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Classifying movement behaviour of marine predators in relation to anthropogenic activity and
environmental conditions is important to guide marine conservation. We studied the relationship
between grey seal (Halichoerus grypus) behaviour and environmental variability in the southwestern
Baltic Sea where seal-fishery conflicts are increasing. We used multiple environmental covariates

and proximity to active fishing nets within a multivariate hidden Markov model (HMM) to quantify
changes in movement behaviour of grey seals while at sea. Dive depth, dive duration, surface duration,
horizontal displacement, and turning angle were used to identify travelling, resting and foraging states.
The likelihood of seals foraging increased in deeper, colder, more saline waters, which are sites with
increased primary productivity and possibly prey densities. Proximity to active fishing net also had a
pronounced effect on state occupancy. The probability of seals foraging was highest <5 km from active
fishing nets (51%) and decreased as distance to nets increased. However, seals used sites <5 km from
active fishing nets only 3% of their time at sea highlighting an important temporal dimension in seal-
fishery interactions. By coupling high-resolution oceanographic, fisheries, and grey seal movement
data, our study provides a scientific basis for designing management strategies that satisfy ecological
and socioeconomic demands on marine ecosystems.

Quantifying behavioural decisions made by free-ranging animals is fundamental to understand how they use the
environment, which has implications for population ecology and conservation biology'~. Ecologists increasingly
rely on electronic telemetry to collect movement data of individual animals and to assess behaviour indirectly®.
Classifying behaviour from movement data is possible by assuming that different behavioural states are reflected
by specific characteristics of individual movement paths. For example, a foraging state is often characterised by
tortuous movements, while a travelling state is typically reflected by directed movements®’. One particularly
flexible statistical approach to classify movement patterns into different underlying behavioural states is the use
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of hidden Markov models (HMMs®?). A basic HMM for movement time series consists of two stochastic pro-
cesses: an observed movement process and an underlying (hidden) state process, where the latter can serve as a
proxy of the ‘true’ behavioural process’. Besides quantifying state occupancy, HMMs can also be used to compute
state-switching probabilities as a function of covariates, thus allowing quantification of behavioural adaptations
in response to internal stimuli and external stimuli from the environment®’.

Air-breathing marine mammals spend most of their active time underwater requiring telemetry and sensors
to collect data on their movements. Applications of HMMs on marine mammal movement data have focused
mainly on classifying behavioural states using either vertical movement (dive) parameters'®-!? or horizontal
movement parameters'>'*. However, combining horizontal and vertical movements into one model is likely
to capture behavioural states more accurately'. Only few marine mammal movement studies currently exist
that adopt such a multivariate HMM approach'®'”. In these cases, however, the tracking period was either lim-
ited to a few hours due to reliance on short-retention tags'® or the influence of environmental conditions on
state-switching was not incorporated directly into the model'’. Here, we developed a multivariate HMM based
on high resolution movement data of grey seals (Halichoerus grypus) in the southwestern Baltic Sea by integrating
both horizontal (step length, turning angle) and vertical (dive depth, dive time, post-dive duration) movement
parameters collected over several months and multiple individuals. Moreover, we considered a variety of static
and dynamic environmental conditions in the model to directly estimate their effect on behavioural state classifi-
cation (i.e. a covariate-dependent transition HMM).

Grey seals were historically abundant in the Baltic Sea with a population estimate of ca. 100 000 individuals in
the late 19" century'®. However, the population was drastically reduced, first by bounty hunting to mitigate con-
flicts with commercial fisheries, and later by reduced fecundity due to organochlorine pollutants such as PCB and
DDT'8-20, Protection of species and drastic reductions of toxic substances released into the system has led to the
gradual recovery of several top predator populations in the Baltic Sea including grey seals'®!®. Indeed, grey seals
are now recolonizing the southwestern Baltic Sea where they only occurred sporadically since 1900?'. Yet, with
the recovery of grey seals, former conflicts with commercial fisheries are resurfacing. The most common aspects
underlying the conflict between grey seals and fisheries are i) large scale competition between seals and fisher-
men for particular fish stocks, ii) the direct damage of fish caught in nets or longlines, iif) damage to fishing gear
when seals remove fish from fishing nets and iv) bycatch, where seals get incidentally caught in fishing gear®?2.
Throughout the Baltic Sea, all four aspects have been documented?***?* but direct removal of fish by grey seals
from fishing nets and damage to fishing gear is the primary reason currently fuelling discussions in the southwest-
ern Baltic Sea about renewed grey seal population control through culling?’. Although grey seal movement and
diving patterns have been studied in some detail throughout their European®?¢ and North American®*® range,
variation in movement behaviour of grey seals in relation to environmental conditions and commercial fishing
activity is poorly documented. Lack of updated information on the spatial and temporal interactions between
seals and coastal fisheries is especially problematic as it aggravates the debate on the seal-fishery conflict that is
not based on scientific evidence. Indeed, such ecological knowledge is a prerequisite to guide resource manage-
ment strategies, and to facilitate the design of potential mitigation measures.

