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Abstract Peatlands are poorly represented in global Earth system modeling frameworks. Here we add a
peatland‐specific land surface hydrology module (PEAT‐CLSM) to the Catchment Land Surface Model
(CLSM) of the NASA Goddard Earth Observing System (GEOS) framework. The amended TOPMODEL
approach of the original CLSM that uses topography characteristics to model catchment processes is
discarded, and a peatland‐specific model concept is realized in its place. To facilitate its utilization in
operational GEOS efforts, PEAT‐CLSM uses the basic structure of CLSM and the same global input data.
Parameters used in PEAT‐CLSM are based on literature data. A suite of CLSM and PEAT‐CLSM simulations
for peatland areas between 40°N and 75°N is presented and evaluated against a newly compiled data set
of groundwater table depth and eddy covariance observations of latent and sensible heat fluxes in natural
and seminatural peatlands. CLSM's simulated groundwater tables are too deep and variable, whereas
PEAT‐CLSM simulates a mean groundwater table depth of −0.20 m (snow‐free unfrozen period) with
moderate temporal fluctuations (standard deviation of 0.10 m), in significantly better agreement with in
situ observations. Relative to an operational CLSM version that simply includes peat as a soil class, the
temporal correlation coefficient is increased on average by 0.16 and reaches 0.64 for bogs and 0.66 for fens
when driven with global atmospheric forcing data. In PEAT‐CLSM, runoff is increased on average by 38%
and evapotranspiration is reduced by 19%. The evapotranspiration reduction constitutes a significant
improvement relative to eddy covariance measurements.

Plain Language Summary Peatlands are wetlands in which plant matter has accumulated over
thousands of years under almost permanently water‐logged conditions. Alterations in these conditions as
a result of global climate change can lead to the release of the huge peatland carbon pool as carbon
dioxide over much shorter timescales than were required for accumulation. The additional emissions
would amplify global warming. A better representation of the peatland hydrology in global Earth
system models can help quantify how peatlands respond to a changing climate. In this paper, we add a
peatland‐specific land surface hydrology module to the land surface model used in NASA's GEOS Earth
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system modeling framework. Comparisons of numerical simulations encompassing northern peatlands
against field observations show that the new model version significantly improves our ability to capture
the hydrological dynamics of peatlands. The new peatland representation in GEOS offers new
opportunities, including the potential for merging model information and remote sensing observations in
a way that improves our understanding of the overall role played by peatlands in the global water and
carbon cycles.

1. Introduction

Peatlands represent 50 to 70% of global wetlands and are characterized by a surface layer of organic
carbon‐rich soil (peat) that can be several meters thick (Joosten & Clarke, 2002). Peat consists of partially
decomposed plant matter that accumulated in place over thousands of years due to reduced aerobic
decomposition under permanently shallow groundwater tables (Clymo et al., 1998). The two major
categories of peatlands are bogs, which are rain‐fed (ombrotrophic), and fens, which also receive lateral
water input from groundwater and—sometimes—surface water (e.g., rivers and lakes). The resulting
characteristic hydrologic and nutrient conditions have led to unique habitats for various highly adapted
ecosystems. These ecosystems in turn provide the substrate for new peat layers, thereby strongly influencing
the habitat via various stabilizing internal feedbacks (Belyea & Baird, 2006; Waddington et al., 2015).

Through peatland formation, an enormous carbon stock of 400 to 600 Gt, or approximately one third of the
global terrestrial soil carbon, accumulated during the Holocene over only 3 to 4% of the land surface
(Frolking et al., 2011; Loisel et al., 2014). About 80 to 90% of this stock is located in the temperate, boreal,
and subarctic zones of the Northern Hemisphere. In some regions, peatlands are the dominant land cover,
in particular south of the continuous permafrost boundary in Canada and the Western Siberian Lowlands
(Xu et al., 2018). Over timescales of a hundred years and more, natural peatlands have a cooling effect on
the climate since the negative global warming potential of the continuous net carbon dioxide (CO2) sink
exceeds the positive global warming potential of the methane (CH4) emissions from peatlands, given the
short atmospheric lifetime of CH4 (~10 years; Frolking et al., 2011; Frolking & Roulet, 2007). Apart from
the obvious reversal of the net carbon flux after the drainage of a peatland for agricultural use (Tubiello
et al., 2016), the greenhouse gas balance could also change if peatland ecosystems and their associated
hydrologic conditions were to be destabilized by more subtle alterations, for example, due to climate change
or N deposition (Limpens et al., 2008). Substantial parts of the global peatland carbon pool could potentially
be released to the atmosphere over a much shorter time period than that needed to accumulate the carbon
(Dorrepaal et al., 2009; Limpens et al., 2008).

The role played by peatlands in past and future climate continues to be an important subject of research
(Limpens et al., 2008). Various modeling frameworks have been developed or adapted to include peatland pro-
cesses.While a few focus on peatland processes atmillennial timescales (e.g., Frolking et al., 2010;Morris et al.,
2012), the majority are based upon field observations of water, energy, and carbon cycles and are constructed
for application at shorter timescales and at local to regional spatial scales. Many of these peatland models use
observed groundwater table depth as an input to simulate the effects of moisture, temperature, and vegetation
properties on carbon dynamics (e.g., Frolking et al., 2002; Metzger et al., 2015; St‐Hilaire et al., 2010). Other
models are hydrologically more sophisticated and include a modeling of dynamic groundwater table depth
(Borren & Bleuten, 2006; e.g., Dimitrov et al., 2011; Gong et al., 2012; Granberg et al., 1999; Grant et al.,
2012; Sonnentag et al., 2008; Wu & Blodau, 2013; Zhang et al., 2002). These studies have demonstrated the
importance of lateral water fluxes and detailed vegetation descriptions for accurate water cycle simulations.

The above modeling efforts used detailed site‐specific input information (e.g., on soil hydraulic properties
and vegetation composition) and parameters that were tuned to fit observations at individual sites. This
approach is adequate for understanding the local complex interactions between soil and plant processes that
determine peatland behavior (Grant et al., 2012). However, such an approach would not be suitable for glo-
bal land surface modeling schemes, given computational constraints and limited access to high‐resolution
input and tuning data across the globe. As a consequence, peatlands are rather poorly represented in global
Earth systemmodels that simulate the water, energy, and carbon cycles at daily or subdaily resolution. Only
3 out of 10 models participating in a recent intercomparison of global wetland and wetland CH4 emission
models included a peatland‐specific hydrology module (Melton et al., 2013). In general, peatland
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feedbacks on climate are not yet properly accounted for in predictions of future climate change
(Intergovernmental Panel on Climate Change, 2014).

Attempts to include peatland hydrology in Earth system models include a representation in the Canadian
Land Surface Scheme (CLASS), a 1‐D soil‐vegetation‐atmosphere transfer model. CLASS was the first glob-
ally applicable framework with a specific parameterization for peat soils. Using Clapp and Hornberger
(1978), Letts et al. (2000) parameterized the typical decline of saturated hydraulic conductivity and coarser
pores with depth over three soil layers of different decomposition states, based on literature data of fibric,
hemic, and sapric organic matter (representing fresh, moderately decomposed and highly decomposed
organic matter, respectively). Recently, the soil layering has been further modified in CLASS by adding
layers including a 10‐cm moss layer at the top, so that part of the peatland vegetation is modeled like soil
in order to buffer realistically the exchange of energy and water at the soil surface (Wu et al., 2016). In
addition to imposing a low saturated hydraulic conductivity for the sapric peat at the bottom of the profile,
a drainage reduction factor ranging from 0 to 0.3 (Letts et al., 2000) is imposed to limit the one‐dimensional
gravitational drainage through the bottom and keep simulated groundwater tables shallow. In contrast to
CLASS, the peatland module of the Lund‐Potsdam‐Jena (LPJ) model includes lateral discharge through
the subsurface (Wania et al., 2009).

Lawrence and Slater (2008) incorporated thermal and hydraulic properties of organic soil into the
Community Land Model (CLM) and investigated, using coupled land‐atmosphere simulations, the resulting
effects on climate. They did not, however, simulate a dynamic groundwater table. Shi et al. (2015) recently
modified CLM to represent the hydrology (including the groundwater table) of an ombrotrophic raised‐
dome bog in Northern Minnesota (S1‐Bog). In contrast to CLASS and LPJ, they took into account the effect
of microtopography on groundwater table fluctuations, and this led to more realistic fluctuations at shallow
groundwater tables. Similarly, Bohn et al. (2013) implemented a microtopography treatment into the
Variable Infiltration Capacity (VIC) model. Both microtopography implementations, however, utilized
parameter tuning for certain areas, and the general applicability of the models was not demonstrated by
evaluating simulations against hydrological field data from independent areas.

Recently, a peatland version of the Organising Carbon and Hydrology In Dynamic Ecosystems
(ORCHIDEE) model was introduced (Qiu et al., 2018). While the CLASS, LPJ, and CLM peatland concepts
assume a bog scenario by neglecting lateral surface water or groundwater input, the peatland version of
Organising Carbon and Hydrology In Dynamic Ecosystems converts all surface runoff from the nonpeatland
fraction of a grid cell into an additional water input into the peatland fraction of that cell. In addition, sub-
surface drainage is set to zero. A comparison of simulation results with field observations from northern
peatland sites showed low temporal correlation coefficients (R < 0.32), reflecting the difficulty of integrating
lateral water inputs into peatland models.

