Is the biosphere-atmosphere exchange of total reactive nitrogen above forest driven by the same factors as carbon dioxide? An analysis using artificial neural networks

Undine Zölla, Antje M. Lucas-Moffatb, Pascal Wintjenb, Frederik Schradera, Burkhard Beudertc, Christian Brümmera,∗

a Thünen Institute of Climate-Smart Agriculture, Bundesallee 65, 38116, Braunschweig, Germany
b Also at German Meteorological Service, Centre for Agrometeorological Research, Bundesallee 33, 38116, Braunschweig, Germany
c Bavarian Forest National Park, 94481, Grafenau, Germany

ARTICLE INFO

Keywords:
Total reactive nitrogen
Eddy covariance
CO₂
Forest
Artificial neural networks

ABSTRACT

Phase and amplitude of ecosystem-atmosphere fluxes of reactive nitrogen compounds are poorly understood due to a lack of suitable observation methods. Understanding the biophysical controls of the surface nitrogen exchange is essential for the parameterization of process-based and chemical transport models that can be used for the determination of regional or national nitrogen budgets. In this study, we investigated similarities in time series of net total reactive nitrogen (Σ Nr) and carbon dioxide (CO₂) fluxes above forest with regard to their variability and driving factors. We found corresponding shapes of the mean diurnal summertime patterns of Σ Nr and CO₂. While ecosystem respiration leads to a net CO₂ release at night, Σ Nr was on average deposited throughout the entire observation period. Using artificial neural network analysis, global radiation (Rg) was identified to be the main control for both Σ Nr and CO₂. While the concentration of Σ Nr substantially improved the coefficient of determination for Σ Nr fluxes when used as a secondary driver, only minor improvements of 2–3% were found for CO₂ fluxes when using for example temperature or vapour pressure deficit (VPD) as secondary driver. Considering two dominant drivers, 41 and 66% of the variability in Σ Nr and CO₂, respectively, could be explained. Further data stratification for Σ Nr revealed that higher concentrations, higher temperature, and higher VPD as well as dry leaf surfaces tend to favour higher deposition of Σ Nr, whereas lower concentrations, lower temperature, and lower VPD as well as wet leaf surfaces mainly correspond to situations when less Σ Nr was deposited or even emitted. Our results support the understanding of biosphere-atmosphere interactions, their driving factors, and establish a link between Σ Nr and CO₂ exchange, which may be beneficial for future developments in state-of-the-art exchange modelling.

1. Introduction

Nitrogen is a key element on earth. As elemental nitrogen (N₂) it makes up 78% of the atmosphere. In the biosphere its reactive forms play a major role for plant growth (Follett and Hatfield, 2001). While it can be a limiting factor in natural ecosystems, an excessive supply of nitrogen through synthetic fertilization or atmospheric deposition can lead to a number of harmful effects, such as eutrophication of ecosystems or adverse effects on human health (Erisman et al., 2013). In an agricultural context, ammonia (NH₃) plays a special role: While it readily deposits to all kinds of (especially wet) surfaces, it also underlies bi-directional exchange and can be emitted from agriculturally used areas, from fertilized fields as well as animal housings, stored manure or the like (Sutton et al., 2011; Flechard et al., 2013), as well as from natural ecosystems with a history of high N deposition (Farquhar et al., 1980). Nitrogen oxides, on the other hand, are mainly emitted from the industry and transportation sector (Sutton et al., 2011; Fowler et al., 2013). NO and NO₂ underlie photochemical reactions, during which NO₂ is photolyzed to NO, O₃ is formed, which reacts again with NO during the night to NO₂. In further steps NO₂ can react with O₃ to NO₃, NO₃ with NO₂ to N₂O₅, which can react with water to HNO₃. The latter, however, is mainly being formed through the reaction of NO₂ and OH radicals (Seinfeld and Pandis, 1997). In this study, the term NO₃ refers to NO and NO₂ only, since these are the main NO₃ compounds. The reduced N compounds can react to acidic (nitric acid and nitrous acid) or particulate compounds (ammonium and nitrates), and can play a role...
in the formation of organic compounds such as amines and nitrates (e.g., peroxyacetyl nitrate). The above listed reactive nitrogen species are all together described as total reactive atmospheric nitrogen (ΣNr) (Marx et al., 2012). Concentrations of those compounds are usually low, but near sources like stables, industry plants or busy streets critically high concentrations (i.e. mean annual above 21 ppb, hourly means above 106 ppb for NO2, WHO, 2006; maximum allowed concentration of 18 ppm for NH3, Erisman et al., 2013) and therewith high deposition rates can be reached. Those high concentrations threaten the health of humans regarding the respiratory system. Plants are more prone to stress factors such as frost and direct foliar damage can occur, but also whole ecosystems suffer from acidification, eutrophication, and generally decreasing species richness (Erisman et al., 2013).