We provide the first detailed analysis of the movement behaviour of grey seals living at the southwestern
frontier of their Baltic distribution as a function of environmental variability and commercial fishing activity.
We considered static (e.g. bathymetry, sediment type and slope) and dynamic (e.g. sea surface temperature and
salinity) environmental variables known to influence marine mammal movement behaviour?>*’ and fitted these
directly into a multivariate HMM to assess variation in movement behaviour while at sea. To quantify movement
behaviour of grey seals near commercial fishing operations, we included proximity to active fishing net locations
in real time as a dynamic covariate in the analysis.

Methods

Study area and grey seal biology. The study area covers the southwestern part of the Baltic Sea (Fig. 1).
Most of the study area has shallow water depths (<60 m) but depths down to 200 m do occur. The sediment types
found in the area are clay (40%), mud (21%), sand (20%), hard bottom complex (16%) and bedrock (3%). The
Baltic Sea has variable water temperatures and is the largest brackish sea in the world with a sea surface salinity
gradient ranging from ca 25-30 Practical Salinity Unit (PSU) in the Belt Sea to about 1 to 2 PSU in the north-
east’*2. Vertical temperature and salinity gradients with thermoclines and haloclines as well as hypoxia in deeper
waters are present throughout the area.

Baltic grey seals give birth to pups in February and March, an adaptation to breeding on ice, although parts
of the population also breed on land®. Baltic grey seals moult their fur in May and June, during which time the
greatest proportion of the population is hauled out on land*%. Grey seals are considered opportunistic feeders,
and within the Baltic, diet varies between regions indicating that prey availability plays a large part in diet com-
position®. In the southern Baltic, preferred grey seal prey items are cod (Gadus morhua), black goby (Gobius
niger), round goby (Neogobius melanostomus), plaice (Pleuronectes platessa), herring (Clupea haerengus) and
sprat (Sprattus sprattus). Young Baltic grey seals (<2 years of age) have been recorded to eat smaller prey and
more non-commercial fish species than older seals (e.g., viviparous eelpout (Zoarces viviparus) and sand eels
(Ammodytes spp.)), while older juveniles have diets that are similar to adult grey seals®®.

Collection of movement data. A total of 11 grey seals (eight males and three females) were captured and
tagged at the haul-out sites on Redsand, Denmark (N =5 juveniles; fall 2009 and 2010), Maklappen, Sweden
(N'=5 juveniles; fall 2012) and Svenska Stenarna, Sweden (N =1 juvenile; spring 2012) (Table 1, Fig. 1). Seals
tagged at Rodsand and Makldppen were caught in series of floating monofilament entanglement nets (180 mm
stretched mesh, 4.5m deep and 70 in length) and brought to shore for handling. Seals were caught in the nets for
a maximum of eight hours during night time before being extracted at first day light. The seal tagged at Svenska
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Figure 1. Map of the study area showing (A) all the location data of grey seals (N =11), collected between
2009 and 2013, color-coded by the estimated behavioural state and the three tagging sites (1 =Maéklappen,
2=Redsand, 3 = Svenska stenarna). (B) Close-up of the grey seal locations and behavioural states as indicated
by the dashed square in (A).

Stenarna was caught in a hoop-net directly on the haul-out site. For each seal, the sex, weight, and standard length
were recorded, and age was estimated based on size (Table 1). All individuals were judged to be in good condition
and equipped with a GPS/GSM tag (Global Positioning System/Global Systems for Mobile Communications®’)
containing a pressure sensor that was attached with epoxy glue dorsally on the neck. The pressure sensor recorded
three characteristics of each individual dive including max depth (m), total dive time (s) and post-dive surface
time (s). The tag is essentially a data logger that uses Fastloc GPS to try to acquire a location during surfacing
events. Movement data are recorded and stored onboard continuously®®. When the tag comes within mobile
phone (GSM) coverage, the stored data (locations and dive metrics) are transmitted to a server ashore. Internal
data storage was sometimes exceeded before the tag was within GSM coverage to offload the data. This produced
occasional gaps in the movement data, with a total maximum loss of movement data of one entire day for some
individuals. In addition, movement data collected the first 24 hours after tagging were discarded, which is com-
mon practice in marine mammal movement studies to ensure that behavioural bias following capture is removed
from the data as much as possible®. Handling time for each individual (weighing, measuring and tagging, includ-
ing waiting time for the epoxy glue to harden) was approximately 30 minutes after which the seals were released
back into the water at the same location where they were captured.
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Weight Std. length Tracking | No of
IDno |Sex | (kg) (cm) Ageclass | Tagginglocation | Trackingstart | Trackingend | days dives
GS01 F 48 112 juvenile Redsand 25-Oct-2009 6-Feb-2010 104 27055
GS02 M 44 117 juvenile Rodsand 1-Nov-2009 12-Apr-2010 162 33291
GS03 M 43 119 juvenile Rodsand 7-Oct-2010 29-Mar-2011 173 17778
GS04 M 42 115 juvenile Rodsand 8-Oct-2010 23-Feb-2011 138 27888
GS05 M 40 122 juvenile Rodsand 9-Oct-2010 6-Apr-2011 179 26114
GS06 F 41 — juvenile Svenska stenarna | 27-Mar-2012 | 20-Aug-2012 146 50879
GS07 M 60 138 juvenile Miklappen 14-Nov-2012 | 28-Jan-2013 75 20546
GS08 M 66 128 juvenile Miklappen 15-Nov-2012 | 26-Feb-2013 103 29589
GS09 F 63 115 juvenile Makldppen 7-Dec-2012 19-Feb-2013 74 24112
GS10 M 56 121 juvenile Miklappen 7-Dec-2012 6-Mar-2013 89 29952
GS11 M 79 150 juvenile Makldppen 8-Dec-2012 19-Feb-2013 73 16691

