intended users  

Estimation of greenhouse gas emissions for livestock production systems worldwide is critical for 
evaluating climate change mitigation options. Livestock production systems are responsible for a 
large portion of the global carbon footprint (Ripple et al., 2014). However, they are most often 
based on grazed rangelands, grasslands and pastures, which offer significant potential for carbon 
sequestration in the soil to offset greenhouse gas emissions (Conant, 2010). Nevertheless, that 
potential has been neglected in life cycle assessments of the sector (Nijdam et al., 2012). Here, 
we offer guidelines for estimating soil organic carbon (SOC) stock changes in livestock production 
systems. Despite the attention given to SOC, knowledge about SOC baselines and changes and the 
detection of vulnerable hot spots for SOC losses and gains under climate change and changed land 
management is still limited. Accurate baselines are still missing for many countries and estimates 
of SOC within the global carbon cycle are still associated with large uncertainties. Global SOC 
estimates exist, but there is high variability in reported values among authors, caused by the 
diversity of data sources and methodologies (Henry et al., 2009). 

SOC measurements are highly variable in space, while changes over time depend on a multitude 
of factors, for which detailed information and understanding is not always available. There is a 
need to estimate benchmarks and potential changes, which, depending on the purpose will 
require different levels of data precision. The recommended methods provided in this document 
aim to align with the intended use and available data. Uncertainty levels thus depend on the 
method and the intended use.  

The intended uses of this document are wide: anyone who has an interest in estimating SOC or 
stock changes should find these guidelines helpful. A set of methods and approaches are 
recommended to be used by individual farmers or land managers, or by those undertaking life 
cycle assessment studies, policy makers or regulators at local, regional or national scales. A 
decision-tree is presented to help the user identify and align the available data and intended use 
with a measurement or modelling method. A series of case studies is also presented to illustrate 
how to use many of the techniques and approaches that are described herein.  

 

1.2 Scope  

The focus of these guidelines is on measuring SOC and monitoring change in SOC stocks in 
response to management practices in grasslands and rangelands. While it is recognised that some 
management practices e.g. adding manure or chemical N fertiliser may affect net greenhouse gas 
emissions of livestock production systems through changes in nitrous oxide emissions as well as 
SOC sequestration, the scope of these Guidelines is restricted to SOC stock changes. Further 
information on accounting for net change in greenhouse gas emissions may be found in LEAP 
guidelines for large ruminants, small ruminants and feed.   

 

1.2.1 Land use systems 

These guidelines consider soils from all land use systems that directly support livestock 
production, which include lands with vegetation suitable for grazing or browsing use, 
predominantly composed of grasses, grass-like plants, forbs, or shrubs. These may be grasslands, 
savannas, steppes, wetlands, some woodland, some deserts, tundra, and certain forb and shrub 
communities, or cultivated pastures on converted land. Some of these land cover types may be 
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extensively managed through fire and the control of livestock stocking, while others by practices 
such as plant species introduction, fertilization, mowing, and irrigation. 

Other systems that support livestock production considered in scope for these guidelines include 
cropland producing forage that is mowed for hay or silage, or croplands that are producing other 
feed for livestock.  

 

1.2.2 Soil carbon 

The soil C stock consists of two components: SOC and soil inorganic C (SIC). SOC is the carbon 
component of soil organic matter (SOM), a heterogeneous pool of C comprised of diverse 
materials including fine fragments of litter, roots and soil fauna, microbial biomass C, products of 
microbial decay and other biotic processes (i.e. such as particulate organic matter), and simple 
compounds such as sugar and polysaccharides (Jansson et al., 2010). Soil inorganic C comprises 
pedogenic carbonates and bicarbonates, which are particularly abundant in alkaline soils. These 
guidelines consider only SOC in relation to measuring soil C stocks and stock changes, and the 
standard operational definition of SOC is used – organic carbon present in the fraction of the soil 
that passes through the 2 mm sieve (Whitehead et al., 2012). 

The methods described in these guidelines will focus on estimating SOC stocks and stock changes, 
considering the fine fraction of the soil (< 2 mm). However, it is acknowledged that coarse 
fragments of belowground biomass at varying levels of decomposition form an important C pool 
associated with the soil, which should not be neglected. Therefore, general guidance will also be 
offered for measuring organic C stock changes considering the coarse (> 2 mm) fraction of 
belowground biomass by applying, on the same collected cores, procedures that are 
complementary to the ones used for the fine soil fraction. 

  

1.3 Soil organic matter and soil organic carbon 

Soil organic matter (SOM) encompasses all organic components in the soil and is traditionally 
divided into "dead" and "living" components. The living component includes plant roots and 
microorganisms and the dead component root and leaf litter, water soluble organic compounds, 
soil enzymes and the so-called humic substances (Stevenson, 1994). The dead SOM is far bigger 
than the living and within the it the humic substances are the biggest component. Dead SOM 
comprises the largest pool of recalcitrant organic carbon in the terrestrial environment. Recent 
research, including the development of new analytical and molecular techniques (Simpson et al., 
2007) has changed our thinking about the composition of SOM. The majority of operationally 
defined humic material in soils is a very complex mixture of microbial and plant biopolymers and 
their degradation products, but not a distinct chemical category (Kelleher and Simpson, 2006; 
Simpson et al., 2007). The various compound classes and individual structures within these classes 
reflect, to a large extent, the chemical composition within the specific soil microenvironment 
(Simpson et al., 2007). A wide range of ecosystem properties that drive interactions among 
different soil components will ultimately define the pool of persistent organic residues in soil 
(Masoom et al., 2016; Yu et al., 2017).  

The use of comprehensive multiphase nuclear magnetic resonance (NMR) to investigate SOM in 
its natural state has further confirmed that organic matter is a mixture of molecules, which result 
from the decomposition of biomass. The positioning of these molecules within the soil 
microstructure depends on molecular characteristics including the presence of bipolar molecules, 
such as carbohydrates and lipids which occupy the solid-water interface in the soil matrix, while 
lignin and most microbes are found in more hydrophobic inner places (Masoom et al., 2016). 
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Lignin usually can be strongly associated with clay minerals and the silt fraction. The accessibility, 
availability, solubility and reactions of these molecules largely depend, besides molecular 
characteristics, on their position within the soil matrix, which characterizes physical and chemical 
protection. Lehmann and Kleber (2016) proposed a “consolidated view” of SOM turnover, the so-
called soil continuum model. According to this, SOM is controlled by parallel biotic and abiotic 
processes, including continuous decomposition of plant and animal debris and oxidation that 
enables solubilisation, or to the contrary, stabilization through chemical linkage to minerals, 
depending on the characteristics of the soil ecosystem. The persistence of SOM cannot be 
primarily attributed to chemical recalcitrance (Marschner et al., 2008; Schmidt et al., 2011; 
Dungait et al., 2012) and is likely due in part to the capacity of the soil to stabilise C through the 
availability of charged mineral surfaces (Yu et al., 2017). 

SOC is the carbon component of SOM. The theoretical C content of the different organic matter 
pools varies considerably. Despite the wide range in C concentrations of the different SOM pools, 
a single multiplication factor may be used to convert SOM to SOC. The most often used factor, 
known as the Van Bemmelen factor, is 0.58 (Van Bemmelen, 1891). Over time, empirically found 
values varied from 6 to 74%. However, theoretically, the SOC content of SOM ranges from 40% 
(simple carbohydrates) to 71% (on the assumption that SOM consists of 80% of humins and 20% 
lipids with C contents of 70 and 80%, respectively). A detailed literature survey on the SOM to 
SOC conversion factor by Pribyl (2010) showed a median value 51% based on 481 observations. 
For this reason, a SOM to SOC multiplication factor of around 0.50 instead of 0.58 would result, 
in most cases, in a more accurate estimate of soil C content based on SOM measurements. For 
estimating changes in SOC, the carbon component of the SOM only is measured by quantifying C 
directly and reported as carbon stocks (Mg SOC ha-1). Therefore, for the purposes of these 
guidelines, conversion factor from SOM to SOC is unnecessary. 

1.4 Livestock systems and soil organic carbon 

Grazed livestock production systems are an integral part of the cultural, social and economic 
identity of many nations worldwide. Key agricultural commodities such as milk and meat come 
from ruminant (cud-chewing) animals, predominantly cows, goats and sheep (Eisler et al., 2014). 
Overall, livestock consume about 6 billion Mg of feed material in dry matter annually, including 
one-third or more of the world’s cereal grain, with 40% of such feed going to ruminants, mainly 
cattle, while grazed herbage represents 46 to 57% of the ruminants’ intake (FAO, 2002; Opio et 
al., 2011).  

The livestock sector has been charged as responsible for approximately 14.5% of all anthropogenic 
greenhouse gas emissions worldwide (Gerber et al., 2013) including methane (CH4), nitrous oxide 
(N2O) and carbon dioxide (CO2) emissions. Thus, livestock production systems are often 
considered not sustainable and practical solutions have been sought to reduce the carbon 
footprint of these human-managed systems. Mitigation solutions include reducing emissions from 
enteric fermentation, better manure management and improved feed quality to optimise weight 
gains and reduced nutrient losses. Grassland management optimization to increase SOC stocks is 
a further option. However, the above cited estimations of emissions by the livestock sector do not 
consider C losses and gains in the soil. 

Grasslands are of particular importance for the global carbon cycle due to their extent and 
relatively high SOC stocks, compared to equivalent croplands in temperate regions. Globally, 
grasslands and rangelands cover 68% of the total agricultural area (Leifeld et al., 2015) with 
estimated associated SOC stocks of 245 Gt (Bolin and Sukumar, 2000). Large areas of the world’s 
grasslands are under intensive environmental pressure due to degradation by overgrazing, 
resulting in potential changes in SOC stocks (Oldeman, 1994). However, at the landscape scale, 
differences in SOC stocks result from complex interactions among multiple variables, including 
climate, land management and inherent soil biophysical attributes, such as soil texture and/or 
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chemical properties (Dalal and Mayer, 1986; Grace et al., 2006; Badgery et al., 2014; Luo et al., 
2016; Pringle et al., 2011). For example, Figure 1 shows the relationship between rainfall and SOC 
at a landscape scale. Thus, to quantify management effects on SOC stocks, which are usually small 
as compared to effects of abiotic site conditions, long-term plot experiments are indispensable. 
Long-term field experiments are also important because the effect of management generally 
declines through time. This is illustrated with long-term experiments, stretching back to the 
middle of the nineteenth century (1843), which show that the C sequestration levels off within 
several decades (Poulton et al., 2018) 

 

 

Figure 1. Soil organic carbon pools to 30 cm depth across a mean annual precipitation gradient 
in the North American Great Plains. (Data from Frank et al., 1995; Schuman et al., 1999; Reeder 
et al., 2004; Derner and Schuman, 2007.) 

 

Major anthropogenic interventions and their potential effects on SOC dynamics are described 
below. For most of these interventions, existing studies are few in a global context and results 
often contradictory. In a comprehensive list of agricultural long-term experiments of the world, 
only 49 out of >600 experiments were conducted on permanent grasslands (Debreczeni and 
Körschens, 2003). 

Grazing intensity. In the literature, the effects of grazing on SOC stocks range from strongly 
negative (Golluscio et al., 2009) to strongly positive (Pei et al., 2008). McSherry and Ritchie (2013) 
conducted a global meta-analysis trying to explain the observed variation in the SOC stock 
response to grazing. The authors of this meta-analysis found only a total of 17 studies and 47 
individual fertilization contrasts (pairs), indicating the limited number of available datasets. They 
found that 85% of the variation associated with SOC was explained by key variables including soil 
texture, precipitation, grass type, grazing intensity, study duration and sampling depth. The 
abiotic and biotic context of the system in which grazing management occurs, is thus important 
to predict the direction of SOC change with grazing. For example, in the Central Asian dry steppe, 
a region with low annual precipitation, the risk of overgrazing and subsequent loss of vegetation 
cover associated with soil erosion and a decrease in biomass production is high (Steffens et al., 
2008). Potentially, livestock systems may culminate in major changes in geomorphology (soil 
erosion and deposition) with massive effects on soil carbon stocks. The elementary protocols to 
assess SOC change discussed in this guidance are best applied to landscapes with negligible 
contemporary erosion. McSherry and Ritchie (2013) also found a strong influence of biotic factors, 
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i.e. grass type and grazing intensity. For C3 grasses, a slightly positive response of SOC was found 
to light grazing, while moderate to heavy grazing caused a decline in SOC stocks (Reeder and 
Schuman, 2002). This is in line with a more recent meta-analysis (Zhou et al., 2017), which mainly 
summarized studies conducted in China. The opposite trend was observed for mixed C3/C4 
grasslands and C4-dominated grasslands, in which SOC stocks showed a positive response to 
increasing grazing intensity (Frank et al., 1995; Derner and Schuman, 2007; López-Mársico et al., 
2015). In conclusion, grazing effects on SOC stocks are certainly site specific, but might be best 
described by an optimum curve with SOC gains in light to moderate grazing intensities (depending 
on the abundance of C4 species) due to stimulated productivity and root turnover (Zhou et al., 
2017) and the risk of SOC losses via overgrazing. According to Oldeman (1994), approximately 
7.5% of global grassland soils are degraded by overgrazing. 

Fertilization. Livestock systems receive either organic (e.g. farmyard manure, slurry or sewage 
sludge), or mineral fertilizers, which contain a combination of macronutrients such as nitrogen 
(N), phosphorus (P) and potassium (K), to stimulate plant growth. Nutrient availability is one of 
the most critical factors affecting the build-up of SOM, especially the formation of more stable 
fractions (Kirkby et al., 2013). Nitrogen availability is essential for enhancing the accumulation of 
SOC (Boddey et al., 2010) and it has been shown that the presence of N2-fixing legume plants can 
significantly contribute to improve soil SOC stocks (Tarré et al., 2001; Fornara and Tilman, 2008). 

Increased plant biomass following fertilisation tends to result in greater carbon inputs to the soil, 
with associated positive effects on SOC stocks (Kätterer et al., 2012). Furthermore, organic 
fertilizer application is an additional source of carbon input, leading to increased SOC stocks. 
Recently, Fornara et al., (2016) showed that in after 43 years of liquid manure applications at one 
site, SOC stocks had increased by ~21 Mg ha-1 as compared to unfertilized control soils. In a 
literature review, Conant et al. (2001) found a significantly positive effect of fertilization (both 
organic and inorganic fertilization combined) on SOC stocks with an annual sequestration rate of 
0.3 Mg ha-1y-1. However, fertilization effects on SOC dynamics are certainly more complex than a 
mere change in carbon inputs. For example, Bélanger et al. (1999) found no difference in 
belowground biomass after long-term NPK fertilization, but a strong negative correlation of SOC 
stocks and soil pH, with the latter declining upon fertilization. Unchanged belowground biomass 
despite higher aboveground biomass upon fertilization can be explained by altered plant C 
allocation with higher investment into aboveground biomass due to light rather than nutrient 
limitation (Poeplau, 2016). Sochorová et al. (2016) found a significant decrease in SOC stocks with 
CaNP fertilization as compared to Ca or no fertilization, despite much higher aboveground 
biomass in the CaNP treatments. This was explained by decreased colonization of arbuscular 
mycorrhiza fungi (AMF) following CaNP fertilization, which play an important role in SOC build up 
and stabilization.  

Spohn et al. (2016) found a strong positive effect of NK, NP and NPK fertilization on microbial 
carbon use efficiency, which is considered a key factor for carbon sequestration (Manzoni et al., 
2012). Altered nutrient availability can thus influence SOC cycling in various ways, which are not 
entirely understood and thus difficult to predict. However, the repeated addition of animal 
slurries or manure will significantly impact on C and N coupling with potential implications for 
changes in soil C (and N) stocks. Soils receiving either liquid slurries or manure have the ability to 
retain some of the C added through these animal wastes. For example, recent findings from a 
long-term grassland study showed a cattle slurry-C retention efficiency of grassland soils of 15% 
(Fornara et al., 2016). Similarly, findings from a meta-analysis study show a global manure-C 
retention coefficient of 12% (Maillard and Angers, 2014). These studies suggest that the long-term 
addition of organic nutrients to soils within livestock-production systems can increase SOC stocks. 
However, the actual role of animal manure application in sequestering atmospheric C and 
mitigating climate change depends on the alternate fate of the manure (Powlson et al., 2011).  
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Cutting frequency. In areas of intensive livestock production, animals may not spend much time 
outside the stable and are fed by hay from surrounding meadows. The frequency of cutting events 
on these meadows might influence SOC stocks due to changed net primary production (NPP) via 
changed canopy properties and plant species composition (Klimeš and Klimešová, 2002; 
Wohlfahrt et al., 2008). In addition, root turnover may be affected by cutting frequency (Volder 
et al., 2007). However, the direct effect of cutting frequency on SOC stocks is not well understood 
and difficult to separate from the effect of fertilization, since more frequently cut meadows 
usually receive higher doses of fertilizer. After 19 years of cutting frequency contrasts ranging 
from 12-weekly to 2-weekly intervals with unchanged fertilization, Kramberger et al. (2015) found 
no difference in SOC stocks. While the direct effect of cutting frequency might not be of 
significance, the indirect effect via increased NPP might be positive for SOC accumulation, 
especially when a proportion of the assimilated C is returned to the soil, e.g. via manure or plant 
residues. For example, Poeplau et al. (2016) found significantly higher SOC stocks in frequently 
mown urban lawns as compared to lawns that were cut only once or twice and explained this by 
higher aboveground NPP, with biomass not being removed but left as clippings on the lawn. 

Reseeding. Reseeding is a popular and common management practice where grasslands are 
improved with newer and more desirable cultivars e.g. Lolium perenne L. (perennial ryegrass) 
and/or Trifolium repens L. (white clover). Re-seeding will increase plant yields and thus the 
economic income from farmed grasslands. Re-seeding can occur via spreading of seed or through 
the mechanical preparation of a seedbed followed by sowing of seed into the seedbed. Where 
mechanical preparation is used, re-seeding will be associated with a great deal of physical soil 
disruption. Re-seeding has been previously linked to significant changes in soil C and nutrient 
cycling in grasslands (Bhogal et al., 2000; Soussana and Lemaire, 2014). Other common practices 
associated with re-seeding such as fertilisation and liming help maintain plant yields (Allard et al., 
2007), but their net effects on SOC stocks when combined with re-seeding remain poorly 
understood. A recent study shows how management-induced effects on key soil physical 
properties (i.e. bulk density) may have significantly greater implications for C sequestration in 
permanent grassland soils than high disturbance (but infrequent) re-seeding events (Carolan and 
Fornara, 2016).  

Species selection. Improving grassland also comprises the choice of grass species. In general, 
species rich grasslands tend to have a higher aboveground NPP (Hooper et al., 2005) and to 
penetrate larger soil volumes due to more diverse and complementary root traits, both of which 
have potentially positive effects on SOC stocks. Experimental evidence shows how increased 
species richness has positive effects on SOC stocks (Fornara and Tilman, 2008; Steinbeiss et al., 
2008; Chen et al. 2018). Species richness, however, may potentially negatively affect SOC if N 
availability in soils is reduced through increased complementary uptake by higher diverse plant 
communities (Niklaus et al., 2001). The introduction of N-fixing leguminous species is generally 
considered positive for SOC accumulation (Conant et al., 2001; Conrad et al., 2017). Furthermore, 
the introduction of deep-rooting grass species can have positive effects on SOC storage (Fisher et 
al., 1994). 

A general problem of long-term experiments on SOC responses to grassland management is the 
isolated and mostly incomplete view on those management options and thus the transferability 
to real life situations. For example, when the effect of mineral fertilization in mown grasslands on 
SOC stocks is assessed, this might not resemble the total effect of mineral fertilization. The 
additional mown plant biomass will find its way back to the soil, where it will further increase SOC 
stocks, which is not accounted for. More holistic, potentially farm-scale experiments would thus 
be desirable but are expensive to maintain in the long-term. Ultimately, the effect on SOC of e.g. 
grazing, fertilization, cutting frequency etc. all depends on how much extra C is given to the soil 
in the form of roots, crop residues or manure. If the practice increases plant and root growth and 
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even deposits manure, compared to earlier practice SOC will increase. If the practice removes 
more C from the system than before, then SOC will decrease (Petersen et al., 2013). 

 

1.5 Land use change, land management and soil organic carbon stocks  

Changes in land use and/or land management can significantly affect soil C stocks associated with 
different livestock-production systems. Humans have modified many natural and semi-natural 
habitats to support and develop, for example, grassland-based livestock economies. The 
significant expansion of either extensively grazed rangelands or improved grassland systems has 
been often accompanied by important changes in ecosystem structure and function including 
changes in the ability of soils to accumulate organic C. Potentially, livestock systems may 
culminate in major changes in geomorphology (soil erosion and deposition) with massive effects 
on soil carbon stocks. The protocols to assess SOC change discussed in these Guidelines are best 
applied to landscapes with negligible contemporary erosion. 

Soil C response to land use change or management will likely depend, at least partially, on 
previous land uses and will thus show a ‘legacy effect’ (Foster et al., 2003), which could help 
explaining changes in soil C stocks (Guo and Gifford, 2002). For example, a generally held view is 
that C accumulation will be faster when the land use change involves a shift from cultivated 
(disturbed) soils to permanent grassland soils. It is assumed that, under constant agricultural 
practices (e.g. 50 to 100 years after a land use/management change) and at 0-30cm depth, 
grassland soil C will eventually reach a steady state and that as the C content approaches this 
steady state, rates of C accumulation will decline (Smith, 2014). It is not clear, however, when soil 
C accumulation might reach a new steady state, mainly because this will depend on the interaction 
between climatic factors and the combination of multiple management practices (i.e. grazing, 
nutrient fertilization, liming, re-seeding etc.). For example, results from a recent study in the UK 
show that permanent grassland soils have not yet reached C steady state after 43 years of 
intensive management (Fornara et al., 2016). Other studies have shown continuing changes in 
SOC stocks over the long-term (e.g. Bellamy et al., 2005; Klumpp et al., 2011). Significant 
knowledge gaps remain in relation to how past and present management might influence soil C 
(and N) content through changes in soil biogeochemical properties.  

Diversification of agricultural landscapes may benefit both ecosystem service delivery (including 
soil C sequestration) and biological diversity (Isbell et al., 2017). As an example, one possibility for 
landscape diversification includes the adoption of both grazed grasslands and silvopastoral 
systems where livestock graze between widely spaced trees (Mosquera-Losada et al., 2009). The 
combination of grazed grasslands and silvopastoral systems can provide a wide range of 
ecosystem services including the regulation of nutrient and water in soils, aboveground 
sequestration of atmospheric CO2 in woody plants and in soils (Montagnini and Nair, 2009; 
Torralba et al., 2016). Evidence from meta-analysis studies suggest, however, that tree planting 
on permanent grassland may only have limited impact or even reduce rather than increase SOC 
content and stocks (Guo and Gifford, 2002; Laganière et al., 2010). Similar meta-analyses as well 
as long-term field studies show no evidence of significant soil C accumulation following planting 
trees in grasslands across different climatic regions (Poeplau et al., 2011; Hoogmoed et al., 2012; 
Bárcena et al., 2014; Fornara et al., 2017). More experimental studies are needed at the landscape 
level (or farm level) to be able to quantify the soil C sequestration contribution of different soils 
within these agricultural landscapes.  
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2. DETERMINATION OF SOIL ORGANIC CARBON STOCKS  

2.1 Introduction: The need to measure soil organic carbon stocks  

The actual size of SOC stocks associated with different livestock systems ultimately depends on: 
(1) the rate of C gain or loss during a specific period and, (2) the maximum amount of C that can 
be stored by soils until they reach relatively stable SOC levels (Smith, 2014). In general, the 
conversion of semi-natural or natural ecosystems to human-managed agro-ecosystems 
determines a decline in SOC stocks (Hüttl et al., 2008; Schlesinger and Bernhardt, 2013). The use 
of default SOC values (such as those determined by IPCC Guidelines 2006) or of measured SOC 
values from pristine ecosystems may not be suitable for estimating SOC stock changes across 
human-managed ecosystems. For example, the conversion of forest to pasture may result, over 
the long-term in similar or even higher SOC stocks, despite an initial decline of SOC stocks (Cerri 
et al., 2007).  

A baseline of SOC stocks can be estimated by physical sampling and measurement, modelled 
estimation, or assumed values. A key challenge when measuring SOC stocks is how to deal with 
the high spatial variability in SOC content and in soil biogeochemical properties associated with 
different soil and vegetation types, climate, land use and management (Conant et al., 2011). The 
initial choice of the method to be used will determine how robust the baseline SOC value is, which 
will then determine the possibility to detect potential changes in SOC stocks. At this early stage 
the main objective should be the selection of the most rigorous method possible considering the 
available financial resources and the aim of the assessment, which could vary depending on what 
spatial scale and land use and management are of particular interest. 

Physical sampling is the required approach to quantify baseline SOC stocks when the main 
objective is to estimate SOC temporal changes. Any soil physical sampling needs to be well 
planned at the outset to ensure that main objectives will be met. This means considering a series 
of environmental factors that cause heterogeneity in SOC content and which are discussed in 
more detail in the sections below. Also, physical sampling methods need to fulfil standard 
methodology criteria that will ensure confidence in results. For example, it is essential that 
sampling methods allow parameters such as soil bulk density to be estimated. 

The basic approach of physical sampling involves the collection of soil samples within a specific 
soil depth increment (e.g. 0-30 cm depth) using a soil corer tool of known volume with a diameter 
between 5 and 10 cm, which will allow determination of soil C content and bulk density (adjusted 
for coarse mineral fraction content, see section 2.4.2) or soil mass. Vertical soil coring and 
excavated pits are well accepted practices to soil sampling. The former allows a larger number of 
samples as it is less time consuming, but the latter can be a good choice to readily reveal soil 
profile characteristics, reducing uncertainties of vertical soil coring related to soil compression or 
accounting for coarse mineral fragments like large gravel (Davis et al., 2018).  

The internationally accepted operational definition of SOC is the organic carbon present in the 
fraction of the soil that passes through the 2 mm sieve (Whitehead et al., 2012), which is the fine 
earth fraction. For inventory purposes, therefore, the measurement of SOC in the fine soil fraction 
(<2mm) should be adequate. However, beyond occasionally containing mineral coarse fragments 
(see section 2.4.2), soils include macroscopic organic matter such as root fragments (see section 
2.4.3). These are greatly variable spatially and quantitatively in the soil, ephemeral in nature, and 
can contribute disproportionately to total organic carbon in soils. However, the assessment of the 
coarse organic matter may provide important ancillary information if done in the same soil cores 
(see section 2.4.3). If it is retained and quantified as an additional source of information, it shall 
be separated from SOC quantification. This will entail careful, systematic identification, separation 
and optionally quantification of organic layers (field inspection of the soil profile) and coarse 
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organic matter fractions separated from the fine mineral fraction by systematic dry sieving and 
from the coarse mineral fraction by hand sorting. 

In fields where biochar has been applied particles with diameter larger than 2 mm could be 
present. In such cases, the accounting for the SOC in the coarse fraction may be necessary.   

Thus, to determine SOC stocks, the following measurements are essential: 

● Quantification of the fine earth (< 2 mm) and coarse mineral fraction (> 2 mm) of the soil 
● Quantification of SOC concentration in the fine earth (< 2 mm) soil fraction 
● Soil bulk density or fine earth mass 

 
Additionally, the same soil cores can be used to measure the coarse fraction of belowground 
organic carbon (see section 2.4.3). 

After these parameters are measured the SOC stock can be calculated using this formula for each 
depth increment (i):  

Equation 1: 

SOCi stock (Mg C ha-1) = OCi x BDfinei x (1 – vGi) x ti x 0.1 

where, 

SOCi = soil organic carbon stock (in Mg C ha-1) of the depth increment i  
OCi = organic carbon content (mg C g soil-1) of the fine soil fraction (< 2 mm) in the depth increment 
i 
BDfinei = the mass of the fine earth per volume of fine earth of the depth increment i (g fine earth 
cm-3 fine earth = dry soil mass [g] – coarse mineral fragment mass [g]) / (soil sample volume [cm3] 
– coarse mineral fragment volume [cm3]) 
vGi = the volumetric coarse fragment content of the depth increment i 
ti = thickness (depth, in cm), of the depth increment i 
0.1 = conversion factor for converting mg C cm-2 to Mg C ha-1 
 

See section 2.4.2 for further details on the calculation of soil bulk density and alternative 
formulae for SOC. 

To obtain the fine earth dry matter weight, the residual water content after soil drying must be 
subtracted from the measured weight.  

Soil coring is a seemingly simple method to use. However, it requires careful consideration of: (i) 
factors that cause heterogeneity (e.g. soil type, topography, hydrology, management), (ii) the core 
diameter and the specific depth of sampling and, (iii) the number of cores needed to provide a 
statistically meaningful sample size. Effective soil sampling can be carried out only when 
homogeneous sites are identified within the heterogeneous landscape and then a suitable 
number of soil cores are collected (see section 2.2.1, for the concept of stratification).  

It is highly recommended that the same methods and the same calculations are repeated across 
multiple sites to reduce uncertainty and errors. Further, when assessing SOC stock changes, the 
equivalent soil mass principle must be considered to enable the identification and correct 
quantification of changes when a bulk density change occurs (see section 3.5.1). In this respect, it 
is important to remember that changes in coarse fragment content will increase variability in the 
estimation of SOC stocks. 
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RECOMMENDATION 1. To determine SOC stocks, the user shall quantify within a specific soil 
sampling depth: (i) SOC content of the fine earth mass (< 2 mm size), (ii) coarse mineral fraction 
content (> 2 mm size) and, (iii) soil bulk density. Sampling depth shall be at least 30 cm, and 
should be as deep as possible where soil depth is greater than 30 cm. All samples shall be 
georeferenced. Appropriate error and uncertainty should be reported. 

 

2.2 Planning the sampling 

The quantification of SOC stocks for the assessment of SOC stock changes across livestock-based 
production systems is of great interest to a wide range of end-users, who might, however, have 
different ambitions and be motivated by different goals. The flowchart below (Figure 2) aims to 
assist end-users in the process of making informed decisions about the correct way to proceed in 
the estimation of SOC stocks. It refers the user to further sections within this Chapter for further 
information and clarification. 
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Figure 2. Decision tree to guide the process of SOC stock measurement. Green arrows following 
a question indicate a positive answer, red arrows a negative one. Black dashed arrows lead to 
the next question. Underlined numbers in brackets refer to subsequent sections in this Chapter, 
where further details can be found.  



12 
 

RECOMMENDATION 2. To identify the most appropriate approach for soil sampling, the user shall 
make key decisions considering: (i) purpose and linked requirements, (ii) stratification and 
representativeness, (iii) soil depth, and (iv) land management. The sampling strategy should be 
based on a decision tree, such as the one provided in Figure 2. 

 

2.2.1 Site heterogeneity and stratification 

The heterogeneous nature of the soil environment affects SOC dynamics and its variability in 
space and time. At the fine, process scale, the degree of heterogeneity depends on the soil 
physical structure, that is the spatial arrangement of solid particles (mineral particles, SOM) and 
pores in which fluids, decomposers and soluble compounds circulate (Dignac et al., 2017). At 
larger scales, some determinants have been identified that significantly alter the rate and 
direction of soil change (in past and present). Thus, at the landscape scale, SOC heterogeneity is 
driven by soil texture (Figure 3), pH, mineralogy, topology and land-use. At the plot scale, changes 
in land management (agricultural) practices and in plant species diversity and composition can 
increase SOC heterogeneity.  

 

Figure 3. Example of SOC stock variability in Central Europe dependent on soil texture. Median 
and decile values were calculated for each sub-triangle delineated by 4% classes of particle-size 
fractions (Arrouays et al., 2006). 
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Soils used for livestock production, can show a great spatial heterogeneity in their properties, due 
to the superimposed effects of the activities of animals (grazing, excreta deposition, treading). 

There is also a distinct vertical distribution of C in soils, primarily associated with the vertical 
variability in organic matter input to soils and the uneven decomposition and downward transport 
of SOC within a soil profile. The vertical distribution of SOC is thus mainly controlled by climate 
and cultivation (Jobbágy and Jackson, 2000). The amount of carbon located deeper in the profile 
is negatively correlated with temperature and positively correlated with rainfall. With increasing 
depth, clay content becomes the main controlling factor (Jobbágy and Jackson, 2000). For Central 
and Eastern European soils, about 44 % of the total C pool down to 1 m soil depth is located within 
the top 0.3 m of the soil (Batjes, 2002; Soussana and Lemaire, 2014). 

Considering heterogeneity and spatial variability is essential when measuring soil carbon stocks 
and stock changes (see section 3). In general, variability in soil properties becomes greater with 
increasing study area and considered soil depth. It is hard to overemphasize how critical is the 
consideration of spatial variability in SOC stocks in designing sampling schemes. Spatial variability 
of SOC can rise sevenfold when scaling up from point sample to landscape scales, resulting in high 
uncertainties in calculations of SOC stocks. This hinders the ability to accurately measure changes 
in stocks at scales relevant to emissions trading schemes (Hobley and Willgoose, 2010). 