Most campaigns on gaseous reactive nitrogen focus on NH3 at agricultural sites as estimations of nitrogen losses from fertilizer applications suffer from considerable uncertainties in the measured fluxes (e.g., Sutton et al., 2009; Spirig et al., 2010). Historically widely used measurement techniques like passive samplers (Tang et al., 2009) and wet-chemistry analysers like AMANDA or AirRmonia (von Bobrutzki et al., 2010) were operated at comparably low sampling frequencies with sometimes high detection limits, requiring modelling approaches to estimate exchange fluxes. Nowadays faster, more accurate and precise devices (e.g., quantum cascade lasers (Zöll et al., 2016), total reactive atmospheric nitrogen converter (TRANC) coupled to a chemiluminescence detector (Ammann et al., 2012), differential optical absorption spectroscopy (miniDOAS; Sinterrnh et al., 2016)) allow detecting low background concentrations and investigating driving variables other than ambient concentrations. With some of these devices, it is possible to apply the eddy-covariance (EC) method to derive exchange fluxes as it is common practice e.g. for carbon dioxide (CO2) exchange. There are only few reactive nitrogen exchange measurement campaigns above forests, which mainly focus on one or only a few selected reactive nitrogen compounds under a variety of conditions with regard to e.g. wetness (e.g., Wyers and Erisman, 1998; Wolff et al., 2010; Geddes and Murphy, 2014; Hansen et al., 2015). The study here presented is the first one where all reactive nitrogen compounds were measured with a single analytical device coupled to the TRANC converter and using the eddy-covariance method to calculate biosphere-atmosphere exchange fluxes. Measurements were conducted in the Bavarian Forest National Park, which is located in rural counties of more than 57% woodland with a current population density of 80 km$^{-2}$ on the German and less than 45km$^{-2}$ on the Czech side of this low mountain range (Beudert et al., 2018). There are no industries or power plants, which is demonstrated by low annual concentrations of NO2 (2.9 ppb ± 0.7 ppb; data provided by the Bavarian Forest National Park, 1992–2017) and of NH3 (1.4 ppb, 2003–2005; Beudert and Gietl, 2015). In October 2015, environmental NO2 and NH3 concentrations (together at least 75% in Marx et al., 2012). Hurkuck et al. (2014) found that 80% of ΣNr deposited to a semi-natural peatland site in close vicinity to agriculture consisted of NH3. While the composition at a natural forest site might be different, we still assume NH3 and NO2 to dominate the total ΣNr exchange. According to our DELTA-Denuder measurements on average 33% of ΣNr were NH3 and 32% were NO2 (measured separately by a chemiluminescence detector).

Usually reactive nitrogen concentrations are the primary driver for the exchange flux, but also other climatic drivers have an, mostly minor, effect (Milford et al., 2001; Flechard and Fowler, 1998; Zöll et al., 2016). Those rather small effects are difficult to disentangle because of interrelations between the drivers (Milford, 2004) and are not completely understood until now (Flechard et al., 2013). In contrast, CO2 exchange has been widely researched and the main drivers, radiation and temperature, are well known (e.g. Chen et al., 2009).

Since there are no simple linear relationships between the ΣNr fluxes and other environmental factors, such as temperature, relative humidity (RH) or global radiation (Rg, e.g., Milford et al., 2001), we aim to investigate the importance of certain biophysical factors for explaining the variability in ΣNr fluxes by using artificial neural networks (ANNs). This method is widely used and has been successfully applied in an ecological context for explaining CO2 exchange (Albert et al., 2017; Moffat et al., 2010; Park et al., 2018).

The aims of our study are to (1) investigate whether similarities in the diurnal flux patterns of CO2 and ΣNr exist, and if so, (2) whether these flux patterns are driven by the same or by different biophysical factors. Further, (3) we quantify the specific contribution of each controlling factor by using artificial neural network analysis to help improve our understanding of reactive nitrogen exchange mechanisms in natural forest ecosystems.

2. Materials and methods

2.1. Site description and local climate

To measure background total reactive nitrogen (ΣNr) concentrations and fluxes, a remote site in the Bavarian Forest National Park, Germany (48°56’N 13°25’E, 807 m a.s.l., for a map see Fig. S1 in the supplements), some kilometers away from moderate anthropogenic emission sources, was chosen. The unmanaged site is located in a natural mixed forest stand in the Forellenbach catchment, which is a part of the International Cooperative Program on Integrated Monitoring of Air Pollution Effects on Ecosystems (ICP IM) within the framework of the Geneva Convention on Long-Range Transboundary Air Pollution (http://www.unece.org/env/lrtap/). Additionally, the Bavarian Forest National Park is part of the Long Term Ecological Research (LTER) network (for more details on the sites and data availability see https://data.lter-europe.net/deims/site/lter_eu_de_015). The stand mainly consists of spruce (Picea abies) and to approx. 20% of beech (Fagus sylvatica) species within the flux footprint. During the campaign, the stand reached only up to a height of 20 m, because it is recovering from a bark beetle outbreak in the mid-1990s and 2000s (Beudert et al., 2014). Annual mean air temperature at the site is 6.6 °C and the mean annual precipitation sum is 1563 mm per year (data provided by the Bavarian Forest National Park, 1978–2017).