Table 1. Overview of sex, weight, standard length, age class, tagging location, tracking duration and number of
dives recorded for the 11 grey seals used in this study. Standard length for GS06 was not recorded. Movement
data collected the first 24 hours after tagging were discarded to limit potential capture/tagging-related effects on
movement behaviour in the data.

Processing of movement data. Location data were restricted to movements made at sea (Fig. 1), as the
multivariate HMM was designed to incorporate both horizontal and vertical (dive) movement data (as described
in the Statistical analysis section). A total of 303 895 dives were collected over 1 316 tracking days with a mean
(SD) number of dives of 27 627 (9 294) across individuals (N=11) and a mean (SD) of 247 (79) dives per track-
ing day per individual. Raw data screening revealed bouts of similar movements where for any observation the
dive characteristics (e.g. maximum depth) and horizontal displacement were nearly identical to several previous
and subsequent dives. Preliminary fitting of the multivariate HMM with the raw data (dive-by-dive scale) led to
numerical problems in the maximum likelihood estimation and extreme residual autocorrelation. To address
these issues, we divided the movement data into dive sequences (i.e. batches) containing 10 dives each to avoid
numerical problems and to reduce serial correlation. Thus, for the final analysis we considered the following
behavioural metrics operating on the batch level:

- maximum depth (m) averaged over the 10 dives in the batch;

- dive duration (s) averaged over the 10 dives in the batch;

- surface duration (s) averaged over the 10 dives in the batch;

- horizontal step length (m) calculated from the start of the first until the end of the tenth dive in the batch;

- turning angle (radians) as the angle between compass directions of the displacement in the previous and the
current batch.

Environmental data. The covariates considered in the analysis reflect the main environmental character-
istics of the study area, which were also expected to influence seal movement behaviour. Initially we considered
five static environmental variables (Supplementary Fig. S1): bathymetry (m), seabed slope (°) and distance (km)
to coast (the Euclidian distance to closest land mass including mainland or islands), which were calculated based
on a digital terrain model (300 m resolution) of the region. The fourth static environmental condition consid-
ered was distance (km) to nearest haul-out site, which was calculated as the Euclidian distance between each
seal location and the closest known haul-out site in the region. Tagged seals used multiple haul-out sites in the
region (Supplementary Fig. S1), which were identified based on GPS locations that were acquired on land or
sandbanks without dive information. The final static variable considered was sea floor sediment type, which was
a categorical variable including sand, clay, mud, bedrock and hard bottom complex. Sediment type was extracted
from a raster file (300 m resolution) accessed through the Baltic Sea Management — Nature Conservation and
Sustainable Development of the Ecosystem through Spatial Planning project (BALANCE: http://www.helcom.
fi/baltic-sea-trends). Due to extremely high collinearity between distance to coast, distance to haul-out site, and
bathymetry (VIF > 25; r > 0.85), we retained only bathymetry for further analyses as it was the variable least cor-
related to the other covariates considered and known to be related to grey seal movement in the Baltic.

We considered two dynamic environmental covariates (Supplementary Figs S2-S3) including sea sur-
face temperature (°C) and sea surface salinity (PSU). Data on sea surface temperature and salinity (top 1 m of
water column) were hourly raster data (2km resolution) accessible from the Copernicus Marine Environmental
Monitoring Service (CMEMS: http://marine.copernicus.eu/). CMEMS raster data were model prediction values
as derived by the Forecasting Assimilation Baltic Sea Margin model*!. We appended the raster value of sea sur-
face temperature and salinity for each hour to the seal data using GPS locations and the associated time stamp.
Besides the environmental variables, we also considered sex (male/female) of the seal as an intrinsic variable in
the analysis.