 

2.2.2 Sampling strategies 

Different approaches can be distinguished when it comes to monitoring and sampling. Two main 
sampling approaches are: 

● A design-based (classical) statistical approach, in which a randomized sampling procedure 
is important to avoid bias; 

● A model-based (geo-statistical) approach for which randomization is not a prerequisite 
(Brus and de Gruiiter, 1997; Brus, 2014). 

 

A combination of approaches can also be applied (Viscarra Rossel et al., 2016). The strategy 
depends primarily on the aim of the study, but also on the scale (cost): on a field level a more 
intensive sampling scheme might be financially feasible, while on a regional or national scale, a 
combination of sampling and (geo)statistical inter- and extrapolation is more likely to be useful 
(Conant et al., 2011). As these guidelines target a broad audience, we will here focus on the 
classical design-based approach as it is considered easier and more commonly applied. 

Well-known design-based approaches are non-stratified random sampling and stratified random 
sampling. In general, grid sampling is applied when no prior information is available in an area, 
while stratified sampling is used when prior information is available and can be used in 
stratification. Indeed, there is a continuum between a grid and stratified sampling design (de 
Gruijter et al., 2016).  

The design of a sampling scheme can be determined by the indicator to be monitored and the 
output and precision required for that indicator. If maps are required, a systematic grid would be 
appropriate for monitoring (Bellamy et al., 2005), for specific threats in certain areas (e.g. the 
decline of organic matter), a stratified approach would be more appropriate (Van Camp et al., 
2004; European Commission, 2006). Both will be briefly explained below.  

Non-stratified sampling: The study area is considered a unit, sampled in a systematic or random 
manner. For instance, as a systematic approach, a grid or linear sampling pattern can be applied. 
When working randomly, the sample locations are selected at random from the area, with equal 
probabilities of selection and independently from each other (Carter and Gregorich, 2007). This is 
done by taking the geographical coordinates of each sampling location from a random number 
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generator or from a table of random numbers (Brus and De Gruijter, 1997). This method is not 
recommended here as results often have a relatively high uncertainty. 

Stratified sampling: the study area is first divided into several relatively homogeneous units, 
called strata, and then random sampling is applied within each stratum. We recommend using 
this method to determine changes in carbon stocks as it is a promising strategy to reduce 
uncertainty (Maillard et al., 2017). Stratifying the study area in terms of factors that influence SOC 
stocks will normally reduce errors associated with project-scale estimates of SOC stocks. Indeed, 
at landscape/regional scales stratification is crucial to reduce the uncertainties with which SOC 
stocks and changes can be estimated, as well as to enable meaningful comparison and integration 
with other inventories. Scaling up of SOC stocks from plot or farm level to landscape level is a 
critical step, and uncertainties are especially related to whether calculations are based on reliable 
spatial data. 

The homogenous units are expected to have similar SOC stocks. For this reason, stratification is 
based on factors affecting SOC content and changes in SOC stocks, such as soil type (partly 
determined by texture), land use, topography (e.g. slope position), hydrology, and (micro)climate. 
The criteria to select strata depends on the scale, e.g. at a continental level, climate and soil 
properties tends to explain more variation in SOC than other factors (Jobbágy and Jackson, 2000; 
Ren et al., 2011). Local historic land use – which may not be well reflected by current land use – 
often has a dominant influence at smaller scale (Vågen et al., 2006; Setiawan and Yoshino, 2014). 
Stratifying on too many variables can rapidly become unmanageable in terms of the number of 
strata produced. The World Reference Base for Soil Resources of the FAO can be helpful in 
choosing different strata. More information can be found on this website (www.fao.org/soils-
portal/soil-survey/soil-classification/en/). 

 

Example of stratification 

An example of stratified sampling followed by random sampling approach is given in Table 1. For 
the Dutch National Soil Quality monitoring program, eight main strata were defined, based on 
land use and soil type information derived from an annual agricultural census. In this census, all 
Dutch farmers are obliged by law to share information with the government on the number and 
type of livestock, the plots they own or lease, land use and management practices (such as the 
use of fertilizers and manure). Based on the entire population of farmers, Wageningen Economic 
Research creates strata of the most common combinations of land use and soil type (Table 1; see 
Wattel-Koekkoek et al., 2012 for the exact definition of each stratum). 

 

Table 1. Area and number of farms for which each stratum is representative in the Dutch 
National soil quality monitoring program (2006-2010). 

Year Farm type and soil type Number of farms for which 
the sampled farms in a 
stratum is representative 
(% of total*) 

Area for which the locations 
in a stratum is 
representative (in 1000 ha) 
(% of total area land in The 
Netherlands**) 

2006 Dairy cattle (low and high 
intensity) on sandy soils 

10609 13% 405 21%
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2007 Cattle breeding and dairy 
cattle on sandy soils 

533 1% 12 1% 

2007 Forest/heath on sandy soils - - 235 12% 

2008 Arable farming on sandy soils 1160 2% 81 4% 

2008 Dairy cattle on peat soils 3695 5% 178 9% 

2009 Arable farming on sea clay 4545 6% 279 15% 

2009 Dairy cattle on river clay 1223 2% 60 3% 

2010 Dairy cattle on sea clay 3065 4% 170 9% 

 Total    1420 74% 

Source: Agricultural Census, CBS/Wageningen Economic Research, several years, in year of soil 
sampling of the given stratum (Wattel-Koekkoek et al., 2012). 

* the exact number of farms is determined per year via the agricultural census. The percentages 
in the table were calculated based on the exact number of farms in the sampling year. The 
Netherlands on average had approximately 75.000 farms during the sampling period (2006-
2010). 

**Approximately 1.9 million ha. 

 

Within each stratum, 20 farms were randomly selected and the farmers were asked to participate 
in the monitoring program. Thus, farm selection is not strictly random, as farmers participate 
voluntarily - randomly selected farmers cannot be forced to allow field workers on their land. Per 
stratum, 20 farms (or forests plots) were sampled. Over 300 small soil samples were taken for 
each farm, considering plot/paddock size when taking the samples. They were thoroughly mixed 
and homogenized and from this large composite sample, subsamples were taken for analyses (see 
section 2.2.2, for more information on compositing samples). These subsamples are assumed to 
be representative for an entire farm, and the median values of the 20 sampled farms were 
assumed to be representative for the entire stratum. 

Sample size (=Number of composite samples, see definitions in the Glossary): To determine the 
variability in the area needing to be sampled, it is recommended to take 5 to 10 composite 
samples prior to sampling (pre-sampling, see section 3.3.1). In case of a stratified sampling 
method we recommend a minimum of three samples per stratum, preferably five or more, 
depending on budget. The number of samples taken affects the minimum change in C stock that 
can be detected. For instance, Conant and Paustian (2002) found that SOC changes related to 
grassland management could only be verified after 5-10 years by collecting 34, 224 and 501 
samples at the county, state and national scales, respectively (USDA data). The number of samples 
in a stratum can be chosen to be proportional to its area but does not have to. Vanguelova et al. 
(2016) recommend using 4 to a maximum of 25 samples per 0.25 ha plot, and at least 5 m between 
sampling points to eliminate spatial auto correlation. Quantifying SOC changes at national or 
regional scales require more modest sampling densities (Mäkipää et al., 2008; Conant et al., 
2011). More information on the recommended sample size can be found see section 3.3). 
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Where to sample, and where not to sample? Within a stratum, the sampling locations where soil 
cores are taken should be determined randomly to avoid bias. However, certain areas shall be 
excluded in grazed lands, such as patches with animal excreta, animal pathways, driveways to 
enter/leave fields, very near watering points. 

Geo-referencing: GPS coordinates of each sampling location shall be recorded, so that the site 
can always be revisited. Also, geospatial upscaling requires georeferenced SOC stock values (see 
also Chapter 7). 

Volume of cores: For bulk density, the core diameter should be between 50- and 100-mm. Cores 
with diameter smaller than 50 mm may hamper, if present, proper representation of coarse roots 
and coarse mineral fragments in the sample and cores with diameter larger than 100 mm may be 
difficult to handle. Cores with a 100 cm3 volume (53 mm diameter, 51 mm height) are 
recommended by ISO 11272:2017 (Soil quality - Determination of dry bulk density). Ideally bulk 
density will be estimated for the same core used to collect the sample for SOC analysis (Ellert et 
al., 2008; Walter et al., 2016). 

  

RECOMMENDATION 3. To sample a study area in a representative way, the user shall identify a 
minimum of three sampling strata (relatively homogeneous units) based on the main 
environmental factors determining SOC variability, including – depending on the scale – climate, 
soil type, hydrology, topography, land use and management and land use history, amongst others. 

 

2.2.3 Compositing  

Compositing (or bulking) refers to the procedure of pooling together several soil cores 
(subsamples) into one homogeneous composite (or bulked) sample, which is then analysed for 
SOC content. If the composite sample is fully homogenised, SOC concentration should equal the 
average SOC value of individual cores (had each of them been analysed separately). Soil 
compositing is important for reducing both spatial variability and the overall costs related to the 
analysis of multiple soil samples.  

The processing and analysis of a composite sample is recommended in most cases except when 
the main goal is to estimate variation of soil properties at small spatial scales (e.g., few meters). 
As a rule, the number of subsamples should be such that two composite samples taken from the 
same plot at a given point in time are no more different between each other than the minimum 
detectable change (Section 3). That is, the change in space shall not be confounded with the 
change in time. There is some evidence in the literature that this precision may be achieved by 
including from 4 to 6 soil cores per composite sample (see Vanguelova et al., 2016 for details). 

It is recommended that the number of homogeneous sites (i.e. number of strata) and soil 
composite samples are increased to the maximum that can be afforded to ensure that the: 

● Composite samples are representative of the total area, 
● Variance between composite samples collected at any individual time is reduced, 
● End-user’s ability to detect temporal changes in SOC stocks is increased. 

 

RECOMMENDATION 4. Within each homogeneous unit (stratum) at least 5 soil cores should be 
collected to form a composite sample. Composite samples should represent the total area of the 
unit/strata and be collected in the same day. 
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2.2.4 Sampling depth 

The depth to which soil is collected to estimate SOC stocks requires careful consideration. If 
temporal SOC stock changes are to be used for national or global carbon accounting purposes 
under the IPCC, then stocks shall be reported for at least the 0-30 cm profile (Eggleston, 2006).  

Sub-sampling within the 0-30 cm layer is sometimes desirable. But if IPCC recommendations are 
to be followed, the 0-30 cm sample must be collected and analysed separately. Likewise, 
proponents are encouraged to sample deeper, however following IPCC recommendations the 0-
30 cm sample needs to be analysed separately. Further, when sampling below 30 cm, the 0-30 cm 
and below-30 cm samples shall be taken from the same core, as short-range spatial variability 
means that using samples taken from different holes will increase error and, therefore, the ability 
to detect temporal changes. As a rule, the deeper a sample is taken the greater the chances of a 
textural change through the profile and more difficulty in homogenising the sample for analysis 
(see section 2.4.1). 

 

RECOMMENDATION 5. Soil organic carbon stocks should be reported for the 0–30 cm layer to 
comply with IPCC recommendations, and appropriate error and uncertainty should be reported. 
Soils less than 30 cm deep should be sampled as deep as possible and stocks extrapolated to 30 
cm. Soils more than 30 cm deep should be sampled as deep as possible, and the SOC stock in the 
0–30 cm layer shall be reported separately. Sampling to depths greater than 30 cm or subsampling 
the 0-30 layer may be warranted, however the impact of increased costs and potential increase 
in uncertainty need to be considered. 

 

Notwithstanding the IPCC recommendations, a large proportion of SOC stocks is found below 30 
cm, as just about 40% of SOC is in the topsoil (Soussana and Lemaire, 2014; Orgill et al., 2014). 
While shorter-term changes in SOC mostly appear in the top of the profile (Conant et al., 2001), 
longer-term stabilization of SOC can occur in the deeper soil layers. These stores may be important 
for global C budgets and for C sequestration strategies (Batjes 1996, IGBP 1998 in Jobbágy and 
Jackson, 2000).  

Survey type studies have shown that short term differences in SOC stocks between land uses are 
more likely to occur in the upper profile (Badgery et al., 2014), while changes in deeper soil layers 
appear after several years (> 10 years) following a land use/management change (Stahl et al., 
2016; Knops and Bradley, 2009). Thus, depending on the objectives of the programme, 
management and production system applied, and the time scale considered, lower soil depths 
may be considered for SOC stock change assessment. If because of the desired sampling depth 
associated cost of analysis cannot be consolidated using standard methods of SOC analysis, 
alternative faster and cheaper SOC quantification techniques may be considered (see sections 
2.5.1 and 2.5.4). 

Subsoil C frequently has a high radiocarbon age, which suggests that a high proportion of this C is 
stable at longer timescales (Paul et al., 1997). SOC stabilization at depth may occur due to its 
interaction with the mineral phase (e.g. sorption on amorphous Al and Fe oxides in acid (Gu et al., 
1994) or complexation with Ca2+ (Muneer and Oades, 1989) and organo-mineral interaction with 
reactive, positively charged minerals in near neutral soils (Grunewald et al., 2006) and occlusion 
in soil aggregates (Rasmussen et al., 2005).  

Organic C input into deeper soil horizons occurs mainly in the form of dissolved organic carbon 
via preferential flow pathways (Kaiser and Guggenberger, 2000; Michalzik et al., 2001) or through 
biological disturbance (Wilkinson et al., 2009) and by the root system (Lorenz and Lal, 2005). 
Introducing deep rooting vegetation into shallow-rooting systems, for example, will affect the 
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vertical distribution of SOC fractions (Heile et al., 2010) and potentially store C in deeper soil 
layers. Examples of this are shrub encroachment in grasslands (Jobbágy and Jackson, 2000; Allen 
et al., 2016), introduction of pasture in annual crop systems or trees in annual crop systems or 
pastures/grasslands (Oliveira et al., 2017; Cardinael et al., 2017).  

SOC in deeper soil horizons, however, may be destabilized by adding more labile C forms, for 
example through the addition of fertilizing materials (Fontaine et al., 2007, Kuzyakov et al., 2000). 
Therefore, land use and soil management that affect these processes will likely influence subsoil 
C pools (Guo and Gifford, 2002; Wright et al., 2007; Follett et al., 2009; Strahm et al., 2009).  

 

2.3 Errors and uncertainties 

Because the absolute true mean value of SOC stocks of a certain spatial unit is not possible to 
determine, it is good practice to report the average (usually as statistical mean or median) value 
and a measure for uncertainty. Uncertainty is defined as the description of the lack of knowledge 
of the true value of a variable based on its probability (IPCC, 2006). Uncertainty is often reported 
as the standard error of the mean, which accounts for the two factors that determine it: the 
standard deviation (or in a relative manner, the coefficient of variation, also known as relative 
standard deviation) and the number of samples. In general, increasing sample size will enable a 
more precise approximation to the average resulting in smaller uncertainties. 

One source of variability, and thus uncertainty, is that SOC distribution in a defined spatial unit is 
heterogeneous, even at field or plot scale. Collecting and analysing several soil samples within 
one spatial unit (or stratum) will, therefore, always produce unequal values for the respective SOC 
stocks. Larger scales have usually a larger variability, especially in grasslands. For instance, in a 
national scale study of Belgium, the main source of SOC stock variability in grasslands was found 
to be the variability in the thickness of the first horizon (Goidts et al., 2009). Also, in stony soils, 
the rock fragment tends to largely influence SOC stock variability. 

The intrinsic variability cannot be altered and is a given property of a certain spatial unit, but 
through optimization of sampling schemes the sampling variance can be effectively reduced 
(Pitard, 1993; De Gruijter et al., 2006). Thus, the sampling strategy is of large influence on the 
sampling variance and can be evaluated beforehand. Arbitrary sampling or haphazard sampling is 
not recommended because the inclusion probabilities are unknown (Brus, 2014). The purpose of 
the SOC stock assessment shall be the driver for determining a sampling strategy (see section 
2.2.1). In BOX 1 a case study illustrates this last point. 

In addition to such intrinsic or fundamental variability of SOC stocks, further uncertainties arise 
from sampling and analytical procedures (Pitard, 1993). Such uncertainty of measurements can 
be reduced when undertaking the SOC stock assessments by adequate sampling protocol and 
effective quality control.  Errors to be considered include those related to sampling depth, 
complete removal of the organic layer, mix-up of sampling bags, proper mixing of composite 
samples as well as differences between laboratories in indoor-climate among other conditions 
(FAO, 2017b).  

Analytical errors are those related to the determination of SOC content or bulk density. A specific 
error is attached to each method and used equipment. The determination of SOC content (see 
also section 2.5) generally generates larger errors for samples with low SOC contents (Goidts et 
al., 2009) because most of the available techniques are not calibrated for low values. The use of 
standards for calibrating equipment is an essential element of good laboratory practices. Bulk 
density determination by the core method (see section 2.4.2) has different errors depending on 
the size of the sampling rings and the stone content of the soil, but in general smaller errors than 
estimation via pedotransfer functions (Walter et al., 2016). The analytical errors can be estimated 
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by taking sufficient duplicates and can be minimized by randomizing the order of analysis. If block 
or stratified sampling was used, the randomization of the order of analysis should occur within 
the block. 

There exist different approaches to perform a full uncertainty analysis in which all errors involved 
in the determination of SOC stocks are considered. Whenever sufficient data and resources are 
available, uncertainties should be quantified. A detailed guideline with worksheets is available in 
Chapter 3 “Uncertainties” of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 
Presented approaches include the calculation of error propagation, Monte Carlo Simulation and 
combinations of both approaches. Uncertainty quantification is especially relevant when 
relatively small SOC stock changes are expected and the uncertainty is possibly larger than the 
detectable change (see section 3.3.2). 

To order the potential sources of uncertainty at various scales, and possibilities to reduce them, 
Table 2 – a summary of sources of errors in SOC evaluation at sample, profile, plot and landscape 
scales by Vanguelova et al. (2016) – should be helpful. 

Table 2. Sources of errors in SOC evaluation at sample, profile, plot and landscape scales. The 
sources likely to produce high errors are in bold (Vanguelova et al., 2016).  

Sample Soil composite samples are not homogenised 

 Different analytical procedures for C applied 

 Bulk density is not assessed correctly 

 Coarse fragments volume not assessed

 Separation of soil horizons and layers not done accurately 

Profile Sampling by horizon versus soil depth depending on research aims 

 Sampling at not full soil depth to account for vertical variability 

Plot Micro-spatial variability not accounted for (not appropriate sampling strategy) 

 Statistical sampling error due to different sampling schemes 

 Different inventory teams are not harmonised

 Lacking quality of the geo-referenced (or the reported values) 

 Not adequate numbers of sampling points 

 Bulk density and coarse fraction content not analysed 

 Analytical (measurement) errors including sample preparation 

 Missing values, recording and truncation errors 

 Model errors (e.g. from the selection of inadequate pedotransfer rules or 
functions, inadequate model constants and conversion factors, etc. not 
site/soil specific calibrated) 

Landscape 
/National 

Lack of local and regional representativeness of sampling plots 

Important strata are underrepresented (e.g. wet mineral soils or peat soils) 

 Lack of tree species/forest cover maps 

 Lack of accurate soil/hydrology maps 

 Landscape insufficient resolution of climatic data 
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RECOMMENDATION 6. The sampling approach shall be consistent with standard operating 
procedures to reduce the variability originating from the sampling itself. Sufficient laboratory 
duplicates and randomising the order of sample analysis should be carried out to allow 
quantification of combined field and laboratory measurement errors. Whenever sufficient data 
and resources are available, an uncertainty analysis may be performed following the 2006 IPCC 
guideline.  

 

BOX 1. Farm scale soil carbon auditing 

Overview: A soil carbon auditing protocol has been developed and tested at farm-scale. It is 
designed to be appropriate for land owners to earn regulated carbon credits if a changed land 
management, e.g. a changed grazing practice, could be shown to sequester soil carbon.  
 
Approach: Where national scale soil carbon maps are available, it makes sense to use them to 
guide the development of a finer scale map. Therefore, existing national scale digital soil carbon 
maps for Australia and New Zealand were downscaled (disaggregated) with local high-
resolution environmental data, to derive fine scale soil carbon maps for a target area, 
maintaining mass balance. The fine scale soil carbon map effectively stratified the area and 
formed the basis for assigning sampling positions to collect soil samples for: (i) deriving a mean 
weighted estimate of soil carbon stocks for the target area and, (ii) associated statistical 
confidence of the measurement. The method used a Value of Information approach, deriving 
an optimal sample size by balancing data value and data cost (taking into consideration the 
financial gain expected from a carbon trading scheme). Once the baseline carbon stocks have 
been established, subsequent soil sampling campaigns become the soil carbon monitoring 
programme.  
 
Case study: The method was used for a 476-ha New Zealand hill country sheep and beef 
station, to provide a SOC stock estimate for Time One (figure below). A national soil carbon 
map, at a nominal resolution of 1-km was disaggregated using: (i) LiDAR survey data and 
derived terrain attribute layers at 10-m resolution, and (ii) a legacy soil map. The fine scale map 
was then classified into four strata, to guide the soil sampling campaign. Volumetric soil carbon 
content was estimated for fifty soil cores to 0.3-m soil depth. 
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A New Zealand soil carbon map was disaggregated to farm scale, using high 
resolution local data, and then stratified to guide a soil sampling campaign. The 
method is designed to monitor any changes in soil carbon stocks through time. 

 
Summary: The method described above stratifies an area for on-going monitoring, to establish 
whether carbon is being sequestered or lost from the soils. We expect soil carbon auditing to 
play a role in the future of agriculture to meet: (i) international monitoring commitments of 
greenhouse gas emissions, and (ii) regulations placed on landowners to sustain the soil 
resource.  
 
de Gruijter, J.J. et al. 2016. Farm-scale soil carbon auditing. Geoderma 265, 120-130. 
Malone, B.P. et al., 2012. A general method for downscaling earth resource information. 
Computers and Geosciences 41, 119-125. 
Malone, B.P. et al., 2018. Feasibility of stratified random sampling of downscaled national soil 
carbon mapping for auditing on-farm carbon stocks: examples from Australia and New Zealand. 
Geoderma Regional 13, 1-14.  
 

 

2.4 Soil processing and analysis 

Adequate sample processing is of great importance to avoid bias in SOC stock assessment. During 
the collection and handling of samples for SOC content analysis (see section 2.4.1), losses of 
organic compounds may occur due to microbial degradation, sample drying, oxidation, 
volatilization, and selective removal of carbon-bearing components (Schumacher, 2002).  

The internationally accepted operational definition of SOC is the organic carbon present in the 
fraction of the soil that passes through the 2 mm sieve (Whitehead et al., 2012). For inventory 
purposes, therefore, the measurement of SOC in the fine soil fraction (<2mm) should be 
adequate. However, beyond occasionally containing coarse mineral fragments (see section 2.4.2), 
soils include macroscopic organic matter such as root fragments (see section 2.4.3). These are 
greatly variable spatially and quantitatively in the soil, ephemeral in nature, and can contribute 
disproportionately to total organic carbon in soils. Assessment of the coarse organic matter may 
provide important ancillary information. If it is retained and quantified as an additional source of 
information, it shall be separated from SOC quantification. 

It is of great importance that standard procedures are set up and followed over the whole process 
of field sampling, soil processing and laboratory analysis of SOC stocks (consistency control) to 
diminish the influence of occasional differences or errors during sample processing. If analyses 
are carried out by different laboratories a consistency check shall be carried out before processing 
soil samples. Periodic quality control and quality assurance of analyses and procedures (e.g. based 
on samples with known value) is highly recommended (Klesta and Bartz, 1996; Mäkipää et al., 
2012).  

 

RECOMMENDATION 7. Soil processing for SOC analysis shall follow standard procedures. 
Consistency control of procedures shall be observed during the project and if the analyses are 
done in more than one laboratory, or more than one equipment/machine is measuring the same 
soil property, consistency check shall be carried out between them.  
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2.4.1 Drying, grinding, sieving, homogenizing and archiving soil samples 

Soil samples should be collected into airtight plastic bags (LDPE plastic), and most of the air 
should be removed immediately after sampling (Whitehead et al., 2012).  

Soil samples should not be stored wet as this may quantitatively affect SOC. If drying is not 
possible immediately after sampling, soil samples should be stored at 4°C in the dark to reduce 
microbial activity (Nelson and Sommers, 1996), preferably for less than 28 days (Schumacher, 
2002), as microbial degradation does not completely stop at 4°C and could lead to loss of organic 
materials. Freezing is not recommended. When large amounts of roots or macrofauna (e.g. 
earthworms) are present in the sample, it should be processed within a week, so that SOC 
concentration is not altered by decomposition of those components (Whitehead et al., 2012). 

Sample transport, unpacking and transfer to other containers in the laboratory may produce 
particle sorting via different particle densities, shapes, sizes, and resistance of certain minerals to 
mixing (Schumacher et al., 1990a). Therefore, care should be taken during the subsampling phase 
of soil preparation to eliminate this bias. 

If SOC and bulk density determination are performed in the same sample, then field-moist 
samples of known volume should be weighed first, and then spreading it out as a thin layer in a 
shallow tray and air-dried in a ventilated room, a custom-made solar dryer, or a forced-air oven 
at 40°C. Large clods should be broken up to accelerate the drying process, avoid soil aggregation 
and to separate roots from fine soil to avoid contamination at sieving. Samples should then be 
crumbled and the fraction that passes through a 2 mm sieve separated for SOC analysis. It is 
essential at this stage to avoid loss or contamination from dust or other potential contaminants. 

At sieving the > 2 mm size rocks and pebbles (coarse fraction or gravel) should be separated and 
weighed for correcting the bulk density (see section 2.4.2). Roots and other organic soil 
constituents that are > 2 mm generally have negligible mass compared to the mineral phase, but 
the varying level of its fragmentation may be a source of uncertainty in the estimation of C stock 
changes, for roots that are more fragmented, either naturally or in the processing, will become 
part of the fine soil fraction. When the assessment of the coarse organic matter carries important 
ancillary information, the coarse fraction of belowground C may be separated and quantified 
separately as additional source of information (see also section 2.4.3). 

The fine earth fraction shall be thoroughly homogenized, which is best achieved by milling the 
sample. Homogeneity is the degree that the material under investigation is mixed resulting in the 
random distribution of all particles in the sample. Completely homogenous materials are rare, yet 
it is essential to aim for as homogenous a sample as possible to minimize error attributable to 
sample heterogeneity (Schumacher et al., 1990b). Poor sample homogenisation can lead to 
greater uncertainty in values therefore making temporal changes in SOC stocks more difficult to 
detect. 

An aliquot of around 5 to 10 g should be used to determine the gravimetric water content of the 
air-dried, homogenised sample. To ensure representative subsampling, a sample splitter is 
optimal, but also other manual techniques are available. Standard procedures for the 
determination of soil moisture are available (ISO 11465: 1993 Soil quality - Determination of dry 
matter and water content on a mass basis - Gravimetric method; ASTM D4959-16). Further 
preparation and weighing of the soil samples will depend on the type of analyses for SOC 
determination (see section 2.5). For instance, for the analyses of total N and C by dry combustion 
a sub-sample of fine earth shall be further ground to a fine powder (<0.15 mm) to improve 
accuracy as such equipment generally works with small soil aliquots (200 mg or less). Smith and 
Myung (1990) describe a roller grinder that is inexpensive and easily constructed, eliminating the 
potential for cross contamination by using individual sample containers.  
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Archiving soil samples will allow their re-analysis, either to confirm or correct questionable results, 
or to obtain additional attributes of a specific sample to augment the original results. For long-
term field studies, analytical methodologies often improve over time and the archived samples 
may also be used to validate a new method and relate the results to the old method (Sheppard 
and Addison, 2008). The samples should be stored in an inert, airtight container (ideally, glass jars 
or LDPE bags) with proper labels. Preferentially, archived samples should be kept at a maximum 
temperature of 4 °C, even if samples are dry. If it is not possible, they should be stored in a cool, 
ventilated and dark space, free from moisture and dust. In addition, proper archive 
documentation is important and should include sample identification (e.g. barcode), collection 
details, preparation and storage conditions, links to the researcher, and primary analysis that 
researcher completed (Sheppard and Addison, 2008). See Chapter 4 for detailed guidance on data 
handling. 

The diagram in Figure 4 represents essential steps of sample processing for SOC analysis. 

 

Figure 4. General steps of soil sample preparation for laboratory SOC analysis. 

 

RECOMMENDATION 8. Fresh soil samples should not be stored at temperatures higher than 4°C 
or for more than 28 days after collection. Soil samples shall be thoroughly homogenized. SOC 
content analysis shall be done in the fine earth (< 2mm) fraction. For archiving, dried soil samples 
should be stored in a dark, cool and dry room for potential future use and verification. 

 

2.4.2 Bulk density 

Soil bulk density is the mass per unit volume of the soil (FAO, 2006). The soil volume includes 
solids and pores, which may contain air, water, or both. Bulk density reflects soil structure and 
depends on the proportion and quality of the mineral and organic soil components. Thus, particle 
size distribution (texture), mineralogy, soil chemical composition and organic matter content and 
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quality all influence bulk density, which is finally a result of complex interactions of soil 
constituents combined with the effect of soil forming processes and soil use and management. 

Bulk density is usually expressed in Mg m-3 or the numerically equivalent g cm-3 (Cresswell and 
Hamilton, 2002). It is a soil property that typically has high spatial variability and it is particularly 
sensitive to non-representativeness of the samples (e.g. presence of coarse fragments, cracks, 
roots, etc.). If possible, analyses should always be in triplicate for one sample (Blake and Hartge, 
1986). As bulk density changes with water content, the water status of the soil at sampling must 
be specified (Blake and Hartge, 1986). Small errors in bulk density can lead to relatively high SOC 
stock variability.  

The soil bulk density used in calculating SOC stocks (and Equivalent Soil Mass, Chapter 4) should 
be the density of the same core in which SOC concentration is measured. This is because the 
sampling of soils by coring almost invariably results in some compaction (Ellert et al., 2001). Thus, 
for example, the true depth of sampling when a 0-30 cm core is extracted almost always exceeds 
30 cm and, therefore, the soil density in the core removed exceeds the actual field bulk density. 
This can lead to serious errors when later calculating soil carbon stock on an equivalent mass basis 
using bulk density and SOC concentration measured in independently taken samples. Ideally, soil 
compaction during sampling will be minimized, but information on the soil mass per volume 
sampled is more crucial than true bulk density (that may be required for detailed characterization 
of in situ gas and water transmission, but not of SOC stocks).   

The most well-known, direct methods to determine soil bulk density are the undisturbed (intact) 
core method and the excavation method.  

The undisturbed (intact) core method: The most common method of measuring soil bulk density 
is by collecting a known volume of soil using a metal ring pressed into the soil (intact core) and 
determining the weight after drying (Blake and Hartge, 1986; Grossman and Reinsch, 2002). This 
method works best for moist soils without coarse fragments. If the soil is too dry, it is possible to 
wet the soil manually to keep the core intact. To do this, a bottomless drum should be placed on 
the soil and filled with water, allowing the soil to wet naturally for 24 hours. Then, a flat horizontal 
surface should be prepared in the soil with a spade at the depth of sampling. A steel ring is push 
or gently hammered into the soil. A block of wood may be used to protect the ring. Avoid pushing 
the ring in too far or the soil will compact. Excavate around the ring without disturbing or 
loosening the soil it contains and carefully remove it with the soil intact. Remove any excess soil 
from the outside of the ring and cut any plants or roots off at the soil surface with scissors. Pour 
the soil into the plastic bag and seal the bag. Common sources of error when measuring bulk 
density are: disrupting the soil while sampling, inaccurate trimming, and inaccurate measuring of 
the volume of the ring.  

Excavation method: This method has been found useful for loose soils, especially surface soils, 
when it is impossible to collect an intact soil sample applying the undisturbed core method, or for 
soils with abundant coarse fragments. Bulk density is determined by excavating a quantity of soil, 
drying and weighing it, and determining the volume of the excavation by filling the hole with sand 
of known volume per unit mass or water (Blake and Hartge, 1986; Grossman and Reinsch, 2002; 
Aynekulu et al., 2011). A special apparatus called sand-funnel can be used. After levelling the soil 
surface, a hole should be excavated using the template of the apparatus. The size of the hole will 
depend on the apparatus, but a larger (approximately 12 cm in diameter) hole will likely result in 
smaller error in bulk density estimation. The depth of the hole will depend on the depth of the 
evaluated layer. All the excavated soil should be retained in a container to determine its dry 
weight as described in the undisturbed core method. The volume of the hole should be 
determined by filling it up with clean, dry, free-flowing sand (standard sand with uniform particle-
size 0.841-0.25 mm is recommended). The level of the sand should be adjusted to the level of the 
bottom of the template. An error of 1 mm in adjusting the sand level may result in an error of 0.01 
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in the bulk density. Using a funnel placed on the template to avoid this error is highly desirable. 
To estimate the soil volume a mass-to-volume ratio is used. For this reason, the mass-to-volume 
ratio of the sand must be pre-calibrated by letting the sand fall from a similar height and at a 
similar rate of flow as in the procedure of measuring bulk density. Thus: 

Equation 2: 

Soil sample volume (cm3) = Mass of the sand (g) / Density of the sand (g cm-3) 

 

Core size (=sampled volume): the suitable sample size will depend on soil bulk density and size 
and characteristics of the coarse fraction. Therefore, it is difficult to standardize sample size. 
Sample sizes used to determine the bulk density of soils containing only or mainly fine earth are 
typically 100 cm3. Since coarse fragments are usually underrepresented in small samples. Thus, 
small samples will likely lead to sub-estimation of the bulk density of gravelly soils. 