2.2. Measurement setup

The 50 m high tower at the measurement site was set up in the 1980s and has been used for several measurement purposes, e.g. for nitrogen oxides (NO and NO2), sulphur dioxide, and ozone monitoring within the framework of UN ECE IM on behalf of the German Environment Agency (UBA, Beudert and Gietl, 2015). In October 2015, we started to set up several instruments for a ΣNr and CO2 flux measurement campaign. Reliable fast response ΣNr concentrations in an EC setup were recorded from summer 2016. Data from 14 July until 30 September were used for the analysis.

The setup consisted of a custom-built ΣNr converter (total reactive atmospheric nitrogen converter (TRANC), after Marx et al., 2012), mounted on a boom at a height of 30 m above ground, as well as a chemiluminescence detector (CLD 780 TR, ECO PHYSICS AG, Dürnten, Switzerland) and a dry vacuum scroll pump (BOC Edwards XDS10, Sussex, UK), both situated on ground level. The sample path through the TRANC includes two main conversion steps: a heated iron-nickel-chrome (FeNiCr) alloy tube (approx. 870°C) and a passively heated gold tube (approx. 300°C). Carbon monoxide is added as a reducing agent after the sample air passed the FeNiCr tube. The basic principle of operation of the TRANC is the thermal and catalytic conversion of all ΣNr compounds (including also particulate compounds) to nitric oxide (NO), which is led through PTFE tubing after leaving the TRANC and is analyzed in the CLD at a sampling frequency of 10 Hz. A critical orifice
ensured pressure reduction at a constant flow rate of 1.9 l min⁻¹ [11]. Marx et al. (2012), who investigated the field applicability and the conversion efficiency in the laboratory as well as in a long-term field test, found recovery rates for NO₂, NH₃, and a compound mixture (NO₂ and NH₃) of 99%, 95%, and 97%, respectively, in the laboratory, and in the field during an 11-months campaign on average for NO₂, a recovery rate of 91%. Further details of TRANC field applications can be found in Ammann et al. (2012) and Brümmer et al. (2013). A 3-D ultrasonic anemometer (model R3, Gill Instruments, Lymington, UK), measuring the three wind components u, v, and w (which were also used to calculate wind speed (ws), wind direction (wd), and friction velocity (uₗ)), was installed at an additional boom next to the TRANC, 30 m above ground. The infrared gas analyzer (IRGA; LI-7500, LI-COR Inc., Lincoln, NE, US) for CO₂ and water vapour (H₂O) was mounted nearby the TRANC on the same boom.

Additionally, air temperature and relative humidity probes (Campbell Scientific, HC2S3, Logan, Utah, USA) were mounted on four levels (10, 20, 40, and 50 m), using the mean of 20 and 40 m for the further analysis. Three leaf wetness sensors (Decagon, LWS, Pullman, Washington, USA) were attached to a spruce tree close to the tower at three different heights (2.1 m: LeafWet_F1, 4.6 m: LeafWet_F2, 6.9 m: LeafWet_F3).

Half-hourly NO and NO₂ (NOₓ) data, measured at 50 m height with a chemiluminescence detector (APNA – 360, HORIBA, Tokyo, Japan), as well as precipitation and global radiation data were provided by the Bavarian Forest National Park (Beudert and Breit, 2008, 2010).

For a better specification of the ΣNr, a DELTA-Denuder (Denuder for Long-Term Atmospheric sampling, e.g. Sutton et al., 2001) system was mounted at 30 m height. The system provides monthly NH₃, HNO₃ as well as particulate NO₃⁻ and particulate NH₄⁺ concentrations.

2.3. Data acquisition and flux calculation

The EddyMeas software (part of the software package EddySoft. Kolle and Rehmann, 2009) was used to record all the flux related data: the CLD’s and IRGA’s analog signals, which were fed into the ultrasonic anemometer interface, as well as the anemometer data itself. The half-hourly exchange fluxes were calculated using the software EddyPro (LI-COR Inc.), which conducted block averaging and 2-D coordinate rotation for ΣNr and CO₂ fluxes, as well as an application of the WPL term to account for the influence of water vapour on air density fluctuations (Webb et al., 1980) for the latter.

Due to the distance between the inlet and the concentration analyzer, a time lag between the sonic data and the concentration data exists. This time lag can be calculated using the tube length, diameter, and flow rate and was estimated to be approximately 20 s for the TRANC-CLD setup. Another method is to determine the time lag by shifting the time series against each other to maximize the covariance. The shift that is necessary for the maximum (absolute) covariance is assumed to be the time lag under ideal meteorological conditions. In this study, this shift was in a range of 18–21 s, which was set for the ΣNr concentration time lag span in the EddyPro software package. The software calculates the covariance maximization and also choses the time lag between the set range. For CO₂ concentrations, measured by an open-path instrument, usually, no or only small time lags (<1.5 s) occur due to sensor separation. Time lags were estimated by EddyPro’s covariance maximization algorithm.