Commercial fisheries data. Data on commercial gill net fishing activity were collected for Danish, German
and Swedish vessels operating within the study area and for the entire grey seal tracking period. Although a vari-
ety of fish species is targeted in the regional fishing industry*?, cod is the species with the highest contribution in
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Figure 2. Dependence structure of the multivariate HMM fitted to the grey seal movement data. X, is the
average maximum depth within dive batch b, X, , is the average dive duration within dive batch b, X, ; is the
average post-dive surface duration within dive batch b, Xj, , is the step length over dive batch b, and X5 is the
turning angle associated with dive batch b.

weight to catch ratio followed by flounder (Platichthys spp.) and herring. We focused on gillnets only as compa-
rable data on use of fykes, fish traps and hooks were not available. Both large (>12m) and small (<12 m) gillnet
vessels operated in the study area. Small gillnet vessels in Denmark and Germany are not required to track and
report their offshore route and data on fishing locations are therefore lacking. In contrast, small Swedish gillnet
vessels are monitored through GPS and fishing locations and soak time (start/end time of nets in waters) are
reported by the fishermen in logbooks. Hence, we collected logbook data of Swedish vessels operating within the
study area and period to obtain gillnet fishing locations and their associated soak time. Large vessels (>12m) are
required to track and report their movements with a Vessel Monitoring System (VMS). We collected VMS data
of all large Danish, German and Swedish vessels operating within the study area and during the study period. To
obtain gillnet fishing locations and the start time of when the net was placed in the water, we processed the VMS
data using the approach detailed in Bastardie et al.*’. In brief, this approach aims to detect fishing events and
locations for all VMS-equipped vessels (one position every 1h interval) by analysing variation in the speed profile
during a trip at sea. Based on speed thresholds, the vessels trajectory is classified into periods of drifting, fishing
and steaming events. The lower threshold was 0.5 knots while the upper speed threshold was specific to each
vessel and detected automatically. Most gillnet fishing events occurred between 0.5 and 3 knots in vessel speed.
For each fishing event a time stamp is then extracted from the VMS data indicating when a net was placed into
the water (Supplementary Fig. S4). For Swedish vessels logbook data also provided an end time for when the nets
were taken out (i.e. soak time). A time stamp for when the net was taken out of the water was missing for Danish
and German data. As such, we assumed soak time for all Danish and German fishing events detected during a trip
to be similar to the mean soak time as derived from all Swedish vessels combined (Fig. Supplementary Fig. S5),
which was 0.9 days. Through the above VMS and logbook data processing procedure, we compiled a database
with a total of 24 018 gill net fishing locations between October 2009-March 2013; the period that overlapped
spatially and temporally with the seal movement data (Supplementary Fig. S6). Swedish fishing locations con-
stituted 71% of the data, Danish fishing locations constituted 22% of the data, while German fishing locations
constituted 7% of the data. Screening of logbook data on fishing operations did not reveal the use of light or bait.
Although the use of deterrents such as pingers (underwater devices that emit noise to deter harbour porpoises
(Phocoena phocoena) away from gill nets) are mandatory according to EU council regulation in most of the study
area*, deterrents are not used widely and systematically. After the fishing location and soak time database was
compiled, we identified for each seal location all gillnet fishing locations that were active (i.e. soaking) by over-
laying the date-time stamp in the seal movement data with the soak time in the fishing location dataset. We then
calculated the Euclidian distance (km) between each seal location and the nearest known location of an active
fishing net.

Statistical analysis. We developed a multivariate HMM to analyze the grey seal movement data. In the
model, the distribution of the observations (X;) made in movement batch b is one out of N possible distributions
as determined by an underlying or “hidden” state process S, (Fig. 2). Our model was multivariate as X, is a vector
comprising maximum depth, dive duration, surface duration, horizontal step length and turning angle as aver-
aged over the batch of dives. We used an unobserved first-order N-state Markov chain, which assumes that the
probability of being in the current state is determined only by the previous state”'°. More specifically, the way the
states evolve over time is completely specified by the one-step state transition probabilities denoted as, for i, j =1,
..., N. Moreover, the model was built under two conditional independence assumptions. First, the state active
during movement batch b completely determines the distribution of X, and second, that the observations made
during the movement batch (maximum depth, X,,, dive duration, X,,, surface duration, X,;, step length, X,,,
and turning angle, X,;) are conditionally independent of each other. Under the given assumptions, our model is
able to capture some but not all of the complex dependence structures in the behavioural time series data whilst
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maintaining computational tractability, which is a recurrent issue when analysing large datasets with these types
of models™®.

The assumption of contemporaneous conditional independence allowed us to choose one class of univariate
distributions for each of the five movement variables within a batch. Maximum depth, dive duration, surface
duration and step length were modelled as a gamma distribution, as these were continuous positive values, where
we used a parameterization in terms of the mean y and standard deviation o. Turning angles were modelled using
avon Mises distribution, which is a circular analogue of the normal distribution.

Because the main aim of our analysis was to investigate the state-switching process of grey seal movement
behaviour while at sea in relation to environmental variability, we designed the HMM to detect and classify three
dominant states, namely foraging (State 1), resting (State 2) and travelling (State 3). These three states are con-
sidered the most common behavioural states within daily activity budgets of grey seals and other air-breathing
marine mammals'*>%, We made the state transitions dependent on the covariates by including these in the
(batch-specific) state transition probabilities as follows:

exp(Bjo + Bjizp + - + Bijpzy)
1+ 3 exp(Byo + By + - + ﬂilpzhl)

Yijp =

Here z,, ...., z;, are the values of p covariates observed at the beginning of movement batch b. The specification
used here is that of multinomial logit modelling for categorical regression, but where the categories are the dif-
ferent states the process may switch into (i.e. covariate-dependent state transitioning®’). Forward selection based
on information criteria (AIC and BIC) was used to assess the influence of the seven covariates considered. To
improve numerical stability of the parameter estimation, each covariate was standardised to have zero mean and
unit standard deviation. Similar to the problems regarding selection of the number of states, the AIC is known to
be overly generous when it comes to including covariates*®, while the BIC will be overly conservative in our case
given that the observations are not independent of each other (and hence the penalty will be too large). Therefore,
we did not select one best model but rather used both information criteria to evaluate and present “an envelope”
of reasonable models (a concept similar to the model confidence set*’. For each of the covariates, we computed
the probabilities of occupying the different states as a function of the covariate value - in each case fixing the val-
ues of the other covariates at their respective means**.