As part of a general revision of the land surface scheme used in the European Centre for Medium‐Range
Weather Forecasts' Integrated Forecasting System, Balsamo et al. (2009) introduced an organic soil texture
class. Similarly, De Lannoy et al. (2014) added a peat soil class to the Catchment Land Surface Model
(CLSM; Koster et al., 2000), the land model component of the NASA Goddard Earth Observing System
(GEOS) modeling framework, and one of the few such global land models to simulate groundwater tables.
The effect of the parameter update was evaluated for soil moisture in mineral soils but not for peatlands
due to a lack of sufficient peat soil moisture data. With a focus on permafrost dynamics, Chadburn et al.
(2015) added a representation of organic soils to JULES, the land surface scheme of the UK Earth System
Model. Their model evaluation was restricted to active layer thickness and soil temperature.

In this paper we aim to advance the treatment of peatland hydrology in global Earth systemmodeling frame-
works. More specifically, we present the implementation of a new treatment of peatland hydrology into the
GEOS CLSM. The GEOS framework is used for several operational global data assimilation and forecast
products (https://gmao.gsfc.nasa.gov/products/); it underlies, for example, the Modern‐Era Retrospective
analysis for Research and Applications version 2 climate reanalysis (MERRA‐2; Gelaro et al., 2017) and
the Soil Moisture Active Passive (SMAP) mission Level‐4 Soil Moisture (SM_L4) data assimilation product
(Reichle et al., 2017). We aim to amend the GEOS CLSM for peatlands with an emphasis on a plausible
global application (i.e., in a computationally efficient way without the need for local tuning) to reduce
obstacles to its eventual use in GEOS operations.
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The structure of the paper is as follows. In section 2, we introduce the general modeling concept of CLSM
and describe the modifications built into our peatland module for CLSM, hereafter referred to as
PEAT‐CLSM. In section 3, we describe our experimental design and evaluation approach. A unique aspect
of this paper is the comparison of simulation results to an unprecedentedly large data set of groundwater
table and evapotranspiration observations from natural to seminatural northern peatlands. Section 4
presents our results, and section 5 concludes with an overview of the benefits of PEAT‐CLSM, along with
a list of remaining research issues.

2. Model Description
2.1. The Catchment Land Surface Model (CLSM)

CLSM is a state‐of‐the‐art land surface water and energy budget model designed for the use in global
Earth system models (Ducharne et al., 2000; Koster et al., 2000). Below we describe some key features of
CLSM, for which the basic spatial computational unit is the irregularly shaped hydrological catchment,
though the model can also be run on grid cells. This summary focuses on aspects of CLSM relevant to the
peatland‐specific modifications presented afterward. For further reading on CLSM and its components,
see Ducharne et al. (2000), Koster et al. (2000), Koster and Suarez (1992), De Lannoy et al. (2014), and
Tao et al. (2017).
2.1.1. Groundwater Table Depth, Soil Moisture, and Dynamical Surface Partitioning
CLSM simulates a dynamic groundwater table with a spatial distribution related to catchment topography
characteristics via the TOPMODEL formulation (Beven & Kirkby, 1979):

zWT ¼ zWT þ 1
υ

ln
A

tanβ
−x

� �
(1)

where zWT is groundwater table depth (m; negative below the surface), ln(A/tanβ) is the compound
topographic index at a point within the catchment, A is the upstream area that contributes flow through a
unit contour positioned at the point, β is the terrain slope at the point, zWT is the catchment mean ground-
water table depth, x is the mean catchment value of ln(A/tanβ), and υ is a parameter describing the decrease
of saturated hydraulic conductivity with depth. Each catchment is characterized by its topographic index dis-
tribution, which in effect is used to diagnose the spatial variability of soil moisture within the catchment
from the catchment element's three bulk water prognostic variables. Figure 1a illustrates this for one of these
prognostic variables, that is, the catchment deficit (mm), which represents the average amount of water, per
unit area, that would have to be added to bring all of the soil throughout the catchment to saturation,
assuming that the unsaturated zone is in equilibrium. The other two soil water‐related prognostic variables
in CLSM are the surface layer excess and the root zone excess, which capture, respectively, the degree to which
water (mm) in the near‐surface soil (0 to−5 cm) and the root zone soil (0 to−100 cm) exceeds (or is in deficit
of) amounts corresponding to equilibrium conditions in response to evapotranspiration and precipitation
processes.

With this framework, three dynamic areal fractions (F) are diagnosed at each time step, each representing a
distinct hydrological regime: the wilting (Fwilt), the unsaturated‐but‐transpiring (Ftra), and the saturated
(Fsat) regimes, with Fwilt + Ftra + Fsat = 1. To generate these areas, an equilibrium moisture profile is
assumed above a given groundwater table depth, and the integral of that profile from the surface to a depth
of 1 m is taken to be the (local) equilibrium root zone moisture. Because CLSM effectively follows a distribu-
tion of groundwater table depths as represented by the TOPMODEL framework, this translates to a corre-
sponding probability density function of equilibrium root zone soil moisture contents. The root zone
excess variable shifts this distribution to the right or left: this shifted probability density function is then used
to partition the catchment into the three hydrological regimes. In practice, for a given catchment, the effects
of this treatment are captured with empirical functions based on extensive precalculations using that
catchment's distribution of topographic indices (Ducharne et al., 2000). The diagnosed areal fractions are
fundamental to CLSM, as different evapotranspiration and runoff physics are applied in each.

The vertical water flux between the surface layer and the root zone is controlled by a timescale, τ,
computed with
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τ ¼ ar
θrz þ brMseð Þ3 (2)

Here ar and br are fitted parameters, θrz is the diagnosed catchment mean root zone moisture content
(m3/m3), and Mse is the surface layer excess (m). The water transfer between the surface layer and the
root zone, ΔMse (m), during a time period Δt is

ΔMse ¼ −Mse
Δt
τ

(3)

The empirical equation for the timescale τ (equation (2)) is fitted to results from high‐resolution (1‐cm) simu-
lations of the vertical one‐dimensional Richards equation that were conducted offline prior to running any
CLSM simulations. These high‐resolution offline simulations use a comprehensive set of values for the
CLSM's water prognostic variables (Ducharne et al., 2000) appropriately downscaled to 1‐cm resolution,
with a soil‐specific Campbell parameterization (Campbell, 1974; De Lannoy et al., 2014) applied within each
1‐cm element:

h
hs

¼ θ
θs

� �−b

(4)

K ¼ Ks
θ
θs

� �2bþ3

(5)

where θs (m
3/m3) is the volumetric soil moisture content at saturation, h is pressure head (cm H2O), hs

(cm H2O) is the air entry pressure, b is an empirical shape parameter, Ks (m/s) is the saturated hydraulic
conductivity, and K (m/s) is the unsaturated hydraulic conductivity. The corresponding approach for the
water transfer between catchment deficit and root zone excess, ΔMrz, is similar though more strongly tied
to topographical variations (see Ducharne et al., 2000).
2.1.2. Soil Temperature and Snow Modeling
CLSM uses a six‐layer heat diffusion model to simulate subsurface soil temperatures in terms of soil heat
contents (Koster et al., 2000). Furthermore, a three‐layer snow model describes the state of the snowpack
in terms of snow water equivalent, snow depth, and snow heat content (Stieglitz et al., 2001). The

Figure 1. Schematic illustration of the two different spatial scales across which (a) CLSM and (b) PEAT‐CLSM integrate groundwater table depth and soil moisture
variability, shown here for the (light brown) catchment deficit variable under hydrostatic equilibrium conditions.
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modeled snow layer buffers the heat and water exchange between atmosphere and land. A dynamic ice
fraction is simulated for each of the six soil layers of the heat diffusion model. A detailed description of
the freeze‐thaw model is presented in Tao et al. (2017). The revised permafrost model in that paper was
not utilized here.
2.1.3. Runoff
The total runoff is the sum of a subsurface (base flow) component and a surface runoff (overland flow) com-
ponent. Base flow is directly related to zWT using TOPMODEL equations (Koster et al., 2000). The simulated
ice fraction (section 2.1.2) is used to linearly reduce the base flow rate. Overland flow includes a Dunne
(saturation excess) component and a Hortonian (infiltration excess) runoff component. In the saturated
fraction regime, all throughfall (precipitation minus interception) and snowmelt water runs off the surface,
effectively as Dunne runoff; none of this water infiltrates. Elsewhere, infiltration excess occurs when the
remaining throughfall and snowmelt water exceeds the air‐filled porosity of the surface layer of Ftra and
Fwilt. Ponding on top of the ground surface and run‐on processes (i.e., routing of water over the land surface
for infiltration at a different place) are not simulated in CLSM. All runoff (base flow, saturation excess, and
infiltration excess) is immediately removed from the system.
2.1.4. Surface Energy Balance
The surface energy balance is computed separately for the three hydrological regimes (Fsat, Ftra, and Fwilt) of
a catchment. CLSM computes each regime's canopy conductance frommeteorological input data, prescribed
vegetation phenology (namely, leaf area index, or LAI, and greenness fraction), and regime‐specific
temperature and moisture prognostic variables; these conductances are then used in regime‐specific energy
balance calculations. The energy balance calculations are largely based on those in the Simple Biosphere
Model (Sellers et al., 1986), which were simplified to be consistent with the Penman‐Monteith formulation
(Koster & Suarez, 1992). Given the different moisture states of the three regimes, both energy‐limited and
water‐limited evapotranspiration fluxes are captured. In general, modeled evapotranspiration rates over
Fsat are higher than evapotranspiration rates over Ftra, which in turn are higher than those over Fwilt.

2.2. PEAT‐CLSM

PEAT‐CLSM is a peatland‐specific land surface hydrology module for CLSM. It is intended for the applica-
tion over all grid cells (or catchments) that are classified as peat according to the recent revision of the soil
map of CLSM (De Lannoy et al., 2014). A spatially complete land surface simulation, encompassing both
peat and mineral soils (not applied here), could be achieved by using the original Catchment model
approach (section 2.1) for the grid cells (or catchments) with mineral soils after deriving new catchment
topographic index statistics that exclude peatlands. The details of such an approach are left for future work.