To determine the bulk density of the fine-earth fraction of soil layers that contain many coarse 
fragments (around 30%), Vincent and Chadwick (1994) suggested that representative field-sample 
volume may be smaller than 0.1 dm3, but for gravelly to extremely gravelly soils field samples 
between 0.2 and 1 dm3 were recommended. In fact, for a soil horizon containing around 30% 
coarse fragments by volume, the same authors reported representative sample volumes of 4 dm3 
or larger and, for a soil horizon containing around 50% coarse fragment by volume, the 
representative volume was at least 5 dm3. Typically, core diameter will be greater than 50 mm 
(smaller than this and collection of coarse roots and gravel may be hampered) and less than 100 
mm (larger than this and problems associated with machinery, logistics, site disruption become 
insurmountable). 

Indirect methods of determining bulk density may be useful after suitable calibration. Among 
those are radiation methods, for example gamma radiation transmission or scattering techniques, 
requiring special equipment (gamma source and detector), and pedotransfer functions (PTFs). 

Pedotransfer functions (PTFs) are based on the fact that soil bulk density is influenced by several 
other soil properties. To reduce time and costs, PTFs use more easily measurable soil properties, 
i.e. soil clay content and SOC content to predict soil bulk density (e.g. de Vos et al., 2005; Benites 
et al., 2007; Shiri et al., 2017). They are usually developed based on existing datasets. Using PTFs 
often increases the variance and uncertainty of estimated SOC stocks if the error associated with 
the application of the function is not correctly accounted for. This may lead to a systematic bias 
of calculated SOC stock (Schrumpf et al., 2011) and high uncertainty in SOC estimation at regional 
scales (Xu et al., 2015).  

  

RECOMMENDATION 9. Soil bulk density should be determined in the same core in which SOC 
concentration is measured. For estimating bulk density, direct measurement methods should be 
used, specifically the undisturbed (intact) core method and the excavation method, because these 
can provide the most accurate determination of bulk density. The clod method should not be used 
because for SOC stock measurements the bulk density of soil layers or horizons has to be 
represented. 

  

Bulk density and the calculation of SOC stocks 

There are three different approaches to calculate SOC stock (Mg C ha-1), depending on the basis 
for estimating bulk density: 

1) Using the bulk density of the whole soil: 
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Equation 3: 

SOCi stock [Mg C ha-1] = OCi x BDi x (1 – gGi) x ti x 0.1 

where,  

SOCi (Mg C ha-1) is the soil organic carbon stock of depth increment i  

OCi (mg C g-1 fine earth) is the organic carbon content of the fine earth fraction (< 2 mm) of the 
depth increment i 

BDi (g soil cm-3 soil) is the mass of soil per total volume of the soil sample of the depth increment 
i  

gGi (g coarse fragment g-1 soil) is the mass fraction of coarse mineral fragment, thus (1-gGi) is the 
mass fraction fine earth (g fine earth g-1 soil) of the depth increment i 

ti is the thickness (depth, in cm) of the depth increment i 

0.1 is a factor for converting mg C cm-2 to Mg C ha-1 
 

2) Using the bulk density of the fine earth (BDfine1), as in IPCC (2003, p. 90) and Equation 1 of 
the present guidelines: 

Equation 4: 

SOCi stock (Mg C ha-1) = OCi x BDfine1i x (1- vGi) x ti x 0.1 

where, 

SOCi (Mg C ha-1) is the soil organic carbon stock of depth increment i  

OCi (mg C g-1 fine earth) is the organic carbon content of the fine earth fraction (< 2 mm) in the 
depth increment i 

BDfine1i (g fine earth cm-3 fine earth) is the mass of fine earth per volume of fine earth = (dry soil 
mass [g] – coarse fragment mass [g]) / (soil sample volume [cm3] – coarse fragment volume [cm3]) 
in the depth increment i 

volume fraction fine earth (cm3 fine earth cm-3 soil) = 1 – volume fraction coarse fragment [cm3 
coarse fragment cm-3 soil]  

t is the thickness (depth, in cm) of the depth increment i 

0.1 is a factor for converting mg C cm-2 to Mg C ha-1 
 

3) Using bulk density of the fine earth expressed per total volume of the soil sample (BDfine2), 
as in Poeplau (et al., 2017): 

Equation 5: 

SOCi stock (Mg C ha-1) = OCi x BDfine2i x ti x 0.1 

where, 

SOCi (Mg C ha-1) is the soil organic carbon stock of depth increment i  

OCi (mg C g-1 fine earth) is the organic carbon content of the fine earth fraction (< 2 mm) in the 
depth increment i 

BDfine2i (g fine earth cm-3 soil) is the mass of fine earth per total volume of the soil sample = mass 
(g) of fine earth / total volume of soil sample (cm3) in the depth increment i 

ti is the thickness (depth, in cm) of the depth increment i 
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0.1 is a factor for converting mg C cm-2 to Mg C ha-1 
 

It is recommended to use the well-known IPCC formula described in Equation 4. However, 
Equation 5 is a simpler calculation for which fewer measurements are needed and less uncertainty 
is involved, as there is no need to determine or assume the volume of the coarse fraction. A 
disadvantage is that the user may still want to know the ‘regular’ bulk density as a diagnostic soil 
property. In this case, weighing the soil before and after sieving away the stones, BD, BDfine1 and 
BDfine2 can be calculated. Importantly, uncertainties must be properly propagated through the 
calculations. 

 

Coarse mineral fraction and fine earth masses: The coarse mineral fraction (e.g. gravel, stones, 
boulders or artifacts) is any mineral particle that has a diameter > 2 mm (FAO, 2006); the fine 
earth fraction is all material < 2 mm. The coarse fraction of the soil has negligible capacity to store 
carbon, therefore, it is removed before analysis and SOC content is measured in the fine-earth 
fraction Therefore, the fine earth and coarse fractions shall be separated before SOC content 
analysis. This is done by removing particles larger than 2 mm from the sample by wet screening. 
The coarse fraction should be washed to remove fine earth (secondary carbonate rinds shall not 
be removed), oven-dried until constant weight, and then weighed.  

Coarse mineral fraction volume: To determine the volume of the coarse fraction the following 
procedure can be followed. The oven-dried coarse fraction is submerged under water inside a bell 
jar that was placed under vacuum for 40 h. After the pores within the coarse fraction are saturated 
by this procedure, the surface of the coarse fraction should be dried using a towel and then it 
should be quickly weighed and placed into a calibrated container for volume determination. The 
saturation of pores assures precise measurement of the bulk volume of the coarse fragment 
(Vincent and Chadwick, 1994). This method is accurate but very time demanding. The volume of 
the coarse fraction may also be estimated by assuming a certain bulk density of the coarse 
fraction. Thus, volume coarse fraction = mass of the coarse fraction / assumed bulk density of the 
coarse fraction.  

Artifacts: In specific cases very fine artifacts with diameters < 2 mm may be present in the soil 
(e.g. Anthrosols or Technosols). Artifacts do not play role in SOC accumulation and storage. Hence, 
if making up more than 5 % of the total soil mass, artifacts should be quantified to correct fine soil 
mass. 

 

2.4.3 Coarse fraction of belowground organic carbon 

Soil C stock in the coarse (> 2mm) belowground biomass may be estimated by using the same soil 
cores with known volume extracted for estimating SOC stocks in the fine soil fraction. The biomass 
retained in the 2 mm sieve (mostly roots, rhizomes, and bulbs) should be cleaned from attached 
soil, dried at 60 °C to 80 °C, and then weighed. The C content of this fraction can be measured by 
using the dry combustion technique (see below) after grinding and homogenizing or estimated by 
assuming a C concentration taken from the literature. The carbon stock in the coarse fraction of 
belowground organic carbon (for simplicity, referred here as “Root C”) shall be calculated by using 
the following formula (adapted from Poeplau et al., 2017): 

Equation 6: 

Root Ci = Root OCi x Root Mi x ti / Vi x 0.1 

where, 

Root Ci is the root organic stock of the depth increment i, in Mg C ha-1 
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Root OCi is the carbon content, as mg C g-1 of oven dry root mass, for the depth increment i 

Root Mi is the oven dry mass of roots in the depth increment i, in g 

ti is the thickness of the depth increment i, in cm 

Vi is the volume of the soil sample from which roots were extracted, in cm3 
 

2.4.4 Inorganic carbon 

The soil C pool is composed of two major compartments, SOC and SIC. The SIC forms are primarily 
carbonates derived from geologic or soil parent material sources. The two most common 
carbonate minerals found in soils and sediments are the slightly soluble calcite (CaCO3) and 
dolomite [CaMg(CO3)2] although other forms may also be present (e.g., siderite, FeCO3) depending 
on where the soils were formed or where the sediment source was located. Dissolved carbonate 
can be found in higher concentrations in sodic soils (Na2CO3) or in microenvironments of high 
microbial activity (Loeppert and Suarez, 1996).  

Soil organic carbon (SOC) is considered the more active and most abundant terrestrial C pool. 
However, calcareous soils (soils high in CaCO3) cover over 30% of the Earth’s land surface, mainly 
in arid and semi-arid regions. Besides, soils that contain sodium carbonates (e.g. Solonchaks, 
Solonetz) and other soil classes with variable CaCO3 content (e.g. Chernozems) are also common. 
In soils of humid tropical regions (e.g. Ferralsols, Acrisols etc) the predominant form of carbon is 
organic, but they may also contain SIC, temporarily, for example if liming occurs. 

SIC is no longer seen as a merely static C pool. Biological activities and climate change can impact 
the factors that control dissolution and precipitation of CaCO3 and thus modify the equilibrium 
between the different dissolved, gaseous and solid inorganic carbon species leading to the 
emission of CO2 or precipitation of calcite (Chevallier et al., 2017). In soils in which SIC is 
predominant, quantifying it can render useful ancillary information. Quantitative methods for 
total carbonate determination were described by Loeppert and Suarez (1996). 

If SOC is estimated by measuring total carbon of a sample, it is important to remove all SIC before 
analysis. To determine if carbonates are present, a test is performed by adding few drops of 
hydrochloric acid to the soil and observing effervescence.  

If carbonates are to be eliminated as CO2 by acidification, prior to analysis of remaining organic 
carbon, care must be taken to ensure a thorough reaction of all soil carbonates with the acid, 
while minimizing losses and dilution of SOC. A small-scale acidification approach using HCl, such 
as that described by Ellert and Rock (2008) is recommended because SOC remaining after 
acidification is related back to the original un-acidified subsample taken for dry combustion 
analysis. Acidification should not be required if wet oxidation (not recommended) without CO2 
determination is used. Loss-on-ignition techniques (also not recommended) are not reliable in 
carbonate-containing soils.  

Carbonates can be removed by the following techniques: 

● Adding hydrochloric acid (1M HCl) and waiting till effervescences stops. The limitation of 
this method is that HCl can destroy some of the organic carbon compounds and 
interference of Cl- in case of wet oxidation techniques 

● Adding a combination of H2SO4 and FeSO4 (Nelson and Sommers, 1996). 
 

RECOMMENDATION 10. To measure the SOC correctly, contributions from SIC shall be removed. 
A small-scale acidification technique using HCl followed by automated dry combustion is 
recommended. In some soils SIC could represent a significant and dynamic portion of soil carbon 
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(e.g. calcareous, irrigated, and amended soils), and may be quantified by direct determination of 
total inorganic carbon or by the difference between total soil C and SOC. 

 

2.5 Analytical methods for total soil organic carbon determination 

Soil organic carbon content is expressed as gravimetric percentage of dry (105 °C) soil [g SOC kg-1 
dry (105 °C) soil]. Standard procedures for the determination of soil moisture are available (see 
section 2.4.1). Soil organic carbon may be estimated as the difference between total carbon and 
inorganic carbon, directly after removal of inorganic carbon, or by dichromate oxidation-titration 
methods. In all cases, SOC content shall be quantified in the fine-earth fraction which is obtained 
by passing the soil through a 2 mm mesh size. In most cases, soil samples are further ground and 
reduced to powder (<0.2mm) to allow adequate homogenization.  

To reduce analytical error to a minimum, soil sample preparation and analytical standard 
procedures should be set up, strictly followed, and be carried out by trained laboratory staff. 
Equipment should be regularly calibrated, including analytical balances of adequate precision. It 
is desirable that the laboratory that carries out SOC analyses participates in a quality control 
programme. Minimally, in-house quality control should be applied to ensure precision. For 
comparative purposes, the same method of SOC analysis shall always be used for all 
measurements and consistency control should be applied (see also section 2.4). 

 

RECOMMENDATION 11. SOC content analysis shall be performed in a laboratory that has well 
established quality control and assurance systems. 

 
The most important SOC methods are presented below. 

2.5.1 Dry combustion method 

Dry combustion is a direct chemical method to measure SOC content based on the combustion of 
soil samples containing carbon. It uses finely ground soils samples (<0.2 mm) burned at elevated 
temperatures, generally around 1000°C (Nelson and Sommers, 1996). The combustion of the soil 
sample is achieved in the presence of pure oxygen which ensures complete combustion of the 
sample and acts as a catalyst or accelerator. Other catalysts and accelerants are also used 
including vanadium pentoxide, Cu, CuO, and aluminium oxide. The end-product of the combustion 
(CO2) is quantified by gas chromatography using a thermal conductivity or a flame ionization 
detector. Results from dry combustion are taken directly from the instrument readout and 
reported to three significant figures.  

Since carbonates will be also be measured, it is essential to remove them before SOC 
determination (see section 2.4.4). Some equipment is designed to measure total soil carbon in 
two steps; first SOC is quantified at 600°C, and then the rest of the carbon (basically inorganic 
carbon) is quantified at 1000 - 1400°C. Caution has to be taken when soils contain highly stable 
organic carbon compounds which decompose at temperatures higher than the temperature set 
in the first step, leading to underestimation of SOC (and overestimation of SIC). An example are 
soils that are submitted to natural or man-made fires resulting in the presence of recalcitrant 
carbon containing compounds in the fine earth fraction (e.g. charcoal/black carbon; Roscoe et al., 
2001). In the Brazilian savanna for example, as much as 40% of SOC can be in the form of char 
(Jantalia et al., 2007). Stable carbon containing soil amendments (e.g. biochar) may also lead to 
similar bias in SOC analysis. 
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The main advantages of the dry combustion method are that it: (i) ensures a complete combustion 
of all SOC present in the sample (in contrast to wet oxidation, see below) and, (ii) allows a 
relatively large number of samples to be processed per unit time. The main disadvantage of the 
dry combustion method is the high initial economic investment associated with the purchase of 
specific instruments (readily available on the market). A potential disadvantage may be very small 
sample mass that is analysed (from 8-10 mg to a few grams, depending on the equipment). Great 
attention has, therefore, to be given to adjust sample mass to the detection limits of the 
equipment and to ensure representative sample composition during sample preparation (see 
section 2.4.1). 

Automated dry combustion using commercially available instruments is widely accepted as the 
standard method for soil C determination. Since most of these instruments also quantify total N 
simultaneously, there is potential for such instruments to provide additional crucial information. 

 

2.5.2 Wet digestion/oxidation of organic carbon compounds by dichromate ions 
(Cr2O7

2-) 

The wet oxidation method directly measures SOC concentration on finely ground soil (<0.2 mm) 
based on a rapid wet oxidation of organic C compounds by dichromate ions (Cr2O7

2-) followed by 
the determination of unreduced dichromate by oxidation-reduction titration with ferrous (Fe+2) 
ammonium sulphate in the presence of common indicators, such as ortho-phenanthroline ferrous 
complex, barium diphenylamine sulfonate (Walkley and Black, 1934) or photometric 
determination of Cr3+ (Souza et al., 2016). Potassium dichromate and concentrated sulphuric acid 
are used to extract organic carbon present in the soil. Orthophosphoric acid may be added to help 
eliminate interferences from the ferric iron that may be present in the sample. 

The Walkley and Black (1934) procedure (and its modified versions) require minimal equipment, 
is simple and rapid to carry out, and it has thus been commonly used worldwide. Further, this 
method also requires relatively small sample mass (normally 0.3 to 0.5 grams of soil) that must be 
adjusted to the SOC content of the sample. However, the oxidation of SOC is incomplete, with a 
recovery rate of SOC ranging from 60 to 86 %. Average recovery is estimated to be 75 % (Walkley 
and Black, 1934) and, therefore, a correction factor of 1.33 is commonly used to adjust the results. 
Further, this method is labour-intensive, requires a great deal of analytical skill, employs strong 
oxidants and acids that must be heated, and generates hazardous waste (Essington, 2004).  

Another disadvantage of this method is that, apart from recalcitrant material, such as charcoal, 
the presence of iron and manganese oxides in weathered soils can be source of errors. Depending 
on soil type and C content, underestimation can be large (Davis et al., 2018). Where charcoal is 
present, comparison of soil C stocks between pristine areas and sown pasture in which soil is 
homogenised by ploughing can be misleading as correction factors may be erroneously 
established. Therefore, for weathered soils or when charcoal is present, the wet oxidation method 
is not recommended. 

 

2.5.3 Loss-on-ignition method 

The loss-on-ignition method gives an estimate of SOM content, but does not give direct 
information on SOC content, which is a proportion of SOM that ranges between 43 and 58 %. It is 
based on the oxidation of soil at temperatures close to 550°C for at least 3 hours. SOM content is 
the difference between the soil mass before and after ignition:  

Equation 7: 

SOM (%) = (soil mass at 105°C – soil mass at 550°C) / soil mass at 105°C x 100 
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The main drawback of this method is that it overestimates the amount of organic matter due to 
the loss of structural water, mainly by hydrated aluminosilicates, because heating to 
temperatures above 150 °C drives off hygroscopic H2O and intercrystalline H2O from crystalline 
clays and allophane. Potential overestimation errors are also due to CO2 release from the 
decomposition of carbonate minerals and some hydrated salts and from the loss of H2O from 
hydroxyl groups in sesquioxides (Goldin, 1987). A clay correction factor should always be used, to 
avoid overestimating the SOM content by correcting for structural water loss.  

Samples should be left to equilibrate with ambient temperature in a desiccator to avoid uptake 
of moisture before weighing. An analytical balance with a precision of 0.1 mg should be used to 
weigh the samples.  

Analytical errors are dependent on differences in important soil properties, such as the amount 
and type of clay and the amount of carbonates and sesquioxides. Such differences make the 
standardization of the loss-on-ignition method quite difficult. For instance, special precautions 
should be taken when the method is applied to strongly carbonaceous soils and soils containing 
free iron. Hoogsteen et al. (2015) found that different furnace types (in terms of pre-heating air) 
did not influence results for a variety of soils representing a large range of clay content and 
different clay minerals. Turning soil trays halfway through the analysis reduced variability 
associated with uneven heating and overcame the effects on heat losses near the furnace door 
(Hoogsteen et al., 2015).  

The advantage of this method is that it only requires basic laboratory facilities: a furnace that 
reaches 600°C stable temperature and an analytical balance with a 0.1 mg precision. Further, loss-
on-ignition measurements are simple to carry out and do not require the use of reagents, thus 
having low environmental impact with no need for laboratory waste treatment (Nelson and 
Sommers, 1996). Another advantage is that large sample masses can be analysed –40 to 2000 
times larger than in dry combustion or wet oxidation– that may reduce analytical error due to 
more representative sample mass. Indeed, a sample mass of at least 20 g should be used to 
minimize variation in loss-on-ignition measurements.  

Although the loss-on-ignition method does not provide direct measurement of SOC content, it 
could be used to assess SOC stock change if the above-mentioned minimum criteria are observed 
and other methods are not available 

 

RECOMMENDATION 12. The dry combustion method shall be used for measuring SOC content 
when possible. If not available, wet oxidation may be used, except on weathered soils or when 
charcoal is present. If dry combustion is not available, loss-on-ignition may be used on organic 
soils. 

 

2.5.4 Spectroscopic techniques for soil organic carbon determination 

Soil organic carbon determination with the dry combustion and wet oxidation methods is often 
time and cost intensive and laborious, especially if large number of samples must be analysed. 
This can be the case in SOC stock change projects in livestock production systems that evaluate 
extensive land areas over years, or in long-term monitoring of soil properties. In fact, depending 
on the cost of the analysis and the number of samples necessary to detect SOC stock change, the 
viability of the project may be compromised. Having a large amount of SOC data could also help 
reduce measurement uncertainties due to high spatial variability in SOC content.  

Spectroscopy offers a relatively rapid, low-cost, non-destructive alternative to conventional SOC 
testing (Reeves III, 2010; Bellon-Maurel and McBratney, 2011; Viscarra Rossel et al., 2016). Soil 
spectroscopy uses the interaction of electromagnetic radiation with matter to characterize the 
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physical and biochemical composition of soil sample. The principle is that light is shone on a soil 
sample and properties of the reflected light (visible-near-infrared, near infrared, or mid-infrared) 
are representatives of molecular vibrations that respond to the mineral and organic composition 
of soils. Reflected or absorbed light is collected at different wavelengths by a detector. The 
resulting pattern is referred to as a spectrum (Figure 6). Spectral signatures thus provide both an 
integrated signal of functional properties as well as the ability to predict several conventionally 
measured soil properties (Nocita et al., 2015). 

 

Figure 5. Example of soil spectral signatures of four samples from the Ethiopia LASER study with 
different levels of soil organic carbon. 

 

There are numerous mathematical methods and their combinations that have been tested for the 
development of models that estimate SOC and other soil properties (Gobrecht et al., 2014). 
Chemometric models can be developed for different scales, from regional to local, of SOC 
determination (Madari et al., 2005; Clairotte et al., 2016; Lucá et al., 2017). Depending on the 
scale, representativeness of the calibration sample set, spectral pre-treatment and the 
chemometric methods and sampling approach (Jiang et al., 2017; Guo et al., 2017; Roudier et al., 
2017), an extra error will be included in the determination, the error of prediction. This error shall 
be considered when deciding on the SOC prediction method applied. 

Other emerging and promising techniques are laser-induced breakdown spectroscopy (LIBS) 
(Senesi and Senesi, 2016; Knadel et al., 2017) and neutron induced gamma-ray spectroscopy 
(Wielopolski et al., 2010, 2011). LIBS is a cost-effective technique with potential for rapid analysis 
of elements present in the soil. It has been successfully tested for total carbon measurement in 
combination with multivariate calibration (da Silva et al., 2008; Belkov et al., 2009) as well as for 
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differentiating organic and inorganic carbon (Martin et al., 2013). Portable equipment is also 
available (da Silva et al., 2008; Rakovský et al., 2014). 

 

RECOMMENDATION 13. Spectroscopic techniques -which show promise for estimating the SOC 
content and which enable the analysis of large numbers of samples- may be used when technical 
capacities for adequate chemometric calibration are available.  
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3. MONITORING SOIL ORGANIC CARBON STOCK CHANGES – 
REPEATED MEASUREMENTS AGAINST A BASE PERIOD, AND 
MEASUREMENTS AGAINST A BUSINESS-AS-USUAL BASELINE 

Soil organic carbon is a controlling factor in ecosystems services and agricultural productivity, 
landscape function, and climate change (Bispo et al., 2017; FAO, 2017a). There is now an extensive 
body of research demonstrating that human use of land for livestock production has affected SOC 
stocks. In much of this land, there are good opportunities for management practices to increase 
SOC stocks while maintaining or increasing productivity.  

Increasing SOC stocks can contribute a range of benefits, including greenhouse gas (GHG) 
mitigation (e.g. Rumpel et al., 2015; Paustian et al., 2016; FAO, 2017b). However, implementing 
effective strategies to realise this potential requires the capacity to monitor SOC stock change 
with acceptable accuracy and uncertainty, and at an acceptable cost. 

To quantify changes in SOC due to human management activities, it is necessary to monitor 
change in carbon stocks against a baseline through consistent measurement or modelling over 
time and space. This Chapter offers guidance for designing and implementing a sampling and 
measurement protocol. Chapter 6 provides guidance on modelling approaches. 

 

3.1 Planning and implementing a monitoring strategy for soil organic 
carbon stock change  

Selecting the method to monitor SOC stock change should consider the purpose of the 
investigation and the skills, capacity and budget available to the project. There are a range of 
objectives and scales possible for a SOC stock change study, for example: 

● Global or regional accounting for GHG emissions and removals from the land sector as a 
component of climate change accounting 

● Monitoring, Reporting and Verification (MRV) obligations for the United Nations Framework 
Convention on Climate Change (UNFCCC) 

● Analysis of the climate change impact of livestock products 
● Evaluation of the environmental impacts of grazing land management for animal agriculture 
● Assessment of the mitigation potential of agricultural practices at an industry, region or farm 

scale 
● Implementing mitigation options in an emissions trading or other market mechanism where 

payments for SOC sequestration depend on accurate and verifiable quantification 
● Research into processes affecting SOC stocks and dynamics 

  
After deciding on the goal and scope of the monitoring project, the proponent may answer a series 
of questions regarding existing data and knowledge, along with the skills and capacity available to 
guide planning. A decision framework is valuable to guide systematic decisions on the monitoring 
approach and requirements to achieve accuracy and consistency levels aligned to the goals of the 
study. Figure 6 depicts one such decision tree to guide the development of a sampling and 
measurement or modelling plan. 
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Figure 6. A decision tree to guide the selection of a SOC stock change monitoring approach. Level 
1 refers to simple ‘empirical’ models; Level 2, to ‘soil’ models; and Level 3, to ‘ecosystem’ models, 
with model complexity and data demand increasing from Levels 1 to 3 (more detail on Levels 1 to 
3 of the Modelling option are available in Chapter 6).  

 

3.2 Introduction to soil organic carbon stock change assessment by 
measuring against a baseline 

Where a measurement approach is used to assess changes in SOC stocks, planning the sampling 
and analysis protocol is critical. There are two types of change in SOC stocks that can be measured: 
a change over time relative to a base period (or reference period), or a change relative to an 
alternative scenario associated with a specific baseline. While the term ‘baseline’ will be used for 
both cases throughout these Guidelines, the type of baseline that should be used depends on the 
study (Brander, 2016).  

If the study is an inventory of anthropogenic GHG emissions/removals, then it is necessary to 
account for changes in SOC stocks that occur naturally, and a ‘natural’ baseline is required (Figure 
7). If the study is an assessment of the change in emissions/removals caused by a specified 
intervention, then the appropriate baseline is the business-as-usual scenario that would have 
occurred in the absence of the intervention in question. 
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Figure 7. A schematic representation of the different SOC stock baselines and the associated 
changes that can be measured.  

 

Repeated measurements over time against a measured base period. This approach is most 
suitable where sampling sites can be revisited every 1 to 10 years to monitor change and where 
additional data is available, such as seasonal climate and specific management practices. Results 
are commonly analysed as t1 vs. base period (t0) or using statistical tools such as regression 
analysis to detect trends in SOC stocks over time when several measurement times are available. 

Point-in-time measurements against an assumed business-as-usual baseline. This approach 
does not require a ‘before management change’ baseline measurement. Instead, it compares SOC 
stocks at different sites at one single time after a contrasting management was implemented in 
one of them. The underlying assumption is that the business-as-usual site and the differently 
managed sites were the same prior to the change in management (e.g. in terms of soil type, 
climate, land use, productivity). Further, the interpretation of management effects is direct if SOC 
at t0 was at a steady state. If SOC was on a trajectory from a prior management practice, the 
interpretation of management effects becomes less straightforward (Figure 8, see Van den 
Bygaart and Angers, 2006). These assumptions introduce uncertainty, as the lack of a ‘before 
practice change’ baseline means SOC stock change estimate will have lower confidence than 
repeated sampling over time with a known baseline. However, these scenarios are often 
encountered when farm management practices diverged sometime in the past but with no 
baseline data collected at that time, and the approach underpins approaches used in IPCC (2014) 
and UNFCCC (2014) accounting. 

 

3.2.1 Sources of error and bias in soil organic carbon stock change monitoring 

According to the Marrakesh Accords, uncertainties in measuring GHG in offsetting projects should 
be quantified and IPCC (2003) has recommended using confidence intervals as a quantitative 
estimate of uncertainty. Determining SOC stock changes associated with changes in management 
can be difficult because of the large spatial variability in SOC stock and uncertainties related to 
sampling and analytical error during field sampling, sample processing and laboratory 
measurements. Addressing these heterogeneities and uncertainties is a key challenge when 
monitoring changes to SOC stocks through measurements. 

Uncertainties generally mean that monitoring needs to occur over long time periods, ideally 
decades. However, the overall design of a soil sampling strategy to estimate SOC stock changes is 

`Natural´
baseline

With intervention

BAU scenario
Change due to 
intervention

Change compared 
to base period

Net anthropogenic 
effect

TIMEYear 1
base period

Year 20

SOC 
STOCK



37 
 

often determined by time and budgetary constraints (Smith, 2004; De Gruijter et al., 2006). 
Hence, a sampling strategy requires careful planning to ensure harmonized data collection (to 
gather relevant field information) and data processing (appropriate statistical method to analyse 
the data). De Gruijter et al. (2006) provide a detailed list of basic design criteria for site survey 
(baseline scenario) and monitoring of natural resources that includes balancing the sources of 
variation. 

Chapter 2 provides a detailed account of sources of error when estimating SOC stocks and 
strategies to minimize these errors. Table 2 lists the major sources of uncertainties in measuring 
SOC (Vanguelova et al., 2016). Here, the focus will be on SOC stock changes, including determining 
the minimum detectable difference (MDD), that is, the smallest difference, or change, that can be 
statistically detected. As MDD defines the difference between two means, increased errors result 
in disproportionally larger MDD values. All recommendations given in Chapter 2 are, therefore, 
relevant. 

 

RECOMMENDATION 14. In planning a SOC stock change study, a process of identification of 
potential sources of error and bias in SOC stock estimation shall be undertaken and steps should 
be taken to minimise their impact, as described in Chapter 2. Consistent methodologies and 
practices should be used to minimise the minimum detectable difference (Eq. 9) and the number 
of samples required to obtain it (Eq. 10). 

 

3.3 Sample size 

3.3.1 Pre-sampling for soil organic carbon stocks and variability to guide sample size 

Soil organic carbon stocks can have considerable spatial variation with increasing variation from 
field to regional, continental, and global extent (Minasny et al., 2017). For instance, SOC stocks 
fluctuate with latitude, with greater stocks at higher latitudes due to the lower temperature 
regimes, decreases in the mid-latitudes, and increases in the humid tropics. When estimating SOC 
stock changes it is important to consider the likely variability in space and depth to determine the 
best sampling design and minimum detectable difference. To assist in the process of making 
decisions, pre-sampling may provide valuable guiding information. 

Depending on the spatial scale at which SOC stock change is to be estimated (i.e. field, regional, 
landscape), a pre-sampling may comprise 5 to 10 soil cores per strata or area of interest to 30 cm 
depth and possibly up to a depth of 60 cm, taken along a transect or spaced several meters apart. 
To estimate the variance in SOC stocks per soil layer, several soil samples should be taken from 
each of multiple distinguished layers. If the IPCC procedure is to be followed, the 0-30 cm depth 
should be analysed separately.  

 

RECOMMENDATION 15. To analyse lateral and vertical spatial variability of SOC stock, a pre-
sampling (5 to 10 cores per strata) of the area of interest may be undertaken to get an indication 
of the SOC stocks mean value and variability in SOC stocks and, therefore, attainable minimum 
detectable difference for a given sampling effort. This information should be used to guide 
estimation of the number of samples needed to determine SOC stock change with an acceptable 
level of uncertainty. Based on estimated SOC stocks and variability from the pre-sampling and the 
maximum number of analyses that can be afforded, a decision on whether individual or composite 
sample cores are analysed should be made. 
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3.3.2 Using minimum detectable difference to determine sample size 

Spatial variation of SOC is often large, making long monitoring periods or large sample sizes 
imperative for evaluating treatment effects on SOC stocks (Gregorich et al., 1995; Smith, 2004; 
Yang et al., 2008). A statistical approach to determine the smallest difference in SOC stock that 
can be detected as statistically significant between two monitoring moments in time or 
treatments is based on the minimum detectable difference (MDD) (Zar, 1999). This is to minimize 
the risk of Type II error, that is, the risk of not detecting a true difference because there was 
insufficient power (Van den Bygaart and Allen, 2011; Kravchenko and Robertson, 2011).  