We used the forward algorithm to evaluate the likelihood of the HMM described above. The forward algo-
rithm exploits the dependence structure of the HMM to calculate the likelihood recursively i.e. step-by-step
traversing along the time series, updating the likelihood as well as the probability of being in the different states in
every step’. The relatively low computational cost of evaluating the likelihood via the forward algorithm renders
it analytically feasible to estimate the model parameters by numerically maximizing the likelihood®!, which we
achieved using the optimization routine “nlm” in R*. Finally, to estimate the most likely sequence of behavioural
states in the data as derived by the covariate-dependent HMM, we applied the Viterbi algorithm? to assign a state
to each observation. Total computation time to fit the multivariate HMM was eight hours on an Intel i7-2600
desktop with 3.4 GHz and 12 GB RAM.

To assess diel variation in behaviour, we computed state-activity budgets for each hour while at sea and for
each individual separately. To do so, we calculated for each hour of the day the frequency that a seal was classified
to be in one of the three states (based on Viterbi).

Results

State-allocation and goodness-of-model-fit. The estimated state-dependent distributions for the five
movement variables (maximum depth, dive duration, surface duration, step length, and turning angle) are pro-
vided in Fig. 3. States 1 and 3 were similar in terms of duration and depth of dives, but differed substantially in
horizontal movement characteristics. State 3 included large step lengths and was associated with turning angles
centred around 0 (i.e. directed movement), while state 1 included intermediate step lengths and a wide range
in turning angles (undirected movement). We interpreted these distributions for state 1 and state 3 as proxies
for “foraging’ and ‘travelling’ behaviour respectively. State 2 included the shortest and shallowest dives and was
associated with rather short step lengths and a wide range in turning angles (i.e. undirected movement), which
we interpreted and defined as ‘resting’ behaviour while at sea. Diel state-activity budgets for each individual, after
excluding the part of the tracks where seals were on land, are provided in Fig. 4. All seals were found to occupy
each behavioural state each hour of the day although there was a tendency for increased frequency of foraging
behaviour during the day (05:00 to 15:00) and increased frequency of resting behaviour at night (16:00 to 04:00).
No clear pattern in diel variation of travelling behaviour was found (Fig. 4). When calculating the proportion of
time spent in the three behavioural states over the total tracking period of each individual seal (Table 1; Fig. 4), the
average proportion of time spent in the resting state was 0.27 (range: 0.17-0.49), the average proportion of time
spent in the foraging state was 0.35 (range: 0.24-0.42) and the average proportion of time spent in the travelling
state was 0.37 (range: 0.21-0.49).

The marginal distributions of the five movement variables as estimated by the HMM also corresponded well
with the underlying empirical distributions (Fig. 3). However, inspection of model pseudo-residuals revealed that
the structure in some of the variables’ marginal distributions were not fully captured (Supplementary Fig. S7),
and residual autocorrelation remained in all variables, despite the batch processing procedure (Supplementary
Fig. S8). Nonetheless, for the step length variable, which is the main determinant of the classification into the
three behavioural states (as evidenced by the higher overlap of the other variables’ state-dependent distributions
Fig. 3), the goodness of fit of the model pseudo-residuals was satisfactory (Supplementary Fig. S7).
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Figure 3. Histograms of the movement variables maximum depth, dive duration, surface duration, step length,
and turning angle, respectively, overlaid with the state-dependent distributions as estimated for these variables
by the HMM. The state-dependent distributions were weighted according to the proportion of time spent in
the different states, as inferred using Viterbi, and the dashed lines indicate the associated marginal observation
distributions under the full model.

State occupancy in relation to environmental variability. Forward selection of covariates into the
multivariate HMM produced different best models depending on the information criteria used (AIC or BIC).
Starting with the covariate-free model, the BIC-based selection procedure led to the inclusion of bathymetry, sea-
bed slope, and sea surface temperature (Table 2). In contrast, the AIC-based selection procedure led to the inclu-
sion of all covariates (the full model, Table 3). Given the different complexity penalties, we expected AIC and BIC
to provide substantially different results. We regard the two models chosen, by BIC and by AIC respectively, as an
envelope of reasonable models. Therefore, we report patterns derived from the full AIC model so as to provide an
overview of all covariate effects, even those that were deemed less relevant by BIC alone. The output of the multi-
nomial logistic regression for the full model (beta coeflicients and the 95% CI) used to predict the probability of
grey seal state occupancy in relation to all covariates (Fig. 5) are provided in Supplementary Table S1.