CLSM does not take into account any water management. Similarly, we treat all peatlands as being natural;
that is, drainage practices to establish agriculture, forestry, or mining are not accounted for in PEAT‐CLSM.
2.2.1. Microtopography and Surface Water Ponding
The TOPMODEL approach underlying equation (1) is not suitable for peatlands for two reasons. First, a
large fraction of global peatlands is hydraulically decoupled from the large‐scale catchment groundwater
hydrology. This is the case for bogs and also to some extent for fens that are, for example, (partly) underlain
by confining layers and/or receive lateral water input from surrounding bogs (rather than from the ground-
water of the larger‐scale watershed). Second, on a macrotopographic scale of thousands of meters, most
peatlands (apart from a few peatland types, e.g., blanket bogs, and themargin areas of bogs) are virtually flat.
Over such flat terrain, the derivation of the topographic index distribution from global elevation data is likely
very inaccurate given the difficulties in determining slope, flow direction, and accumulation area
(Kienzle, 2004).

In PEAT‐CLSM, we therefore discard the use of the TOPMODEL concept for computing macrotopographic
effects on the distribution of groundwater table depth and base flow. Instead, we compute the latter as func-
tion of a microtopographic distribution (Figure 1b), a characteristic feature of peatlands in general (Rydin
et al., 2006) that is critical for the description of the water storage. Note that our rejection of the
TOPMODEL formulation in PEAT‐CLSM for macrotopographical effects in peat grid cells implies that we
treat all peatlands as being fully decoupled from surrounding catchment hydrology and as being only fed
by direct precipitation over the peat grid cell. We emphasize that the current PEAT‐CLSM concept does
not address specific features of fen‐like systems that cover, for example, vast areas of peatlands in the
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Boreal Plains (Western Canada) where additional water inputs from minerogenic groundwater and/or
adjacent peatlands are required due to insufficient annual precipitation. The groundwater influence in fens
is very difficult to parameterize and could perhaps be addressed with a blended modeling that combines
PEAT‐CLSM with information about how peatlands are embedded in the landscape.

Table 1 gives an overview of peatland studies that provide quantitative characterizations of microtopogra-
phy. The two most detailed studies showed that the measured elevations can be approximated by a normal
distribution (Dettmann & Bechtold, 2016a; Malhotra et al., 2016) with standard deviations ranging from 0.06
to 0.09 m. Other works give information on the mean and maximum elevation difference between
hummocks and hollows, the two major microtopographic elements in peatlands. Reported mean elevation
differences vary between 0.2 and 0.43 m; reported maximum differences can reach up to 0.6 m. Table 1 lacks
data concerning hummock and hollow microtopography in the Western Siberian Lowlands, which is one of
the largest peatland areas on Earth. Nevertheless, Terentieva et al. (2016) and Eppinga et al. (2008) provide
estimates of elevation differences of 0.4–0.7 m between ridges and hollows characteristic of West Siberian
boreal bog‐fen complexes. However, these landscape elements occur over a spatial scale of 10–100 m, while
the spatial scale of a typical hummock‐hollow microtopography is only a few meters. In PEAT‐CLSM, both
features will be simulated by the same concept.

Microtopography modulates groundwater table dynamics (Ivanov, 1981) by (i) controlling the ponding of
water in the hollows and (ii) determining the spatially variable thickness of the unsaturated zone above
the groundwater table (Dettmann & Bechtold, 2016b). Data collected in a dense groundwater table monitor-
ing network in the Mer Bleue bog (Table 1; Malhotra et al., 2016) showed that the spatial variability of
groundwater table depth there results almost solely from microtopographic elevation variability.
Hydraulic gradients between hummocks and hollows in this bog were negligible and only of short duration.

We utilize the basic CLSM framework to numerically capture the two major microtopographic effects of
ponding and of the variable thickness of the unsaturated zone in a straightforward way. Figure 1b illustrates
how the spatial integration scale for groundwater table depth and soil moisture variables changes from the
catchment scale in CLSM to the scale of the microtopography in PEAT‐CLSM. By replacing the distribution
for ln(A/tanβ) in equation (1) with a normal distribution of microtopographic elevations and by setting υ= 1,
the subsurface modeling concept of CLSM (section 2.1.1) can represent the spatial variability of groundwater
table depths with a normal distribution that solely depends on elevation variability. In contrast to CLSM,
PEAT‐CLSM allows the ponding of water above the saturated soil profile of Fsat. The surface water level
of the ponded water column is assumed always to be in equilibrium with the groundwater table in the soil
profile of the unsubmerged area (Ftra and Fwilt).

To date, a globally harmonized peatland map differentiating between peatland types, for example, bogs and
fens, does not exist (Xu et al., 2018), making this differentiation impossible in global models. This lack of

Table 1
Overview of Studies With Quantitative Information on Microtopography

Reference Peatland type and location

Microtopography information (m)

Maximum to
minimum elevation

Mean elevation
difference between

hummock and hollow
Standard deviation

of elevations

Dettmann and Bechtold (2016a) Bog (Schechenfilz, Germany) 0.3 0.2 0.06 to 0.09
Nungesser (2003) Bog (Howland, USA) 0.6 0.29 +/‐ 0.09 n/a
Kettridge et al. (2008) and Nungesser (2003) Bog (Caribou, USA) 0.6 0.43 +/‐ 0.12 n/a
Johnson et al. (1990) Bog (Akhult, Sweden) n/a 0.2 to 0.3 n/a
van der Schaaf (1999) various bogs (Irland) n/a 0.4 n/a
Lafleur et al. (2005) and Malhotra et al. (2016) Bog (Mer Bleue, Canada) n/a 0.25 0.07
Shi et al. (2015) Bog (S1‐Bog, USA) n/a 0.3 n/a
Frei et al. (2010) Fen (Lehstenbach, Germany) 0.6 0.2 to 0.4 n/a
Price (1997) Bog‐Fen complex

(Lac Saint‐Jean, Canada)
n/a 0.3 n/a

Rochefort et al. (1990) Fen (Experimental
Lakes Area, Canada)

n/a 0.28 n/a
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spatial differentiation forces us to impose a single value worldwide for the standard deviation of the
microtopographic elevation distribution in peatlands. Table 1 shows two reported standard deviations, but
their corresponding mean elevation differences between hummocks and hollows seem to be at the low
end of the reported range from other studies. Aside from the hummock‐hollow microtopography, larger‐
scale (but still subgrid scale for global land surface models) periodic features of peatland topography like
ridges and hollows in the Western Siberian Lowlands (Terentieva et al., 2016) may further increase the
overall standard deviation of elevations in some areas. In the end, we subjectively combined the
heterogeneous information about elevation variability and assumed a standard deviation of 0.11 m for
PEAT‐CLSM. This value is slightly higher than the values reported in two of the studies of Table 1.
2.2.2. Runoff and Maximum Infiltration Rate Through Macropores
The surface layers of peat are formed by weakly decomposed and little compacted plant residues. As a
consequence, there is a high fraction of connected large pores (macropores) in these layers, which allow
for high flow rates when saturated. The saturated hydraulic conductivity of peat, however, exponentially
decreases with depth by orders of magnitude over only a few tens of centimeters (Hogan et al., 2006; Letts
et al., 2000; Morris et al., 2015; Romanov, 1968) due to the increasing degree of decomposition and shift from
large to small pores with depth (Baird, 1997; Dimitrov et al., 2010; Rezanezhad et al., 2012). This character-
istic vertical peat structure controls the water storage dynamics of peatlands, which in turn control the
biological functions that create that structure.

The saturated‐unsaturated hydraulic dynamics associated with the macropore domain and the finer‐pored
peat matrix is bimodal in nature and is poorly represented in unimodal approaches such as that used in
CLSM (equations (4) and (5); Dettmann et al., 2014; Dimitrov et al., 2010; Weber et al., 2017). In PEAT‐
CLSM, we therefore define two different saturated hydraulic conductivities. The first, Ks,macro (m/s), repre-
sents the conductivity at full saturation conditions and relates to fluxes in the macropore domain. Ks,macro is
used to control lateral subsurface runoff and the downward water flux between a fully saturated surface
layer and the root zone (see also discussion later in this section). The second, Ks, represents the conductivity
at matrix saturation and is applied in the vertical flow module of section 2.1.1 to obtain the timescale
parameters for vertical moisture transfer under unsaturated conditions. The hydraulic properties of the peat
matrix are presented for PEAT‐CLSM in section 2.2.3.

The peatland situation with a layer (the acrotelm) of very high values of Ks,macro (10−5 to 10−3 m/s) that
overlies a layer (the catotelm) of very low hydraulic conductivities (~10−7 m/s) can be considered in terms
of an aquifer‐aquitard analogue (Ingram, 1978; van der Schaaf, 1999). The extreme Ks,macro profile has
several implications for runoff dynamics. Given the high near‐surface Ks,macro, Hortonian (infiltration
excess) runoff does not occur, causing total runoff from peatlands to be strongly reduced during deep
groundwater table stages during which there is also little base flow through the catotelm (Fitzgerald et al.,
2003; Holden & Burt, 2003; Weiss et al., 2006). Runoff rates increase exponentially with rising groundwater
tables in the acrotelm. Since water begins to pond in depressions of the microrelief when groundwater tables
rise, base flow and overland flow occur simultaneously, a mechanism known as semisurficial runoff
(Romanov, 1968). Due to the mostly very gentle slopes in peatlands, the flow does not become turbulent,
and Darcy's law is still adequate for flow calculations. This, of course, does not hold for peatlands with
steeper slopes, for example, blanket bogs with specific runoff mechanisms operating during high ground-
water table stages (Holden & Burt, 2003). Such bogs represent a minor portion of global peatlands and are
not considered here.