Power analysis can be conducted a priori, given a certain variance and α-level (i.e. significance 
level). The MDD for paired observations is calculated as following: 

Equation 8: 

 
where, 

S is the standard deviation of the difference in SOC stocks between t0 and t1 

n is the number of replicates 

v = n – 1 is the degrees of freedom for the relevant t-distribution 

t are the values of the t-distribution given a certain power level (1-β) and α level. 

 

The minimum number of samples required can then be determined as: 

Equation 9: 
 

where, 

n is the number of samples,  

S is the estimated standard deviation,  

MDD is the minimum detectable difference 

tα is the two-sided critical value of the t-distribution at a given significance level (α) frequently 
taken as 0.05 (5%), and  

tβ is the one-sided quartile of the t-distribution corresponding to a probability of type II error β 
(e.g. 90%). 

 

The following hypothetical case illustrates the calculation procedure:  

In a 3-year field experiment the number of replicates is 5 and the initial SOC content varies from 
40 to 46 Mg C ha-1. Due to annual organic C additions, SOC is expected to increase by about 0.8 
Mg C ha-1 y-1. Thus, after a period of 3 years the expected increase is 2.4 Mg C ha-1. The initial 
standard deviation is 2.39 and after 3 years is 2.77. The standard deviation of the paired 
differences after an experimental period of 3 years is 1.34 (Table 3).  

 

≥ √ ∙ ( , + , )  

≥ ∙ ( + ) 2
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Table 3. Data for a hypothetical field experiment with a duration of 3 years to illustrate the 
calculation procedure of the minimum detectable difference. 

Sample number SOC stock at t0 
(Mg ha-1) 

SOC stock at t3 
(Mg ha-1) 

Change in SOC 
(Mg ha-1) 

1 46 50 4 

2 41 44 3 

3 43 44 1 

4 40 43 3 

5 44 45 1 

Average 42.80 45.20 2.40 

S 2.39 2.77 1.34 

S2 5.70 7.70 1.80 

  

If we set the chance of detecting a significant difference (the power) at 90 % and we use an α-
level of 0.05, we find t values of 2.776 and 1.533 (df = 4). In that case, MDD would be:  

 

So, a sample number of 5 would be large enough to be able to detect differences in SOM of 2.58 
Mg ha-1 after a period of 3 years, with a probability of 90%. In this case, the MDD value is larger 
than the expected change of 2.4 Mg C ha-1, thus the number of samples needs to be increased. 
With a sample number of 10, MDD would be:  

 

In this case, the MDD value is smaller than the expected change in SOC stock. Hence, a sample 
size of 10 would be large enough to be able to detect significant differences at the end of the 
experiment. 

 

MDD increases with spatial scale for a fixed soil depth and with soil depth, for a fixed spatial scale 
(Figure 8; adapted from Maillard et al., 2017). For example, for depth of 30cm MDD with n = 50 
samples was 14, 16, 20 and 29 % at 0.1, 1, 10 and 10 000 km2, respectively. Whereas for a fixed 
scale of 0.1 km2 MDD as 12, 14 and 18 % for depths 0–10, 0–30 and 0–100 cm, respectively.  
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Figure 8. Relationship between sample points required (i.e. intensity) and minimum detectable 
difference (power of 90%, significant level of 0.05) as a function of spatial scales for the 0-10cm, 
0-30cm and 0-100cm layer (adapted from Maillard et al., 2017). 

 

It is sobering to consider that with an initial SOC stock of 60 Mg C ha-1 and a C sequestration rate 
of 0.5 Mg C ha-1 y-1, a statistically significant change after 5 years would be detected only with 516, 
730, 1051, and 2260 samples at 0.1, 1, 10 and 10 000 km2, respectively. At the same scales, 135, 
190, 273, and 586 samples would be necessary to detect the change as statistically significant 
after 10 years. This highlights that it may be difficult and costly to detect significant changes within 
timescales of less than 10 years. A further case study example is given in BOX 2. 

 

BOX 2. Monitoring SOC dynamics in temporary grasslands: how large should the sample size be 
to detect significant changes over time? 

Overview: Grassland management options targeting increases in root biomass inputs could be 
a promising strategy to increase the soil organic carbon (SOC) content of grassland soils. 
Farmers can influence root biomass and thus SOC inputs by grazing management and plant 
species composition (Deinum, 1985; McNally et al., 2015). Detecting significant changes is, 
however, a challenging exercise as spatial variation of SOC is often thought to be large. This 
makes long monitoring periods or a large number of replicates imperative for evaluating 
experimental treatment effects on C storage under field conditions (Smith et al., 2004).  

Approach: A statistical approach to determine the smallest significant difference in SOC that 
can be detected between two monitoring moments in time or between treatments gives the 
minimum detectable difference (MDD), (Zar, 1999). Power analysis can be conducted a priori, 
given a certain initial variation and α-level. The MDD for paired observations was calculated 
using Equation 8. 

An example: Here we demonstrate how to calculate the MDD for a field experiment 
investigating the effects of different simulated stocking systems (continuous (CS), rotational 
(RS) and lenient (LS) strip stocking) on SOC dynamics in a five year field experiment on a sandy 
soil in The Netherlands (Hoogsteen et al., unpublished). An α-level of 0.05 was chosen and the 
chance to detect a significant difference was set at 80%. The corresponding t values were 1.860 
and 0,889 (n=9).  

 
Stocking 
system 

Initial SOC 
content 

Final SOC 
content 

Difference
 

SD
 

CV 
 

MDD 
 

CS 60.9 63.8 2.9 1.4 0.5 1.3 
LS 60.7 63.8 3.1 2.1 0.7 1.9 
RS 62.9 64.8 1.9 2.1 1.1 2.0 
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The MDD values of CS and LS were smaller than the measured differences between the initial 
and final SOC contents. Thus, a sample size of 9 was large enough to detect significant changes 
in SOC after a monitoring period of five years. However, in the case of RS the number of samples 
was not sufficient to detect a significant change. This is a consequence of the larger variability 
(CVRS > CVLS, CVCS). The minimum number of required samples calculated using Equation 9 for 
the RS treatment was 10.  

 

Deinum, B. 1985. Root mass of grass swards in different grazing systems. Netherlands Journal 
of Agricultural Science, 33, 377–384. 

McNally, S.R. et al., 2015. Root carbon inputs under moderately diverse sward and 
conventional ryegrass-clover pasture: implications for soil carbon sequestration. Plant and Soil 
392, 289-299. 

Smith, P. 2004. How long before a change in soil organic carbon can be detected? Global 
Change Biology 10, 1878-1883. 

Zar, J.H. 1999. Biostatistical Analysis. Fourth Edition. Prentice-Hall, New Jersey. 
 

 

RECOMMENDATION 16. Minimum detectable difference calculations shall be used to estimate 
the number of samples needed to detect the expected SOC stock change (or alternatively the 
number of years required for a given rate of change in SOC to produce a statistically detectable 
change). The number of samples may differ between sampling campaigns (repeated 
measurements with baseline at t0) or treatments (paired plots with assumed business-as-usual 
baseline). This reduces sampling effort when the baseline was estimated with a large sampling 
size. 

 

3.4 Sampling frequency 

Determining sampling frequency is important when SOC stock changes are estimated by repeated 
measurements against a baseline obtained at the onset of land use or management change. More 
frequent sampling, that is shorter time periods between samplings, will increase the precision (as 
a larger number of samples will reduce sampling error) and will also allow detection of variations 
in the rate at which SOC stocks changes as it might not be constant.  

In general, the expected change in SOC stock should be greater than the MDD, so lower rates of 
expected change will correspond to less frequent samplings, allowing more time for the change 
to occur. Likewise, methods that have greater precision will lower the detectable limit and will 
allow more frequent sampling. Similarly, fields with large variability may require longer time 
intervals between measurements to accurately assess changes in SOC stock. 

It is common to let at least three years pass between the baseline and the first resampling or 
paired treatment (Donovan, 2013). More conservatively, Smith (2004) pointed out that if C inputs 
increase by a maximum of 20 to 25%, SOC stock changes could be detected with 90 % confidence 
only after 6 to 10 years. In addition to changes in C input, climate and seasonal weather can 
influence SOC accumulation or loss. Therefore, under variable weather conditions a longer time 
interval is recommended to increase the possibility of detecting SOC stock changes. 

When measuring SOC changes over time, intra-annual variability of SOC stocks shall be considered 
and its impact on stock change assessment shall be minimised. Seasonal variability of SOC stocks 
is dependent on SOC decomposition and plant growth and organic matter inputs. In livestock 
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production systems, the intra-annual variability of organic matter input can be related to the 
grazing regime, forage harvesting, fertilizer application rate and dates but also to weather 
conditions. On the other hand, decomposition of SOC is affected by environmental conditions, 
mainly moisture and temperature (Paul, 2007). As these vary throughout the year, the 
decomposition conditions for SOC are not constant. For example, enhanced drying and shrinking 
of organo-mineral complexes in the summer can lead to higher SOC decomposition rates 
(Leinweber et al., 1994). Water logging and cold temperatures may also hamper the activity of 
SOC decomposers (Paul, 2007).  

Intra-annual variations shall be considered when sampling at two different years, especially when 
these are expected to be higher than the detectable change caused by management over a certain 
assessment period. This can be done by ensuring that repeated sampling in different years occurs 
during the same season (Allen et al., 2010; Pringle et al., 2011), or through monitoring of the SOC 
stocks throughout the year when comparing two or more years. When evaluating different 
management practices through a paired plot approach, the relationship between seasonality 
effects on SOC stocks and treatment should be verified (Wuest, 2014). In a grazing intensity study 
in Alberta (Canada), SOC stocks were measured at four seasons at two sites and for two grazing 
intensity treatments (Dormaar et al., 1977). In five out of eight measurements, SOC stock 
differences were higher between two subsequent seasons than the differences between 
treatments.  

 

RECOMMENDATION 17. For repeated measurements to capture SOC stock change related to 
management activities, sampling shall typically occur 4 to 5 years apart. Sampling strategies shall 
always consider the estimated minimum detectable difference (Eq. 9) and corresponding number 
of required samples (Eq. 10). A sampling campaign should take no longer than 60 days within the 
same season, i.e. all sampling should occur no more than 30 days before/after the median day 
and month of the baseline sampling round. The record of each sampling round shall include the 
day (or days), the month (or months), the year (or years), and the median day. 

 
3.5 Calculating soil organic carbon stock change 

3.5.1 Equivalent soil mass 

Soil bulk density can change over time in response to climate and/or management, including 
mechanical (e.g. trampling from animals; Willat and Pullar, 1984; Zhao et al., 2007), biophysical 
(e.g. soil moisture; Dasog et al., 1988; Blanco-Canqui et al., 2009) and/or chemical factors (e.g. 
change in SOC content; Périé and Ouimet, 2008). If changes in bulk density over time are not 
considered when estimating a temporal change in SOC stocks then the SOC stock change 
estimates will not be accurate (Figure 9).  
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Figure 9. Example for the uses of equivalent mass and the error bias induced by quantifying soil 
SOC stocks at fixed depths when differences in bulk density occur (Wendt and Hauser 2013).  

 

For example, if the carbon content of the soil remained the same but bulk density increased from 
1.3 to 1.5 g cm-3 then a calculation to a nominated depth would show an increase of approximately 
15% of the SOC stock. This increase merely reflects that there is now more soil in the volume 
sampled, not because SOC stocks increased. Hence, tracking changes in SOC stocks over time 
requires that the SOC stocks are compared for the same mass of soil, that is, by estimating SOC 
stocks on an equivalent soil mass (ESM) basis. The actual ESM selected is largely immaterial, so 
long as it is 0.3 Mg m-2 or more. 

Estimating SOC stocks for a fixed, uniform or equivalent soil mass will entail assumptions about 
how SOC content and bulk density change with increasing soil depth. If only one value for SOC 
content and bulk density is given for a given soil layer, the assumption must be that their 
distribution within the soil layer is homogeneous. Correcting the soil mass, i.e. mathematically 
reducing the sampling depth of a respective layer, poses the risk of over-correction. Thus, SOC 
and bulk density information from discrete, contiguous and successive soil layers will assure a 
more precise SOC stock correction (Poeplau and Don, 2013). This is especially true for grassland 
topsoils, in which steep SOC gradients are common. Thereby, only the lowermost layer shall be 
corrected using ESM. A detailed description on SOC stock correction with multiple soil layers along 
with an excel sheet to fit a spline function for minimizing the error associated with the above-
mentioned assumption was published by Wendt and Hauser (2013). However, multiple layer 
sampling might not always be affordable and the problem minimizes with increasing sampling 
depth. 

In general, several methods for calculating SOC stock changes on an ESM basis are available that 
differ in their approach to the calculation of the reference mass and/or the depth at which the 
mass of soil is adjusted (Wendt and Hauser, 2013; Gifford and Roderick, 2003; Ellert and Bettany, 
1995; Sisti et al., 2004). The method provided here uses the soil mass of the baseline as the 
reference to correct SOC stocks of subsequent samplings. The equations are constructed so that 
users can correct SOC stocks for any depth. 

If the sampled area is stratified or uses a sampling design where points or areas in space are 
represented (see section 2.2.1), then ESM shall only be adjusted for samples that represent the 
same point or area (Murphy et al., 2013). This can be done by aggregating samples either by 
physically compositing samples in the field or through data calculations. The calculations use the 
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sum of the masses and volumes of the samples for a point or area to calculate the ESM used to 
correct SOC stocks. This is because the volume of the implement used to collect soil samples may 
change between sampling periods, or the numbers of samples for a given point or area may 
change over time.  

The equation for calculating the ESM to correct SOC stocks is: 

Equation 10: 

 
Where: 

ESM (Mg soil ha-1) is the equivalent soil mass (to be used in Equation 11) 

n is the number of samples being aggregated 

∑ Mbi (Mg) is the sum of the masses of all samples being aggregated 

∑ Vbi (m3) is the sum of the volumes of all samples being aggregated  

ti (cm) is the thickness of the samples 

 

RECOMMENDATION 18. To consider possible changes in bulk density over time or due to 
management, comparisons of SOC stocks shall be made on an equivalent soil mass basis (ESM). 
Samples from at least three discrete, contiguous and successive soil layers should be available to 
describe how bulk density and SOC concentrations change from the surface layer downward. Only 
the lowermost layer in any nominated ESM must be based on assumed rather than directly 
measured bulk density and SOC concentration. An exception may be made only when estimating 
SOC stock changes for a relatively small and uniform area without stratification, in which case ESM 
may be neglected and the lowest mass of all samples may be taken at baseline. When using ESM 
for repeated SOC measurements or point-in-time comparisons, estimates shall be made for the 
same point (i.e. spatial and depth) or area over time. For sampling schemes where individual 
samples are taken, these should be aggregated to ensure they represent the same point or area. 
The method for calculating ESM shall remain consistent across all sampling times. 

 

3.5.2 Calculating soil organic carbon stock changes 

To calculate the change in SOC stocks, samples of soil shall be collected and analysed consistently 
with the baseline sampling protocol described in Chapter 2. SOC stock estimation, and a measure 
of the variance in the estimate, shall also be carried out in accordance with methods described in 
Chapter 2.  

Changes in SOC stocks can be estimated either (a) between a base period established at t0 and 
another sampling at t1, or (b) between paired-plots assuming a business-as-usual baseline. In both 
cases, three steps are involved: 

 

Step 1. Calculating the soil organic carbon stocks in a sample 

Volumetric SOC stocks may be calculated for any layer represented by a discrete sample. The 
SOCi for each aggregated sample i that represent a point or area in space is calculated as: 
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Equation 11: 

SOCi (in Mg C ha-1) = OCi x ESM x (1 – vGi) x 1,000,000 

Where: 

OCi (mg C g-1 soil) is the organic carbon content of the soil fine fraction of sample i (see Chapter 
2) 

ESM (in Mg soil ha-1) is the equivalent soil mass calculated for each study area (see Equation 10) 

vGi is the volumetric coarse fragment content of the sample layer of the sample i, as a 
percentage of oven dry soil mass (see Chapter 2). 

 

Step 2. Calculating the soil organic carbon stocks and variance in a study area 

If IPCC recommendations are followed (see section 2.2.3), the average SOC stock should be 
calculated separately for the 0 – 30 cm soil layer. The average SOC stock for the study area, and 
corresponding sampling variance, for each relevant area and each sampling round shall be 
calculated as described below.  

Where equal area strata and compositing of samples apply, SOC stocks for a stratum are 
calculated as: 

Equation 12: 

SOCAij = SOCi x Aj 

where, 

SOCAij is the SOC stock for the depth increment i, for strata with area j 

SOCi is the ESM adjusted SOC stock for the depth increment i 

Aj is the area of strata j 

  

Where strata are of equal area, the SOC stock for the “carbon estimated area” is calculated as: 

Equation 13: 

SOCCEA = (∑ SOCAij) / n 

where, 

SOCCEA  is the mean SOC stock for the “carbon estimation area” 

SOCAij is the carbon stock for strata j of area A, for the depth increment i 

n is the number of strata in the CEA 

 

The between strata variance is then calculated by: 

Equation 14: 

S2 SOCCEA = [∑ (SOCAij - SOCCEA )2] / (n – 1) 

Where: 

S2 SOCCEA is the sample variance for SOC stock of the “carbon estimated area” 
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n is the number of strata 

 

Where strata are of unequal area, the weighted mean SOC stocks for the “carbon estimation 
area” shall calculated as: 

Equation 15: 

SOCCEA  = [∑(Aj/At x SOCAij)] / n 

where, 

SOCCEA is the mean SOC stock for the “carbon estimation area” 

SOCAij is the carbon stock for strata j of area A, for the depth increment i 

Aj is the area of stratum j 

At is the total area of the “carbon estimation area” 

  

The variance is then calculated as: 

Equation 16: 

S2 SOCCEA = [∑(Aj/At x (SOCAij - SOCCEA )2)] / (n – 1) 

 

Step 3. Calculating the soil organic carbon stock change 

Several statistical tests (t-test, mixed effects models, etc.) exist to determine whether the SOC 
stocks are different: (a) between t0 and t1 when using repeated measurements over time and, (b) 
at carbon estimation areas 1 and 2 (at a time x) when using paired-plot comparison against a 
business-as-usual baseline. 

 

(a) repeated measurements at t0 and t1 

The Welch’s t-test shall be used to test whether the SOC stocks at t0 and t1 are different. To do 
this, the t-statistic of the difference between the SOC stocks is calculated as: 

Equation 17: 

tΔ SOC = (SOCCEA at t0 – SOCCEA at t1) / √[(S2 SOCCEA at t0 + S2 SOCCEA at t1)/n] 

where: 

tΔ SOC is the Welch’s t-test statistics 

SOCCEA at t0 is the total SOC stock for the “carbon estimation area” as baseline 

SOCCEA at t1 is the total ESM-corrected SOC stock for the sampling period compared back to the 
baseline 

S2 SOCCEA at t0 is the variance of SOC stock for the “carbon estimation area” baseline 

S2 SOCCEA at t1 is the variance of ESM-corrected SOC stock for the sampling period compared back 
to the baseline 

n is the number of strata in the “carbon estimation area” 
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The degrees of freedom (df) of the Welch’s t-statistic are calculated as: 

Equation 18: 

df = {[(S2 SOCCEA at t0 + S2 SOCCEA at t1)/n]2} / {[(S2 SOCCEA at t0)2 + (S2 SOCCEA at t1)2]/(n-1)} 

 

The respective t value (tα(df)) for an appropriate alpha level (e.g. 0.9) for the calculated df needs to 
be derived from an appropriate table. If │tΔ SOC│ > tα(df), then we can consider that the observed 
change in SOC stocks is statistically significant. 

 

(b) paired-plot comparison against an assumed business-as-usual baseline  

When using paired-plot comparison against a business-as-usual baseline, SOCCEA at t0 and t1 are 
replaced by SOCCEA1 and SOCCEA2, which are the total EMS-corrected SOC for the “carbon 
estimation area” of the business-as-usual treatment and the plot of comparison, respectively 
(both measured at tx, the year of measurement after the implementation of contrasting 
management). This assumes that at t0 the SOC of both plots was identical. Further, the 
interpretation of treatment effects is direct if SOC at t0 was at a steady state. If SOC was on a 
trajectory from a prior management practice, the interpretation of the effect of the new 
management becomes less straightforward (see Van den Bygaart and Angers, 2006). 

 

RECOMMENDATION 19. To calculate changes in SOC stock, soil samples shall be collected and 
analysed with a consistent sampling protocol (Chapter 2). Further, a baseline that corresponds to 
the aim of the study should be chosen using Figure 8. (i) Changes in SOC stocks estimated over 
time shall be calculated in accordance with recommended methods and use of statistical tools 
(e.g. regression analysis), and in some cases knowing the ‘natural’ baseline might be necessary. 
(ii) Changes in SOC stocks estimated from paired-plot comparisons of new land use or 
management conditions against a business-as-usual baseline shall only be made when the starting 
point is consistent (i.e. same soil properties, climate, and prior land use and management); the 
conditions defining the land use or management states shall be thoroughly described. In both 
cases, estimated relationships should not be extrapolated beyond the period of the last 
measurement, as changes in SOC cannot be assumed to be constant over time.  

 

BOX 3. The effects of grazing in mountains of southern Norway on soil carbon stocks 

Overview: In Norway, approximately 2.2 million sheep graze in mountains during the summer. 
Sheep grazing has a strong impact on plant ecology and biomass, therefore possibly affecting 
soil C stocks.  
 
Approach: Long-term experiments with different levels of sheep grazing (decreased; 0 sheep 
km−2, maintained; 25 sheep km−2 and increased; 80 sheep km−2) were conducted in a non-
fertilized alpine pasture of moderate productivity in southern Norway. Soil was sampled by 
genetic horizon and C-stocks calculated by multiplying horizon depth, bulk density and C 
concentration (Martinsen et al., 2011). Total ecosystem C-stocks were calculated including C in 
vegetation and surface soil horizon. 
 
Impact of grazing on C stocks: After seven years, soil organic C stocks in surface horizons were 
lowest at sites with increased sheep density (Martinsen et al., 2011). In contrast, maintained 
sheep density caused a slight increase in soil C stocks. The set of studies also showed that C 
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sequestration in the alpine landscape in S. Norway is strongly affected by the tree-line, which 
in addition to climatic conditions, is determined by the management of herbivore densities 
(Austrheim et al., 2016). 
 

 
 

 

 
 

 

 
Austrheim et al., 2016. Synergies and trade-offs between ecosystem services in an alpine 
ecosystem grazed by sheep–an experimental approach. Basic and Applied Ecology 17, 596-
608 
Martinsen et al., 2011. Carbon storage in low-alpine grassland soils: effects of different 
grazing intensities of sheep. European Journal of Soil Science 62, 822-833.  
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BOX 4. SOC stocks under two grazing patterns in alpine meadows of Qilian Mountain, China. 

Overview: Increased grazing intensity can correlate with depletion of SOC, so the long-term 
impact of grazing pattern and management on SOC stocks was estimated. The study area was in 
Gansu Province, China (38.8°N, 99.6°E), where grassland is classified as Alpine Typical Steppe. 
Livestock farming here has a history of more than a thousand years, with seasonal grazing being 
important to local herdsmen. 

  

 
 

Schematic diagram of the seasonal grazing rotation. Animals are 
moved to higher altitude pastures in summer and lower pastures in 
winter, with spring and autumn at intermediate altitudes. 
 

Approach: Fifteen Wapiti deer (5–6 years old) grazed in winter pasture (WP) and in spring and in 
autumn pastures (SAP). Soil samples for depths of 0-10, 10-20, 20-30, and 30-40 cm were 
collected in 1999 and 2012. Gravel, loose vegetative debris and visible roots were removed, soil 
samples were air dried, sieved, and soil organic carbon (SOC) was determined using the Walkley–
Black method (Nelson and Sommers, 1996).  
 
What the study showed: SOC content was strongly reduced with increasing grazing intensity 
under two grazing patterns, and more strongly on SAP than WP. Soil organic carbon stock changes 
responded to grazing activity, there is no lower threshold of grazing intensity below which SOC 
loss does not occur.  
 

SOC stock to 40 cm (Mg/ha) affected by distance from night pen under two grazing patterns in 
the Qilian mountain ,Qinghai Tibetan Plateau 

Grazing season Year distance from night pen (m) 
  0 1200 1500 

Spring and Autumn pasture (SAP) 
1999 225 428 446 
2012 196 363 370 

Winter pasture (WP) 
1999 156 163 167 
2012 138 145 152 

 
Summary : The evidence based on this case study helps in determination of a sustainable stock 
rate setting for a longer scale in a high attitude and cold environment. 
Yuan, H. and Hou, F. 2015. Grazing intensity and soil depth effects on soil properties in alpine 
meadow pastures of Qilian Mountain in northwest China. Acta Agriculturae Scandinavica, 65: 
222–232. 
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4. DATA MANAGEMENT AND REPORTING. SAMPLE 
ARCHIVING 

4.1 Handling data 

A plan for research data handling specifies how data will be acquired, processed and stored within 
the scope of research projects. It should ensure the integrity of research data and a high quality 
and accessible dataset. Data handling addresses concerns related to confidentiality, security, and 
preservation/retention of research data. Proper planning for data handling results in efficient and 
economical storage and retrieval of data. In the case of data handled electronically, data integrity 
is a primary concern to ensure that recorded data is not altered, erased, lost or accessed by 
unauthorized users. 

Data traceability, error checking and data quality, storage and backup are all integral parts of data 
handling. Data handling should be considered when planning field soil sampling, sample 
preparation and analysis, and anticipate the expected reports once final results are generated. 
Thus, data handling requires adequate planning, development of procedures that simplify data 
management, as well as training and supervision of research staff to ensure that data is stored 
and archived in a safe and secure manner. 

 

4.1.1 Data gathering  

Data gathering for assessing SOC stock change starts with field sampling, then processing and 
analysis and finally recording the results of analyses in a spreadsheet or database. Some 
equipment will export data directly to computers for storage. All other data should be initially 
recorded in notebooks (i.e. neither post-it notes nor loose pieces of paper), then manually entered 
into a computer for data handling. To promote data standardization and ensure that experiments 
are fully described, sampling protocols and a spreadsheet-based data-entry template should be 
developed.  

In addition to SOC measurements, Del Grosso et al. (2014) suggested that additional data, such as 
site descriptors (e.g. weather, soil class, spatial attributes), experimental design (e.g. factors 
manipulated, measurements performed, plot layouts), management information (e.g. planting 
and harvesting schedules, fertilizer types and amounts, biomass harvested, grazing intensity, pest 
and weed controls), should also be recorded. Documenting the geographical coordinates of the 
position where the sample was taken is always recommended, as it is indispensable information 
for any (additional) kind of spatial analysis, including digital soil mapping.  

Such complementary data is often needed for modelling, inventory, interpretation and reporting. 
The type and level of detail of field complementary data depends on the level of complexity of 
the approach to be used when assessing SOC stock change. For Tier 1 models (e.g. IPCC) the 
relative stock change factors are based on land use, land management and climatic region. Tier 2 
and simple soil models (e.g. ROTH-C) require monthly weather data (monthly rainfall, evaporation 
and air temperature) and field data such as soil cover (0 or 1), monthly input of plant residues and 
livestock dung/manure. The net primary production (NPP) can be used to estimate the monthly 
plant residue input, while the type and number of livestock on a grazed pasture can be used to 
estimate the livestock dung/input. Tier 2 and 3 approaches use country-specific coefficients 
and/or finer scale area disaggregation (e.g. high-resolution activity data at sub-national to fine 
grid scales), which will reduce uncertainty in estimates. Depending on the selected model for the 
assessment, complementary data such as root biomass, SOC fractions for model initialization, 
carbon to nitrogen ratio (C:N) and soil moisture may be required. For fodder crop systems, 



51 
 

information such as whether crop residues are retained in the field will improve estimates of C 
input. 

When studying SOC stock changes, nitrogen dynamics is often an important driver of change 
because the nitrogen availability often determines biomass production and rates of SOC 
decomposition (Piñeiro et al., 2010). Therefore, quantification of soil nitrogen stocks may be of 
use depending on the purpose of the assessment. The presented recommendations in this 
Chapter apply in the same way when sampling to measure nitrogen stocks.  

 

RECOMMENDATION 20. The geographical coordinates of the sampling location and of the 
boundaries of the represented area shall always be documented. When planning the assessment 
of SOC stock changes, possible complementary data from the field, such as net primary 
productivity, soil texture and pedoclimatic data, should be considered and collected as required.  

 

4.1.2 Data processing 

Most data can be processed and stored in a spreadsheet (e.g., Microsoft Excel, OpenOffice, 
LibreOffice). Larger and more complex datasets may require the use of a relational database (e.g. 
Microsoft Access, Oracle, MySQL). In both cases, unique identifiers should be attached to all items 
(e.g. each soil sample). Unique identifiers are crucial to ensure data traceability and error checking 
and so are integral to proper database design. 

Proper data storage in spreadsheets begins with using a logical name for each workbook and sheet 
within the workbook, or for the database and its tables, queries, and reports. Each workbook shall 
have metadata (e.g. a “readme sheet”). The metadata should note: a brief description of the data, 
equipment used for analysis, brief description of analytical method, dates when samples were 
collected and analysed, names of persons who collected, prepared, analysed or entered the data, 
and anything else pertinent (mistakes or equipment problems). Each sheet shall have column 
titles and units (if applicable). Data in workbooks shall show calculation flows and checks and be 
cross-referenced with reference logbooks (which indicate usage of instruments/equipment). 
Finally, data should be in formats that will make later retrieval and analysis efficient. This includes 
using commonly available software formats (e.g. .xlsx, .accdb) or even comma separated value 
(.csv) files. There may be opportunities decades in the future to compare results and to present 
findings. 

 

4.1.3 Data storage and retrieval 

Storing data is very important to ensure that all the information needed for interpretation is 
available and can be retrieved in a variety of ways. Without proper data storage, reporting and 
publishing will be difficult in the future. Most projects start with storing data in a spreadsheet (e.g. 
Microsoft Excel). An example of SOC stock change after cultivated crops were converted to native 
pasture is provided in Annex 4.1. When data collected exceeds the capacity of an Excel workbook, 
databases are typically used to store large data sets. Databases can also handle more complex 
relationships among data tables and offer better reporting capabilities than spreadsheets. 

Soil carbon databases exist for countries and are being developed globally. An example of a soil 
carbon database is the Northern Circumpolar Soil Organic Carbon Database, which can be found 
at sis.agr.gc.ca/cansis/interpretations/carbon/index.html. The databases are in .dbf format, using 
the old dBASE PC program, but Microsoft Access can import the tables. 
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Stored data should be backed-up regularly, either using an organization’s internal system or with 
an online external data storage company (often referred to as “storage in the cloud”). Personal 
backups (e.g. taking a copy home after work on a USB drive) are insufficient. Further, it may violate 
organizational policies if the data is considered confidential. USB sticks and DVDs seem ubiquitous 
today, but fifty years ago data was stored on computer cards and tapes that are very difficult to 
read today. Dedicated backup services minimize problems associated with technological change. 

Whatever backup method is used, it should be sufficiently well documented that even in an 
extreme case (e.g. all team members leave the project) someone can find and access the backup 
and understand how to interpret the data. Some countries have policies allowing accounting and 
human resources data to be deleted after a certain period, but that policy should not be applied 
to research data.  

“Open Notebook Science” (en.wikipedia.org/wiki/Open notebook  science), proposed by Jean-
Claude Bradley, advocates not only that scientific data should be preserved but that it must be 
publicly available so that “all of the information available to the researchers to make their 
conclusions is equally available to the rest of the world”. 

 

4.1.4 Data quality control 

To ensure the integrity of the data collected, standard operating procedures shall be followed at 
every step with proper Quality Control/Quality Assurances in place. Soil organic carbon may be 
estimated by different methods. To obtain accurate and comparable data, the use of standardized 
protocols and instruments which have undergone Quality Assurance and Quality Control are 
recommended. Quality Control uses established protocols to achieve standards of measurement 
based on the three principle components of quality: precision, accuracy and reliability. Quality 
Assurance is a system of activities designed to better ensure that the Quality Control is done 
properly. As part of the SOC stock assessment, laboratories that analyse soil samples should have 
their Quality Assurance/Quality Control in place to ensure that data quality and integrity is 
achieved. A good example of Quality Assurance/Quality Control can be found in the UC Davis 
Analytical Lab Quality Manual (UC Davis, 2017, anlab.ucdavis.edu/forms-and-guides/files/qual-
manual.pdf). While using an International Organization for Standardization (ISO/IEC 17025:2005 
General requirements for the competence of testing and calibration laboratories) certified 
laboratory for soil analyses is preferred, quite often the laboratory QA/QC practices of academic 
and research organizations will meet or exceed the ISO standard despite not being ISO certified. 