Bathymetry was found to be an important covariate in the model selection process, irrespective of the infor-
mation criteria used (ABIC =53.4, Table 2 and AAIC = 898.9, Table 3). The probability of seals occupying the
resting state was highest in areas with shallow water depth (1-20 m depths likely close to haul-out sites) and it
rapidly declined as bathymetry increased (Fig. 5). The opposite trend was found for the probability of seals occu-
pying the foraging state which was lowest in areas with shallow water depths (1-20 m depths) and increased as
bathymetry increased up to a maximum depth of 200 m (Fig. 5). The probability of seals occupying the travelling
state was also lowest in areas with shallow water, but peaked at around 20 m water depth, and steadily decreased
thereafter as bathymetry increased (Fig. 5).

As the slope of the sea bed increased, the probability of seals occupying the travelling state decreased while the
probability of seals occupying the resting state increased (Fig. 5). The probability of seals occupying the foraging
state was not related to changes sea bed slope.

Sea surface temperature and salinity did not appear to influence the probability of seals occupying the resting
state, yet both of these dynamic environmental conditions were related to the probability of seals occupying the
foraging and travelling states, though in opposite directions (Fig. 5). The probability of seals occupying the trav-
elling state was positively related to sea surface temperature but negatively to sea surface salinity. In contrast, the
probability of seals occupying the foraging state was negatively related to sea surface temperature and positively
to sea surface salinity (Fig. 5).

The categorical covariate sex appeared an important covariate in the model (AAIC =53, Table 3). Although
the change in probability of state occupancy in relation to environmental gradients did not differ between male
and female seals, differences in the intercept of the probability of state occupancy were present. As an example,
the probability of male seals occupying the travelling state at sea surface salinity of 1 PSU (the intercept) was 0.6
(Fig. 5) while for females this was 0.45 (Supplementary Fig. S9). The probability of occupying the travelling state
steadily declined with increasing salinity for both male and female seals in a similar fashion.

The categorical covariate sediment type was also important (AAIC = 180.4, Table 3). This pattern was
largely driven by movement behaviour of seals at sites with sediment type bedrock, a relatively rare sediment
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Figure 4. State-time budgets for each individual grey seal showing for each hour of the day the frequency of
being in one of the three behavioural states.

type covering 3% of the study area, where state occupancy and state-switching deviated strongly from patterns
observed in the other sediment types (Supplementary Fig. S10).

State occupancy in relation to commercial fishing activity. We found support for a correlation
between the covariate distance to active fishing net and grey seal state occupancy (AAIC =37.2, Table 3). The
probability of seals occupying the foraging state was highest relatively close to active fishing nets (up to < 5km
from the seal location) and steadily decreased as the distance to active fishing nets increased (Figs 5 and 6). Here,
we did not observe a difference between male and female seals as the probability of occupying the foraging state
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Model Log-likelihood | BIC ABIC
Baseline — 626423.4 1253221.7 1324
+bathymetry —625756.9 1251951.1 53.4
+seabed slope —625699.0 1251897.8 0.1
+sea surface temperature —625667.7 1251897.7 0
+sex —625639.4 1251903.6 5.9

Table 2. Output of forward variable selection procedure based on the information criteria BIC showing the
log-likelihood, log &, BIC and ABIC values for the baseline model without any covariates and for models with
increasingly many covariates included. The best model is indicated in bold.

Model Log-likelihood | AIC AAIC
Full model —625489.4 1251170.8 0

- bathymetry —625944.8 1252069.6 898.8
- seabed slope —625541.0 1251262.0 91.2

- sex —625521.9 1251223.8 53

- sea surface salinity —625496.6 1251173.2 24

- sea surface temperature —625519.0 1251218.0 47.2

- distance to active fishing net | —625514.0 1251208.0 37.2

- sediment type —625603.6 1251351.2 180.4

Table 3. Output of variable selection procedure based on the information criteria AIC showing the log-
likelihood, AIC and A AIC values for the full model (indicated in bold), with all covariates, and for the models
that included all but one covariate.

in sites <5km from active fishing nets was ca. 0.5 for both sexes (Fig. 5 and Supplementary Fig. S9). The proba-
bility of seals occupying the travelling state was equally high as the probability of being in the foraging state when
active fishing nets were <5km from the seal location but the probability of seals occupying the travelling state
increased with distance to the active fishing nets. The probability of seals occupying the resting state was only
weakly positively correlated with distance to active fishing nets (Fig. 5). Overall, 3.3% of the seals’ time at sea was
spent <5km from a known active fishing net, increasing to 5.9% of their time <10km from nets, and 9.5% of
their time <15km from active fishing nets. Of the movements <5km from an active fishing net, seals were in the
foraging state 51% of the time, in the travelling state 42% of the time and in the resting state for the remaining 7%
of the time. Movements that were <10km and <15km from active fishing nets were generally distributed equally
between the three different states (ca 33% of the time).