The runoff formulations in CLSM were fundamentally revised for PEAT‐CLSM to mimic the above runoff
behavior. Based on detailed field observations, K. E. Ivanov (his work given in Romanov, 1968) suggested
that a single power function relating total runoff to zWT is an adequate approximation for the continuously
increasing total runoff seen with rising groundwater tables. We use his work in combination with theoretical
and experimental field work of van der Schaaf (1999) to constrain a function originally suggested by Ivanov
and given in Romanov (1968) to describe the decrease of Ks,macro for the acrotelm layer:

Ks;macro zð Þ ¼ Ks;macro;z¼0

1−100zð Þm (6)

where z (m) is the vertical position with respect to ground surface level (mean surface elevation averaged
over hummock and hollow microtopography), Ks,macro,z = 0 (m/s) is Ks,macro at the mean surface elevation
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(z = 0 m), and m is an empirical parameter describing the rate of decrease of Ks,macro with depth. Note that
Ks,macro is not a soil property but rather a property of the whole system, determining, for example, the
contribution of overland flow in hollows.

The lateral flow rate in the acrotelm depends on the transmissivity Ta (m
2/s), which is defined as the integral

of Ks,macro(z) from the lower boundary of the acrotelm zac to zWT (the water table is assumed to be within the
acrotelm):

Ta zWTð Þ ¼ ∫
zWT

zac
Ks;macro zð Þdz (7)

At the catotelm‐acrotelm boundary, Ks,macro is typically already very low; its contribution to Ta can be
assumed minor. As the exact thickness of the acrotelm (ranging between 0.3 and 0.7 m; Ivanov, 1981) is
unknown at large scales, we assume (following van der Schaaf, 1999) that zac ~ ∞; that is, equation (7) is
applied down to an infinite depth, knowing that contributions to the integral at the deeper depths are
negligible. Equation (7) can then be written as

Ta zWTð Þ ¼ Ks;macro;z¼0 1−100zWTð Þ1−m
100 m−1ð Þ for m>1 (8)

Assuming that horizontal hydraulic gradients in peatlands vary little over time (closely following the
terrain surface slope; e.g., Ivanov, 1981, van der Schaaf, 1999) and following Darcy's law, total (lateral) run-
off, Q (m/s) is proportional to Ta (van der Schaaf, 1999):

Q zWTð Þ ¼ cTa zWTð Þ (9)

where c (m−1) is the average hydraulic gradient divided by the average length (in flow direction) of the
acrotelm layer.

In summary, the function Q zWTð Þ is defined by three parameters: Ks,macro,z = 0, m and c. Typical values
of Ks,macro,z = 0 and m are given in Romanov (1968). Furthermore, van der Schaaf (1999) found that
log10(Ks,macro,z = 0) and m are positively linearly correlated within individual peatlands and across peat-
lands, meaning that Ks,macro declines faster with depth for an acrotelm with a high Ks,macro,z = 0 than it does
for one with a small Ks,macro,z = 0. For PEAT‐CLSM, we prescribe the representative pair of values Ks,macro,z

= 0 = 10 m/s and m = 3. Note that Ks,macro,z = 0 defines the conductivity for a situation with a groundwater
table at z = 0 m in which semisurficial runoff occurs. Ks,macro,z = 0 is therefore orders of magnitude higher
than Ks,macro of the acrotelm layer. Because typical values of c could not be extracted from these earlier
studies, we derived a representative value from the few existing relevant observations. Figure 2 shows data
from one study in which measured Q varies with zWT in a natural bog and a natural fen site (Weiss et al.,
2006). We used these data to constrain the value of c to 1.5 × 10−7 m−1; this value produces an average
runoff function that describes data at both sites fairly well.

In CLSM, Hortonian runoff is generated when throughfall or snowmelt exceeds the available air‐filled pore
space in the surface layer. Subsequent drainage of surface layer moisture to the soil below (controlling, in
effect, this air‐filled pore space) is based on high‐resolution precomputations of the Richards equation
along with a Campbell parameterization of the hydraulic characteristics of soils with a uniform pore size
distribution (see section 2.1.1). Given the very high values of Ks,macro in the acrotelm layer, we disabled
the Hortonian runoff mechanism in PEAT‐CLSM, allowing all water to infiltrate. Any infiltration excess
predicted by the vertical flow module based on the peat matrix properties defined in 2.2.3 is allowed to
infiltrate into the root zone layer via macropores. This means that the ponding of water at the soil surface
described in section 2.2.1 can only occur above a saturated soil profile, that is, above Fsat. Note that in
PEAT‐CLSM the grid cell never saturates entirely (in practice) due to the highly exponential runoff
function (Figure 2).

As in CLSM, we used the modeled ice fraction to linearly reduce Q in PEAT‐CLSM. In PEAT‐CLSM, the ice
fraction applied is that in the top layer (0 to −10 cm) of the heat diffusion model instead of that in the whole
soil profile, as it is the top layer that controls most of the runoff (Figure 2). A computationally more
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intensive approach that takes into account the ice fraction of each soil layer when integrating equation (7)
was not realized. Furthermore, rain water falling on an entirely frozen top soil does not generate surface
runoff; that is, water is assumed to infiltrate through macropores and to fill the hollows of
the microtopography.
2.2.3. Hydraulic Properties of Peat Matrix
For CLSM, vertically homogenized soil texture data for the 0 to −100‐cm soil layer were used to derive the
soil hydraulic properties that define the relationships of zWT and root zone equilibrium moisture to catch-
ment deficit (De Lannoy et al., 2014). That is, in the model the soil hydraulic parameters are assumed
constant in the vertical dimension. In reality, soil texture and soil hydraulic parameters vary with depth.
This is especially true in peatlands (Letts et al., 2000; McCarter & Price, 2014), where differentiation is
typically made for two layers (acrotelm and catotelm) or for three layers (fibric, hemic, and sapric peat),
not only for the saturated hydraulic conductivity profile described in section 2.2.2 but also for unsaturated
hydraulic properties.

Since such a layered differentiation would not fit the overall CLSM structure, we decided to extract soil
hydraulic parameters from an average acrotelm layer to represent the root zone, assuming that groundwater
table fluctuations mostly occur in the acrotelm layer (down to a depth of−0.3 to−0.7 m; Ivanov, 1981). In so
doing, we accept errors for anomalously dry situations in which the actual groundwater table would drop
below the acrotelm‐catotelm boundary. The updated parameter values for PEAT‐CLSM are summarized in
Table 2. Figure 3 shows a comparison of the hydraulic functions of PEAT‐CLSM with the most frequently
applied functions for the acrotelm of Letts et al. (2000; fibric and hemic peat) and functions determined in
more recent works for the acrotelm layer of natural peatlands (Dettmann et al., 2014; McCarter & Price,
2014; Weber et al., 2017). Figure 3 indicates a large variability of hydraulic properties in the acrotelm layer;
the green curves represent our attempt to represent this behavior in PEAT‐CLSMwith average relationships.
Figure 3 also shows the peat properties introduced to CLSM by De Lannoy et al. (2014). These peat
parameters were based on values from the Staring series (peat B16; Wösten et al., 2001), which are not
representative of the acrotelm layer in natural peatlands. The samples of B16 were also taken from the
top soil but likely included several degraded peat samples, as indicated by the bulk densities of B16 that
ranged from 0.2 to 1.0 g/cm3; these values exceed typical bulk densities of around 0.1 g/cm3 found in
undisturbed acrotelm layers (e.g., Nungesser, 2003).
2.2.4. Evapotranspiration
In earlier studies, the relative proportion of vascular plants and nonvascular plants (mosses) was considered
crucial for modeling water, energy, and carbon cycles in peatlands (Dimitrov et al., 2011; Sonnentag et al.,
2008). Mosses lack stomata to actively regulate their evaporative water loss, and they show an abrupt drying

Figure 2. Relationship between total runoff Q (mm/day) and spatial mean groundwater table depth zWT (m). Field
observations were extracted from Weiss et al. (2006) and include data from (blue) a fen and (light brown) a bog site. The
runoff function of PEAT‐CLSM is shown as a green line.
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and decrease of productivity at certain groundwater table depths. The productivity of vascular plants, on the
other hand, is relatively unaffected by groundwater table drawdown (Dimitrov et al., 2011; Strack et al.,
2006). Though important, information on the relative proportion of plant species in peatlands is not avail-
able for global‐scale applications.

Nearly all research on water‐limited evapotranspiration (E) in peatlands has sought a link with groundwater
depth (zWT), but no unique relationship has been found (Lafleur, 2008). Whereas lysimeter studies indicate a
strong relationship between E and zWT even at high zWT of−0.1 or−0.2 m (Schouwenaars, 1990; Virta, 1966),
groundwater table effects are not clearly visible in field data (Peichl et al., 2013) or they occur at much lower
zWT (of, e.g., −0.65 to −0.75 m; see Lafleur et al., 2005). This discrepancy is likely related to mechanisms of
lateral evapotranspiration compensation at the field scale, such as enhanced E from vascular plants and
open water bodies when E from mosses decreases during periods of lower zWT (Humphreys et al., 2006;
Lafleur, 2008).