To estimate and correct flux-losses in the high-frequency range, an empirical approach was applied to the ΣNr fluxes (after Aubinet et al., 2001; Ammann, 1998). The approach is based on the principle of scalar similarity between the cospectra of vertical wind speed (w) and sonic temperature (T) cospectra Co(wΣT) with the cospectrum of w and ΣNr concentration Co(wΣNr'), where Co(wΣ') is the reference cospectrum. A cospectral damping factor was quantified by fitting spectral transfer functions to the measured (undamped) Co(wΤ') and is followed by a consecutive scaling of Co(wΤ'), multiplied with the obtained transfer function, to the measured Co(wΣNr'). The scaling factor is then the damping factor. Because cospectra of every half-hour flux are often noisy due to a wide range of eddy sizes (Kaimal and Finnigan, 1994) and, especially over forest, due to varying surface roughness lengths, the damping factor was calculated monthly for several classes of wind speed and stability. Therefore, the damping factor is subject to significant uncertainty. Resulting damping factors for ΣNr fluxes separated in four wind sectors and three stability classes (stable, neutral, and unstable) were in the range of 0.65–0.79. Because of the high variability, the overall mean of 0.73 was applied to all ΣNr fluxes, i.e., measured (damped) fluxes were corrected by dividing them by 0.73. To account for spectral damping in the CO₂ fluxes, the common method of Moncrieff et al. (1997) was used.

In recent campaigns, the same NO analyzer (CLD) was found to be sensitive to ambient water vapour (0.19% sensitivity reduction per 1 mmol mol⁻¹ water vapour increase), thereby affecting measured ΣNr concentrations and, consequently, fluxes. Thus, a correction flux had to be added to every half-hourly ΣNr flux value, for more details see Ammann et al. (2012) and Brümmer et al. (2013). Correction values ranged from −2 to 0.7 ng N m⁻² s⁻¹ with a mean of −0.3 ng N m⁻² s⁻¹. In general: negative values indicate deposition and positive values indicate emission fluxes by convention.

Since the IRGA for the CO₂ measurements is an open-path analyzer, periods of rain were excluded from the analysis.

2.4. Data selection and post processing

For the analysis, a time period of 79 days from 14 July to 30 September 2016 (DoY 196–274) was chosen. Before and after this period, a lot of gaps occurred because one of the crucial instruments (IRGA, TRANC, or CLD) was not working properly and had to be maintained or repaired. The half-hourly fluxes of ΣNr were filtered for low quality (flag = 2, after Mauder and Foken, 2006) and for insufficient turbulence (uₗ < 0.1 m s⁻¹, see below reason for this specific number) during the nighttime (Rg < 5 W m⁻²). Additionally, half-hours with higher ΣNr fluxes than 300 ng N m⁻² s⁻¹ and for half-hourly CO₂ fluxes outside a range of −50 μmol m⁻² s⁻¹ to 30 μmol m⁻² s⁻¹ were removed during daytime and −25 μmol m⁻² s⁻¹ to 30 μmol m⁻² s⁻¹ during nighttime. Only non-gapfilled data were used. The mean random flux errors after Finkelstein and Sims (2001) were 6.0 ng N m⁻² s⁻¹ and 2.6 μmol m⁻² s⁻¹ for ΣNr and CO₂, respectively (see also Fig. S3).

According to Langford et al. (2015), the limits of detection were (1.96 times the flux error, with a confidence limit of 95%) 11.8 ng N m⁻² s⁻¹ and 5.1 μmol m⁻² s⁻¹. To reduce the random noise in the ΣNr fluxes, the half-hourly fluxes were averaged to three-hourly means in time steps starting at 01:30 (representing the measurement period from 00:00 until 03:00) until 22:30.

For comparability, the CO₂ fluxes were treated in the same manner except for the uₗ threshold. The uₗ threshold was calculated using the REddyProc online tool (Wutzler et al., 2018), based on the threshold selection by Papale et al. (2006) and was set to 0.29 m s⁻¹. For ΣNr, a lower, general uₗ threshold of 0.10 m s⁻¹ was chosen, as a compromise between no filter and the 0.29 threshold for CO₂ to have at least a minimal filter (as used e.g. in Papale et al. (2006) as a minimum threshold for forest canopies), because at the moment there are no common methods for its evaluation. It has not been investigated until now whether or not ΣNr (and also other fluxes) should be treated in the same manner as CO₂ and should be the subject of future research. Comparing the ΣNr fluxes of this study with and without the filter of 0.10 m s⁻¹ does not show significant differences for the majority of nights (not shown).