Discussion

Movement behaviour in relation to environmental variability. Based on a combination of high-res-
olution oceanographic and movement data, analysed within a multivariate HMM framework, we found that
the likelihood of seals occupying the foraging state was greatest in deeper, colder and more saline waters. The
combined relationship of sea surface salinity, temperature, and bathymetry may suggest that seals target foraging
sites with greater mixing of nutrients and oxygen through the water column®. In addition, these environmen-
tal conditions (salinity, temperature, nutrients, productivity) generally increase in a gradient from northeast to
southwest in the Baltic Sea®, and are important determinants of the distribution and diversity of the marine fish
community in this system™. Hence, the environmental conditions used here can be considered good proxies of
spatiotemporal changes in marine fish abundance and distribution. The salinity gradient is particularly important
in this respect as more saline areas in e.g. southwestern Baltic and the inner Danish waters have higher marine
fish species richness and biomass than the brackish inner Baltic Sea®’. As such, this finding is in line with the
recent notion that the west-ward recolonization of grey seals into Danish waters could, at least partly, be due to
individuals tracking prey availability into more saline waters?!.

The need to consider multiple temporal scales, static and dynamic environmental conditions to explain grey
seal movement behaviour has been highlighted also in other parts of their distribution. For example, the behav-
ioural classification and state-activity budget of grey seals in the north-western part of the North Sea was tightly
linked to seasonal variation in habitat conditions*. Because of a bias towards movement data collected during
winter and spring in our study, we were unable to accurately assess seasonal variation in behaviour but we do
show that state-activity budget of grey seals varies among individuals and over the diel timescale (Fig. 4). Indeed,
grey seals were typically allocating more time to foraging behaviour during daylight hours and more time to
resting behaviour during night time. More generally, grey seals spent 17%—49% of their time resting, 24%—42%
foraging and 21%—49% travelling. Surprisingly, these state-activity estimates are similar to those reported for
northern (Callorhinus ursinus) and Antarctic fur seals (Arctocephalus gazella)>® despite these species living in
completely different habitats.

Distance to haul-out site is also known to impact models of grey seal movement behaviour?>¢%¢!, Seals fre-
quently use haul-out sites to care for new born pups, to moult, and to rest on land, though seals also rest exten-
sively while at sea*s as this study also highlights. However, due to collinearity issues, we did not use distance to
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Figure 5. Probabilities (mean and 95% CI) of occupying the three behavioural states as a function of the
covariates included in the multivariate HMM. Probabilities were calculated for each covariate and state
separately by fixing the values of the remaining covariates at their respective means. All estimates were made
using the categorical covariates sex (male) and sediment type (sand) as reference categories. Cls for the
probabilities were obtained based on Monte Carlo simulation from the estimators’ approximate distribution
as implied by maximum likelihood theory. Coefficients of the multinomial logistic regression underlying this
figure are provided in Supplementary Table S1.

haul-out site in our analysis and instead focused on bathymetry. This was because the latter is a key environmental
condition in grey seal space use patterns within their Baltic Sea distribution*’ and also because the tagged seals
used multiple haul-out sites throughout the area and tracking period. We do not argue that distance to haul-out
site is unrelated to grey seal movement behaviour, but instead that the use of this variable is most relevant when
modelling the dynamics of foraging trips made by individuals that travel larger distances over longer time periods
to and from the same haul-out site (i.e. central-place foraging behaviour)?*>%¢! compared to the grey seals in the
south-western Baltic, a relatively landlocked system.

Movement behaviour in relation to commercial fishing activity. Seal foraging and travelling behav-
iour was clearly related to proximity to active gill net fishing locations. This finding provides further indirect
evidence that the environmental variables considered here capture at least some of the variation in fish abundance
in this system as commercial fishing operations are expected to target sites where fish abundance is high so as to
maximize catch per unit effort. We found that the likelihood of grey seals occupying a foraging state at locations
with active fishing nets was relatively high (ca. 50%) for both males and females. Our model results are, however,
correlative and should not be interpreted as causation. Hence, we do not postulate that grey seals in this region
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Figure 6. Movement track of a single grey seal for one week in the southwestern part of the Baltic showing for
each location the predicted behavioural state using the Viterbi algorithm relative to the location of two active
fishing nets (black squares). The fishing nets were placed in the water by a Danish fishing vessel. Seal locations
in proximity to the set active fishing nets (black squares) were collected with a GPS/GSM tag between 11:30 and
14:00.