In designing PEAT‐CLSM, we modified the evapotranspiration scheme of CLSM only with regard to the cal-
culation of the areal wilting fraction, Fwilt. In CLSM, Fwilt is defined by the fraction of the spatial root zone
soil moisture distribution that is at wilting point. Since in peatlands the groundwater table is typically in the

Table 2
Overview of the Model Configurations, Land Model Parameters, and Boundary Conditions of the Simulation Experiments ExpA, ExpB, and ExpC

Simulation experiment ExpA ExpB ExpC

CLSM Version SMAP L4_SM Version 3 SMAP L4_SM Version 3 PEAT‐CLSM
Peat soil No Yes Yes
Soil hydraulic parameters Textural input from NGDC (Reynolds et al., 2000),

parameters adapted from Cosby et al. (1984)
(as in MERRA‐2)

θs = 0.80 m3/m3, hs = −1.76 m,
b = 3.41, Ks = 7.86 × 10−7 m/s,

De Lannoy et al. (2014)

θs = 0.93 m3/m3, hs = −0.03 m,
b = 3.5, Ks = 2.8 × 10−5 m/s,
and Ks,macro,z = 0 = 10 m/s

Topography/catchments HYDRO1k (USGS) No topography input used
Meteorological forcing MERRA‐2 (Gelaro et al., 2017) including gauge‐based precipitation corrections (Reichle et al., 2017)
Land cover USGS Global Land Cover Characteristics Data Base Version 2.0 (GLCCv2), https://lta.cr.usgs.gov/glcc/
Leaf area index (LAI) Hybrid of Moderate Resolution Imaging Spectroradiometer (MODIS) and GEOLAND2 (Baret et al., 2013; Camacho et al., 2013)
Greeness fraction GSWP‐2 (Dirmeyer & Oki, 2002)
Albedo Estimated by a modified Simple Biosphere Model (SiB) albedo parameterization scheme and (for the snow‐free fraction) scaled

by MODIS albedo climatology (Koster & Suarez, 1991; Moody, 2008)

Figure 3. (a) Retention curves and (b) corresponding unsaturated hydraulic conductivity curves (if available) for the acrotelm peat layer from a range of studies
(different colors), including the functions used in CLSM (De Lannoy et al., 2014) and PEAT‐CLSM, with variables as explained in equations (4) and (5). Full
lines pertain to average or deeper parts of the acrotelm, whereas dashed variants of the curves apply to shallower horizons within the acrotelm.
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first meter, that is, always within the root zone of CLSM, this approach is inappropriate to describe peatland
water stress. In PEAT‐CLSM, we instead link Fwilt to zWT as follows:

Fwilt ¼ 0:0 for zWT ≥−0:3m
Fwilt zWTð Þ ¼ −0:3−zWT for−0:3m>zWT>−1:3m

Fwilt ¼ 1:0 for zWT ≤−1:3m

(10)

The choice of the thresholds for the initiation of water stress is based on lysimeter studies showing a water
limitation for mosses at high zWT. The linear increase of Fwilt to 1 at zWT = −1.3 m was chosen to approxi-
mately mimic the reduction of E by 40% observed at Mer Bleue at lower zWT of −0.65 to −0.75 m (Lafleur
et al., 2005). Note that equation (10) is intended to determine the water‐limited regime for an ecosystem
of vascular and nonvascular plants as a whole. The parameterization of Fwilt is independent of the relative
proportion of both plants due to the current lack of adequate global input.

3. Model Experimental Setup
3.1. Model Simulations

Three different suites of land surface simulations were conducted in this study. One suite of simulations
(ExpA) used CLSM with default mineral soils globally. A second suite of simulations (ExpB) used CLSM
with the updated soil parameterization of De Lannoy et al. (2014); this updated parameterization includes
peat as a soil class. The third suite of simulations (ExpC) used PEAT‐CLSM.

Details on the model configurations, land model parameters, and boundary conditions are given in Table 2.
The basic model configuration was taken from the operational SMAP L4_SM product, version 3 (mimicked
in ExpB; Reichle et al., 2018). For ExpA, we replaced the peat properties used for SMAP L4_SM by the
mineral soil parameters that are still being used operationally for MERRA‐2 (Reichle et al., 2017). In
ExpC, we applied the PEAT‐CLSM model changes, with the soil parameters listed in Table 2. The offline
Richards simulations (section 2.1.1) were run separately for each set of soil parameters and used to obtain
the corresponding land model moisture transfer coefficients for ExpA, ExpB, and ExpC. Other land model
parameters and boundary conditions, including the surface meteorological forcing data, were the same
across all simulations (Table 2).

Each simulation suite (ExpA through ExpC) was run for the period January 1988 through December 2017
and comprised simulations over two domains, each with its own spatial resolution: (1) a 9‐km simulation
for all grid cells between 40°N and 75°N that are dominated by peat soil according to a blend of
Harmonized World Soil Data (HWSD‐1.21) and the State Soil Geographic (STATSGO2) soil data (De
Lannoy et al., 2014) and (2) a high‐resolution 30″ (arc seconds) simulation only for those grid cells that con-
tain field observations of groundwater table depth or evaporation (section 3.2). The latter simulation was
done because some of the peatland in situ observations fall into 9‐km grid cells where peat is not the domi-
nant texture according to the blended soil map of De Lannoy et al. (2014). Therefore, for the simulations at
30″ resolution, we assigned peat soils (for ExpB and ExpC) and applied PEAT‐CLSM (for ExpC) to all grid
cells in the modeling domain. There are more recent and accurate maps of soil organic carbon, in particular
WISE30sec (https://www.isric.org/index.php/explore/wise‐databases) and the Northern Circumpolar Soil
Carbon Database (https://bolin.su.se/data/ncscd), which could be used to define themodel domain in future
applications of PEAT‐CLSM.

The 30″ simulations were run on a regular longitude‐by‐latitude grid, and the 9‐skm simulations were run
on the Equal Area Scalable Earth (EASE) grid, version 2.0. All simulations were preceded by multiple
37‐year (whole MERRA‐2 time series) spin‐up cycles (separately for each experiment), with the final
spin‐up ending in December 1987.

3.2. Evaluation Approach

Figure 4 shows the spatial distribution of peat soils at 9‐km resolution for North America, Europe, and
Western Siberia according to De Lannoy et al. (2014). Long‐term model estimates of hydrological variables
over this domain will be evaluated qualitatively below. Figure 4 also shows the location of peatlands where
extensive groundwater table depth (zWT ) and evapotranspiration (E) data are available for detailed time
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series evaluation, over bogs (Figure 4a) and fens (Figure 4b). Due to the lack of sufficient hydrological field
data, an evaluation for tropical peatlands is not conducted.

We compiled an extensive evaluation data set consisting of groundwater table depth observations in 94 mon-
itoring wells in 44 different peatland complexes (22 bogs and 22 fens) and eddy covariance data with latent
and sensible heat flux measurements from 11 different peatland complexes (4 bogs and 7 fens; Figure 4 and
Table A1). Sites were chosen based upon the following criteria:

1. The presence of a peat layer with thickness >30 cm.
2. The peat being in a natural to seminatural state (1) without a history of intensive management that

resulted in irreversibly disturbed peat properties and (2) with groundwater table depth fluctuations in
the typical range for natural peatlands (0 to −0.5 m, sporadically deeper). The intensive management
could refer to peat mining (though marginal peat cutting was accepted), deep drainage, and other
attempts to change the land use for more than 10–20 years.

3. The monitoring well (for groundwater table depth sites) being perforated only over the first 1 or 2 m or
with the perforated section of the tube ending within the peat layer. We emphasize that this criterion is
particularly important because national authorities typically maintain only groundwater monitoring net-
works with monitoring wells that penetrate deeply and cut through the peat layer, producing observa-
tions that are not representative of the peat layer (Bechtold et al., 2014).

The temporal frequency of the groundwater table depth data ranged from daily (continuous logger data) to
monthly (discontinuous manual measurements). When the data source provided information about the site‐
specific reference height for calculating the groundwater table depth, the site‐specific reference height was, if
necessary, shifted to the mean surface elevation to be consistent with the definition of zWT (equation (1)). If
such information was not available, we assumed the mean surface elevation to be the reference height
already. All field data were compared with daily averaged model output.

The latent heat flux measured by the eddy covariance method commonly underestimates the actual flux due
to an incomplete energy balance. The gap in the energy balance closure is on average 24% for wetlands (Stoy
et al., 2013). Therefore, a Bowen ratio preserving approachwas applied to close the energy balance, following
Mauder et al. (2013). The energy balance ratio, rRB, was calculated as

rRB ¼ H þ λE
Rn þ G

(11)

whereH is sensible heat flux (W/m2) and λE is latent heat flux (W/m2), with λ being the latent heat of vapor-
ization. All nongap‐filled half‐hourly daytime (site data indicating net radiation Rn >20W/m2) values of each

Figure 4. Distribution of (gray) peat soils in the temperate, boreal, and subarctic zone of the Northern Hemisphere based on De Lannoy et al. (2014), with the red
line indicating the boundary of continuous permafrost (Brown et al., 1997). Markers locate peatland complexes (Table A1) with (filled circles) one or more
groundwater table sites and (bold edge) additional eddy covariance data in (a) bogs and (b) fens.
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Figure 5. Long‐term (1 January 1988 through 31 December 2017) (a) time‐averaged spatial mean groundwater table depth (<zWT>), (b) temporal standard
deviation of zWT (σzWT

), (c) time‐averaged spatial mean volumetric soil moisture in the top 5 cm of the soil, <θ5cm>, and (d) temporal standard deviation of
θ5cm (σθ5cm), for all three 9‐km resolution simulations in ExpA, ExpB, and ExpC. Long‐term statistics were computed with daily data from nonfrozen and snow‐free
periods. The titles include the spatial mean (m) and standard deviation (s) for 40°N to 75°N.
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term on the right‐hand side of equation (11) were averaged over a longmoving window of 30 days tominimize
the effects of storage change and of errors in soil heat flux measurements, G (W/m2). For sites without
measurements of G, estimates of G from a CLSM run (ExpB) were used. (The application of G from ExpA
or ExpC instead of ExpB had an insignificant impact on the comparison of modeled and observed
evapotranspiration rates.) The half‐hourly H and λE values were corrected for the energy closure gap by
multiplying them by 1/rRB for the corresponding 30‐day window. The corrected eddy covariance half‐
hourly data were used without any gap‐filling and aggregated to 3‐hr averages. If a gap occurred over a 3‐
hr period, the average was discarded. In general, we restricted our comparison to rates of daytime
evapotranspiration, Edaytime, for which nongap‐filled data were available. Observed data were compared
with 3‐hourly averaged model output.