The dataset used in this analysis consisted of 596 three-hourly means for ΣNr fluxes and of 437 three-hourly means for CO₂ fluxes (out of the 632 possible time steps). Since the driver analysis with artificial neural networks required complete driver and flux data, the number of data points was reduced to 411, as this was the set intersection of all
valid three-hourly means.

The ANNs are programmed in C++ using the CERN-ROOT libraries (Brun and Rademakers, 1997). For all other calculations and figures the statistical programming language R (R Core Team, 2018) was used.

2.5. Artificial neural networks

The inductive methodology presented in Moffat et al. (2010) was used to characterize the ΣN_r and CO_2 fluxes with respect to their biophysical drivers. The methodology is based on artificial neural networks (ANNs) trained with the backpropagation algorithm (Rumelhart et al., 1986; Rojas, 1996). Backpropagation ANNs correspond to statistical multivariate non-linear regressions. During the training, the relationships of the fluxes with the drivers are extracted directly from the data and mapped into the network.

For the driver analysis, the ANN trainings were performed with one input driver at a time to find the most dominant driver. In a second step, the identified primary driver plus one additional driver at a time were fed into the procedure to determine the second most important driver of the fluxes. Each of the ANN trainings was repeated five times to get a measure of the robustness.

Since the trained network is a mathematical representation of ecosystem response to the biophysical drivers, the ANNs can also be used to identify the functional relationships, which can be retrieved in form of equations as it is shown for a single driving variable in Fig. 5, Chapter 3.2.

3. Results and discussion

3.1. Diurnal and seasonal patterns of total reactive nitrogen and carbon dioxide exchange

In Fig. 1, the 79 day period of non-gapfilled ΣN_r and CO_2 fluxes is shown. At this natural forest site, we observe mainly deposition of ΣN_r, with a few exceptions (i.e., emission periods, which cannot be attributed to specific conditions, except comparably low global radiation, see Fig. S2). The three-hourly fluxes were in a range of -127 to 72 ng N m$^{-2}$ s$^{-1}$ with a median of -14 ng N m$^{-2}$ s$^{-1}$ and a mean of -19 ng N m$^{-2}$ s$^{-1}$. On a half-hourly basis they ranged between -250 and 300 ng N m$^{-2}$ s$^{-1}$ (median -14 ng N m$^{-2}$ s$^{-1}$ and mean of -21 ng N m$^{-2}$ s$^{-1}$). Comparing these ranges to other studies is difficult due to the fact that most studies only measure one or only selected components of ΣN_r, Hansen et al. (2015) measured NH$_3$ fluxes in a range of -60 to 120 ng N m$^{-2}$ s$^{-1}$ over a mixed forest but with a lot more emission phases with a focus on post-leaf fall periods. NH$_3$ was on average 33% of ΣN_r and is next to NO$_2$ (i.e. Horii et al., 2004) the main component, which undergoes bi-directional exchange even in natural ecosystems.

Therefore, it was expectable that we measured higher deposition rates due to most of the other ΣN_r components, which are usually deposited. One exception might be NO, but this component has only a very small share above such a natural forest site (see Fig. S2) and is commonly observed as soil efflux when produced as byproduct of nitrification or as an intermediate product of denitrification (Butterbach-Bahl et al., 1997; Rosenkranz et al., 2006). Horii et al. (2006) measured only deposition fluxes for all oxidized atmospheric nitrogen species (NO$_y$), up to approx. -80 ng N m$^{-2}$ s$^{-1}$, also above a mixed forest. Similar findings were reported by Munger et al. (1996) for the same site. In contrast, Horii et al. (2004) showed NO$_2$ emission fluxes, small NO deposition fluxes, and HNO$_3$ deposition fluxes almost as high as the NO$_2$ fluxes (Horii et al., 2006), which shows that HNO$_3$ appears to be a great share of the ΣN_r deposition even though the concentrations are comparably low. Furthermore, Munger et al. (1996) state that HNO$_3$ formation is an effective pathway to remove NO$_2$ by the reaction of NO$_2$ and O$_3$. These findings emphasize how difficult interpretations of mixed flux signals are. There is not only the daily conversion between NO and NO$_2$, but also the reaction to other NO$_y$ compounds. Additionally, all ΣN_r components underlie differently directed exchange, take different pathways, and differ in their exchange velocities.

There are only very few studies which measure the sum of all reactive nitrogen compounds exchange. In one study featuring the same ΣN_r measurement setup (Brümmer et al., 2013) above agricultural land, half-hourly fluxes in the range from -175 up to more than 4000 ng N m$^{-2}$ s$^{-1}$ were observed, the latter induced by a fertilization event. More distant to that event their fluxes ranged mainly between -20 and 20 ng N m$^{-2}$ s$^{-1}$. As an unmanaged forest, our site was obviously able to take up more ΣN_r, but still in the same order of magnitude. It also seems as if the arable site exhibited mostly neutral exchange outside of management events, in contrast to our forest site which appears to be a sink. This may be explained by the higher amount of bi-directionally exchanged NH$_3$ and very high short-term nitrogen concentrations in agricultural environments.