Hand-written data must be neat and readable (not always easy under field conditions). The data 
should be entered into a computer as soon as practical, and particularly while the person who 
made the entries remains available to answer any questions. Data entry can be a boring job and 
prone to high error rates, so double entry with an independent comparison and resolution of any 
differences is worthwhile if resources permit. If possible, limiting data entry activity to one-hour 
periods with other activities in-between can be helpful to limit boredom fatigue. Very large 
projects might consider using dedicated data entry staff or even optical character recognition 
(OCR) to improve accuracy and efficiency. Databases and spreadsheets facilitate basic validity 
checks for errors (e.g. a quantity of 5r.3 is clearly incorrect) or reasonableness. For example, if the 
pH value in an experiment is expected to be between 4.0 and 7.0 at least 95% of the time, the 
exceptions can be flagged and checked to ensure they are valid. When the analysis generates 
unexpected results, this may also indicate data quality issues. 

 

RECOMMENDATION 21. Data shall be stored in a suitable format, such as the template (tab- or 
comma-delimited text, .txt. csv), and include all necessary data for identification (e.g., year, field, 
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replicates, soil layers, etc.), variables for estimates (coarse fragment, roots, residual humidity), 
sample treatments (CaCO3, sieving, drying, etc.). 

In cases, where spreadsheets are not enough for the purpose, relational databases should be used 
to store data. In addition to collecting the data required for physical determination of SOC stock, 
all relevant metadata from sampling sites shall be preserved. These include the sites' past history 
(fertilisation, sowing, grazing, tillage, manure, etc.) and georeferenced location. 

 

4.2 Reporting results 

The level and scope of data/results reporting depends on for whom the final report is intended, 
e.g., funders, scientific community, the public, etc. All key members of the team involved in the 
data collection and analyses should have a chance to carefully review and discuss the reports.  

Results can be presented in several different ways, including graphs, tables, maps, etc. They 
should always be accompanied by estimates of error. Reporting results shall include a description 
of methods used in data collection and data processing, as well as storage location of data and 
metadata (along with contacts). Every part of the process should be described, not just the 
statistical, sampling or lab procedures.  

It is good practice to log all data from the exercise in an internal or public archive. This allows the 
project to keep data secure for follow up and allows others to make use of it for further analyses 
and to link it with other data. 
 

RECOMMENDATION 22. Data/results reporting shall include a detailed description of methods 
including site of stored data and metadata. Reported results should be accompanied by an 
estimate of error or uncertainty.  
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5. MONITORING SOIL ORGANIC CARBON CHANGES – NET 
BALANCE OF ATMOSPHERIC CARBON FLUXES 

An alternative to the physical determination of C stocks at repeated times, is to draw up a full 
carbon budget. Such an approach accounts for the initial uptake of carbon through photosynthesis 
(Gross Primary Production), its subsequent partial losses through respiration (soil, plant and litter) 
to give net ecosystem exchange or net ecosystem production, and further C inputs and outputs 
to and from the system. Measurements of the net balance of C fluxes exchanged (i.e. estimating 
net ecosystem exchange) can be achieved by chamber measurements or by the eddy covariance 
method (Aubinet et al., 2012). Both these approaches are used more as research tools than for 
routine monitoring as both are relatively labour intensive and, in the case of eddy-covariance 
highly specialised and expensive to operate. 

Soil chambers are the simplest method of measuring uptake and soil efflux but have a small spatial 
footprint, cannot be used for long-term studies and, if manual, may suffer from poor temporal 
resolution (see Schmitt et al., 2010). Due to these constraints, chamber measurements of net 
ecosystem exchange should be limited to plot scale only. Ideally, CO2 fluxes should be measured 
dynamically, allowing several measurements to be recorded during the day and night and periods 
of optimal vegetation growth (e.g. Mitchell et al., 2016).  

The eddy covariance method can measure the net exchange of CO2 over areas of several hundred 
square metres to hectares depending on the sensor height (i.e. 2-3m over grassland) and 
horizontal wind speed, and provides a high temporal resolution allowing detection of SOC stock 
changes within one year (Ammann et al., 2007; Klumpp et al., 2011). 

The eddy covariance technique analyses the covariance between rapid fluctuations in vertical 
wind-speed measured with a three-dimensional ultrasonic anemometer and simultaneous 
measurements of the rapid fluctuations (10-20 Hz) in the CO2 concentration, as measured by a 
fast-response gas analyser (Aubinet et al., 2012, Figure 10). 

The main limitations of the eddy covariance technique are related to the fact that this is a point-
in-space measurement. Thus, the relationship between this point measurement of a flux and the 
upwind measure area (i.e. footprint) requires certain atmospheric conditions to be considered at 
set up of the tower. These involve: (i) well-developed and continuous turbulence, (ii) stationary 
wind field and turbulence conditions and, (iii) a homogeneous distribution of sources and sinks of 
CO2 in the footprint area. 

The eddy covariance provides the most robust measure of not only net ecosystem exchange but 
also allows for the partitioning into GPP and total ecosystem respiration. GPP is not easily 
measured at large scales but can be estimated from the net ecosystem exchange measured by 
eddy covariance, by extrapolating night-time ecosystem respiration (see Reichstein et al., 2005). 
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Figure 10. Measurement principle of the eddy covariance method (Hu et al., 2014). 

 

To determine the net carbon storage (NCS) via the eddy covariance technique, further C inputs 
and outputs to the field need to be considered (see Soussana et al., 2010). These include: (i) trace 
gases comprising C compounds exchanged with the atmosphere (i.e. CH4, volatile organic 
compounds, VOC, and emissions during fires), (ii) organic C imports (manures) and exports 
(harvests, animal products), (iii) dissolved C lost in waters (dissolved organic and inorganic C) and 
lateral transport of soil C through erosion. By considering these variables, NCS (g C m-2 per year) 
is the mass balance of these fluxes (Equation 8): 

Equation 19: 

NCS = (FCO2 – F CH4-C - FVOC - Ffire) + (Fmanure - Fharvest – F animal-products) - (Fleach + Ferosion) 

Where: 

FCO2 is the net ecosystem exchange of CO2 between the ecosystem (plant and soil) and the 
atmosphere, including CO2 (digestive + metabolic CO2) from grazing animal. FCO2 is conventionally 
positive for a C gain by the ecosystem.  

FCH4-C, FVOC and Ffire are trace gas C losses from the ecosystem as methane, volatile organic 
compounds and through fire, respectively (g C m-2 y-1).  

Fmanure, Fharvest and Fanimal-products are lateral organic C fluxes which are either imported or exported 
from the system (g C m-2 y-1).  

Fleach and Ferosion are organic (and/or inorganic) C losses through leaching and erosion, respectively 
(g C m-2 y-1).  

 

Depending on the studied system (i.e. climatic zone) and management, some of the fluxes in 
Equation 8 can be neglected for NCS calculations:  

● Fire emissions (Ffire) by grasslands are very low in humid temperate regions (i.e. below 1 g 
C m-2 per year over 1997-2004 in Europe), while they reach 10 and 100 g C m-2 per year in 
Mediterranean and in tropical grasslands, respectively (Van der Werf et al., 2006).  

● Erosion (Ferosion) is rather insignificant in permanent grasslands (e.g. in Europe), but can be 
increased by tillage in the case of sown grasslands. The global map of Ferosion created by Van 
Oost et al. (2007) indicates that grassland C erosion rates are usually below 5 g C m-2 per 
year, even in tropical, dry grasslands.  
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● Volatile Organic C emissions (FVOC) by grassland systems are usually very small, and can 
thus be easily neglected (Davison et al., 2008).  

 

In many grasslands systems, equation 1 above can be simplified to (Allard et al., 2007): 

Equation 20: 

NCS = (FCO2 - FCH4-C) + (Fimport – Fexport – Fanimal-products) – Fleach 

 

Some studies have compared repeated SOC stock measurements with C balance obtained by the 
eddy covariance technique (e.g. Leifeld et al., 2011; Skinner and Dell, 2014; Stahl et al., 2017) 
showing that methods match well for long-term comparison (i.e. > 5yrs), but not in the short term 
due to the uncertainty of eddy covariance measurements linked to instrumentation and data 
processing. Nonetheless, the strength of this method compared to repeated SOC measurements, 
is that it allows for the annual assessment of C sinks and related principal drivers (e.g. 
management, climate) of source/sink strength to be elaborated (Jones and Donnelly, 2004; 
Skinner and Dell, 2014; Klumpp et al., 2011). This may be the case for management systems that 
are newly imposed (less than ten years old). Even so, analysing net ecosystem exchanges is quite 
costly and labour intensive in terms of instrument set up, maintenance and data processing, 
making it necessary to dedicate a whole research team to this approach. A case study showing 
the strengths of the approach as well as the technology and expertise required by the eddy 
covariance technique is shown in BOX 6. 

 

RECOMMENDATION 23. When using a full-system carbon budget approach as an alternative to 
repeated physical measurement methods to determine SOC stock changes, it shall firstly be 
established that adequate funds and equipment and a research team with the required expertise 
can be dedicated to the project. For eddy covariance measurements to determine SOC stock 
changes, assessment of site suitability shall be undertaken to determine that the spatial area is 
sufficiently large (4 to 8 hectares, minimum, depending of wind direction) to fully quantify 
contributions to fluxes of all material carbon sinks and sources (e.g. harvest, leaching, animal 
products). Established research groups and networks (e.g. Fluxnet, Ameriflux, NEON, ICOS) with 
experience in use of eddy covariance methods should be consulted when seeking to set up 
instrumentation and programs using full carbon budget methods. 

  
BOX 5.  Soil carbon storage of old permanent pastures in Amazonia 

Overview: Amazonian forests accumulate carbon (C) in biomass and in soil, representing a 
carbon sink of 0.42-0.65 Gt C yr-1. In recent decades, more than 15% of Amazonian forests have 
been converted into pastures, resulting in net C emissions (~200 Mg C ha-1) due to biomass 
burning and litter mineralization in the first years after deforestation. However, little is known 
about the capacity of tropical pastures to restore a forest C sink.  
 
Approach: To estimate C stock changes of pastures and native forests in French Guiana, two 
independent approaches were applied: (i) a chronosequence study including the inventory of soil 
C and N stocks to a depth of 100 cm in 24 pastures from 0.5 to 36 years old and four native forests 
distributed across French Guiana and, (ii) measurement of NEE by eddy covariance in one young 
(4-year-old) and one old (33-year-old) pasture included in the chronosequence study, and one 
native forest. 
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What the study showed: The combination of chronosequence study and eddy covariance 
measurements showed that pastures stored between 1.3 ± 0.37 and 5.3 ± 2.08 Mg C ha-1 yr-1 
whilst the nearby native forest stored 3.2 ± 0.65 tC ha-1 yr-1. Data showed that French Amazonia 
tropical pastures could partly restore the C stocks observed in native forest, when maintained 
longer than 24 years. Carbon was mainly sequestered in the humus of deep soil layers (20-100 
cm), whereas no C storage was observed in the top 0-20 cm layer. C storage in C4 tropical pasture 
was related to the installation and development of C3 species (e.g. legumes, weeds), which 
increase either N input to the ecosystem or the C:N ratio of SOM.  
 
Changes in soil carbon stocks to a depth of 1 metre under pastures ≤ 24 and ≥24 years old (A), 
and soil carbon stock changes originating from C3 and C4 plants (B), along the chronosequence. 
The C4 plant (black circles) planted when the pastures were established. The C3 plant signature 
(white circles) from C native forest and C from new plants such as shrubs legumes.  
 

 
Summary: Efforts to curb deforestation in Amazonia remain an obvious priority to preserve 
forest C stocks and biodiversity. However, these results show that under sustainable 
management (avoiding fires and overgrazing, using a grazing rotation plan and a mixture of C3 
and C4 species), tropical pastures can ensure a continuous C sequestration, which adds to the 
current C sink of Amazonian forests. 
 
Stahl, C. et al., 2017. Continuous soil carbon storage of old permanent pastures in Amazonia. 
Global Change Biology 23, 3382–3392. 
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6. MODELLING SOIL ORGANIC CARBON CHANGES 

6.1 Introduction 

6.1.1 What is modelling and who is it intended for: decision support and reporting 

Modelling is an approach used to infer SOC stocks and distributions in conditions where they have 
not been measured, such as: (1) under future climatic conditions, (2) at locations or for soil types 
or regions where no measurement exists, (3) for pasture management scenarios that have not yet 
been tested, e.g. use of new grass species or changes in fertilization or grazing regime. The 
inability to measure SOC stocks directly can have various causes, such as difficult access to 
representative sampling points, lack of equipment or that the number of samples needed to 
representatively cover a certain area of interest exceeds those affordable. Furthermore, the 
information obtained by direct measurements is not always sufficient to answer all relevant 
questions related to SOC stock and dynamics. 

In the last decades, numerical models have been developed, including mathematical 
representations that quantitatively describe soil characteristics and processes. The breadth of 
these approaches can be illustrated by the recent compilation of 90 mathematical models 
describing SOC changes and biogeochemical related soil processes developed in the last 80 years 
(Falloon and Smith, 2009; Manzoni and Porporato, 2009, and Campbell and Paustian, 2015). 
However, according to their structure, number of input variables required and temporal and 
spatial resolution, not all available C models are suitable for all studies (Manzoni and Porporato, 
2009). Additionally, due to bias in previous studies towards particular ecosystems, there are 
notable gaps in our understanding. For instance, currently, most of the modelling efforts have 
focused on forests and croplands, while grasslands have received less attention. 

Grassland models have been developed with different research foci to model soil C, N, P, and S 
dynamics at monthly and daily time-steps (e.g. CENTURY, DayCent). Some have aimed at 
improving representation of biochemical, biophysical and ecosystem processes in natural 
grasslands (e.g. Grassland Ecosystem Model, GEM) or describing C, N and water cycles in grazed 
systems (e.g. Hurley Pasture Model of Thornley (1998), PaSim) or simulating multiple grass species 
which compete for water and nutrients (e.g. DNDC, Li et al., 2012) and other process-based 
models. Because modelling grassland systems is complex, both individual and ensemble models 
perform poorly in predicting above-ground grass production, whereas model ensembles perform 
adequately for predicting yields of annual crops (Ehrhardt et al., 2018). Grassland systems are 
characterized by features that are absent in arable cropping systems. These add complexity to 
process-based modelling of grassland systems compared to annual cropping systems and thus 
present significant challenges to model developers and users. These features include: (i) pastures 
are botanically diverse (e.g. perennials, legumes, C3/C4 species); (ii) there are substantial 
interactions between management practices (e.g. grazing animals, grazing practices, fire regimes, 
fertilization, harvests, etc.) and vegetation responses and; (iii) the whole farm management is 
more complex and at the same time more important for grasslands than for arable systems. 

Models of SOC in pasture systems, developed and tested by scientists, are used by extension 
specialists and consultants for making practical recommendations towards climate smart 
agricultural practices. Extension specialists use models to predict long-term changes in SOC for 
specific farms and communicate this information to farmers, in terms of best practices for grazing 
land management. Consultants and public sector advisors apply a similar approach, using models 
to evaluate the sustainability of grazing land management at different scales to facilitate decision 
making in public and private sectors. Decision makers are interested in identifying pasture 
management options that provide an optimal balance between carbon sequestration and 
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reduction in greenhouse gas emissions and broader effects on ecological health, resiliency and 
productivity. 

Reporting is another main application of SOC models. Once there is a policy decision to sustainably 
increase carbon storage in pasture soils and measures to implement this have been agreed upon, 
there is a long-term requirement to report on progress towards this goal. Modelling can be an 
important tool in the reporting process, providing a method for estimating soil C gains resulting 
from the new management. Reporting can be performed at various scales, from the individual 
field to entire countries or continents. For example, a livestock farmer might need to report to 
funding agencies changes in SOC stocks due to crop rotations, stocking rates and fertilizer 
practices. He might not have the technical and financial capacity to conduct soil analyses after 
every cropping season, so a modelling approach is needed to account for potential changes. Also, 
many countries are obliged to report greenhouse gas emissions from different sectors in national 
inventory reports. Soil carbon stock changes can be an important part of such inventories in the 
agricultural sector. While some countries have measured baseline SOC stocks and some might 
even repeat measurements in certain intervals, models are commonly used to annually account 
for changes in SOC stocks on the national scale. 

 

RECOMMENDATION 24. Models shall be used when the objective is to estimate or extrapolate 
changes in carbon stocks in or to conditions in which they have not been measured e.g. soil type, 
climate and management. As a guiding principle, the complexity of the model should be aligned 
to the context. 

 

6.2 The different modelling approaches  

Three modelling approaches are usually recognized, referred to here as three different levels of 
assessment. Following the ‘tier’ structure proposed by the IPCC (2003, 2006), a three (1-3) level 
approach is proposed to estimate SOC stocks and SOC dynamics using simulation models. The 
level and method selection will depend on the specific purpose of the study, the spatial scale, and 
data availability (see section 6.3), among other factors. Although the level structure is not 
hierarchical, moving to a higher level should improve the accuracy of the estimation and reduce 
uncertainties, as the complexity and data resources required for modelling SOC changes also 
increase. The approaches are not mutually exclusive, and a mix of approaches may be applied for 
different calculation needs or local circumstances. The following three levels represent different 
methodological modelling approaches and range from the use of default data and empirical 
equations to the use of more complex, specific, locally validated functional or mechanistic models. 
These three levels are: 

● Level 1: ‘Empirical’ Models 
● Level 2: ‘Soil’ Models 
● Level 3: ‘Ecosystem’ Models 

 

6.2.1 Level 1. Empirical models 

SOC stocks and changes in this level may be estimated using an empirical approach, which usually 
represent the observed relationships between SOC stocks or SOC changes and defined 
environments, or environmental and management variables, such as soil clay content, 
temperature, precipitation or land use (Grigal and Berguson, 1998; Davidson and Janssens, 2006; 
Milne et al., 2007). 
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One of the best-known empirical approaches is the computational method for estimating SOC 
stock changes developed by The Intergovernmental Panel on Climate Change (IPCC, 2003, 2006). 
This empirical approach computes projected net SOC stock changes over a 20 year period. This is 
assumed to be the default period for SOC stocks to attain a new steady state (referred to as 
‘equilibrium’) although this may take much longer, even more than 100 years (e.g. Poulton et al 
2018). This approach estimates change in SOC stocks by assigning a reference SOC stock value, 
which varies depending on climate, soil type and other factors. This reference value is then 
multiplied by factors representing the quantitative effect of changing grassland management on 
SOC storage. The method can use default climatic, soil and land use/management information 
given by the IPCC or, if available, country-specific data. For each period, SOC stocks are estimated 
for the first and last year, based on multiplying a reference C stock found under native vegetation 
(for a specific climate and soil type) by stock change factors (land use, management, organic 
matter inputs, and land area). Annual rates of carbon stock change are estimated as the difference 
in stocks at two points in time divided by the time dependence of the stock change factors. For 
an example of this approach, see the case study in BOX 6. 

This approach may be used for systems with a limited availability of historic climatic data, soil 
databases, and/or productive registers (management practices and its effects on net primary 
production, or estimations of biomass returns and exports, etc.). These types of approach have 
been used to estimate C sequestration potentials for rangelands and pastures and the potential 
effects of management practices on SOC stocks and stock changes (Ogle et al., 2004; Grace et al., 
2004; Easter et al., 2007; Milne et al., 2007; Kamoni et al., 2007; Petri et al., 2010; Berhongaray 
and Alvarez, 2013) at global, national and regional scales. The method may, however, have 
limitations for sub-national or sub-regional assessments (Milne et al., 2007). 

One main drawback of the IPCC approach is that it considers, as do other regression approaches, 
that SOC changes linearly (Milne et al., 2007) and reaches equilibrium in 20 years (Goglio et al., 
2015). This may cause important deviations in some types of environment (Berhongaray and 
Alvarez, 2013). Another drawback is that much of the data available for deriving the empirical 
factors in the IPCC default approach are from studies in North America and Europe. For this 
reason, there is a significant lack of data from grasslands in other environments, which may result 
in bias of the estimations of default reference SOC values, or in land use or management factors 
(Petri et al., 2010). An adjustment of these parameters with local data may be required to improve 
estimations (Berhongaray and Alvarez, 2013). Finally, regression-based estimates may be also 
limited in their ability to predict long-term soil C dynamics in a changing environment (Peng et al., 
1998). 

Simple carbon balance equations, that consider decay and humification rates, developed for a 
specific region or environment based on empirical functions, may be included at this level. In these 
types of models, SOC decomposes according to first order kinetics with a rate constant 
represented by an empiric coefficient of mineralisation k2 (year-1), which is assumed to be a 
characteristic of soil and climatic conditions. The amount of carbon that becomes part of SOC 
stocks is estimated from plant carbon inputs (CI), as a function of another empiric parameter, k1 
or ‘isohumic coefficient’, which represents the yield of the transformation into humified carbon 
of the crop residues and is generally characteristic of the type of residues (Andriulo et al., 1999). 
SOC changes in these models follow the Hénin and Dupuis (1945) two compartment approach, 
and may be summarised as: 

Equation 21: 

∆SOC/∆t = k1 x CI - k2 x SOC 
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BOX 6. Extending the lifetime of temporary sown grasslands to increase soil C sequestration – 
French case study 

  Overview: Soil C sequestration by the world’s grasslands could offset GHG emissions. These 
offsets can be partly achieved by grazing management and restoration of degraded lands. 
However, there are considerable effects of climate and management linked to C sequestration 
potential. In grasslands C accumulation mainly happens in the top soil layers (first 30cm), which 
account for 80 to 90% of the variations in the stock. Thus, the nature, frequency and intensity 
of soil disturbance are key factors determining C sequestration potential. In France, cultivated 
grassland have become an important part of agricultural systems in recent decades (e.g. steady 
decline of permanent grasslands; 12.8 Mha permanent and 2.7 Mha temporary in 1980 
compared to 7.4 Mha and 3.2 Mha in 2010). However, these grasslands submitted to frequent 
cultivation are more vulnerable to C losses compared to permanent grasslands; approximately 
20–30% of top SOC (0-30cm) is susceptible to rapid losses due to tillage in the first years after 
grassland installation (0.6 to 1.2 Mg C ha-1 year-1 after ploughing). Limiting the frequency of 
grassland renewal may thus improve carbon sequestration by reducing soil disturbance.  

Approach: The C sequestration potential of temporary grasslands (TG) by extending "life time" 
to 5 years (Pellerin et al., 2013) was estimated. At present, French temporary grasslands are 
divided into six age classes occupying 31% (1 year), 17% (2 year), 17% (3 year), 16% (4 year), 
13% (5 year) and 6% (6 year) of the total TG area (3.14M ha vs. permanent 9.8Mha). Without 
increasing the surface area of TG, we increased TG life-time to five years, for all TGs >4 years, 
for 80% of the TG 3yrs, 65% of the TG 2 yrs and 50% of TG 1yrs. Potential C sequestration was 
estimated by using a Tier 2 (IPCC 2006, see also Dolle and Klumpp, 2015) approach for C stock 
changes (i.e. SOC (t) = SOCref x FLU x FMG (t) x FI (t)) in the 0-30 cm soil layer, where SOCref was 
the mean soil C stock of the French administrative region in 2013, FLU is the land use factor (1 
for temperate grassland), FMG the management factor (0.7 to 1.14 from highly degraded to 
improved grassland) and Fi the input factor (1 to 1.11 for moderate to improved). To simulate 
an extension of "life time" mission factors (FLU x FMG x FI ) were combined varied according to 
grassland age (table below).  

Combined "life time" mission factors (FLU x FMG x FI ) according to grassland age  

Age FLU x FMG x FI Management

1 0.95 Loss of C due to tillage  

2 1 non-degraded grassland  

3 1.05 non-degraded grassland + one or more improvements  

4 1.097 Intensively used grassland (moderate degradation) + 
improvements 

5 1.14 Sustainable grassland management  

 
What the study showed: A lifetime extension of temporary grasslands (i.e. 16% of the TG area) 
increased mean C sequestration potential by 0.26±0.03 t C ha-1yr-1 (-0.002 to 0.5 tC ha-1yr-1 
depending on regional initial SOC stock, % of sown grassland within the total grassland area 
and partitioning of grassland ages). 

Pellerin et al., 2013. Optimisation of grassland management. In: How can French agriculture 
contribute to reducing greenhouse gas emissions? Abatement potential and cost of ten 
technical measures. INRA, France. 92 pp. 
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These kinds of approaches are still widely used to describe or predict carbon evolution in 
different environments and scales (Minasny et al., 2013), and have been the basis for 
other more complex models. However, it has long been recognized that SOC has many 
components or pools varying in stability and turnover rates, and that the value of the 
mineralisation and humification parameters change over time. Hence, the main drawback 
of using this empiric type of approach is that generally these equations are generated for 
specific conditions (soil, climate, management, type of carbon inputs), so they will not 
necessarily perform adequately in different environments or under changes in these 
variables. 
 
 
RECOMMENDATION 25. Level 1 modelling without modification may provide a first indication 
to predict the magnitude or direction of carbon stock changes. Level 1 modelling should be used 
when there is access to data-based factors that have been specifically determined for the 
system of interest (e.g. IPCC factors that can be adapted based on region-specific experiments). 
Users should note that Level 1 models can be used for reporting or claims but the simplicity of 
these models translate into limited accuracy if region specific factors are not used.  
 

6.2.2 Level 2. Soil process models 

Soil organic carbon stocks and changes may be estimated at this level by using models that 
simulate SOC dynamics through time, considering the effects of climatic and soil factors together 
with land use and management variables. Models at this level take account of underlying dynamic 
processes and variables determining SOC stocks and changes by using mathematical functions 
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that describe in detail the physical and chemical processes involved, or by using robust empirical 
functions based on general physical-chemical principles to simulate and integrate different 
processes. 

Many types of models can predict and integrate a variety of variables other than SOC (such as soil 
moisture and temperature) and simulate its impacts on SOC dynamics. They are generally used to 
predict SOC dynamics based on different conceptual C pools or compartments that vary in size via 
inputs, decomposition rates and stabilization mechanisms (each compartment or pool being a 
fraction of SOC with similar chemical and physical characteristics; Stockmann et al., 2013). The 
flows of carbon within most of these models represent a sequence of carbon going from plant 
and animal debris to the microbial biomass, then to soil organic pools of increasing stability. The 
output flow from an organic pool is usually split and generally directed to some type of microbial 
biomass pool, another organic pool and, under aerobic conditions, to CO2 (Falloon and Smith, 
2009). 

At this second level, dynamic, process-oriented, ‘soil-centred’ models are proposed. These models 
take into account previously mentioned SOC processes, but do not simulate other complex 
processes such as plant above or below ground biomass growth, or nutrient dynamics. So, in these 
cases, incoming carbon from plant and animal residues must be estimated elsewhere. YASSO (Liski 
et al., 2005), ICBM (Andren and Kätterer, 1997) C-TOOL (Taghizadeh-Toosi et al., 2014), CANDY 
(Franko et al., 1997) or Roth-C (Jenkinson et al., 1990; Coleman et al., 1997) are some examples 
of this type of models. RothC has been one of the most widely used SOC models in the last 20 
years (Campbell and Paustian, 2015). Although it was originally developed and parameterized to 
model the turnover of organic C in arable topsoils, it was later extended to model turnover in 
other biomes, and to operate in different soils and under different climates (Coleman et al., 1997). 
It has been widely used to simulate C dynamics in livestock systems, including grasslands, 
pastures, savannas and shrublands (e.g. Falloon et al., 1998; Cerri et al., 2003, 2007; Martí-Roura 
et al., 2011; Liu et al., 2011) 

Although these models are more complex than empirical approaches, they have relatively few 
data requirements and it is relatively easy to obtain climatic, soil and productivity data inputs to 
run them. Soil carbon inputs from plant residues and animal excreta need to be estimated, but 
they may be derived from above-ground net primary production, root: shoot ratios, livestock 
efficiencies and harvest, and plant material digestibility (Liu et al., 2011; Poeplau, 2016). However, 
by excluding simulations of plant biomass growth, plant interactions with climatic variables, soil 
water budgets, nutrient dynamics, or GHG emissions other than CO2, these models may have 
limitations for application to specific purposes. For an example of their use, see the case study in 
BOX 7. 

 

BOX 7. Using Models to analyse management strategies in the Flooding Pampa, Argentina 

Overview: The Flooding Pampa is 
the main beef cattle breeding 
region of Argentina, occupying 9 
Million hectares of grasslands, 
characterized by a mild, 
temperate humid climate. This 
lowland region is covered mainly 
by different kind of saline sodic 
soils, which remain waterlogged 
during winter-spring and often 
experience summer droughts. 
Vegetation consists of native 
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grassland extensively and continuously grazed by cattle. SOC levels as high as 60 -75 t C ha-1 
can be found in the top 30 cm in pristine situations or by long term grazing exclusion 
(enclosures). Since the introduction of cattle more than 400 years ago, it has been estimated 
that SOC stocks have decreased by 15-30% (Piñeiro et al., 2006). With appropriate grazing 
systems established, not only is plant community structure improved, but NPP is also increased 
in these grassland soils (Di Bella et al., 2015). Grazing management could be a viable option to 
improve soil quality and SOC stocks in the region.  
 
Approach: A combination of SOC measurements and simulation models was used to analyse 
current and possible future trends in SOC levels under different management strategies at a 
field scale in these ecosystems. Production data (easily accessible to farmers) were used to 
estimate carbon inputs (Soussana and Lemaire, 2014; Liu et al., 2011) for the Roth-C Model, 
which simulated expected SOC stock changes under different management regimes.  
 
What the study showed: The figure shows simulated SOC evolution after 20 years under native 
vegetation (a typical livestock system), and ‘improved’ management (with phosphorus addition 
and a grazing-legume rotation). 
Average SOC levels in Natraquoll 
soils, measured in commercial 
production farms are shown as a 
reference. After increasing NPP, 
‘improved’ systems may raise C 
stocks by nearly 160 kg C ha-1 y-1, 
even when grazed at high 
stocking rates. However, at a 
broader scale, this kind of 
approach should be 
complemented with Life Cycle 
Assessment (LCA) methods 
whenever possible, to properly 
account for CO2 and other GHG 
flows associated with each 
management regime.  
 
Di Bella, C. et al., 2015. Impact of cattle grazing on temperate coastal salt marsh soils. Soil use 
and management 31, 299-307. 
Soussana, J.-F. & Lemaire, G. 2014. Coupling carbon and nitrogen cycles for environmentally 
sustainable intensification of grasslands and crop-livestock systems. Agriculture, Ecosystems 
and Environment 190, 9-17 
Liu, D. et al., 2011. Simulation of soil organic carbon dynamics under different pasture 
managements using the RothC carbon model. Geoderma 165, 69-77.   
Piñeiro, G. et al. 2006. Potential long-term impacts of livestock introduction on carbon and 
nitrogen cycling in grasslands of Southern South America. Global Change Biology 12, 1267-
1284. 
 

 

RECOMMENDATION 26. Level 2 modelling should be used when regional factors for SOC change 
and factors affecting the change (e.g. humification coefficients) are not available, but data about 
plant carbon inputs and environmental parameters affecting carbon losses, that are needed to 
feed the model, are available.   

 

Soil organic carbon (SOC) evolution under different 
management regimes, as simulated with the Roth C model. 
The squares show the average SOC level measured in a 
series of farmer’s fields with different management.  
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6.2.3 Level 3. Ecosystem models 

At this level, the use of dynamic, process oriented, more complex and locally calibrated SOC 
models is proposed. As in ‘level 2’ models, SOC changes in time are simulated considering the 
effects of climate, soil, land use and management variables on SOC dynamics. However, 
‘Ecosystem Models’ also integrate these variables to simulate soil processes other than carbon 
turnover that may have a direct or indirect impact on SOC dynamics. Thus, ‘Ecosystem Models’, 
using different sub-models, simulate above and belowground plant biomass growth and carbon 
inputs, soil water dynamics, nutrient dynamics and their interactions. Models at this level 
generally simulate carbon fluxes through different organic pools in the soil: soil active carbon 
(plant litter or residues, microbial biomass), slow organic carbon and passive or inert carbon. Each 
pool has different specific decomposition rates, regulated by the pool size, soil characteristics, 
nutrient availability, soil temperature, and soil moisture, which in turn depend on the plant 
growth, soil water budget and nutrient dynamics simulated by the model. 

There are a range of existing Ecosystem models for estimating SOC including: EPIC (Williams et al., 
1984), CENTURY (Parton, 1996), DNDC (Li, 1996), DAISY (Svendsen et al., 1995) and SOCRATES 
(Grace et al., 2006). There are also examples of ‘level 2’ models which have been incorporated 
into ecosystem or farm models, such as ICBM in HOLOS (Kröbel et al., 2016), which was developed 
to estimate SOC changes and whole-farm greenhouse gas emissions (see case study in BOX 8). 
Other widespread ecosystem models like DSSAT (Jones et al., 2003) and APSIM (McCown et al., 
1996) have also incorporated SOC subroutines. Finally, there are different examples of ecosystem 
simulation models, specifically oriented to livestock systems, able to simulate SOC dynamics, such 
as the ECOMOD Suit (including EcoMod, DairyMod, and SGS Pasture models; Johnson et al., 2008) 
and PaSIM (Riedo et al., 1998; 2000). 