Skill metrics for groundwater table depth and evapotranspiration were only calculated for nonfrozen and
snow‐free periods. The observations spanned 1998 through 2017, though different time series lengths were
available at different sites. We considered five metrics:

1. Bias: difference between simulated and observed long‐term means (i.e., model minus observation)
2. RMSD: root‐mean‐square difference between simulated and observed time series
3. ubRMSD: unbiased root‐mean‐square difference, calculated by first removing the bias from the

simulated time series
4. R: temporal Pearson correlation coefficient between observed and simulated data
5. anomR: temporal Pearson correlation coefficient between observed and simulated data, calculated

after removing a multiyear (≥3 years), 30‐day smoothed, seasonally varying mean from each time
series, so that any correlation generated by the seasonality of the meteorological forcing is minimized.
In this way the capability of the models to predict unusual interannual or short‐term dynamics can be
more directly evaluated. Only the midday 3‐hr window was taken for the calculation of anomR of
Edaytime.

The skill metrics are provided with 95% confidence intervals (CI), taking into account the temporal autocor-
relation (as in De Lannoy & Reichle, 2016). Averaging of skill metrics and CIs occurred at two levels. First,
they were averaged at the level of data clusters, which are defined by a minimum distance of 100 km—under
the assumption that sites within a given cluster are not sufficiently independent from each other,
site‐specific skill metrics and CIs were averaged across the cluster by a simple mean (if applicable).
Second, overall averages of skill metrics and CIs were computed across the cluster values. For the CI, the
average was further divided by the square root of the number of clusters, under the assumption that each
cluster added independent information.

4. Results and Discussion
4.1. Spatial Pattern of Groundwater Table Depth and Soil Moisture

Before evaluating the various experiment results against field observations, we compare their simulated
spatial patterns of groundwater table depth and surface soil moisture (mean and standard deviation) over

Figure 6. Groundwater table depth (a) bias (model‐minus‐observation), (b) root‐mean‐squared difference (RMSD), (c) unbiased root‐mean‐squared difference
(ubRMSD), (d) time series correlation coefficient (R), and (e) anomaly time series correlation coefficient (anomR) for the 30″ simulations (ExpA, ExpB, and
ExpC), computed separately for bogs and fens. Bog metrics are based on 55 sites collected into 14 regional clusters. Fen metrics are based on 39 sites collected into
11 regional clusters. The anomRmetric is computed from slightly fewer sites (44 and 38, respectively, with 11 clusters each). The time period (1988–2017) varies per
site depending on data availability and the length of snow and freezing periods, which were excluded. Also shown are 95% confidence intervals.
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the main peatland regions of North America, Europe, and Western Siberia (Figure 5). Figure 5a shows that
the long‐term averaged zWT (<zWT>) for ExpA and ExpB is generally lower than−0.6 m, with mean values of
−1.42 m in ExpA and−2.08 m in ExpB. In contrast, ExpC shows values of<zWT> that are in a realistic range
for peatlands (<zWT> > −0.6 m). All simulations show a trend of higher <zWT> values toward the north,
reflecting the higher climatic water surplus at higher latitudes. Figure 5b also demonstrates that ground-
water table fluctuations, that is, the temporal standard deviation of zWT (σzWT

), are more plausible in ExpC
than they are in ExpA and ExpB; the average σzWT

in our in situ data set is 0.13 ± 0.07 m, which is fairly
consistent with the standard deviations simulated by ExpC, whereas ExpA and ExpB always produce higher
values. The relatively minor differences between ExpA and ExpB demonstrate the strong control of the
topographic index distribution on groundwater table depth and base flow dynamics.

Figures 5c and 5d show the long‐term mean and standard deviation of soil moisture. ExpA shows low soil
moisture values with low variability, which is not unexpected given the use therein of mineral soils.
ExpB, which uses a peat soil type, increases the soil moisture but largely maintains the temporal dynamics
of ExpA. ExpC simulates on average a slightly drier andmuchmore dynamic surface soil moisture compared
to ExpB. This stems from the new peat soil hydraulic parameterization of PEAT‐CLSM, which features a
high fraction of pores that dewater between h = 0 cm H2O and h = −50 cm H2O (Figure 3), that is, dewater
when zWT fluctuates in that range.

Soil moisture field data of sufficient quality are not available in peatlands for a quantitative evaluation, but
we can briefly discuss whether the changes seen in ExpC are sensible. One of the more sophisticated surface
soil moisture data sets in peatlands can be found in Millard and Richardson (2018). They used a site‐specific
calibrated electromagnetic sensor to measure the surface soil moisture (top 5 cm) with a spatial interval of
1 m, covering the microtopography at several sites within a bog‐fen complex. The observed surface soil
moisture varied in time by about 0.2 m3/m3 at all sites. The high macroporosity in peatlands causes the
acrotelm to dry out quickly when groundwater tables drop (Price, 1996). The very dynamical surface soil
moisture is poorly represented by the hydraulic parameters of De Lannoy et al. (2014; ExpB), while the
new hydraulic parameters, in particular the lower b parameter (see also Figure 3), in PEAT‐CLSM (ExpC)
results in a higher temporal standard deviation of surface soil moisture. The measured absolute surface soil
moisture levels varied considerably across the sites of the study of Millard and Richardson (2018), with much
drier values for bog sites (on average 0.3 to 0.35 m3/m3) than for fen sites (~0.6 m3/m3). The average surface

Figure 7. Z‐transformed groundwater table depth (zWT) time series at (a) Mer Bleue (CA_MER) and (b) Degerö (SE_DEG). The tick for each year is located on
1 January. Shown are (red dots) field observations and 30″ simulations of (black) ExpA, (blue) ExpB, and (green) ExpC. The gray backgroundmarks some periods of
interest (see text).
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soil moisture of ExpC (0.64 m3/m3) is higher than these values since PEAT‐CLSM uses average acrotelm
layer parameters that cannot reproduce the effect of decreasing b values toward the ground surface.

4.2. Groundwater Table Depth: Evaluation With Field Observations

Figure 6 summarizes the skill metrics of the 30″ simulations at the locations with in situ groundwater table
depth data (Table A1) for bogs and fens. (Skill metrics computed, where possible, from the 9‐km simulations
are similar and are not shown.) Table A2 provides detailed skill metrics for each of the 94 groundwater table
sites. The unrealistically low zWT for ExpA and ExpB, along with their high standard deviations, lead to poor
skill metrics for bias, RMSD, and ubRMSD (Figure 6). PEAT‐CLSM (ExpC) improves on these statistics
dramatically for both bogs and fens, with average values of −0.12, 0.19, and 0.10 m for bias, RMSD, and
ubRMSD, respectively. The Pearson time series correlation coefficients (R and anomR) also improve signifi-
cantly in ExpC, reaching respective values of 0.64 and 0.46 for bogs and 0.66 and 0.59 for fens. The
TOPMODEL‐based approach of CLSM (ExpA and ExpB) yields (significantly) greater R and anomR values
for fens than for bogs, as one might expect given the dependence of fens on catchment hydrology. In that
light, it is surprising that the simplified purely rain‐fed approach of PEAT‐CLSM (ExpC) yields equal
R values for bogs and fens and significantly greater anomR values for fens than bogs.

We can only speculate about possible reasons for the lower performance of ExpC over bogs relative to the
one over fens. One possibility is that the global forcing input (MERRA‐2) is quite erroneous at the local scale.
The impact of this on the water balance would be more problematic for smaller bogs than for fens, for which
the water balance is associated with a larger area that helps average out forcing errors. Another possibility is
that the effect of nonvascular plants on evapotranspiration, which is not specifically addressed in PEAT‐
CLSM, mainly causes difficulties in simulating the hydrology of bogs that typically show a higher proportion
of nonvascular plants.

To illustrate the differences between the simulated groundwater table depth dynamics of ExpA, ExpB, and
ExpC, portions of the observed and simulated time series at two representative and well‐known sites, the
Mer Bleue Bog (CA_MER) and Degerö Fen (SE_DEG) sites, are given in Figure 7. Time series were
Z‐transformed (centralized around the long‐term mean and normalized by the long‐term standard devia-
tion) to correct for the huge bias in mean and standard deviation produced by ExpA and ExpB. The resulting
dynamics in ExpA and ExpB, which are similar to each other, differ from those in ExpC (PEAT‐CLSM).
Figure 7a highlights a fundamental characteristic of a groundwater table time series in peatlands: the

Figure 8. Long‐term (a) bias and (b) correlation coefficient (R) in groundwater table depth for ExpC at each cluster of observational sites (underlying the data
shown for ExpC in Figure 6). Circles indicate bog clusters, and squares indicate fen clusters.
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Figure 9. Long‐term (1 January 1988 through 31 December 2017) (a) runoff efficiency (<Q>/<P>), (b) evapotranspiration efficiency (<λE>/<Rnet>), and
(c) Bowen ratio (<H>/<λE>) for all three 9‐km resolution simulation experiments (ExpA, ExpB, and ExpC). (b) and (c) were computed with data from nonfrozen
and snow‐free periods. The titles provide the spatial mean (m) and standard deviation (s) for 40°N to 75°N.
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leveling out of groundwater tables when they approach their maximum, which corresponds approximately to
the mean surface elevation. This feature is not captured in ExpA and ExpB but is very well reproduced by
PEAT‐CLSM for many sites, leading to high site‐specific R values. (See Table A2. The R for the CA_MER
site is 0.78.) The implementation of the microtopography approach and the exponential base flow
function in PEAT‐CLSM underlie this improvement. But Figure 7a also shows that at CA_MER simulated
groundwater tables almost steadily decrease during midsummer 2006, whereas observed groundwater
tables increase for this period. Precipitation measured at the site suggests storm events amounting to 116
mm of rain over 52 hr (31 July to 3 August 2006) were poorly represented by the coarse resolution of
MERRA‐2 and contributed to the discrepancy between observed and modeled groundwater table depths.
Figure 7b (SE_DEG, R = 0.68) illustrates how groundwater tables in Nordic sites stabilize during freezing
periods and peak after snowmelt. All simulations reproduce the timing and relative magnitude (after the
Z‐score transform) of these events reasonably well.