Generally, a diurnal cycle with consistently low negative or neutral ΣN_r fluxes during the night, increasing deposition during the morning hours and decreasing deposition in the evening was observed (Fig. 2).

![Fig. 1. Non-gapfilled time series of 3-h-mean total reactive nitrogen (black) and carbon dioxide (red) fluxes.](image-url)
Wyers and Erisman (1998) observed NH$_3$ fluxes above coniferous forest with very similar diurnal cycles, as well as Geddes and Murphy (2014) and Horii et al. (2006) for summer NOy fluxes above mixed forests. Similar observations were made by Wolff et al. (2010) for total ammonium and total nitrate above spruce canopy.

Three-hourly CO$_2$ fluxes varied between -28 and $30\,\mu$mol m$^{-2}$ s$^{-1}$ with a median and mean of $-6\,\mu$mol m$^{-2}$ s$^{-1}$. On a half-hourly basis they ranged between -40 and $30\,\mu$mol m$^{-2}$ s$^{-1}$, with a median and mean of $-9\,\mu$mol m$^{-2}$ s$^{-1}$. The diurnal pattern for CO$_2$ is typical for exchange during the vegetation period in a temperate coniferous forest (e.g. Falge et al., 2002; Chen et al., 2009). In the night, CO$_2$ release was observed, i.e. ecosystem respiration is the main component of net ecosystem exchange while no photosynthesis occurs. Mean respiration fluxes of $9\,\mu$mol m$^{-2}$ s$^{-1}$ were observed. During the day, CO$_2$ uptake up to $17\,\mu$mol m$^{-2}$ s$^{-1}$ was observed when photosynthesis dominates over ecosystem respiration. These ranges are in agreement with the mean values for July, August and September (1996–2000) for the Tharandt forest, also mainly consisting of spruce species (Falge et al., 2002).

3.2. Artificial neural network analysis

To characterize the importance of biophysical drivers of ΣN, and CO$_2$ exchange, an ANN analysis was conducted. ANNs depict the correlation between the input variables and the output, here the fluxes. In the first step, the fluxes were mapped with one single variable at a time (upper part of Figs. 3 and 4). The goodness-of-fit is expressed as R^2 on the y-axis and given for a set of variables on the x-axis (see Table S1 for abbreviations and Fig. S4 for time series). The R^2 values for CO$_2$ exchange are distinctively higher than for ΣN, because the ecosystem-physiological processes of CO$_2$ are mainly driven by the meteorology. Meanwhile, the processes for ΣN are not as obvious and other drivers (that have not or cannot be measured), combined or opposing effects of subcomponents (like NO$_x$ or NH$_3$), and lagged or higher-temporal-scale effects lead to lower R^2 values.

Highest R^2 for ΣN, fluxes were reached with ΣN concentration ($R^2 = 0.24$), global radiation ($R^2 = 0.22$), and for the correlation with CO$_2$ flux ($R^2 = 0.17$) as a primary driver. The question remains whether the concentration is a driver of the flux or vice versa, as previously discussed in Zöll et al. (2016) or Milford (2004). During deposition situations, it is assumed that higher concentrations lead to higher deposition due to a larger concentration difference between the measurement height and the surface. We measured in a N limited natural ecosystem and therefore mainly observed deposition, the reverse case of fluxes controlling the concentrations seems highly unlikely even during the few emission phases. Though fluxes always lead to a change of the regarded volume, and hence also the concentration regime, in this study the concentration might be the controlling variable. The dominant biophysical control was global radiation, which is known to highly influence the opening of stomata (Jarvis, 1976). This is a major pathway for CO$_2$ exchange, but also for other compounds such as NH$_3$ (Wyers and Erisman, 1998; Hansen et al., 2015) and NO$_2$ (Thoene et al., 1996), which are – depending on site location – usually the main components of ΣN (Marx et al., 2012).

In the second step, the dominant climatic driver global radiation, was chosen as primary driver. It was then tested to which extent the flux can be explained by global radiation plus another parameter (Fig. 3). Then the R^2 with ΣN concentration as secondary driver becomes as high as 0.41, and the combined amount is slightly lower than adding the R^2 of both primary drivers. This means that both drivers (global radiation and ΣN concentration) add independent information to explain the variability in the ΣN fluxes. On the contrary, adding CO$_2$ as a second driver increases R^2 only slightly and indicates that most of the information is already contained in global radiation. This can be expected since global radiation is also the main driver of CO$_2$ fluxes. In addition, one would expect the humidity variables to stand out, too, like it was observed by Milford et al. (2001) for NH$_3$ above moorland.
Surface wetness is a perfect sink for NH$_3$ due to its high solubility (Wentworth et al., 2016). However, we only measured NH$_3$ as a part of ΣNr, and humidity generally plays a bigger role in ecosystems like peatlands (as in Milford et al., 2001), hence the effect at our site was probably minor compared to the others. After all, vapour pressure deficit (VPD) increases R^2 by 5% as a secondary driver.