Tested using long-run data sets and locally calibrated, these ‘ecosystem models’ generally show a 
good ability for predicting SOC dynamics across a range of land use, soil types and climatic regions 
(Smith et al., 1997). However, model calibration and validation of the different subroutines or 
parameters play a major role in influencing their predictive ability, but auxiliary data can 
sometimes be difficult to measure, costly, time consuming and highly variable. Models at this level 
have higher soil, climatic and management data requirements, which may be difficult to obtain. 
Moreover, carbon pools or compartments simulated by these models are usually theoretical 
without measurable counterparts, making it difficult to initialize the models and validate model-
calculated results (Falloon and Smith, 2009). Ecosystem models offer the potential to simulate 
SOC stocks and SOC dynamics for a wide range of purposes, but they are not always the most 
appropriate tool, thereby requiring careful consideration when deciding on the approach.  
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BOX 8. Including soil carbon change assessment in whole-system footprint analysis of a 
Canadian dairy farm  

Overview: A new carbon model approach was used in a 
whole-farm dairy assessment to evaluate the effect of 
forage source on the GHG intensity of milk production 
(Little et al., 2017). In a companion research study, 
feeding corn silage rather than alfalfa silage to dairy cows 
lowered enteric CH4 emissions. This prompted us to 
investigate the net effects of a change in forage 
management on total GHG emissions for a 60 cow dairy 
farm. Holos, a whole-farm GHG model developed by 
Agriculture and Agri-Food Canada (http://www.agr.gc.ca/holos-ghg), was used to estimate 
net emissions of CO2, CH4, and N2O (in CO2 equivalents). 
 
Approach: To estimate effects on soil carbon change, we used the Introductory Carbon 
Balance model (Andrén and Kätterer, 1997) with carbon simulations beginning at equilibrium 
(in 1985 before Canadian cropping systems started to diversify), thus providing an estimate 
for the effect of the management decision. 
 
What the study showed: The study showed that total GHG emissions were slightly greater 
with corn silage, and thus milk GHG intensity was slightly lower with alfalfa than with corn 
silage (1.11 vs. 1.12 kg CO2eq/kg fat and protein corrected milk, respectively). However, 
alfalfa silage required 5 ha more land. When taking the carbon modelling approach into 
account (comparing 4 year corn silage – 4 year mixed hay versus 4 year alfalfa silage – 1 year 
barley silage rotations), the corn silage based system kept losing soil carbon (~2000 kg C ha-1 
30yr-1), thus adding about ~23 Mg CO2eq yr-1 to the >2000 Mg CO2eq yr-1 whole-farm GHG 
emissions. The alfalfa silage system, however, stored carbon (~1.9 Mg C ha-1 30yr-1), thus 
reducing the whole-farm GHG emissions by ~320 Mg CO2eq yr-1 (16%).  
 

 
 
This simulated carbon change will, however, 
diminish over time, which is why it is reported separately from the total of GHG emissions.  
 
Andrén, O. and Kätterer T.  1997. ICBM: The Introductory Carbon Balance Model for 
Exploration of Soil Carbon Balances. Ecological Applications, 7,1226-1236  
Little, S.M., Benchaar, C., Janzen, H.H., Kröbel, R., McGeough E. J., & Beauchemin, K.A. 2017. 
Demonstrating the effect of forage source on the carbon footprint of a Canadian dairy farm 
using whole-systems analysis and the Holos Model: Alfalfa silage vs. Corn silage. Climate 5, 87 
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RECOMMENDATION 27. Level 3 modelling shall be used when the objective is to integrate the 
feedbacks from multiple soil-plant-atmospheric processes on SOC dynamics. They should be used 
to investigate multiple impacts between agricultural management, crops and soils and to estimate 
the impacts of climate change feedbacks between crop productivity and SOC dynamics. They may 
be used to estimate the trade-offs between SOC change and other environmental indicators. 

 

6.3 Deciding on the approach 

In general, the choice for a specific modelling approach may depend on the purpose, available 
resources (time, computer capacity and data) and expertise of the agent. Most models are freely 
downloadable or can be obtained from the developer, usually together with useful handbooks. 
Thus, the model as such should not be a limiting factor. As a rule, the level of complexity of the 
chosen modelling approach chosen should be aligned with the overall context. For example, if 
SOC is only one component that needs to be considered in holistic multi-component budgets, 
such as whole-farm greenhouse gas budgets (see the case study of the Holos model in BOX 8) 
(Bolinder et al., 2006), a level 3 approach might not be the most feasible solution. This is because: 
(i) SOC stock changes are not the major part in such a budget and thus less accurate prediction of 
SOC stock changes might not be critical for the overall budget and, (ii) the level of detail of input 
data in the overall context is most likely not good enough to achieve more realistic results using a 
level 3 approach as compared to lower level approaches.  

Level 3 approaches have the potential to be most accurate, but for that they require detailed site-
specific calibration data. In many cases, this will not be available. Therefore, often a level 2 
approach may be more suitable. On the other hand, one major feature of level 3 approaches is 
indispensable in certain situations: the ability to simulate vegetation dynamics. In general, as a 
stand-alone, only level 3 approaches can simulate climate change scenarios, since not only 
processes in the soil are modified by climate, but also responses of the vegetation need to be 
considered (Parton et al., 1995). For the same reason, it may make sense to use a level 3 model 
when trends in SOC dynamics are to be estimated without having any information on the 
productivity, i.e. plant-derived carbon inputs to the soils, at a specific site. Again, filling such 
essential data gaps with simulations should however only be considered when sufficient data (for 
example climate and soil data) are available to parameterize the ecosystem model. Otherwise a 
rough estimate of carbon inputs, i.e. derived from agricultural statistics in combination with 
average allocation coefficients might be just as accurate (Andrén et al., 2004). 

The following two tables provide guidance in deciding which modelling approach might be most 
suitable for a certain purpose at a certain scale. In the first table, several purposes, which might 
be the most relevant, are listed. For each purpose, a measure of validity of the modelling approach 
is assigned to each of the three levels of complexity.  

In Table 4, red indicates that the respective level should not be considered at all, yellow indicates 
a general validity of the level with limited accuracy and potentially limited acceptance and green 
indicates that the level is valid and common practice for the respective purpose.   

For both level 2 and level 3 approaches, it should be noted that the most commonly applied 
models (as listed in Table 4) were parameterized and calibrated in a temperate climate, often only 
at one experimental site. Thus, especially when applied in a subtropical or tropical context, the 
user should ensure that the model has been validated for those conditions, by searching for 
alternative parameter sets or recalibrating and/or validating the model. As an example, (Shirato 
et al., 2004) changed the decomposition rate of one SOC pool of the RothC model to improve the 
model performance for Japanese Andosols. More detailed guidance on model calibration, 
validation and uncertainty, notably with the use of Monte Carlo approaches, can be found in the 
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appendix 2. Recently, Brilli et al. (2017) have reviewed the strength and weaknesses of many agro-
ecosystem models and give additional guidance for deciding on the approach. 

Table 4. List of modelling purposes with the validity of the three modelling approaches (levels) 
indicated by different colours. Red= invalid, yellow= limited accuracy and limited acceptance, 
green= valid and common practice.  

Model purpose Level 1 Level 2 Level 3 

National accounting    

Comparing management practices    

Optimizing ecosystem services  

Climate change Scenarios    

Benchmarking    

Life Cycle Assessments    

Cross Compliance (including other GHGs)    

2-3D modelling (depth profile, lateral fluxes)  

Upscaling    

Commercial farm assessment    

 

 

RECOMMENDATION 28. The choice of modelling approach should consider the purpose and 
spatial scale of the study, as well as the availability of quality data to run the model. The 
complexity of the model should be aligned to the context, but the simplest, locally validated 
model is preferred. Internal calibration of a model (based on region-specific data), where model 
“factors” are adapted based on experiments, leads to more accurate results, regardless of the 
level of assessment. 

Table 5 summarizes frequently-applied spatial scales and uses of well-known SOC models used 
for livestock systems, as well as their data requirements, as a guide for the decisions on the 
approach. More information on the advantages, potential uses, and disadvantages / limitations 
of each type of approach is mentioned in sections 6.2.1 and sections 6.2.3. 

Table 5. An overview of the most common models used in livestock systems, the spatial scale at 
which the different approaches are usually applied and a summary of the minimum data 
requirements for running the models. 

  Level 1 approach: 

Empirical models 

Level 2 approach: 

Soil process models 

Level 3 approach: 

Ecosystem models 

Models used in 
livestock 
systems 

IPCC (Tiers 1-2) ROTH- C 

ICBM 

CANDY 

C-TOOL 

CENTURY-DAYCENT 

DNDC 

EPIC-APEX 

DAISY 

SOCRATES 

APSIM 
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PASIM 

Frequently used 
spatial scale 

Farm 

Regional 

National 

Global 

 

Research plots 

Field/Farm 

Regional 

National 

Research plots 

Field/Farm 
(experimental) 

Landscape 

Regional 

National 

General data 
requirements 

Climatic Region 

Soil type 

Land use 
(management 
coefficient or 
factors) 

Initial SOC stock 
(may be estimated) 

 

Climatic variables (e.g. 
monthly precipitation, 
air temperature, PAN 
evaporation). 

 

Basic Soil parameters 
(e.g. % Clay, bulk 
density) 

 

Initial SOC stock (may 
be estimated) 

 

Management variables 
(e.g. carbon inputs, 
residue quality, soil 
cover, manure inputs, 
type of tillage). 

Climatic variables (e.g. 
rainfall, max /min air 
temperature). 

 

Soil parameters (e.g. % 
clay, silt, sand, bulk 
density, pH. Some 
models may require 
water constants and 
CEC). 

 

Initial SOC stock (may be 
estimated),  

 

Initial nitrogen or other 
nutrient contents. 

Management variables 
(e.g. rotation, tillage, 
fertilizers, manure, 
irrigation, residue 
management / crop 
cover, grazing 
management). 

 

6.3.1 Technical capacity and activity data 

A model of a system must balance the conceptual understanding the model is intended to 
represent, the mathematical approach that best represents that understanding and the data 
available to inform and evaluate how the model functions, within the constraints of available 
computational capacity (Campbell and Paustian, 2015). Precision of models relies heavily on the 
quality and quantity of data used in executing them. Often, the datasets for running models are 
not collected for that specific purpose but taken from previous or ongoing studies. In many cases 
the format and amount of data may be inappropriate for the models. A lot of data are collected 
that cannot be integrated to support testing models, partly because they are collected at different 
times and are not available to other parties. The absence of meta-data in most datasets, make it 
near impossible to use beyond the project it was intended for. 
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Availability of data notwithstanding, there are situations where data shortages can be addressed 
by using proxy data variables. The technical capacity to identify and process these alternative 
sources of data is a frequent limitation. Modelling requires complex and often expensive software, 
which limits interest and capacity in conducting modelling studies. In many developing 
economies, power outages can make it difficult for researchers to execute modelling operations. 
This is further compounded by the tendency to make policy decisions that give no priority to data. 
This makes funding for data collection extremely difficult and hence the tendency to rely on 
secondary data sources. 

Networks for collaborative data sharing can improve data access and, therefore, model 
predictions. North-South collaborative programmes between experts and young scientists can 
offset some of the limitations associated with inappropriate data from different studies or 
locations. 

 

RECOMMENDATION 29. Significant investment should be made in improving and engaging 
existing modelling expertise in making decisions for validation, calibration and implementation of 
selected models. This includes setting up input data to reduce uncertainty for sound scientific 
practice for the specific application. Users should recognise that without this investment, using a 
model carries a large risk that project results will not be accepted upon professional review.  

 

6.4 Implementation 

6.4.1 Data availability 

Several international soil and climate databases are available for model input. A few key examples 
are provided in Table 6. Availability of data is an important factor to consider when deciding on 
implementing a modelling approach for terrestrial ecosystems. For some situations, local data 
may be available. 

 

Table 6. A few international soil and climate databases are available for model input. 

Type of 
data 

Source Web link Comments 

Soil data ISRIC – Global 
Soil Data 
Facility 

https://www.soilgrids.org/#!/?laye
r=TAXNWRB_250m&vector=1  

 

Web app that provide free 
access to soil data across 
borders 

Soil data The World Soil 
Information 
Service 
(WoSIS) 

http://isric.org/explore/wosis/acce
ssing-wosis-derived-datasets  

 

 

http://data.isric.org/geoserver/w
osis_snapshot/wfs 

http://data.isric.org/geoserver/w
osis_latest/wfs 

 

WoSIS aims to serve the user 
with a selection of 
standardised/ harmonised soil 
data 

 

Links to the data 
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Soil data Harmonized 
World Soil 
Databases 

http://www.fao.org/soils-
portal/soil-survey/soil-maps-and-
databases/harmonized-world-soil-
database-v12/en/ 

 

A 30 arc-second raster 
database with over 15,000 soil 
mapping units combing 
existing regional and national 
updates of soil information 
worldwide (SOTER, ESD, Soil 
Map of China, WISE) with the 
information contained within 
the 1:5 000 000 scale FAO-
UNESCO Soil Map of the World 

Soil data FAO: Global 
Soil Organic 
Carbon Map 
(GSOC) 

 

http://www.fao.org/global-soil-
partnership/pillars-action/4-
information-and-data/global-soil-
organic-carbon-gsoc-map/en/ 

 

 

Climate 
data 

NASA https://catalog.data.gov/dataset?g
roups=climate5434&#topic=climat
e_navigation  

A very large repository of 
dataset sorted by themes 

Climate 
data 

FAO CLIMWAT 
Databases 

 

http://www.fao.org/land-
water/databases-and-
software/climwat-for-cropwat/en/ 

 

A climatic database to be used 
in combination with the 
computer program CROPWAT 
allowing the calculation of crop 
water requirements and 
irrigation scheduling for 
various crops for a range of 
climatological stations 
worldwide. 

CLIMWAT provides long-term 
monthly mean values of seven 
climatic parameters 

Climate 
data 

Cru (Climate 
Research Unit) 
databases 

http://www.cru.uea.ac.uk/data Gives monthly gridded data on 
temperature and precipitation 
at global scale or the period 
1901-2016 (temperature since 
1850) on a 0.5° * 0.5° grid basis 

 
Guidance on the different types of data that will be needed should be considered. Some 
categories are listed below. 
 

1. Input data. The input data, sometimes referred to as forcing data (referencing climate 
forcing), are the data that a model is fed with to predict an outcome. 
 

a. Environmental data. The most obvious set of environmental data is meteorological forcing 
data, with another main one being spatially explicit soil properties. One must consider if there 
are sufficient meteorological data for a given model application. Registered meteorological 
data may be incomplete and so implementing gap-filling procedures may be necessary. The 
model may also be used in predictive mode, in which case simulated climate data from General 



72 
 

Circulation Models must be downscaled to the proper spatial and temporal resolution before 
being used in models (e.g. Rasse et al., 2001). Therefore, environmental input data may be 
either directly measured, or gap-filled with simpler models, or simulated. 

 

b. Management Data. In the case of managed ecosystems, the history of site management is 
crucial for accurate simulation of environmental responses. Are C fluxes and stocks in 
equilibrium with current management practices? For example, recent land-use change will 
have a critical impact for many years on the C dynamics of grasslands. Similarly, scenario/data 
on the planned future management of the grasslands shall be clearly defined for predictive 
simulation exercises. Management data specific to pasture include e.g., first date of grazing, 
grazing frequency, proportion left ungrazed at each grazing event, animal stocking rate (i.e. 
LSU/ha, heads/area), fertilization rate, fertilizer type (mineral vs organic) and harvest dates (if 
mown).  

 

c. Initialization data. Dynamic mechanistic models are generally based on simulating the 
evolution of “pools”, e.g. C pools (SOC in each horizon, root C, above-ground biomass, etc.). In 
most cases, when a simulation is conducted, these pools need to be given an initial value. It is, 
therefore, critical that these pools are correctly quantified for initializing the simulations. 
 

2. Parameters are data needed to adapt the model equations to describe the ecosystem. In 
practice, different grass species (i.e. fertile productive to poor unproductive, tall grass vs short 
grass, legume fraction, C4/C3) and cultivars grow differently under the same set of environmental 
conditions. A classic example of the need for parameterization of model equations is the 
photosynthesis model of Farquhar et al. (1980). This model, and its later refinements (de Pury and 
Farquhar, 1997), describe photosynthetic CO2 uptake as a function of a mechanistic 
understanding of photosynthesis at the molecular level as it happens in the leaf. This model, 
quoted more than 4300 times as of 2017, is the CO2 uptake engine of numerous ecosystem 
models. However, specific parameters are needed for individual species and possibly for local 
populations. For example, Rasse et al. (2003) modelling the effects of elevated CO2 on wetland 
vegetation in Maryland needed 19 parameters for parameterizing the photosynthesis model, out 
of which 7 were from general literature and 12 specifically measured at the site. In practice, the 
question is generally to assess if the predefined parameters in the model are sufficient to generate 
accurate simulations of plant and soil C pools. If not, specific model parameters might need to be 
measured, or more generally, fitted with existing calibration data. 

 
3. Test data are the data being predicted by the model, in our case SOC stock and changes. Test 
data may be divided into calibration data that have been used in the parameter estimation and 
validation data that are independent and different from calibration data. Both data are of the 
same type but may be for different sites or periods. To sufficiently calibrate a model, it is 
important that the calibration data be chosen carefully to cover the range of conditions/stresses 
over which the model will be used, for instance the range of seasonal precipitation or 
temperature. When satisfactory calibration runs are obtained, the model needs to be validated 
on an independent dataset.  

Availability of any of these three main categories of data may be the limiting element in applying 
a given modelling approach. Application of a full ecosystem model for pasture with the aim of 
modelling soil C requires an interdisciplinary approach where data from different sources are 
used. In many instances, meteorological data and soil-property maps may be available, but 
parameters may not be available for plant growth and biomass production for local varieties of 
the pasture species. A minimum amount of soil carbon data are also necessary to calibrate and 
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validate the model before it can be safely used to extrapolate the effect of pasture management 
on soil carbon content in the farm / region / country of interest. 

 

RECOMMENDATION 30. Data availability for both model input parameters and to test model 
outputs shall be investigated before choosing a modelling approach. 

 

6.4.2 Initialization of the model  

6.4.2.1 Initialisation challenges and approaches 

Initialisation refers to setting the initial SOC condition at the start of the period over which SOC 
stocks will be estimated for level 2 and 3 models. The goal of initialisation is to have the 
appropriate SOC amount at the start of the simulation so that further simulated results are a 
realistic estimate of SOC stock in response to the input vegetation characteristics, land 
management and weather. 

When the initial SOC amount is known, either from measurement or from assumptions based on 
soil survey or other soil information, model initialisation involves having the model start with the 
known initial SOC. For common models, one does not know the exact distribution of initial SOC 
among the different pools in the model. If the pools are not in coherent proportion with past SOC 
dynamics, there will be rapid changes to SOC while the pools adjust to a coherent proportion. To 
avoid this artefact of initialization, the standard procedure is to have a spin-up (or warm-up) 
period of model operation so the pools are in approximate equilibrium with the initial conditions 
regarding vegetation and land management. The length of the spin-up period needed to approach 
a steady state pool distribution varies depending on the model but typically is from 10 to 100s of 
simulated years. If the SOC after the spin-up period is substantially different from the known initial 
SOC, then some calibration is warranted. Often, the C input is adjusted so that the modelled initial 
SOC matches known SOC. Available information of C input from the vegetation from similar 
situations is useful to help set the limits of possible C inputs. If adjusting C input is not successful, 
the next option is to calibrate the fundamental model parameters affecting C dynamics so that 
modelled initial SOC equals known SOC. Calibration of C-dynamics parameters is more 
challenging. If the model C-parameters are changed, these new values shall be used for further 
modelling from that initial SOC and would warrant further validation.  

If the initial SOC is not known, the only option is to have the model estimate the initial SOC. In this 
case, the spin-up period will typically be 1000s of years. The estimated C input will be critical to 
determining the modelled SOC amount. Therefore, available information of C input from the 
vegetation from similar situations is useful to help either set the C input (level 2 model) or adjust 
the vegetation growth parameters to match C input for the modelled situation (level 3 model). 

An assumption of the above initialization schemes is that the baseline condition is at or 
approaching steady state. However, the soil may not be near steady state in the baseline condition 
(Wutzler and Reichstein, 2007). Basso et al. (2011) advocated using C inputs and land 
management to follow known land use and management history. These may be most practically 
estimated from general historical information and expert opinion (Ogle et al., 2007). Knowledge 
of distant history is likely limited, but it is the more recent history that is of greater importance to 
pool sizes. Therefore, an option is to initialise with a multi-thousand-year equilibrium model spin-
up based on estimated historic land use conditions to the point in time when there is sufficient 
knowledge of land use change and management history to include in the later period of the spin-
up modelling until reaching the desired baseline year.  



74 
 

Finally, in some cases it can make sense to initialize the model with measured SOC pools as 
obtained by means of SOC fractionation (Wiesmeier et al., 2016). This has the advantage, that the 
steady-state assumption is not necessary, but has the disadvantages that i) obtaining the initial 
pool distribution is very elaborate and can only be performed for a limited number of samples 
and ii) a direct ‘functional’ link between measured and modelled does not exist for many models 
(Zimmermann et al., 2007).  

Further details of approaches to model initialization are given in Appendix One.  

 

RECOMMENDATION 31. The amount and type of SOC shall be used to initialise the model to 
produce reliable estimates of SOC amount over the simulation period. Good estimates of the  SOC 
and C input from the vegetation and land use and conditions for many decades prior to the 
simulation period should be used to improve the ability to accurately predict the initial SOC, by 
calibrating model parameters where needed. 

  

6.4.3 Validation of results 

Model validation is the process of determining the degree to which a simulation model is capable 
of accurately representing the real world for a set of model applications. Thus, the term validation 
is used here for the comparison of model output with measurements. A valid model is one that 
generates predictions that are consistent with real-world observations (Oreskes et al. 1994) or 
lies within acceptable limits or errors (Refsgaard et al., 2005). Validation of models is a continuous 
process in which the model is checked in different conditions, with newly developed knowledge 
and needs. Bellocchi et al. (2010) identified the following issues to be considered when 
performing the model validation: 

1. Validation purpose: there may be different purposes for model validation. These could include 
the assessment of the accuracy of the estimates with respect to the reality, how confident we can 
be in model results, or the behaviour of the model in specific applications (e.g. how the model 
responds if we change conditions of simulation). 

2. Model predictions: the use of models for prediction involves a series of problems for validation, 
as data required to quantify the accuracy of the estimates do not yet exist. Predictions become 
increasingly uncertain as we look at a time horizon in the distant future. Nonetheless, predictive 
models can be validated if they explain past events (ex-post validation) (Bellocchi et al., 2010). 
Validation assumes a fundamental importance in the definition of the limits and conditions in 
which the model can be confidently applied. 

3. Model complexity: the level of complexity of the models influences the type of assessment that 
can be carried out. Often the comparison of the model with the measured data only applies to 
certain output (e.g., yield or SOC). However, when the complexity of the model is high, and it 
consists of many sub-models, each of which simulates a part of the process, the assessment 
should take account of this and the individual sub-models should be validated. The other way to 
deal with this is to give models a penalty for each variable (e.g., Akaike information criterion). 
Validating all sub-models could be very onerous and is not recommended. 

4. Data accuracy and quality: accurate data is a fundamental requirement in modelling. In fact, 
the confidence in simulation results depends not only on the accuracy with which the algorithms 
of the model are able to predict the behaviour of the studied process, but also on the quality of 
both the input data and the data used for validation of outputs. Random errors arise from data 
sampling, i.e. data may not adequately represent temporal and spatial variability, and sample 
handling. Systematic errors may be due to incorrect calibration of instruments used to collect 
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input data, inadequate sampling design (i.e. lack of representativeness of data) or using proximal 
data. All these factors shall be considered in the process of validation. 

5. Robustness of model results: the capability of a model to preserve its accuracy under different 
experimental conditions. 

Common measures of model performance used for validation include the coefficient of 
determination (R2), the Nash-Sutcliffe model efficiency (ME) (Nash and Sutcliffe, 1970), the d-
index of agreement (Willmott, 1982), average relative error fraction (ARE), and the root mean 
square error (RMSE) determined using Equations 23-27: 

Equation 22: 

 

 

Equation 23: 

 

 

Equation 24: 

 

 

Equation 25: 

 
 

Equation 26: 

 

 

Where: 

 Pi is the predicted (modelled) value,  

Oi is the observed value,  

n is the number of measured values,  

Ō is the average of the observed values, and  

 is the average of the predicted values. 
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Frequently, several measures are considered together for validation:  

● The R2 is a representation of the success of predicting the dependent variable from the 
independent variables using regression analysis (Nagelkerke, 1991).  

● The ME has a maximum value of one (perfect agreement), and a value below zero indicates 
that the model does not explain any part of the initial variance.  

● The d-index is a dimensionless measure between 0 and 1 and with the following 
recommended criteria: d ≥ 0.9 indicates there is “very good” agreement; 0.8 ≤ d < 0.9 is 
considered as “good” agreement; 0.7 ≤ d < 0.8 equates to “moderate” agreement; and, d < 
0.7 suggests there is “poor” agreement between measured and predicted values (Willmott 
and Matsuura, 2005).  

● ARE% can be used to determine whether the model overestimates or underestimates 
measured values (Yang et al., 2014).  

● The RMSE is useful to compare the divergence between model-produced estimates with 
independent, reliable observations and is one of the most widely reported error measures 
in environmental literature (Willmott and Matsuura, 2005). The RMSE, expressed as 
percentage of the mean of the observed values, should be within the 95% confidence 
interval from the measurement. If the simulation is within this interval, the accuracy of the 
model can be considered good. If the RMSE% is outside the 95% confidence interval, the 
model should be improved. 

 
The model performance for the data used to calibrate model parameters or inputs (see section 
6.5.3) is invariably affected by adjustment of the parameter values to account for the 
idiosyncrasies of specific site characteristics, as well as those of the measured input and output 
data. Therefore, the model performance against the calibration data is considered biased 
positively. To protect against the potential bias of better model performance for observations 
used for calibration observations, it is common practice to use only part of the available data for 
calibration. The remainder of the data is used for validation only, to assess quality of the model 
performance and to estimate its uncertainty. Where there is limited observed data (such as when 
data from only one site are available), then the observed data may be divided into one period for 
calibration and another period for validation. Furthermore, uncertainties of the measured values 
used for validation are often neglected and modelled values are validated against measured 
means. Guest et al. 2017 thus proposed to account for measurement uncertainty when evaluating 
model performance.  

 

RECOMMENDATION 32. Before any other evaluation, preliminary model results should be 
graphed to see if they look approximately similar to the measured values. Once the model output 
appears to give a good simulation of the measured data, a full evaluation should be performed.  

 

6.5 Uncertainty and sensitivity analysis  

6.5.1 Sensitivity and uncertainty - Introduction 

A model is an abstraction of the real world. Therefore, imprecision in input and within the model 
itself leads to estimation uncertainty. There are two main sources of uncertainty: uncertainty of 
modelled system inputs and model uncertainty.  

Uncertainty of modelled system inputs can be quantified as the deviation between a “true” input 
value (that we don’t usually know with certainty) and the value used for input. This uncertainty 
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includes measurement error and natural variability. Due to natural variability we have imprecise 
knowledge of the value of natural inputs (weather, plant growth, animal behaviour, etc.) 
throughout the physical and time dimensions of the modelled system. Consequently, the input 
data has inevitable uncertainty. Our knowledge comes from measurements but there are errors 
in those measurements. These errors may not always be random, so that our knowledge from 
measurements can be biased. Similarly, we have imperfect knowledge of the initial system state 
(SOC, vegetation, animals, etc.) that is an important input to model the real system.  

Model uncertainty can be quantified as the deviation between “true” output value (that we don’t 
usually know with certainty) and the estimated output value from the model with all inputs 
without error. This uncertainty arises from model structural uncertainty and from model 
parameter value uncertainty. Structural uncertainty is the imperfect knowledge that the real 
system is adequately represented in the model conceptualization. Parameter value uncertainty is 
the imprecise knowledge of the correct value for the parameters that determine that model 
estimations. Observed system behaviour, such as SOC stocks over time, that is used for model 
parameterization also has an uncertainty. Observed system outputs are subject to both 
measurement error and natural variability. Output uncertainty contributes to the imprecision in 
our knowledge of model performance and so is a component of model uncertainty (Ogle et al., 
2010).  

Structural uncertainty is the most troubling uncertainty because, if the processes are not correctly 
represented, reducing the uncertainty of inputs will not substantively improve the estimation. 
Parameter calibration alone cannot be expected to overcome incorrect process representations 
for all potential model applications. In practice, there is no way to know exactly the amount of 
structural uncertainty. The model computer code can be verified to determine that it truthfully 
implements the model as conceptualized, but that does not verify the truthfulness of the 
conceptualization itself (Refsgaard and Henriksen, 2004). The conceptualization, as represented 
by the parameterized model, can be validated to the extent that it has been substantiated that 
the “model, within its domain of applicability, possesses a satisfactory range of accuracy 
consistent with the intended application of the model” (Refsgaard and Henriksen, 2004). 
Therefore, the decision as to whether a model has been successfully validated is inherently 
subjective. Further, there is no universal validation for all potential model applications, only for 
specific domains. The degree of confidence in the credibility of the model increases with the 
number of successful site validations that meet or exceed the desired performance criteria for the 
desired domain of application (Hansen et al., 2012). Therefore, all other considerations equal, it 
is best to use the model that has the most successful site validations for conditions similar to the 
intended domain of model application.  

Model prediction uncertainty includes all sources of uncertainty that affect predictions, including 
model structural uncertainty and input data uncertainties, including those of initial conditions. 

A particular concern for applying SOC models to grazing systems is that our estimates of C inputs 
are typically uncertain. Using the RothC model, it has recently been demonstrated for grasslands 
that plant-derived carbon input is the most uncertain parameter and the parameter to which the 
model is most sensitive (Poeplau, 2016). The major part of plant-derived carbon inputs in 
grassland systems is derived from roots. Due to difficulties in determining this parameter directly, 
it has to be estimated, which is usually done by literature-derived, above-ground yield-based 
allocation coefficients (Bolinder et al., 2007). However, yield or aboveground net primary 
production is a typically highly uncertain parameter in grassland ecosystems. In a global modelling 
study, the performance of models was tested for simulating NPP of grasslands and it was found 
that the model ensemble was highly uncertain, in part due to uncertainty of observations 
(Ehrhardt et al., 2018) but also due to the difficulty in characterizing diverse grassland systems. In 
contrast to croplands, farmers are usually not specifically interested in grassland yields. 
Furthermore, the coefficients to estimate belowground carbon allocation in relation to 
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aboveground carbon allocation can strongly vary and are thus highly uncertain. Finally, the 
proportion of belowground biomass that turns over annually, as well as the amount of carbon 
that is released by roots as exudates, are highly uncertain. The grazing management effects are 
also not always easy to quantify but may stimulate or damage plant growth, and/or change the 
species composition of the pasture. The grazing regime itself can also change the amount of NPP 
and its partitioning and this effect is hard to include in C input estimates for level 2 models or for 
vegetation growth characteristics for level 3 models. Thus, the probability of estimating correct C 
inputs is very low, even if data for aboveground NPP is present. In turn, carbon inputs do strongly 
determine simulated trends in SOC stocks. Calibration of C inputs during initialization, so that a 
known amount of initial SOC is modelled may be a useful means to improve estimates of C input 
(see Appendix 1), or at least can improve the estimated amount of C input relative to the modelled 
C losses from decomposition. An important consequence of the relatively poorer information on 
C input for grazing systems than cropping systems is that SOC models well validated for modelling 
cropping systems cannot be assumed to be valid for modelling nearby grazing systems. 

Figure 11 depicts uncertainty of, and model sensitivity to, basic parameters needed to run most 
SOC turnover models. An intermediate spatial scale such as one or several farms was chosen, for 
which initial SOC stocks have been determined at representative points. It indicates, that not all 
parameters that are highly uncertain necessarily have a high potential to cause misfits. The 
different colours were chosen to illustrate the relevance of the combination of uncertainty and 
sensitivity for the model result with red being very relevant, yellow being intermediately relevant 
and green being less relevant. An example might be the timing of carbon input. Most models need 
this information, while especially for livestock systems it might not be available (high uncertainty). 
However, the long-term trend in SOC stocks (>1 year) is not influenced by how the total carbon 
input is distributed between months. Therefore, this highly uncertain parameter is not very 
relevant for the model result. The opposite example is climate data. Depending on the area, the 
nearest weather station might be within a few kilometres, so data that come close to the actual 
site conditions can be obtained. The uncertainty of climate data is thus relatively small, while the 
model sensitivity to climate parameters is very high. Together with carbon inputs and climate 
data, SOC models are most sensitive to initial SOC stocks. In the example, the latter have been 
measured as a baseline. If this is not the case, this parameter would be shifted into the “red area”. 