Figure 8 shows, for ExpC, a spatial map of the bias and correlation coefficient for ground groundwater tables
over all observed bog and fen clusters. Europe and the Western Siberian Lowlands feature mostly high cor-
relation coefficients and a moderate bias of−0.1 m. In North America, however, a deficiency of PEAT‐CLSM
is revealed by several clusters in the Boreal Plains and for one additional cluster lying southeast of there (sup-
ported by data from two US_S1 bog sites). The most negative biases (meaning that the modeled groundwater
table is too low) and the lowest R values in that region are striking. Wetlands of the Boreal Plains are known
for their specific hydrologic functioning that enabled peatland ecosystems to develop under a long‐term
regional climatic water deficit defined by an annual potential evapotranspiration that exceeds annual preci-
pitation by 10% (Devito et al., 2012). These authors found that within deep heterogeneous glacial deposits
characteristic of the Boreal Plains, water storage in large surface depressions in extensive clay‐rich areas,
as well as dynamic storage within local and more extensive groundwater flow systems, allows water
surpluses in wetter years to provide water in drier years, potentially stabilizing regional groundwater tables
(Hokanson et al., 2019; Lukenbach et al., 2017). Furthermore, negative feedback responses in peat soils and
moss vegetation are more pronounced in continental boreal systems (Brown et al., 2010; Dixon et al., 2017;
Waddington et al., 2015), and actual evapotranspiration rates of peatlands are likely lower in the Boreal
Plains (Devito et al., 2017). Neither the long‐termwater storage memory in large depressions or groundwater
flow systems nor the regionally specific evaporation rates are included in PEAT‐CLSM, perhaps explaining
the relatively poor model performance in the Boreal Plains.

4.3. Spatial Pattern of Runoff Efficiency, Evapotranspiration Efficiency, and Bowen Ratio

The water balance equation of a systemwithout lateral water inputs and with negligible long‐termwater sto-
rage changes (features that typify natural bogs) reduces to

Q ¼ P−E (12)

where Q represents total runoff, P is the total precipitation, and E is evapotranspiration. Considering P as a
driver of the system, the equation illustrates that long‐term averages of Q and E are very highly coupled. For

Figure 10. Daytime evapotranspiration rate (3‐hourly resolution; mm/day) (a) bias (model‐minus‐observation), (b) root‐mean‐squared difference (RMSD),
(c) unbiased root‐mean‐squared difference (ubRMSD), (d) time series correlation coefficient (R), and (e) anomaly time series correlation coefficient (anomR)
for the 30″ simulations (ExpA, ExpB, and ExpC), computed separately for bogs and fens. Bog metrics are based on four sites. Fen metrics are based on seven sites.
The anomR metric is based on two fewer fen sites. The time period (1988–2017) varies with site depending on data availability and the length of the snow and
freezing periods, which were excluded. Also shown are 95% confidence intervals.
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the development of a land surface model, this means that a realistic simulation of long‐term E requires rea-
listic treatments of both E and Q (Koster, 2015).

We therefore jointly examine the long‐term runoff and evapotranspiration fluxes for the main peatland
regions between 40°N and 75°N. More specifically, Figure 9 shows the simulated spatial patterns of the
30‐year runoff efficiency (<Q>/<P>; <.> indicating temporal means), evapotranspiration efficiency
(<λE>/<Rnet>) and Bowen ratio (<H>/<λE>) based on the 9‐km simulations of ExpA, ExpB, and ExpC.
Values of <λE>/<Rnet> and <H>/<λE>were calculated for snow‐free and unfrozen periods for consistency
with reported literature values (Lafleur, 2008), whereas the calculation of runoff efficiency included snow
and frozen periods given the importance of snowmelt water for runoff. ExpA and ExpB show similar pat-
terns; both, though, show large differences with ExpC. In general, ExpC simulates higher <Q>/<P> (more
runoff), lower <λE>/<Rnet> (less net radiation turned into evapotranspiration) and higher <H>/<λE>
(more sensible heat). On average, runoff increased by 38% while evapotranspiration decreased by 19% in
ExpC (relative to ExpB).

The lowest <Q>/<P> (<0.1) values are seen over the Boreal Plains for all three simulation experiments
(Figure 9a). This region is characterized by extremely lowmean annual runoff fluxes from forest catchments
and only slightly greater runoff from peatland‐dominated catchments, with significant runoff generation
occurring only about once every 20 years (Devito et al., 2005, 2017). The very low runoff amounts entail that
equation (12) practically simplifies to E, which, in turn, leads to <λE>/<Rnet> values that are rather similar
for all experiments over the Boreal Plains (Figure 9b). For regions with higher <Q>/<P>, ExpC produces an
evapotranspiration that is lower (and a runoff that is accordingly higher) than that in ExpA and ExpB.
Consequently, <H>/<λE> is greater in ExpC, with values that increase from about 0.45 in the south of
Canada and Russia to 0.75 at the permafrost boundary and with greater values further northward. Based
on a literature review of field observations from sites between 45°N and 60°N and in New Zealand,
Lafleur (2008) reported median Bowen ratios (in the growing season) of 0.60 for bogs and 0.46 for fens
and mean evapotranspiration efficiencies that reach 0.46 for bogs and 0.59 for fens. Due to the strong influ-
ence of site‐specific climatic conditions and measurement periods on observed evapotranspiration efficiency
and Bowen ratio, it is impossible to determine which experiment agrees better with average literature values.
Nevertheless, the results do indicate that PEAT‐CLSM simulates flux ratios that are generally realistic.

4.4. Daytime Evapotranspiration: Evaluation With Field Observations

Figure 10 summarizes the skill metrics for evapotranspiration, computed separately for bogs and fens, based
on the 30″ simulations performed at locations with evapotranspiration data (section 3.2 and Table A1).
(Table A3 provides the detailed skill metrics for each of the 11 eddy covariance sites.) For bogs, ExpA,
ExpB, and ExpC all overestimate daytime evapotranspiration rates (Edaytime), whereas for fens, the bias aver-
aged over all sites is close to zero (Figure 10a). However, Table A3 indicates that large positive and negative
biases do occur at individual fen sites. In field experiments, evapotranspiration efficiency has been reported
to be about 25% lower in bogs than in fens (Lafleur, 2008), but this distinction was not achieved with the
model simulations due to the lack of a bog‐fen differentiation in CLSM and PEAT‐CLSM, though we note
that PEAT‐CLSM (ExpC) does partly overcome the site‐specific biases and reduces (relative to ExpB) the bias
of Edaytime for all bogs (on average by 50%) and for five of the seven fen sites. The bias reduction can be
explained by considerable differences in the areal fractions of the hydrologic regimes, that is, Fsat and
Fwilt, among ExpA, ExpB, and ExpC. PEAT‐CLSMmostly simulated the lowest Fsat and highest Fwilt during
summer, effectively reducing evapotranspiration (see Appendix B for exemplary time series). Besides bias
reduction, ExpC further yields the lowest RMSD values for bogs and fens and the lowest ubRMSD for bogs.
No significant differences in R and anomR are seen between the experiments.

5. Conclusions

In this paper, we introduce a peatland‐specific land surface hydrology module (PEAT‐CLSM) for the GEOS
Catchment Land Surface Model (CLSM). In PEAT‐CLSM, a characterization of microtopography is used to
determine the groundwater table depth and soil moisture distributions, in contrast to the use of the
catchment‐scale compound topographic index distribution in CLSM. In addition, PEAT‐CLSM features
modified formulations of runoff and evapotranspiration and includes updated values of peat hydraulic
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parameters. The parameterization was constructed from formulations and parameter values provided in the
literature; it was not tuned in any way prior to its evaluation here against field measurements.

Three experiment suites were set up, all using similar global input data but different treatments of peatland.
One experiment used default mineral soils in the original CLSMmodel (ExpA, representing the model used
in MERRA‐2), one used peat soil properties in the original CLSMmodel (ExpB, representing the model used
for SMAP L4_SM), and the final experiment used revised peat soil properties within PEAT‐CLSM (ExpC).
An evaluation of simulated spatial patterns between 40°N and 75°N and a detailed evaluation against a
newly compiled and extensive data set of observed groundwater table depths and evapotranspiration rates
in natural and seminatural peatlands showed that

1. CLSM was unable to mimic typical groundwater table dynamics in peatlands, simulating groundwater
table depths that are on average too deep below soil surface (< −1.0 m) and too variable (standard devia-
tion >0.6 m);

2. simulated hydrological dynamics changed little from ExpA to ExpB, the only major change being an
average increase of soil moisture from about 0.34 to 0.62 m3/m3;

3. PEAT‐CLSM strongly modified the simulated hydrological dynamics, establishing a mean groundwater
table depth of −0.20 m (during snow‐free and unfrozen periods) with moderate temporal fluctuations
(standard deviation of 0.10 m), and increasing runoff on average by 38% while reducing evapotranspira-
tion by 19% relative to ExpB;

4. PEAT‐CLSM agreed better than CLSM (using either MERRA‐2 or SMAP L4_SM soil hydraulic para-
meters) with field observations of groundwater table depth, achieving a bias of −0.12 m, an unbiased
RMSD of 0.1 m and a time series R of 0.65; and

5. PEAT‐CLSM agreed better than CLSM (using either MERRA‐2 or SMAP L4_SM soil hydraulic para-
meters) with evapotranspiration estimates from eddy covariance measurements, significantly reducing
(relative to ExpB) the bias in daytime evapotranspiration for 9 of 11 peatland sites, which amounts to
an average bias reduction of 1.3 mm/day for bogs and 0.4 mm/day for fens. Temporal correlation metrics
did not change significantly.