For CO$_2$ fluxes, global radiation as a primary driver yields the highest R^2 of 0.66. This means that as expected the radiative driver is the most important driver of the CO$_2$ fluxes which is in agreement to other studies using ANNs to explain CO$_2$ fluxes (Moffat et al., 2010; Park et al., 2018). The correlation of the two fluxes, CO$_2$ and ΣNr, is the same as above ($R^2 = 0.17$). For CO$_2$ fluxes, no parameter increases R^2 considerably as secondary driver to the global radiation. The CO$_2$ fluxes of this natural, unstressed forest during this summer period were mainly dominated by the photosynthesis response during daytime with little influence of the other drivers like temperature or humidity, since we captured no drought or heat nor very cold periods suppressing photosynthesis.

The ΣN$_r$ and CO$_2$ fluxes have both shown a similar diurnal cycle and a strong response to global radiation as a driver. Only slightly increasing R^2 as a secondary variable tells us that their main linkage is through global radiation. It is not surprising that this parameter plays an important role, since it is the main driver for opening the stomata, which is an important pathway for both exchange fluxes or at least partly for some ΣN$_r$ compounds (especially NH$_3$ and NO$_2$).

To investigate this further, the ANNs were also used to determine the light response curves for both fluxes (Fig. 5).

In Fig. 5, the light response curves for ΣN$_r$ (upper panel) and CO$_2$ flux (lower panel) are shown. For CO$_2$, the typical light saturation curve can be observed (i.e. Milford et al., 2001, Krishnan et al., 2009; Moffat et al., 2010): starting with a linear decrease during nighttime and saturating towards high global radiation. In contrast, the ΣN$_r$ flux light
response curve is slightly bell-shaped: starting with a decrease during nighttime, reaching a minimum around 600 W m$^{-2}$, and then increasing again for higher radiation values. Hence, the ΣN_r exchange reaches a reversal point rather than a threshold of saturation as for CO$_2$ with increasing light. The question remains if this is specific for our site, the year, the time of the year, the land use, or only for certain nitrogen compounds. In contrary to CO$_2$, the ΣN_r compounds are not as actively consumed by the plant. Usually it is assumed that the stomatal compensation point (Farquhar et al., 1980) regulates the amount of uptake. The concept of a compensation point originates from NH$_3$ exchange and is based on the idea that the flux is driven by the difference between ambient concentrations and a nonzero air NH$_3$ concentration in equilibrium with the apoplastic fluid. Besides, compensation points are also evaluated for NO$_2$ (Thoene et al., 1996). This means we observe deposition as long as the stomatal concentration is lower than the outside concentration and the stronger this gradient the more deposition or uptake occurs. So at some point not the opening of the stomata itself influences the uptake but the compensation point which is mainly regulated by the surrounding concentration, which is limited at our remote site. This matches also our former findings, that the ΣN_r concentration is an important driver for the ΣN_r exchange. It has to be noted that $u*$ did not emerge as a strong driver for ΣN_r deposition. The higher dependence on radiation suggests that photochemistry, which drives the speciation of ΣN_r, might be more important than turbulence alone. Higher radiation leads to more photochemical reactions through which O$_3$ is formed. This might affect the ΣN_r composition and therefore the exchange characteristic of ΣN_r. Eventually, more HNO$_3$, characterized by high deposition velocities (Horii et al., 2004), is formed because of enhanced reaction of NO$_2$ and O$_3$ (Munger et al., 1996), which leads to higher ΣN_r deposition during the day.