Technical guidance on advanced Monte Carlo methods to estimate the uncertainty of model 
predictions can be found in Appendix two. 
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Figure 11. Scatter plot showing uncertainty of, and model sensitivity to, basic parameters 
needed to run most soil organic carbon turnover models. In the scale from one to ten, one 
indicates very low, ten indicates very high. Parameters in the green fields are thereby most 
often less problematic, while parameters in the red area are often problematic due to high 
uncertainty and high model sensitivity. Model sensitivity estimation is based on the RothC 
model (modified from Poeplau, 2016).  

 

RECOMMENDATION 33. To minimize model uncertainty, the model shall be validated for the 
conditions (e.g.: country or climatic zone) in which it will be applied when possible. If a model is 
not validated for the region of interest, the model should be calibrated using local time series of 
SOC stocks. Thereby, only a limited number of parameters should be modified and only those that 
do not have many interdependencies with other parameters. Guidance on model calibration and 
validation and advanced methods of sensitivity and uncertainty analysis can be found in the 
appendix of this document. Because soil carbon turnover models are most sensitive to initial SOC 
stocks and carbon inputs, a measured baseline of SOC stock shall be used whenever available, and 
C inputs should be estimated as accurately as possible. 

 

6.5.2 Sensitivity analysis 

Sensitivity analysis is usually done initially using the one-at-a-time (OAT) approach where only one 
variable is changed and all others held constant at their assumed most representative value 
(Wang et al., 2016). Sensitivity analysis by OAT is useful to identify the subset of most influential 
variables and parameters for further analysis. 

Sensitivity analysis requires that model output is produced over the range of the variation in input 
or parameters. If the variation is overestimated, the sensitivity will also typically be overestimated 
while underestimation of the range underestimates the sensitivity. Therefore, care is needed in 
selecting the range. For input variables that are widely measured, such as meteorological 
variables, there is often a good understanding of the expected variation. Consequently, the 
sensitivity analysis forces the model user to describe the uncertainty of those variables. The more 
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uncertain variables and parameters have a higher relative variation, though that does not 
necessarily infer that the model is most sensitive to more uncertain variables and parameters. For 
example, processes that are supply limited, such as total annual decomposition of very labile 
organic matter, may have an uncertain rate constant over short periods but the annual C stock 
estimate may be quite insensitive to that rate constant. The range of values for many model 
parameters is often poorly understood because they are not easily measured. Inspection of those 
parameter values that were used in other studies with the model is a good starting point to 
estimate parameter uncertainty. The population of expected values can be estimated from the 
parameter values used across a range of successful site validations combined with expert 
knowledge. Soliciting advice for experienced users of the model can also provide suggestions for 
the reasonable range of these target parameters values. This range is also useful to set up the 
range over which to calibrate a parameter. 

 

6.5.3 Calibration 

Some of the uncertainty of an uncalibrated model can be reduced by calibrating influential model 
parameters. Frequently, a limited number of parameters are manually calibrated to improve 
model fit, based on criteria such as minimizing root mean square error or maximizing modelling 
efficiency. Judgement is required in deciding which parameters to calibrate and order of 
calibration. For established models, there is invariably experience regarding which of the sensitive 
parameters are most effective to calibrate to improve model performance. Generally, it is sound 
practice to calibrate the parameters that affect independent responses before calibrating those 
for responses that have many interdependencies. For example, vegetation growth is less 
dependent on total SOC than total SOC is on vegetation growth, so it is recommended to calibrate 
the vegetation growth parameters before SOC parameters. 

 

6.5.4 Uncertainty estimates from calibration and validation  

As described above (Section 6.4.3) model validation compares model estimates with observation 
and, thereby, provides an important assessment of inaccuracy or uncertainty of the model. 
Inspection of the fit between estimates and observations provides important insight into model 
structural problems such as greater apparent problems simulating some conditions than others. 
If there appear to be serious deficiencies in model performance such as grossly over- or 
underestimating effects that cannot be rectified with calibrated parameters, the model user 
needs to decide if the model, as it will be applied to the modelling domain, is appropriate (i.e. 
uncertainty is acceptable) for using at all. 

The calibration procedure provides validation for the observed situations used for calibration. 
Since the uncertainty from input conditions and the parameters optimize model performance for 
those conditions, the deviation between predictions and observations provides a useful estimate 
of model uncertainty. If the model is to be only applied to a prediction domain that closely adheres 
to conditions used for parameter calibration (e.g. using a model to estimate a SOC value within a 
time-series of measured SOC values for single paddock), the model performance against the data 
used for calibration may be considered a valid estimate of prediction uncertainty.  

 

RECOMMENDATION 34. A model sensitivity analysis and uncertainty assessment should be 
conducted to inform decisions about the suitability of the model, and provide valuable 
information on which model inputs and processes are most important.  
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6.5.5 Model prediction uncertainty 

In using models to estimate SOC for life cycle assessment purposes, it is the model prediction 
uncertainty over the application domain that is of greatest importance. This requires validation 
using the types of input data and initialization data derived from the sources and methods that 
will be used for prediction. In prediction mode, the model inputs may not be measured on site 
and will be estimated. For example, application does not rely on measured data at the site and 
could, for example, have C inputs estimated from general empirical relationships, soils data 
derived from coarse-resolution soil maps, and meteorological data extracted from a location 
nearby but not at the site to be modelled.  

Validation comparing observations for an actual site but using inputs and initial values that would 
be used if there had been no observation provides a fairer assessment of model prediction 
uncertainty than validation using site measurements for inputs and initial values.  

Several approaches can be used to estimate prediction uncertainty, including Monte Carlo 
methods. Further details are given in Appendix 2. 

 

6.5.6 General guidance 

The uncertainty of SOC models for grazed grassland will likely be large, probably larger than for 
models applied to cropland (Ehrhardt et al., 2018). Therefore, it is important to carefully estimate 
the prediction uncertainty to determine if the model is appropriate for the use and, if appropriate, 
then to properly interpret model results. The recommended steps for sensitivity and uncertainty 
analysis are: 

● Conduct a sensitivity of model input variables, initial variable values, and parameters to 
identify the most influential variables and parameters. 

● Calibrate influential model parameters, identified from sensitivity analysis (and expert 
model users when possible) for the model application domain 

● Validate the calibrated model for the intended application domain to gain understanding 
of uncertainty including evidence of structural problems. Unless the model application 
domain coincides exactly with the calibration data, the validation should not be based on 
solely the calibration dataset. 

● Estimate the model prediction uncertainty for the method and data that will be used for its 
application domain. 

 
In BOX 9 a case study that combines measurements and modelling is shown.   
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BOX 9. Effects of improved management on SOC stocks using a combined measurement and 
modelling approach 

Overview: The study site was a 250 ha self-replacing sheep farming enterprise in south-eastern 
Australia (34_570S, 149_100E) with an average annual rainfall of 625 mm. The farm specialises 
in ultrafine Merino wool, with supplementary income from grazing beef cattle and farm 
forestry (Ive and Ive, 2007). Since settlement in 1860, loss of soil organic carbon and land 
degradation has occurred due to unsuitable management practices. Clearing of the original 
Eucalyptus spp. woodlands and over-grazing led to erosion, dryland salinity with poor pasture 
growth and plant survival until 1980 when new owners started regenerative management 
practices. This case study discusses the improvement in farm carbon balance for the period 
1980 to 2012. 
 
Soil carbon stock change approach: On-farm soil C measurements were used in combination 
with modelling with the Roth-C based FullCAM model used in the Australian National 
Greenhouse Gas Inventory to determine soil organic carbon (SOC) stocks and stock change. The 
combined approach gave a more accurate site-specific 1980 baseline to assess SOC stock 
change under management change. Measurements under pasture areas for 0 – 30 cm depth 
gave SOC of 0.8% in 1980 and 1.4% in 2011 and these measured values were used to tune the 
model. Although the approach in this study did not allow full statistical analysis, insights of the 
management impacts were gained from comparisons between the long-term average model 
output for the 50-year period from 1963 to 2012 and the period from 1980 to 2012 since 
commencement of improved practices. SOC stocks in a dry year (2006) and a high rainfall year 
(2012) were also compared to examine climate impacts.  
What the case study showed: The model indicated that between 1980 and 2012 there was a 
total increase in SOC stocks (0 – 30 cm) equivalent to sequestration of 11800 Mg CO2e across 
the farm. Over the same period re-establishment of trees on previously cleared land 
sequestered an additional 19300 Mg CO2e. The research estimated that increase in soil carbon 
stocks alone was sufficient to offset all greenhouse gas emissions from livestock and farm 
activities on the case study farm.  
 
 
 
 
 
 
 
Time sequence images showing the impact of seasonal conditions (e.g. dry in 2006; wet in 
2007) and improved management on the case study farm. SOC stocks showed an overall farm 
average increase from 0.8% in 1980 to 1.4% in 2011. 
 
Summary: This case study used long-term modelling and soil carbon measurements at two 
times more than 30 years apart, to show that substantial gains can be made in SOC stocks 
where initial soil carbon is depleted due to degradation and topsoil erosion. Practices to 
improve land condition included introduction of perennial pastures, strategic tree plantings 
and managing stocking rate, increased SOC stocks under pastures and enhanced livestock 
productivity. 
Ive, J. & Ive, R. 2007. Achieving production and environmental benefits in a challenging 
landscape. In: Proceedings of the 22nd annual conference of the Grassland Society of NSW, 
Queanbeyan, NSW’. (Eds D Garden, H Dove, T Bolger) pp. 26–33. 
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7. SPATIAL INTERPRETATION AND UPSCALING OF SOC 

7.1 Introduction 

Spatial analysis is the process by which we turn raw data into useful information. Spatial analysis 
deals with two different types of information: one concerns the attribute of the spatial object (e.g. 
SOC content) and the other concerns location information (position on map or geographic 
coordinates). The spatial objects concerned in most analysis are polygons (i.e. zones, statistical 
census areas) or sampling points. Spatial analysis deals with the degree to which attributes are 
similar to those located nearby. If objects similar in location are also similar in attributes, then 
there is a spatial autocorrelation or association (spatial patterns due to cluster of high and low 
values), whilst the opposite situation indicates that there is not a pattern linked with the position. 

Soil properties are characterized by strong spatial heterogeneity and spatial dependence, at a 
great range of scales. Emergence of Geographic Information Systems (GIS) and geostatistical 
modelling approaches (Burgess and Webster, 1980; Chiles and Delfiner, 1999; López-Granados et 
al., 2005) has improved our predictive capacity for soil properties over larger scales, especially the 
continuous variables such as SOC. To understand how SOC stocks and environmental factors are 
connected, the characterization of their spatial variability is essential. Any sampling in a finite 
number of locations will inevitably give an incomplete description of natural variations. Thus, to 
produce a continuous map of soil properties we need to use an interpolation method to estimate 
them in un-sampled points, that is, a model of spatial dependence of soil data is necessary 
(Goovaerts, 1998).  

The concept of scale - or resolution, in case of digital mapping - is central to geography; some 
mappers rely on data obtained from satellites, yet others depend on data regarding soil particles 
obtained through electronic microscopes. Hence, the need to address spatial problems from 
multiple scales and resolutions is always of primary importance. This variation in scales can be 
regarded both as a strength and weakness of the spatialization procedure. Analyzing spatial 
phenomena using a range of scales offers a special view and methodology enhancing mapping's 
strength. To the contrary, the massive amount of data needed for analysis of spatial phenomena 
at various scales, coupled with the possibility of applying an inappropriate methodology, often 
leads to a meaningless study (Lam and Quattrochi, 1992). With appropriate methodology and 
sufficient attention to the problem of scale, the spatial perspective derived from analyses using 
different scales can contribute in many ways to an understanding of various spatial phenomena, 
such as SOC content. 

With regards to SOC, estimates of stocks and their variability at different spatial scales are 
essential to identify the potential C sink capacity of different land uses and management and the 
more promising sequestration strategies. Some modelling approaches such as CENTURY and 
RothC can provide relatively good estimates of soil properties into the landscape. However, the 
accuracy and reliability of these estimates can be significantly improved by integrating spatial 
information in the modelling. Therefore, coupling conventional C models with geospatial 
information is a powerful approach for upscaling SOC measurements. In BOX 10 a case study that 
illustrates this modelling approach is shown. 
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BOX 10. Application of Carbon Models to estimate SOC changes in grazing lands in Kenya 

 
Overview: Kamoni et al. (2007) used the Global Environment Facility Soil Organic Carbon 
(GEFSOC) System, which links the CENTURY and the RothC models to a GIS to estimate national 
C stock changes for Kenya. They simulated grasslands, savannas, and shrub/grasslands as 
tropical grassland dominated by C4 grasses. The aim of the study was to provide estimates of 
changes in SOC to contribute to the national GHG emissions accounting. 
 
Approach: Estimates of SOC stocks and changes were made for grasslands, savannas, and 
shrub/grasslands in Kenya using the GEFSOC Modelling System. The tool couples Century 
general ecosystem model, RothC soil C decomposition model and the IPCC method for 
assessing SOC at regional scales. Datasets of measured SOC were used to evaluate and refine 
the simulation capacity of Roth-C and CENTURY models. Data from these models were coupled 
to a soils, climate and land-use GIS data at national and sub national level. The GIS interpolated 
the data over un-sampled locations and developed SOC coverage needed to run the GEFSOC 
Modelling System. 
 
What the study showed: The study estimated a decline in SOC stocks for Kenya 1,415 Tg in 
2000 to 1,311 Tg in 2030, suggesting a predicted national loss of 104 Tg C. When the estimates 
were made using each of the models separately, comparable results were obtained.  
 

 
 
SOC stocks changes for Kenya between 2000-2030, estimated using Century output from the 
GEFSOC Modelling System. Adapted from Kamoni, et al., 2007.  
 
Summary: The study shows how large-scale (national and even regional) SOC changes can be 
estimated to support GHG inventory. Using this approach can significantly reduce sampling 
efforts but needs to be supported with periodic field sampling to validate the results. 
Kamoni, P.T. et al. 2007. Predicted soil organic carbon stocks and changes in Kenya between 
1990 and 2030. Agriculture, Ecosystems and Environment 122, 105-113. 
 

 

 

7.2 Sampling for spatial interpolation 

Inevitably, sampling will always be partial and will thus lead to an imperfect knowledge of reality; 
furthermore, any sampling is subject to different sources of error (sample collecting, 
measurement, recording, transfer function, modelling, spatialization and so on), which globally 

2000 2030 
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produce a sampling error. The complexity and costs of most sampling projects require the 
definition of an optimum sampling design to obtain maximum information at a given cost. 

In any realistic sampling design, the amount of information required, the type of data to be 
collected and the criterion of optimization to be used are fundamental parameters which depend 
on several factors, but above all on the specific objectives of the problem at hand. The location of 
sampling points is critical for subsequent analysis and several approaches can be used as shown 
in Figure 12. In principle, sampling for spatial analysis should follow the guidelines provided in 
Section 2.2. Ideally, for interpolation purposes, samples should be located evenly over the target 
area. A completely regular sampling network can be biased, however, it it coincides in frequency 
with a regular pattern in the landscape (e.g. regularly spaced drains). The drawbacks of completely 
random location of sample points are the large sampling effort and the likelihood of having 
uneven distribution of points unless a very large number of samples can be collected, which is 
usually limited by associated costs. Cluster (or nested) sampling can be used to examine spatial 
variation at several different scales. There is no general approach to sampling; therefore, it is 
important to clearly define the aims, the support and the resolution needed before sampling. If 
geostatistics are used as an interpolation method, sampling is a crucial topic for an accurate 
modelling.  

 

 

Figure 12. Different kinds of sampling nets used to collect spatial data from point locations. 
(Burrough and McDonnell, 1998; page 101) 

  
RECOMMENDATION 35. There is no universally best sampling design approach. For geostatistical 
analyses, collecting samples on a regular grid allows directional variograms over several different 
directions to be calculated easily, mostly along the axes of the grid (for regular grids, where the 
lag distances and directions are known and the number of pairs per lag interval is a function of 
grid spacing). A rule of thumb is not to estimate semivariances for lags greater than half the 
maximum distance of the sampled area. The main disadvantage of regular grids is that resolution 
is limited by grid spacing. We strongly recommend adding more closely spaced pairs of points at 
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some randomly selected grid nodes, so that the form of the variogram at the most critical short 
distances and the nugget variance can both be better estimated. 

 

7.3 Interpolating methods for soil organic carbon predictions 

There is often a need to map soil properties at a location where the soil has not been sampled 
and the property measured. Interpolation involves either inference from an assumed similarity, 
given the biophysical environment (based on Boolean logic), or on mathematical functions (e.g. 
arithmetic, logarithmic, trigonometric, power functions, etc.). Estimation requires the application 
of certain models to the real world. There is a huge variety of models that can be grouped into 
two main sectors: 

- Mechanistic models, physically based and deterministic in prediction; 

- Statistical models, recognizing the intrinsic uncertainty associated with estimation. 

Conventional soil mapping was originally developed as a means of spatially characterizing soil 
properties from discrete soil classes. Using these classes, average values of soil properties are 
applied spatially and as a result abrupt changes in properties occur at the soil class boundary (Watt 
and Palmer, 2012). This method has several weaknesses that often include poor correlation 
between soil properties and the mapped classes, the misrepresentation of gradual change by 
abrupt boundaries, and the treatment of within-class variation as spatially uncorrelated (Campbell 
et al., 1989; Nortcliff, 1978). Furthermore, these techniques are also time-consuming and 
generally do not provide complete and updated information. 

Interpolation involves: (i) Defining a search area or neighbourhood around a point, (ii) defining 
the point to be predicted, (iii) finding the data points within this neighbourhood, (iv) choosing a 
mathematical function to represent the variation over this limited number of points and, (v) 
evaluating the value for the point on a regular grid. Approaches for estimating soil properties in 
non-sampled locations using mathematical functions include the following (Figure 13): 

● Neighbourhood operations: use data from surrounding locations to determine output value 
at corresponding location; 

● Zonal operations: use a selection of one or more nearby data points  
● Global operations: use all data points over the whole area. 

 

 
Figure 13. Different approaches for estimating soil properties at non-sampled locations. 

  

With global interpolation, all available data are used to provide predictions for the whole area of 
interest. Global interpolators are not usually used for direct interpolation, but for examining and 
possibly removing the effects of large-scale (global) variations, caused by major trends or the 
presence of various classes of land that may indicate areas that have different average values. 
Once the global effects have been taken care of, the residuals from the global variation can be 
interpolated locally. These global interpolation techniques are described below. 
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A relatively simple global approach is trend surface analysis, whereby polynomial and sometimes 
trigonometric functions are fitted by least squares regression on the spatial coordinates used as 
predictors. It is commonly used as a preliminary step in the study of data structure before the 
application of advanced mathematical interpolation techniques for de-trending data and 
determining the stochastic residuals. This simple approach has several shortcomings: 

 Distortion of the results owing to occurrence of data clusters and or outliers; 

 Instability caused by outliers or observational errors or when enough terms are 
included in the function to retain local detail; 

 Loss of detail because of powerful smoothing; 

 Variation of one part of the region affecting the fit of the surface everywhere; 

 Lack of physical meaning of the regression coefficients. 

Among the local techniques, the simplest approach uses only one data point per interpolation 
point, which is considered as representative for an area delineated by a polygon. The assumption 
in such a method is that the environmental properties within the polygon are homogeneous and 
the values change abruptly at the polygon boundaries. If the variation of the data values is gradual, 
the results may be plausible. However, the only advantage of this method is that the amount of 
calculation is quite small (Castrignanò and Lopez, 2004). 

A quite simple method is the drawing of Thiessen polygons, i.e. each interpolation point assumes 
the value of the nearest data point. If gradients of spatial variation are smooth and the data points 
are not too far apart, the method may be plausible enough. Nevertheless, when the data points 
are situated in different zones which differ due to their elevation, position to mountain ranges or 
to coast lines, type of soil and vegetation, climate and so on, this method creates fictitious, abrupt 
discontinuities. 

An alternative to Thiessen polygons is location-specifying zoning, which is delineating a zone 
around each data point. This delineation is often drawn by eyeballing and is based on expert 
knowledge of the relationship between geography and landscape properties. Owing to its intuitive 
character, it is quite subjective and not reproducible, unless formal rules for zoning have been 
previously defined and then applied. 

The basic prescription for moving average interpolation is to use all the data points within a circle 
centred on the interpolation point and the interpolated values are calculated as the average of 
these sample data. As the circle moves around over interpolation points, the selected data points 
change and depending on the radius of the circle the short-range variations can be emphasized 
or levelled off. The basic assumption is that for all interpolation points placed on a line between 
two sample points, the data values change continuously and smoothly. Variations to the approach 
are possible by introducing a weighing factor, a method called weighted moving averages. The 
advantage of this modification is that it allows us to give a different degree of influence on the 
interpolation point by the neighbouring data. The most commonly used weighing factor is inverse 
distance and inverse squared distance (Castrignanò and Lopez, 2004). 

Thin plate splines depend on an a priori assumption of smoothness, which implies that the 
variable is not completely local - in the sense that the value at one location depends on nearby 
values. Splines have been widely applied in spatial statistics. The main reasons for this are that 
splines are computationally efficient and there are software packages available which implement 
them freely. Moreover, they are relatively robust and the smoothness parameter, which is the 
only parameter which can be adjusted on the splines, can be determined automatically. 
Nevertheless, splines are rather restrictive in the choice of basic functions. 

Each of the interpolation methods described has its own disadvantages but the following ones 
apply to all traditional methods: 
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 Spatial dependence in data is assumed a priori and there is no statistical test to 
validate the assumption; 

 It is not possible to describe and model the structure of spatial variation to take into 
account during interpolation; 

 Many of the outcomes look rather crude and prone to fluctuation. 

No theoretical estimation variance can be computed and so any evaluation of the interpolation 
must involve a posteriori validation. Even if trend surface analysis, which is a form of regression, 
seems to estimate error in interpolated values, it is, in fact, somewhat misleading. The reason is 
that the regression model assumes among other things that the residuals from the fitted surface 
are independent of each other; this assumption is almost always violated, so no true estimation 
variance can be calculated (Castrignanò and Lopez, 2004).  

 

7.4 Geostatistics 

As soil varies at both spatial and temporal scales with great complexity, we deem that no 
deterministic model can capture the full extension of its variations. Geostatistical methods for 
interpolation recognize that the spatial variation of any continuous attribute is often too irregular 
to be modelled by a simple, smooth mathematical function, and provide ways to deal with the 
limitations of deterministic interpolation methods. Estimation and simulation of probable 
scenarios using statistical models are adopted to deal with the limits and difficulties of traditional 
soil mapping. The power of geostatistics to derive relationships between soil and landscape 
properties can be used at various scales, from field to global, depending on the level of precision 
targeted. 

Estimation of variables by geostatistical techniques through moving average interpolation has 
been applied extensively since the 1980s (Burgess and Webster, 1980). More recently, specific 
theories for soil science were developed (Goovaerts, 1997, 1999; Webster and Oliver, 2001). 
Classical geostatistical approaches allow modelling of the spatial variability of a target variable 
and to perform an estimation of non-sampled locations. Geostatistics is based on the spatial 
autocorrelation of data, providing an estimate of a variable in each point applying a well-defined 
model of spatial autocorrelation (Goovaerts, 1997; McBratney et al., 2003). Basically, geostatistics 
recognizes the continuous nature of soils and can account for random variation through modelling 
the spatial correlation in soil properties often present in the landscape. Once the spatial behaviour 
and spatial distribution of a parameter is characterized, this information is used to predict the 
value of the variable between sampled points and to minimize estimation error (Webster and 
Oliver, 2001). Geostatistical approaches have generally improved our predictive capacity for soil 
properties, especially the continuous ones like SOC. The underlying principle is that values at 
points close together in space are more likely to be similar than points further apart. Geostatistical 
methods are optimal when data are: (i) normally-distributed and, (ii) stationary (mean and 
variance do not vary significantly in space). 

Spatial variation of soil properties contains systematic and random components (Figure 16). 
Systematic variability is a gradual or distinct change (trend) in soil properties that can be 
understood in terms of soil-forming factors or processes at a given scale of observation 
(topography, lithology, climate, biological activity, age of soils, physical and chemical 
composition). In addition to this component of soil variation there are differences that cannot be 
related to a known cause. This unexplained heterogeneity is called random variability. 

The theory of regionalized variables represents the basis of geostatistics. It assumes that a spatial 
variation of any variable can be expressed as the sum of three major components: 
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 A deterministic component associated with a constant mean value or a long-range trend; 

 A spatially correlated random component; 

 A white noise or residual error term that is spatially uncorrelated. 

De-trending in geostatistics is used to satisfy the stationarity assumptions, meaning that 
modelling is conducted on the random short-range variation in the residuals. The trend is 
automatically added back before the final continuous surface is created, to obtain reasonable 
predictions. 

 

 
Figure 14. Elements of spatial variation: (a) mean, and (b) trend (from Burrough and McDonnell. 
1998. Principles of GIS, Oxford University Press; p. 134) 

  

Compared to the classical statistics which examine the statistical distribution of a set of sampled 
data, geostatistics incorporates both the statistical distribution of the sample data and the spatial 
correlation among the sample data. While in classical statistics, observations are assumed to be 
independent (no correlation between observations), information on spatial locations in 
geostatistics allows us to compute distances between observations and to model autocorrelation 
as a function of distance. Spatial autocorrelation is a defining feature of geostatistics: this spatial 
relationship is described by the semivariance. The semivariance (h) describes the spatially 
dependent component of the random function Z. It is equal to the expected squared distance 
between sample values separated by given h. 

Equation 27: 

2(h) = ∑ [ Zx - Zx+h ]2 

Where:  
(h) is the semivariance (as a function of h) 
Zx value of a random function Z at position x 
Zx+h value a random function Z at position x+h, where h is a distance 
 

The semivariance for a given direction is usually displayed as a plot of semivariance (h) versus 
distance h, called a semivariogram or simply variogram (Figure 17). A variogram cloud is produced 
plotting all the semivariances versus their distances, and an experimental variogram is obtained 
averaging the values for a standard distance (lag). 
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In the variogram the spatial dependence of the data is typically expressed by a monotonic increase 
from the origin with increasing lag distance; the variogram is hence a function of the spatial 
autocorrelation of the sample. The semivariances are typically smaller at shorter distance, and 
may reach, or asymptotically approach, an upper bound (sill) at a finite distance (range), beyond 
which there is no longer spatial autocorrelation (Heuvelink and Webster, 2001). In fact, the values 
of a target variable are more similar at a shorter distance, up to a certain distance where the 
differences between the pairs are equal to the global variance (Hengl, 2009). 

Ideally, the experimental variogram should pass through the origin when the distance between 
the samples, and then variation, is zero. However, many soil properties have non-zero variance 
when h tends to zero. The nugget variance is a positive intercept on the ordinate, representing an 
uncorrelated component and indicator of short distance variation which includes measurement 
error, sampling error, inter-sample error and unexplained and inherent variability. The 
experimental variogram exhibits pure nugget effect when (h) equals the sill at all values of h. It 
rises when there is a large point-to-point variation at short distances of separation and indicates 
a total absence of spatial correlation at the sampling scale used. It rarely signifies lack of spatial 
correlation. In fact, increasing the detail of sampling will often reveal structure in the apparently 
random effects of the pure nugget effect. 

The experimental variogram is, by its construction, a series of discrete points. To obtain a smooth, 
continuous function, a model is to be fitted to these points (Goovaerts, 1997). Not any 
mathematical function can be used. A variogram model must fulfil the condition that no linear 
combination of variables can result in a negative variance of the derived variable. There are only 
a few models known to obey this condition. The most common ones are listed in standard texts, 
such as Webster and Oliver (2001): Spherical, Exponential, Gaussian, Power, Periodic, etc. 

 

 
Figure 15. Theoretical semivariogram and its parameters. 

 

The choice of variogram model is very important because each type yields quite different values 
for the nugget variance and range, both of which are critical parameters for interpolation. In fact, 
geostatistical interpolation uses the variogram to optimize prediction by kriging, using the 
parameters of the variogram model to assign optimal weights for interpolation. 

Ordinary Kriging (OK) is by far the most common type of kriging, consisting in a form of weighted 
averaging, in which the unknown value in a point is predicted from the known values (Heuvelink 
and Webster, 2001). The weights are chosen in such a way that the estimator is unbiased. Kriging 
has many useful properties: 

 The interpolated value is the most precise possible from the data available; 

 The interpolated value can be used with a degree of confidence, because an error term is 
calculated together with the estimation; 
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 The estimation variance depends only on the variogram model and on the configuration 
of the data locations in relation to the interpolated point and not on the observed values 
themselves; 

 The condition of unbiasedness ensures that kriging is an exact interpolator, because the 
estimated values are identical to the observed values when a kriged location coincides 
with a sample location. In this case, the weights within the neighbourhood are all zero 
and the estimation variance equals the nugget variance of the variogram model; 

 Only the nearest few samples are spatially correlated to the kriged location and, 
therefore, they are the most weighted. Two important advantages become clear: firstly, 
the variogram needs to be accurate only on the first few lags; secondly, whatever is gained 
from introducing distant points is limited also because sample locations interposed 
between the kriged point and more distant samples screen the distant ones reducing their 
weights. 

The appropriateness of the chosen variogram model and the kriging assumptions of unbiasedness 
and minimum estimation variance can be tested by cross-validation. This involves deleting each 
sample in turn and then kriging it independently from all other points in the estimation 
neighbourhood. In addition, the kriging procedure produces the variance of this estimation. 

Considering the support of estimation, we can distinguish Point Kriging, applied to areas or 
volumes of the same size as that of the original sampling unit, and Block Kriging, applied to areas 
or volumes that are larger than the units that were originally sampled. Block kriging modifies 
punctual kriging equations to obtain an average estimate over a discrete area/volume or block. 
Both punctual and block estimates can be mapped. In the first case, values are kriged at numerous 
points on a fine grid through which contour lines are threaded to display the result. In block kriging 
the domain to be mapped is subdivided into small blocks and the estimates are displayed as 
blocks, or they are assigned to the centres of the blocks and contoured as for punctual kriging 
(Figure 18). 

Figure 16. Example of punctual kriging map (left) and block kriging map (right) (Castrignanò A., 
personal communication). 

 

Other commonly used Kriging algorithms are: 

● Co-kriging, a kriging algorithm in which the distribution of a second, highly correlated 
variable (covariate) is used along with the primary variable to provide interpolation 
estimates. Co-kriging can improve estimates if the primary variable is difficult, impossible, 
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or expensive to measure, and the second variable is sampled more intensely than the 
primary variable. 

● Universal Kriging (also called regression kriging), a kriging method often used on data with 
a significant spatial trend, such as a sloping surface. In universal kriging the expected values 
of the sampled points are modelled as a polynomial trend. Kriging is carried out on the 
difference between this trend and the values of the sampled points. 

● Indicator Kriging (IK) is a non-parametric form of kriging, which uses a binary variable (0,1); 
predictions from IK can be interpreted as probabilities of the variable being 1 or being in 
the class that is indicated by 1. If a threshold was used to create the indicator variable, the 
resulting interpolation map would show the probabilities of exceeding (or being below) the 
threshold. 

● Empirical Bayesian Kriging (EBK) is an interpolation method that accounts for the error in 
estimating the underlying variogram through repeated simulations. EBK creates a large 
number of variograms and the result is a distribution of variograms. 

 

Differing from traditional methods of interpolation, kriging, with its probability model, allows us 
to calculate the uncertainty of predictions. In geostatistical practice, as we mentioned above, the 
usual method of testing is cross-validation. However, its results are actually biased and somewhat 
too optimistic (Creutin and Obled, 1982), because it retains the same variogram, whereas the 
variogram should be recomputed and fitted every time that an observation is removed (Laslett et 
al., 1987). Moreover, cross-validation is not a true validation, because the same sample data set 
is used for both estimation and validation. 

All these shortcomings can be avoided by using a separate independent set of data for validation. 
The values are estimated at the sites in the second data set and then the predicted and the 
measured values are compared. As for cross-validation, different indices can be computed from 
the observed and predicted values of the sites belonging to the validation sample. These are the: 

 Mean error, which measures the bias of the prediction and should be close to 0 for 
unbiased methods; 

 Mean square error, which measures the precision of the predictions and should be as 
small as possible; 

 Variance of the standardised estimation error, which measures the goodness of the 
theoretical estimate - the better the estimate is, the closer it is on average to 1. 

 

RECOMMENDATION 36. When using kriging to perform a geostatistical interpolation, it should be 
checked that the data used follows a normal distribution and are spatially auto-correlated. 