necessarily switch to feeding behaviour because there is a fishing net. Instead, a more likely explanation is that
grey seals move to their preferred feeding areas (here identified as deeper, colder and more saline waters) to search
for prey, which are areas also used by the fishing industry. Indeed, spatial overlap between seals and commercial
fishing operations has often been studied and used as a measure to identify potential hotspots for seal-fisheries
conflict®-%4. Our study, however, also provides a measure of temporal overlap between seal foraging behaviour
and fishing activity. By linking grey seal locations to the nearest known active fishing net in near real-time, we
found that the tracked seals spent 3.3% of their time at sea in sites <5km from an active fishing net. Although this
is likely a minimum estimate, due to incomplete data on fishing activity, the generality of this degree of overlap is
unknown as similar measures from other areas are lacking. Nonetheless, this value could be interpreted as rather
low temporal interaction between grey seal foraging activity and local fishing operations. It is important to note
that our sample of tracked seals did not contain any adult males, which is a segment of the population believed to
have the highest direct interaction with fishing gear in the Baltic Sea®>*>%, which contrasts with observations in
other regions of the world®”®. Future tracking studies should therefore focus on a more balanced sample of indi-
viduals across the entire age-spectrum of the population. Moreover, the gillnet database was incomplete (lacking
accurate information on soak time from German vessels as well as gill net locations from Danish and German
fishing vessels <12 m in size and from other Baltic countries) and contained only locations of where gill nets were
released into the water. However, nets are typically >100 m long, and it is therefore possible that some seal loca-
tions were closer to an active fishing net than we were able to compute. Although our dataset on fishing activity
is arguably one of the most extensive and detailed thus far, at least for the Baltic Sea, a more complete dataset
including fishing locations and soak times of all vessels (as in Sweden) and countries would reduce uncertainty
in the results. However, collating such a dataset would likely require a change in legislation where recordings of
logbook and/or VMS data on all commercial vessels is a requirement. In spite of these limitations, we suggest that
the temporal dynamics are an essential but often overlooked dimension in the seal-fishery conflict debate that
should be considered in more detail in the future when identifying potential conflict areas.

Our modelling framework can easily be applied to other regions and marine (mammal) species to quantify
spatial and temporal overlap between human activity and animal behaviour as long as similar movement and envi-
ronmental data are available. A natural extension of our approach to further address the seal-fisheries conflicts
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would be to test the impact of potential mitigation measures and the consequences at the population-level and
landscape-scale. For example, acoustic alarms (i.e. seal scarers) that emit very loud sound pulses could in prin-
ciple be attached to fishing vessels or gillnets in an attempt to spatially deter seals away from fishing nets. This
management strategy could reduce the direct removal of fish by seals from fishing nets and associated damage to
fishing gear but also reduce the chances of bycatch. However, seal scarers may have large effects on other marine
life like harbour porpoises® and the successfulness of acoustic alarms in reducing direct removal of fish by seals
from gillnets has yet to be fully evaluated. Yet, other sounds (pingers) have been shown to successfully reduce
harbour porpoise bycatch, and when combined with other mitigation measures it also had a positive impact at
the population-level”.

Future prospects. The application of HMMs and other behaviour classification models to animal move-
ment data is rapidly growing’. The state process in most HMMs, including ours, should be considered a proxy
for the underlying sequence of behavioural states, though caution is needed not to over-interpret the completely
data-driven meaning of the states'!. This is especially a concern when the number of behavioural states selected
from the data is arbitrarily large and within an unsupervised framework (i.e. lack of validation data on behav-
ioural states). We limited our classification to the three most common behavioural states of grey seals, although
seals, as most species, likely use a much wider and more complex suite of behaviours during their lifetime. Clearly,
there is potential for more precise state estimation of animal movement data, especially when adopting a super-
vised classification approach that is guided and tested by empirical observations e.g. through the use of animal
borne video recorders’!. Moreover, video footage can provide valuable information on spatial and temporal var-
iation in diet composition facilitating the classification of more foraging types. Collecting high-resolution envi-
ronmental data by the tag directly (e.g. via temperature and salinity sensors’?) is also possible now, reducing the
reliance on courser remote-sensing and modelled environmental data. When coupled with accelerometer tags”
movement ecologists can estimate the behaviour of wild animals and their interactions with the environment in
unprecedented detail'®. The increasingly fine-scale resolution and amount of movement data collected nowadays
also present challenges in terms of data handling and statistical analysis””*.

Fortunately, analytical procedures are continuously being extended to address the issues that follow with the
high frequency movement data being collected!”’>7¢. We foresee great value in linking behavioural-state classi-
fication models such as ours with dynamic energy budget models and spatially explicit agent-based simulation
models”. Such an approach opens up new ways to study population dynamics and the impacts of anthropogenic
and environmental stressors through bottom-up movement processes’®’%. Ultimately, movement-based spatially
explicit population models will facilitate the design and testing of mitigation efforts aimed at e.g. alleviating
seal-fisheries conflict but also of broader management and conservation strategies to balance ecological as well as
socioeconomic demands on marine ecosystems successfully.

Ethics Statement. All applicable international, national and/or institutional guidelines for the care and use
of animals were followed. Activities related to seal tagging at Redsand, Denmark, were carried out with permis-
sion of the Environmental Protection Agency (Ministry of Environment and Food of Denmark, permit number
SNS-342-00042) and the Animal Experiments Inspectorate (Ministry of Environment and Food of Denmark,
permit number: 2010/561-1801). Activities related to seal tagging at Maklappan, and Svenska Stenarna, Sweden,
were carried out with permission of the Swedish Environmental Protection Agency (permit number: NV-04536-
15), the Central Animal Ethics Committee (permit number: A-52-15) and the Country Board of Skane (permit
number: 521-18979-2012).
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