There are some studies mostly driven by the hypothesis, that increasing reactive nitrogen deposition leads to a fertilization effect on
natural, unmanaged ecosystems, which then increase their biomass and therefore act as a potentially higher sink for carbon (Field et al., 2017). Meanwhile, some studies could show that soil C storage increases with increasing reactive nitrogen deposition (e.g. Field et al., 2017; Maaroufi et al., 2015) and that photosynthetic capacity increases up to a certain extent (evergreen forests, Fleischer et al., 2013; meadow, Song et al., 2017). However, these were all studies on long-term effects. The data basis on short-term effects is even smaller. Milford et al. (2001) showed that NH3 exchange was mainly driven by ambient concentrations, extent (evergreen forests, Fleischer et al., 2013; meadow, Song et al., 2015) and total ammonium during dry conditions (no rain, low RH). Reduced plant activity enhancing deposition, which was also observed by Wolff et al. (2010) for total nitrate and total ammonium fluxes. Further aerosols might be less stable at higher temperatures, converting to e.g. ammonia with higher deposition velocities. Typically high residual emission fluxes of around 7 ng N m$^{-2}$ s$^{-1}$ were also found during daytime under low VPD. So less uptake or even emission occurred. Dry leaves supported very high residual uptake fluxes of 13 ng N m$^{-2}$ s$^{-1}$, especially in the morning hours. Generally it was observed, that during precipitation (not shown) or wet conditions (Fig. 7c) low deposition or emission fluxes occur, in contrast to observations of Wyers and Erisman (1998) who recorded maximum NH3 deposition when the canopy was wet, i.e. under high canopy water storage conditions (CWS $>$ 2 mm). But Wolff et al. (2010) also observed higher deposition of total nitrate and total ammonium during dry conditions (no rain, low RH). Regarding the concentrations stratified by wet and dry leaves (not shown) slightly higher concentrations occur during dry conditions, which is an indicator for efficient wet deposition that removes most of the ΣN, before reaching the site during rainy periods. Then Fig. 7 emphasizes again that nitrogen concentration plays a major role for the exchange, as it was already shown by the ANNs, even at a natural, remote site, so that elevated concentrations lead to higher deposition under the favorable conditions like higher temperatures, higher VPD, and dry leaf surfaces. Taking flux errors into account (Fig. S5), reveals that residual...
Fig. 6. Diurnal cycles of 3-h-mean residual total reactive nitrogen (black) and carbon dioxide (red) fluxes, depicted as boxplots (whiskers = 1st and 9th deciles, box frame = quartiles, bold line = median) plus mean values (dots right of the boxplot center) and standard deviation (arrows). The numbers below represent the n of the respective group, possible maximum is 79.

Fig. 7. Mean diurnal variation of residual total reactive nitrogen fluxes (3-h-mean) separated by concentration (a.) air temperature (b.), VPD (c.) and leaf wetness (d.). Shaded areas represent standard errors of the mean.
fluxes were sometimes smaller than the error. Therefore the tendencies observed during the day might be treated with even more caution. Additionally, mean diurnal concentration normalized ΣN fluxes can be found in the supplement (Fig. S6). Those quasi deposition velocities provided no further insights since ΣN, includes several compounds with very different exchange behaviors and interactions and reactions between them, which makes it impossible to provide one deposition velocity for all of them. Therefore, a concentration dependence is still existent (Fig. S6a).

4. Conclusion

Background ΣN, fluxes and CO_2 fluxes were characterized from July to September above a mixed forest in the Bavarian Forest National Park. The diurnal cycles of the ΣN, exchange were similar compared to other studies (about one or several ΣN, compounds), showing mainly deposition with higher deposition rates during the day. An almost identical pattern was observed for the measured CO_2, exchange, except for the fact that CO_2 is being released during night, whereas the mean ΣN, flux approaches almost zero but stays negative. Applying the method of artificial neural networks, two dominant drivers for ΣN, exchange could be detected: the concentration of ΣN, itself and global radiation. The latter is also the main driver for CO_2 exchange and therefore the main linkage between ΣN, and CO_2 exchange found in this study. Further interrelations of ΣN, flux are complex and could only be analyzed by data stratification and residual flux analysis. It becomes apparent that fluxes tend to become less negative – less deposition occurs – during wet and cooler conditions, which is an indicator for efficient wet deposition that removes most of the atmospheric ΣN, before reaching the site.

Future modelling studies can benefit from our observations that there is a linkage between ΣN, and CO_2 exchange via radiation as it was already suggested by Farquhar et al. (1980) in the context of a stomatal compensation point. Further research needs to be done for several ΣN, concentration levels, different land uses, and possibly also for separate nitrogen compounds.

5. Data availability

Data will be archived and are available from the corresponding author on request.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Funding for this study from the German Environment Agency under the guidance of Dr. Markus Geupel (project FORESTFLUX, support code FKZ 3715512110) and from the German Federal Ministry of Education and Research (BMBF) within the framework of the Junior Research Group NITROSHERE under support code FKZ 01LN1308A is greatly acknowledged. We thank Jeremy Rüffer and Jean-Pierre Delorme for excellent technical support as well as Ute Tambor, Andrea Niemeyer, and Dr. Daniel Ziehe for conducting laboratory analyses of denuder and filter samples. Christ of Ammann is thanked for his scientific advice. We further like to thank the Bavarian Forest National Park Administration for outstanding site support by Wilhelm Breit and Ludwig Höcker.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.atmosenv.2019.02.042.

References

Falge, M., 2005. Environment and Research (BMBF) within the framework of the Junior Research Group NITROSHERE under support code FKZ 01LN1308A is greatly acknowledged. We thank Jeremy Rüffer and Jean-Pierre Delorme for excellent technical support as well as Ute Tambor, Andrea Niemeyer, and Dr. Daniel Ziehe for conducting laboratory analyses of denuder and filter samples. Christ of Ammann is thanked for his scientific advice. We further like to thank the Bavarian Forest National Park Administration for outstanding site support by Wilhelm Breit and Ludwig Höcker.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.atmosenv.2019.02.042.