 
7.5 Digital Soil Mapping 

Geostatistical methods are based uniquely on the position of one point in respect to the others. 
This kind of estimation often tends to smooth the details of soil spatial variability and to 
underestimate the short-range variability to some extent (Curran and Atkinson, 1998; Ping and 
Dobermann, 2006). The quality of the estimation of soil properties can be improved and the 
spatial sampling intensities may be reduced by incorporating secondary information, provided 
that the primary and secondary variables are well correlated (McBratney et al., 2003; Marchetti 
et al., 2008), such as those derived from morphometry and remotely sensed data. 

The use of environmental covariates has improved several aspects of soil surveying in many parts 
of the world (Boettinger, 2010). Thus, hybrid geostatistical procedures that account for 
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environmental correlation have become increasingly popular in recent years. These methods 
allow utilization of ancillary information that is often available at finer spatial resolution than the 
sampled values of a primary target variable (McBratney et al., 2000). 

Digital Soil Mapping (DSM) consists in a set of hybrid methods for producing digital estimated 
maps of soil properties through geostatistical regression techniques, using measured data 
combined with auxiliary information from environmentally based variables and remotely sensed 
images. DSM was developed as a substitute for the traditional polygon soil maps (McBratney et 
al., 2003). The Working Group of the International Union of Soil Sciences on Digital Soil Mapping 
defines digital soil mapping as “the creation and the population of a geographically referenced 
soil database, generated at a given resolution by using field and laboratory observation methods 
coupled with environmental data through quantitative relationships” (see 
www.digitalsoilmapping.org). According to Lagacherie and McBratney (2006) the input for digital 
soil mapping are field and laboratory observations (both legacy soil observation or maps and 
newly collected samples using statistical sampling techniques). Processing of data implies building 
statistical or mathematical models which relate soil observations with their environmental 
covariates to upscale point data to a full spatial extent. The ultimate output is an updatable spatial 
soil information system including raster representations of prediction along with the uncertainty 
of prediction. There is an increasing interest in using DSM to predict SOC worldwide, since this is 
an important issue to decrease costs and subjectivity of maps. 

An efficient scaling up approach is Regression Kriging (RK), one of the most widely used hybrid 
spatial interpolation techniques, which generally produces realistic spatial representations, as the 
smoothing effect is much smaller than other interpolation methods. RK is a kind of Best Linear 
Unbiased Prediction (BLUP) technique for spatial data, which adds together the regression value 
of the covariates or exhaustive variables and the kriging value of the residuals of the regression 
(Sun et al., 2012). BLUP assumes that the local mean varies continuously into each neighbourhood 
and can be estimated, using in association, both data from direct measurements and correlated 
auxiliary information (Goovaerts, 1997; Hengl et al., 2007; Odeh et al., 1994). Auxiliary 
information can be derived from the Digital Elevation Model (DEM), that is an optimal source of 
topographic information and an important data base for terrain attributes calculation, and from 
satellite imagery, easily available at relatively low cost. 

In comparison with other methods, RK offers some advantages: analysis of representativeness of 
the plot inventory, analysis of uncertainties, regional soil C assessment and connections to other 
inventories, and allows the monitoring of land management factors. The strength of RK becomes 
better visible if high resolution data are available, reflecting the landscape scale predictors from 
the SOC distribution model. Accordingly, DSM offers a more accurate expression of the variation 
of a certain soil property, including a spatial quantification of the prediction error, which is why it 
is recommended, whenever possible (FAO 2017). 

  
RECOMMENDATION 37. There is no spatial prediction method which is generally best for any case. 
The best method for SOC mapping should be selected on a case by case basis. 

  
7.6 Practical application of interpolation techniques 

As part of the activities of the Global Soil Partnership, a Global Soil Organic Carbon Map was 
released on December 5th 2017 (www.fao.org/global-soil-partnership/pillars-action/4-
information-and-data/global-soil-organic-carbon-gsoc-map/en/). This map consists of nationally 
produced maps, developed as 1 km soil grids, covering a depth of 0-30 cm. Within this framework, 
a technical guideline to produce soil property grids by digital soil mapping techniques, based on 
local samplings and measurements, has been published (FAO, 2017). Reference is made to this 
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document for users, such as country representatives, who are engaged in e.g. determining SOC 
stock baselines. The instructions provide detailed guidance in preparing local soil data and 
environmental covariates, up-scaling data via regression-kriging and data mining and analysing 
uncertainties.  

 

RECOMMENDATION 38. When up-scaling SOC stock change estimates, an overview of the data 
integration and spatial modelling procedure as well as the related uncertainty should be 
documented and reported together with the produced maps. 
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8. INTEGRATING CHANGES IN SOIL ORGANIC CARBON INTO 
LIFE CYCLE ASSESSMENT  

8.1 Introduction 

Life Cycle Assessment (LCA) is a tool that quantifies impacts associated with the provision of goods 
and services over their full life cycle. The LCA approach is comprehensive and has been formalized 
by ISO 14044:2006 (Environmental management - Life cycle assessment - Requirements and 
guidelines) and is generally accepted by the industry and stakeholders as being the most robust 
approach for comparing alternatives across their environmental impacts. Conversely, an 
alternative approach that does not consider the life cycle of a product could lead to burden 
shifting between life cycle phases – i.e. a decision made to reduce impact in manufacturing, for 
example, could lead to a change in materials which would ultimately cause more impact upstream 
in the material production phase.  

There are two different types of LCA, attributional LCA and consequential LCA. UNEP/ SETAC 
(2011) defines attributional LCA as a “modelling approach in which inputs and outputs are 
attributed to the functional unit of a product system by linking and/or partitioning the unit 
processes of the system according to a normative rule”. Attributional LCA is, therefore, an 
inventory-type method, as it provides an inventory of emissions/removals within a defined 
inventory boundary. Consequential LCA is defined as a “modelling approach in which activities in 
a product system are linked so that activities are included in the product system to the extent that 
they are expected to change as a consequence of a change in demand for the functional unit”. 
Consequential LCA therefore provides an assessment of change in emissions/removals caused by 
a specified decision or intervention. 

In terms of scope, LCA has traditionally focused on environmental impacts, but can also include 
economic and social impacts, particularly on human health (using endpoint LCA methods such as 
ReCiPe, Impact 2002+, etc.). Conducting an LCA involves creating an inventory, consisting of a 
balance sheet of estimated and measured emissions to air, soil and water which subsequently are 
classified into the impacts of interest, whose results are the product of applying pre-established 
characterisation factors that allow the summing of all flows (e.g. emissions) that contribute to an 
impact. For example, for the climate change impact category, kg of nitrous oxide and methane 
emissions will be converted into kg CO2-equivalent emissions, so that a total impact on climate 
change can be estimated.  

Changes in SOC levels are relevant to the environmental performance assessment of livestock 
product systems, primarily due to its effects on the balance of emissions of GHGs in the system, 
which affects climate change impacts. Moreover, SOC is an indicator for soil quality, reflecting its 
ability to provide ecosystem services, such as biotic production and climate change mitigation. 
Changes in SOC stock of grasslands supporting livestock production, as well as other LU and LUC 
directly or indirectly linked to livestock production (e.g. soybean) should be included in the 
evaluation, so that the industry’s impact can be estimated comprehensively, avoiding burden 
shifting.  

LCA studies should follow the recommendations given in the ISO standards. The structure of an 
LCA report includes the sections illustrated in Figure 17: (i) goal and scope definition, (ii) life cycle 
inventory analysis, (iii) life cycle impact assessment and, (iv) interpretation. 
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Figure 17. The structure of an LCA report adapted from the LEAP Guidelines for assessment of 
environmental performance of animal supply chains.  

 

One of the most contentious issues with the inclusion of SOC stock changes in LCA is the temporal 
aspect. SOC levels in agricultural production systems are typically either steady-state (balanced 
inputs and outputs) or batch systems. In either system, the time reference of the production 
system does not usually present a challenge. In livestock production systems, a reference of one 
year is usually sufficient to account for temporal variations (e.g. related to variable feed 
composition throughout the year). The reference system may be extended when production (e.g. 
growth) happens over multiple years, in distinct phases (e.g. meat production from one animal 
over its full lifetime). Alternatively, one can look at a greater system with continuous inputs and 
outputs (e.g. meat production from one farm over a year). 

However, when agricultural practices change, SOC levels will change accordingly. This change is 
usually rapid soon after the introduction of the new practice and eventually stabilises when a new 
equilibrium is approximated (Petersen et al., 2013). Since this process varies depending on the 
region’s climate, soil type, agricultural practice or initial SOC levels, it is challenging to give an 
approximate indication of a representative time interval. Furthermore, SOC is known to follow a 
“slow in, fast out” pattern (Poeplau et al., 2011), making the assumption of a same time horizon 
for sequestration and loss overly simplistic. Finally, determining an unambiguous SOC stock 
change associated with the new equilibrium also requires a decision that may be fraught with 
practical difficulties. 



97 
 

An approach used in other recommendations (IPCC, 2006; PAS 2050, 2011) is to allocate the 
benefits of carbon sequestration (or the burden of carbon emissions) linearly throughout a fixed 
period (e.g. equally over 20 years of production).  

Petersen et al. (2013) showed that the choice of time perspective has a considerable impact upon 
the LCA results. While IPCC (2006) Tier 1 methodology proposes a time period of 20 years, as used 
in many LCA’s modelling land use change, many have argued and shown (e.g. Vellinga et al., 2013; 
Poeplau et al., 2011) that carbon stocks may not reach an equilibrium after 20 years. In the 
methodology for the FeedPrint tool (Vellinga et al., 2013), it is claimed that following 200 years 
after conversion, carbon is still accumulating in grasslands and decreasing in arable land. The time 
perspective should correspond to the time perspective most commonly used for the global 
warming potential in LCAs, which is 100 years (Petersen et al., 2013).’ 

The calculation of a carbon footprint - a specific calculation for climate change impact with a life 
cycle approach - is reported in terms of CO2-equivalents (all GHG are converted to CO2-equivalents 
using Global Warming Potentials as characterisation factors) for a unit of reference. This reference 
usually is known as the Functional Unit in LCA, e.g. 1 tonne of milk. In this case, the carbon 
sequestered in and emitted from soils could be included in the balance of GHG emitted and 
sequestered if the methodology allows for it. The conversion from livestock reference (weight of 
meat or milk) to surface of grassland required shall also be made explicit. 

 

8.2 Implications of including SOC stock changes in LCA 

8.2.1 System boundaries and cut-off criteria 

An LCA report requires a clearly defined and communicated system boundary that is relevant to 
the goal and scope of the study. For modelling climate change from land use and land use change, 
all GHG emissions should be included, not only carbon dioxide. Furthermore, when estimating the 
environmental impact of livestock production systems (in the LCA of beef or milk, for example), it 
is also necessary to account for effects of soil carbon changes elsewhere in the system. For 
example, SOC changes associated with additional feed crop production on arable land, or SOC 
changes due to the application of manure. An incomplete system boundary can generate burden 
shifting, where the benefits of the action of focus (e.g. change in management practice) cause a 
greater burden (e.g. emissions of CO2) elsewhere in the supply chain. An assessment with limited 
boundaries can therefore be misleading and contrary to the rationale for using an LCA approach, 
which is to avoid shifting burdens. 

Figure 18 shows a system boundary for livestock systems. All life cycle stages where material C 
and N flows occurs shall be accounted for, and other significant emissions for these stages shall 
also be estimated in a full LCA. Depending on the goal of the LCA study, one may also include 
additional steps of packaging, storage, distribution, retail, use (i.e. cooking) and waste 
management. These stages may be relevant for some intended uses only (e.g. for customer 
education but not for agricultural land management regulation). 
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Figure 18. Minimum Life Cycle Stages linked to livestock production in an LCA approach. 

 

8.2.2 Representativeness and appropriateness of LCI data (SOC data or model) 

In most LCA studies that include estimates of changes in SOC stocks, accounting is only for land 
use changes (see review of multiple LCA studies by Goglio et al., 2015), either counting only direct 
or also including indirect land use change. Emission modelling is typically based on IPCC (2006) 
emission factor guidelines. This is in line with the European LCA framework (EU-JRC, 2010). While 
this highly applicable but low precision tool (Goglio et al., 2015) is regarded as appropriate for 
large scale soil carbon changes occurring after a land use change, it is recommended to use a finer 
model (Level 2 or 3) to model emissions occurring because of land management change. Most 
dynamic crop-climate-soil models (Level 3) are considered of medium certainty (Goglio et al., 
2015), based on classification criteria derived from JRC (2011). BOX 11 shows a case study using 
models to include SOC stock changes in LCA. When a study context does not allow specific data 
collection, model Level 1 could be used with specific factors adapted to the production context to 
provide a first estimate of the expected SOC change direction or amplitude. 

 

8.2.3 Types, quality and sources of required data and information 

SOC stock changes can be estimated by measurements or modelling. Please refer to the relevant 
sections in this document for details (Chapters 3, 5 and 6). 

At present time, little to no information concerning SOC stock changes is available or included in 
the databases usually used in LCA software and studies, except those related to LUC (especially 
for soybean meal from South America). Explicit mention of inclusion or exclusion of SOC changes 
should be made in the communication of results whenever possible, specifying if related to LUC 
only or LU as well. 

 

8.2.4 Comparisons between systems  

The inclusion of net soil carbon sequestration in the overall balance of GHG has the potential to 
reduce the overall footprint of a livestock product, until a new steady-state is achieved. The 
potential for carbon sequestration in grasslands used for livestock production depends on current 
SOC stocks and the history of management. More degraded land that has lost more carbon due 
to past poor management has the potential for higher carbon sequestration to approach the 
native SOC state. Hence, different rates of SOC stock change increase between farms at a point in 
time does not give a measure of the longer-term sustainability of farm management. The 
UNEP/SETAC Life Cycle Initiative has produced guidelines for conducting the Life Cycle Inventory 
analysis and Life Cycle Impact Assessment phases of an LCA study (See Koellner et al., 2012; 2013). 
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For assessing the impacts of land use and land use change on climate change, see Müller-Wenk 
and Brandão (2010).  

 

8.2.5 Identifying critical review needs 

Since the inclusion of SOC in estimates of net GHGs emissions can have a significant importance 
to the results, a critical review should be made before reporting the results of a single or 
comparative LCA including this source. The goal of the review will be to assess if the model and 
data chosen are the best to represent the situation evaluated. 

 

8.2.6 Emerging reporting requirements 

Currently, common LCA reporting platforms refer to the importance of SOC without clearly 
including it in the overall balance (PAS 2050, PEF). The latest version of the PAS 2050 (2011) states: 
“Soils are important in the carbon cycle, both as a source and a sink for carbon, and it is 
acknowledged that scientific understanding is improving regarding the impact of different 
techniques in agricultural systems. For this reason, provision is made for future supplementary 
requirement or revision to the PAS 2050 requirements that could facilitate the inclusion of 
emissions and removals arising from changes in soil carbon”.  

The EU’s Product Environmental Footprint (PEF) rules suggest an ad-hoc calculation for C 
sequestration that can be mentioned separately from the total (in line with ISO 14067:2013 
Carbon footprint of products). Meanwhile, it is also deemed by many stakeholders to be an 
important mitigation method that should be included in the balance of emissions, which would 
provide the holistic view that is characteristic of LCA. For this reason, it is expected that once 
consensus is reached on a method of estimating and reporting SOC changes, they could rapidly 
be accepted within the boundaries of life cycle carbon foot printing. 

 

BOX 11. Quantifying SOC sequestration in a LCA study of a livestock system 

 
Overview: Practices to manage native vegetation and to improve soil health and carbon stocks 
are increasingly being adopted for production and environmental benefits on Australian 
pastoral lands. However, the greenhouse gas (GHG) benefits of these activities are commonly 
overlooked in life cycle assessment (LCA) studies, affecting the accuracy of climate change 
impact assessment. This case study sought to estimate sequestration in soils and vegetation in 
a cradle to farm-gate LCA study (Henry et al., 2015) of the potential climate change impact of 
wool production in the region around Armidale (30o31’S, 151o40’E), Australia.  
 
Approach: The life cycle inventory used regional production data and on-farm surveys to model 
the net greenhouse gas emissions per kg greasy wool at the farm-gate. A simple Tier 2 approach 
used a Level 1 model to estimate SOC stock change due to pasture management. Emission 
factors were derived from regionally relevant research conducted over the past ten years. A 
conservative approach was adopted with zero SOC stock change assumed for activities where 
research results were variable and/or close to zero. In the study region, where nutrient 
deficiency was addressed through application of phosphate fertiliser and introduction of 
legumes, more consistent gains in SOC stocks had been measured and an average rate of 
sequestration of 0.1 Mg C ha–1 year–1 was modelled in the LCA. Net annual GHG emissions per 
kg wool was calculated as total farm emissions less sequestration in vegetation and soil 
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annualised over two timeframes, 20 years and 100 years, used in LCA studies and national 
accounts. Impacts were allocated between wool and sheep-meat using a biophysical approach. 
 
What the case study showed: While the rate of SOC per hectare was low, over the large area 
of farm production in this region the increase in carbon stocks in soils was close to that in tree 
biomass. Over a 100-year period, total sequestration offset about 10% of all farm emissions. 
 
Carbon sequestration for reforestation and soil management in a sheep grazing region, 
calculated using an LCA approach and expressed as equivalent CO2 (kg CO2-e) per kg greasy 
wool produced at the farm gate, assuming a 100-year amortisation period to simulate 
permanent sequestration. 

 
* A negative value indicates CO2 removals from the atmosphere 
 
Summary: This case study illustrates an approach for assessing sequestration in SOC and 
vegetation biomass using modelling and survey information and including results in livestock 
LCA. The LCA results demonstrated that land use and direct land-use change practices on sheep 
farms may result in significant and quantifiable GHG removals. Modelling SOC stock change in 
LCA is important for accurate impact assessment, and to recognise and encourage good 
practice. 
 
Henry B. et al. 2015. Quantifying carbon sequestration on land managed for sheep grazing in 
Australia in life cycle assessment studies. Rangelands Journal 37, 379-388.  
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9. APPENDIX ONE: Technical information on model initialization 

9.1 Initialisation Challenges and Approaches 

Peltoniemi et al. (2006) studied effects of various factors on modelled SOC changes and found 
that soil initial state has the greatest impact on subsequent modelled values. Initialisation of SOC 
in levels 2 and 3 models is inherently complex because it involves subdividing total SOC into 
various largely conceptual SOC pools that differ in rates of turnover. Figure 19 illustrates some of 
the problems that arise from incorrect initial pool sizes using the simple level 2 Introductory 
Carbon Balance Model.  

 

 

 

Figure 19. Example using Introductory Carbon Balance Model (with C input aboveground = 0.54 
Mg ha-1, belowground = 0.54 Mg ha-1; climate factor, re=1; humification factor above ground = 
0.125, belowground = 0.310; decomposition rate Young pool (Y) = 0.8 yr-1, Old pool (O) = 
0.00605 yr-1) of SOC trend with different types of disequilibrium for initial SOC. 

 

Compared to continual equilibrium (Figure 19a), overestimating baseline SOC (Figure 19b) 
imposes a disequilibrium that forces SOC to decrease from baseline over time while the 
disequilibrium from underestimating baseline SOC Figure 19d will force SOC to increase. 
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Underestimating or overestimating the proportion of C in model C pools with fast turnover (Figure 
19c and Figure 19e, respectively) causes rapid changes in these pools over few years but it reaches 
values similar to equilibrium within 10 years. Conversely, underestimating or overestimating the 
proportion of C in model C pools with slow turnover (Figure 19e and Figure 19c, respectively) 
introduces slow changes to SOC that requires many centuries to reach equilibrium values. 

The two most frequently used schemes are to have a spin-up (or warm-up) period for the model 
to estimate the pool sizes at steady state. The modelled situation for the spin-up period is that 
representing the baseline condition. The first option, scheme 1, runs the soil to equilibrium over 
a long spin-up period of up to 10,000 years. With such long spin-up the model not only estimates 
the relative pool distribution but also the total SOC, as it will be essentially unaffected by the initial 
input SOC values. The second option, scheme 2, is to use general ratios to partition known total 
SOC. Then from these input pools, a shorter spin-up period of 10 to 30 years is used to let the 
model modify the pool sizes to be more consistent with modelled SOC behaviour for the modelled 
baseline condition. For pools with fast turnover, such as the decomposable plant material and 
slow and fast biomass pools in RothC, the model will estimate the steady values within a few years 
of spin-up. Skjemstad et al. (2004) found that initialising these values to small non-zero values had 
no effect on pool size after model spin-up of just two years.  

There are several variants to the above two initialisation schemes that involve some calibration 
of the model. One variant of scheme 1, for the level 2 RothC model, adjusted C-input so 
equilibrium C matched measured total SOC at the end of the spin-up period (Jenkinson et al., 
1999; Nemo et al., 2017). This variant is useful for grassland systems where exact C input may be 
uncertain. Another effective variant for scheme 1 for the RothC model was to calibrate the change 
rate of slowest carbon pool so that the modelled total SOC stock matches the measured value at 
the end of the long spin-up period (Hansen et al., 2012). Paustian et al. (1992) used the scheme 2 
for level 3 Century modelling but modified the initial ratios for original pool partition of total SOC 
so that the modelled C dynamics better matched observations.  

An assumption of the above initialization schemes is that the baseline condition is at or 
approaching steady state. However, the soil may not be near steady state in the baseline condition 
(Wutzler and Reichstein, 2007). Basso et al. (2011) advocated using C inputs and land 
management to follow known land use and management history. These may be most practically 
estimated from general historical information and expert opinion (Ogle et al., 2007). Knowledge 
of distant history is likely limited and it is the most recent history that is most important to pool 
sizes. Therefore, an option is to initialise with a multi-thousand-year equilibrium model spin-up. 
This approach uses estimated earlier land use conditions until there is enough knowledge of land 
use change and management history to include in the later period of the spin-up modelling.   

Several process models, most notably RothC, allow for an inert organic matter pool that does not 
change in the scale of several centuries. Coleman et al. (1997) used the 1960 14C pulse from 
atmospheric nuclear weapon testing to develop an estimate of inert organic matter. Falloon et al. 
(1998) developed an empirical relationship of inert organic matter from total SOC for RothC. 

There has been a continual drive to match model SOC pools with measureable pools. Then initial 
SOC pools could be input from measurements. Smith et al. (2002) argue that measurable pools 
not only have to be shown to match the modelled pools but must also be unique and non-
composite (i.e. cannot be divided into different sub-pools). They found that these conditions were 
difficult to achieve in practice. Having long-term experimental results to test and/or validate 
results is necessary to knowing how well the modelled results using measured pool initialization 
match observed performance. 

Skjemstad et al. (2004) developed a procedure that matched the largest modelled C pools in RothC 
with measured pools. However, they changed the turnover rate of the resistant plant material 
pool based on calibration to have a good fit of modelled to measure SOC for sites in Australia. 
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Zimmermann et al. (2007) developed a procedure for matching RothC pools to measured pools. 
They could not subdivide the resistant and decomposable plant material pools so split a measured 
plant material pool into these two pools based on the pool ration from a 1000-year spin-up 
equilibrium model run. They had a good relationship between measured pools and modelled 
pools for a range of land uses in Switzerland. Xu et al. (2011) also used the pool differentiation 
procedure of Zimmerman et al. (2007) and found that the resistant plant material pool was 
underestimated compared to measured value. This was attributed to wet soil conditions in Irish 
grasslands. Shirato et al. (2013) used a similar scheme to that of Zimmerman et al. (2007). They 
used δ14C values to estimate the amount of inert organic matter. Although they were able to 
obtain good estimates of total SOC over a time scale of decades, the δ14C did not agree with 
observations. They cautioned that the accuracy of long-term (multi-century) modelled results is 
suspect. 

Other procedures for initialisation rely on probabilistic calibration. Yeluripati et al. (2009) used 
Bayesian calibration (Van Oijen et al., 2005) to estimate the variability of pool sizes and model 
parameters for the level 3 Daycent model. Kwon and Grunwald (2015) deconstructed level 3 
Century and rewrote the SOC estimation portion into statistical software and performed inverse 
modelling to fit observed CO2 evolution from incubation studies to initialise soil SOC state and 
calibrate model parameters.  

 

9.2 Initialisation of soil pool sizes is less important for comparisons 
between two or more concurrent scenarios 

Initialisation of soil pool sizes is less important for comparisons between two or more concurrent 
scenarios. For some uses, the information required is the difference in SOC between a baseline 
condition and a modified condition over the same period. A GHG offset is an example, because 
standards such as ISO 14064:2006 (Greenhouse Gases) only require the difference between the 
SOC stocks over time for the offset action and those for the business-as-usual management. A 
comparative LCA may be constructed so only the difference in SOC change between compared 
systems is required. Similarly, a consequential LCA to investigate the effect of a change to a system 
may be constructed so it only needs the difference between the SOC stock changes for the 
modified system compared with those for the original system. 

For level 2 models where there is no modelled feedback between SOC change and C input, the 
initial soil pool sizes generally do not have a large effect on the difference between two different 
concurrent scenarios. For example, using the Introductory Carbon Balance Model, the difference 
in total SOC stocks between baseline C input for and stocks for a 10% increase in C input scenario 
was essentially identical for all the five initial SOC cases (Figure 19). However, when the level 2 
model parameters are changed in a scenario, then there may be important deviations between 
the modified and baseline scenario depending on initial soil states. Figure 20 shows the difference 
for changing the model parameters of humification factor for above and below ground for the five 
initial SOC cases described in Figure 19. The variation of modified humification and the baseline 
scenario was substantively different for case (e) of Figure 19 where the initial model C pool ratio 
deviated markedly from typical equilibrium values. 

For level 3 models (such as Century) there is usually a feedback between SOC change and plant C 
input. A substantial disequilibrium between the baseline condition and initial SOC pool sizes will 
cause rapid changes in SOC, in turn causing either a source or sink of mineral N that will affect 
plant growth and, thereby, C input. Nevertheless, the comparison between two concurrent 
scenarios will not be affected greatly by various reasonable initial soil C pool states. 

The recommended method remains to have the initial SOC pools as close as can be judged to 
appropriate values for actual initial soil conditions to provide the best estimate of the difference 
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between two concurrent scenarios. However, the initial soil state for the above will not be 
required with the same accuracy as for a model use, such as for SOC stock change for attributional 
LCA, where the SOC trend for single scenario needs to be estimated as accurately as possible. 
Importantly, the relative insensitivity for initial SOC state for comparing concurrent scenarios does 
not extend to model parameters such as rate constants for which SOC stock change remains very 
sensitive to inaccuracies. 

It is recommended not to change model C fate parameters for initialisation unless changes are 
done as part of broader calibration exercise. 

 

 
Figure 20. Difference from baseline conditions for a modified scenarios of 10% increase in above 
and below ground C input and of 20% increase in above ground and below ground humification 
factors as estimated by the Introductory Carbon Balance Model (Andrén and Kätterer, 1997). 
Cases (a) to (e) refer to descriptions in Figure 19. 

 

9.3 Guidance for Initialisation 

If there is limited knowledge regarding baseline SOC, including no estimate of initial total SOC, the 
best option is to use scheme 1 model spin-up to equilibrium for the baseline conditions. If it is 
judged that there are good estimates of C inputs, then level 2 models can be used. Good estimates 
of C inputs can also be used to help parameterize vegetation growth in level 3 models so modelled 
C input matches known C input. If there is limited knowledge of C inputs, then level 3 models that 
estimate plant growth can provide initial estimates of SOC stock based on the input data including 
vegetation growth parameters and site variables such as weather and soil texture. Without 
knowledge of the C inputs, the accuracy of vegetation growth parameters will be critical so it is 
important to choose a parameter set that has been shown to perform well for similar vegetation 
characteristics and growing conditions to the modelled situation. If there is good knowledge of 
past land use and management history, particularly histories that would likely cause baseline soil 
to be not at steady state, then including that history for the last years of the model spin-up is 
recommended. This requires the availability of good estimates of C input for level 2 models or 
vegetation growth parameters and soil erosion for level 3 models for that history. Checking initial 
SOC stock estimates with any available SOC data, such as general soil information from soil 
surveys, is useful to determine if the model estimated SOC values are reasonable. 

If there is knowledge of baseline total SOC, then scheme 2 of partitioning total SOC into pools 
based on generic or modelled equilibrium C pool ratios followed by a spin-up period of 10-30 
years is a feasible option. The option exists to calibrate either carbon input or pool turnover rates 
to improve match between initial modelled and measured total SOC. If there is knowledge of past 
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land use and management history, particularly histories that would likely cause the baseline soil 
to not be far from steady state, then including the effects of that in initial C pool ratios at start of 
the model spin-up is recommended good practice. This would be done by using the initial pool 
ratio from a scheme 1 spin-up that includes that history for the last years of the model spin-up 
providing it is judged there are good estimate for the C input for level 2 models or vegetation 
growth parameters and soil erosion for level 3 models for that history.  

If the primary purpose of model use is to estimate the difference between two concurrent 
scenarios, additional effort beyond the above options may not improve the results significantly. 
However, if a SOC stock change for a single scenario is needed then the additional effort for 
initialisation should be considered. 

If there is detailed fractionation of SOC for baseline condition and confidence that the measured 
pools will match model pools for the modelled situations, and then the initial pool sizes can be 
adjusted based on measured fractions for scheme 2 initialisation outlined above. Testing the 
suitability of this modification against a range of soil data relevant to the modelled situations 
and/or for long term measured SOC stock time series is recommended before application. 

If there are good measurements of SOC over many years, preferably several decades for a site 
with conditions similar to the modelling objective, then there is an opportunity to calibrate C input 
and/or model parameters to provide a good match between observed and modelled SOC. The 
calibrated values can then be used to make estimates of initial soil SOC through:  

1. scheme 1 as outlined above where there is no knowledge of baseline SOC  

2. scheme 2 as outlined above where there is knowledge of initial total SOC.  

It is a large investment in time to calibrate a process SOC model. Some reviewers of calibrated 
modelling may require rigorous documentation of the calibration procedure to show that the 
model was not deliberately or inadvertently calibrated to produce a particular result when used 
to make an estimate of SOC stocks for the target model application. If no calibration is done, it is 
recommended that long-term data be used to assess the appropriateness of the chosen soil C 
pool initialisation method and model parameters.  
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10. APPENDIX TWO: Technical details of model calibration and 
uncertainty evaluation using Monte Carlo approaches 

Monte Carlo methods, that draw random values from the probability distribution functions for 
inputs and parameters, are an efficient and flexible way to estimate the whole uncertainty of the 
modelled estimation, including those from input and model uncertainty (VandenBygaart et al., 
2004; Stamati et al., 2013). It also does not require the use of a data set of observed system 
performance. The major reluctance to use this approach is the challenge of selecting justifiable 
probability distribution functions of influential inputs and parameters (Verbeeck et al., 2006).  

As an example of the Monte Carlo approach, Ogle et al. (2010) made an estimate of structural 
uncertainty of the Century model. Their study included a Monte Carlo implementation of an 
empirical mixed model of fixed effects for major factors of SOC change and random effects to 
include the spatiotemporal dependencies in the United States (Ogle et al., 2007). They found that 
there were systematic errors for Century regarding the effect of tillage and the effect of soil 
texture on SOC stock. Through Monte Carlo simulation this empirical model was used to estimate 
the uncertainty in SOC stocks that arises from the use of Century. This allowed the authors to 
make SOC stock estimates for these fixed effects, for application in the United States (for which 
the empirical model is valid).  

The variables and parameters that make the greatest contribution to model-estimated output 
uncertainty are those with the largest combinations of their own uncertainty and modelled output 
sensitivity. It is difficult to know which is most important. Several procedures are available to 
subdivide total model output variance into components to gain an understanding of uncertainty 
from individual factors and their variance. The simplest of these use the most sensitive variables 
from OAT analysis in form suitable for Monte Carlo estimation. The results are structured for 
Analysis of Variance (ANOVA) with uncertain variable as factors and with model output as the 
response variable (Wang et al., 2006; Tang et al., 2007; Nishina et al., 2015). Interactions between 
influential factors are also included. The variable contributing most to the variance are those 
having greatest impact on uncertainty.  

A more-advanced method to use a Monte Carlo approach is to condition the parameter 
uncertainties, based on differences between observation and modelled outputs. The Markov 
Chain Monte Carlo is a powerful and computationally efficient method, that uses random 
selection to continually improve the likelihood of the probability distribution function of variables 
and parameters based on comparing model output with observed values (Ricciuto et al., 2008; 
Tuomi et al., 2009; Ren et al., 2013). The General Linearized Uncertainty Estimation (GLUE) is a 
related method to Markov Chain Monte Carlo, in that it also uses Monte Carlo methods and 
Bayesian inference to simultaneously estimate the uncertainty of parameters and of the model 
estimation (Wang et al., 2005; Causarano et al., 2007; Juston et al., 2010; Salazar et al., 2011). 
These methods provide good characterization of the uncertainty and the contribution of different 
inputs and parameters to that uncertainty. However, to provide good estimates of model 
prediction uncertainty, the observations to which the model output is compared need to 
represent the range of conditions in the application domain. This can be a limitation for applying 
these advanced methods to estimate the model prediction uncertainty for grazed grassland 
systems as there are usually few studies with observations of SOC. 
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