The simplicity of the peatland‐specific modifications to CLSM must be emphasized. PEAT‐CLSM was
purposely designed with a level of sophistication that, in effect, would allow its straightforward future
incorporation into the modeling system underlying GEOS operational products such as MERRA‐2 and
SMAP L4_SM. Of course, such simplicity comes with shortcomings and caveats that could partly be
overcome through the development of more sophisticated approaches.

First, in PEAT‐CLSM, a bog‐type modeling approach is used for all peatlands; lateral water input from
ground or surface water is neglected. Even though skill metrics of PEAT‐CLSM were similar for bogs and
fens (and were even slightly superior for fens), a partial lateral water input (e.g., from upstream CLSM grid
cells) could theoretically be implemented to further improve the performance for fens. The necessity of a
more sophisticated approach is highlighted by the relatively poor skill metrics obtained over the Boreal
Plains (Western Canada) where annual precipitation is very limited and lateral input (minerogenic and/or
from adjacent peatlands) is an important stabilizing process. However, the parameterization of the lateral
inputs is very difficult to constrain at regional to global scales. Even a harmonized global map indicating
the relative proportion of bog and fen, which could be used as a first indication for the importance of lateral
water input fluxes, does not yet exist.

A second shortcoming of PEAT‐CLSM involves the evapotranspiration scheme, in particular the lack of
accounting for the relative proportion of vascular and nonvascular plants. It is evident from the literature
(Dimitrov et al., 2011; Gong et al., 2012; Lafleur, 2008) that a more sophisticated evapotranspiration scheme
that is specifically designed for peatland vegetation could improve evapotranspiration estimates over peat-
lands in land surface models. In this paper, PEAT‐CLSM used the LAI and greenness fraction from optical
remote sensing data products along with the land cover classification of CLSM (an aggregated version of
GLOBCOVER 2009; see Bontemps et al., 2011) with only six land cover types (Mahanama et al., 2015).
When overlaid with the soil map, peat grid cells north of 40°N are mostly characterized by needleleaf trees
and grassland, where the latter in effect represents a huge class lumping together all well‐vegetated surfaces
with low tree cover. A better stratification of vegetation is crucial for a better description of the spatial
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heterogeneity of evapotranspiration over peatlands and over wetland areas in general (Lafleur, 2008). As
peatland‐specific processes gradually find their way into global land surface models, there is an exigency
to improve the representation of peatlands in global land cover data sets.

A third shortcoming to consider is that in PEAT‐CLSM, only the vertical gradient in Ks,macro is used in the
base flow function; vertical gradients in all other hydraulic parameters are neglected. Unsaturated hydraulic
properties are known to change gradually with depth over the acrotelm and from acrotelm to catotelm.
Improvements in the vertical representation of soil hydrological processes have the potential to further
improve peatland hydrology estimates.

Another process in peatlands that is known to be important but is not yet considered in PEAT‐CLSM are
peat volume changes due to swelling and shrinkage, along with the related vertical movements of the ground
surface (Nijp et al., 2017; Whittington & Price, 2006). Furthermore, in PEAT‐CLSM, all peatlands are treated
as natural, that is, as undrained. Globally, drained peatlands emit large amounts of greenhouse gases
(Tubiello et al., 2016). Thus, if the overall role played by peatlands in the global water and carbon cycles
is to be modeled, the effects of drainage and dynamic land cover change accounting for the rapidly increas-
ing area of drained tropical peatlands (Hooijer et al., 2010) need to be included.

Further progress in land surface modeling within GEOS involves merging PEAT‐CLSM with the
improved treatment of CLSM subsurface temperature dynamics developed by Tao et al. (2017).
Moreover, the advances of PEAT‐CLSM also need to be merged with the most recent CLSM updates
of Version 4 of the L4_SM system (Reichle et al., 2018) and with the dynamic vegetation phenology
version of CLSM (Koster & Walker, 2015). Our long‐term development goal is to couple PEAT‐CLSM
to peatland‐specific carbon cycle models.

Note that all improvements to the representation of peatland processes in global‐scale land surface models
will have to deal with a limited availability of spatial input information, given that in situ data collection in
peatland regions is generally sparse. Remote sensing data are a potentially valuable resource in this regard,
for they can constrain spatial patterns and time series of hydrological estimates by serving as ancillary input
or as reference data for global parameter calibration. They can also contribute to dynamic surface water frac-
tion estimation (Du et al., 2018) and to updatingmodel variables via data assimilation (De Lannoy & Reichle,
2016). Future model development can benefit from incorporating such data.

Appendix A: Overview and Skill Metrics of Peatland Sites

A list with characteristics for all peatland sites used in themodel evaluation is provided in Table A1. Detailed
skill metrics for each of the sites is provided for water table depth in Table A2 and evapotranspiration in
Table A3.

Appendix B: Exemplary Time Series of Evapotranspiration and Areal Fractions

Figure B1 uses time series of Edaytime, Fsat, and Fwilt to illustrate the mechanisms underlying the bias
reduction achieved by PEAT‐CLSM. The locations and time periods examined match those considered in
Figure 7. For illustration purposes, Edaytime was aggregated to monthly averages; monthly averaged obser-
vations were obtained by averaging all available daytime 3‐hourly data, and values for the simulations
were obtained by averaging the simulation output over the corresponding time stamps. For both sites,
Edaytime is overestimated by all the simulations, but the bias is nevertheless generally reduced in ExpC.
The time series of the areal fractions of the hydrologic regimes, that is, Fsat and Fwilt (note that Ftra =
1 − Fsat − Fwilt), show considerable differences between the experiments. PEAT‐CLSM (ExpC) simulates
the lowest Fsat at both sites over most of the summer, and it is the only model that simulated nonzero
values of Fwilt. It can be seen that periods in which ExpC agrees better with site observations of
Edaytime either coincide with periods in which it has the lowest Fsat values or with periods having signifi-
cant values of Fwilt. The examples in Figure B1 illustrate that the fundamentally altered hydrological
dynamics of PEAT‐CLSM along with the imposed link between Fwilt and zWT effectively modulate the
dynamics of Edaytime, leading to improvements in some skill metrics.
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Table A3
Skill Metrics for 3‐Hourly Daytime Evapotranspiration Rates (mm/day) at the 11 Eddy Covariance Sites

Site

Type
BIAS

(mm/day)
RMSD

(mm/day)
ubRMSD
(mm/day)

R
(−)

anomR
(−)

ExpA ExpB ExpC ExpA ExpB ExpC ExpA ExpB ExpC ExpA ExpB ExpC ExpA ExpB ExpC

CA_MER Bog 1.5 2.4 1.1 2.6 3.4 2.5 2.2 2.4 2.2 0.86 0.86 0.84 0.61 0.62 0.59
DE_BM Bog 1.9 2.4 1.1 2.9 3.4 2.5 2.3 2.4 2.2 0.75 0.75 0.69 0.23 0.23 0.19
DE_SFS Bog 1.1 1.6 0.9 2.6 3.0 2.5 2.4 2.5 2.3 0.79 0.79 0.80 0.37 0.37 0.38
SE_FAJ Bog 3.5 3.9 2.0 4.4 4.9 2.9 2.6 2.9 2.0 0.75 0.75 0.75 0.56 0.55 0.55
Average Bog 2.0 2.6 1.3 3.1 3.6 2.6 2.4 2.5 2.2 0.79 0.79 0.77 0.44 0.44 0.43
Mean absolute bias Bog 2.0 2.6 1.3 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

CA_WP1 Fen −1.6 −1.2 −0.9 2.8 2.3 1.9 2.4 1.9 1.7 0.74 0.84 0.88 0.37 0.53 0.61
CA_WP2 Fen −1.3 −1.1 −1.0 2.4 2.3 2.3 2.1 2.0 2.1 0.79 0.80 0.80 ‐ ‐ ‐

CA_WP3 Fen −0.4 0.3 0.9 2.4 1.8 2.0 2.4 1.8 1.8 0.55 0.76 0.82 ‐ ‐ ‐

DE_AKM Fen −0.2 0.4 −0.9 2.0 1.9 2.4 2.0 1.9 2.2 0.81 0.83 0.75 0.56 0.58 0.47
FI_LOM Fen 1.0 1.2 0.3 1.9 2.0 1.6 1.6 1.7 1.6 0.75 0.75 0.73 0.69 0.69 0.71
SE_DEG Fen 1.9 2.2 0.9 2.8 3.1 2.1 2.0 2.1 1.9 0.66 0.66 0.63 0.52 0.51 0.52
US_LOS Fen 1.8 2.3 1.9 3.2 3.5 3.3 2.6 2.6 2.7 0.84 0.86 0.84 0.56 0.56 0.51
Average Fen 0.2 0.6 0.2 2.5 2.4 2.2 2.1 2.0 2.0 0.73 0.79 0.78 0.54 0.57 0.56
Mean absolute bias Fen 1.2 1.2 1.0 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

Note. For the bias, the best model is underlined for each site.
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