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A B S T R A C T

Surface soil structure is very responsive to natural and anthropogenic impacts and these changes alter soil
hydraulic properties and the soil water budget. In the midst of a dearth of efforts to capture soil structural
dynamics, an analytical solution to the Fokker-Planck Equation with physically-based coefficients has shown
promising results in predicting the evolution of soil pore space in agricultural soils. In this study, the Python code
for the analytical solution is shown along with steps to estimate coefficients leading towards obtaining the
analytical solution.

� Python code for modeling the evolution of soil pore space based on an existing model is shared.

� The code for the estimation of physically-based coefficients of the model and parameter optimization are also
shown.

� The final output of the model may be used in estimation of soil water retention and hydraulic conductivity
functions.
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Resource availability: Code provided as supplementary material and as images in the text

Method details

Surface soil structure is responsive to both natural and anthropogenic changes and
consequently impacts soil hydraulic properties (SHP). Generally, the structural pore space with
pore radius (r) � 5 mm is expected to be the most affected by management practices such as tillage
and natural stresses (e.g. rainfall). The need for inclusion of soil pore dynamics in hydrological models
to improve their reliability and accuracy has been stressed in recent times [1–3]. In this context, Or
et al. [4] proposed to use a partial differential equation (PDE) known as the Fokker-Planck Equation to
capture the dynamics of soil pore size distribution (PSD) following tillage with respect to time and
pore radius. Knowledge of the PSD will pave way to predict unsaturated SHP which can then be
incorporated in hydrological models. The PDE comprises physically-based coefficients (drift (V),
degradation (M) and dispersion (D) coefficients) and they encompass our perception of the
mathematical behavior of soil PSD in response to tillage practices. The coefficients are subject to an
initial condition as well as upper and lower boundary conditions. Based on these conditions, an
analytical solution to the proposed PDE was provided by Leij et al. [5,6]. In Chandrasekhar et al. [1],
the model was applied to different water retention parameter data sets around the world to evaluate
its capability in predicting the temporal dynamics of soil pore space for two cases (1) when there is a
change in the tillage regime/land-use and (2) in the months following tillage. In the present
contribution, we share the Python code used in Chandrasekhar et al. [1] to capture the evolution of
soil pore space following tillage.

This paper is organized as follows: As a first step, a skeletal framework of the mathematical
model is briefly described. For a detailed overview of the model and its application, the reader is
directed to Chandrasekhar et al. [1]. The required input data is listed. Brief descriptions of the
remaining aspects of the model such as the coefficients as well as the accompanying code are
then provided. Finally, the optimization process and steps to obtain the analytical solution are
given.
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Mathematical model

In this section, a skeletal overview of the mathematical model and its coefficients is provided. The
following partial differential equation (PDE), also known as the Fokker-Planck equation, is used to
describe the evolution of soil PSD following tillage [4]:
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where f is the PSD or frequency [L�1] of pores as a function of time t [T] and pore radius r [L], D the
dispersion coefficient [L2 T�1], V the drift coefficient [LT�1] and M the degradation coefficient [T�1]. D
and V quantify the changes with time of the variance of the PSD and mean pore radius, respectively,
while M is a first-order degradation factor representing instantaneous pore loss, i.e., the fraction of
pores that are lost due to instantaneous collapse. The initial and boundary conditions for solving
Eq. (1) are:
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f0 in Eq. (2) is the initial PSD for the parameterization of which the lognormal distribution function of
[7] is used. The lower boundary condition (Eq. 3) stipulates a zero-probability flux meaning that only
positive pore sizes are allowed while the upper boundary condition (Eq. 4) necessitates a zero gradient
for infinitely large pore radii. The PDE subject to the initial and boundary conditions yields the
following analytical solution [5,6]:
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where t and j are dummy integration variables. Due to the fact that tillage treatment cannot be readily
converted to time as an independent variable, the cumulative drift term T is used as an independent
variable instead of time, meaning that the evolution of PSD is predicted based on the gradual changes
in the pore radii [5].

Input data

The input data for the modeling approach are water retention parameters obtained at different
temporal stages. These parameters may be parameterized according to the Kosugi [7] water retention
model. If Van Genuchten parameters [8] are available, they can be converted to the Kosugi parameters
which is explained in Chandrasekhar et al. [1]. The required input water retention parameters are
listed in Table 1.
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Initial pore size distribution

Eq. (6) shows the lognormal distribution function for the pore radii [7]:
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where
Z 1

0
f 0 rð Þdr ¼  f0;  0 < r <  1 

where f0 [-] is the total initial porosity, rm [L] is the initial median pore radius or geometric mean and s
[-] is the standard deviation of the log-transformed pore radius. Leij et al. [5] assumed f0 to be the
difference between saturated and residual water contents: f0 = us – ur. Finally, rm is calculated from the
Young-Laplace equation where r = A/h, where A is a proportionality constant obtained from the
variables of the equation, A = �0.149 cm2 and h [L] is the pressure head. The code for the initial PSD is
shown in Fig. 1.

Coefficients of the PDE

The coefficients of the PDE are calculated following the approach of [4] who used moment analysis
of the PSD to yield the definitions for mean and variance. Moments are defined by integrating the PSD

Table 1
Input data: water retention parameters.

Parameter Unit Description

us [L3 L�3] Saturated water content
ur [L3 L�3] Residual water content
s [-] Standard deviation of the log-transformed pore radius
rm [L] Median pore radius

Fig. 1. Code for initial pore size distribution.
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with respect to the pore size:

mn Tð Þ ¼
Z 1

0
rn f r; Tð Þdr;  n ¼ 0; 1; 2 ð7Þ

Normalized moments (Mn) are calculated through division by the zero-order moment (m0). The code
to obtain the zero order moment is shown in Fig. 2.

Degradation term

The degradation term is expressed by means of an exponentially decaying function [9]:

M tð Þ ¼ d � exp ctð Þ;  c < 0 ð8Þ
Here, c and d are empirical coefficients which are obtained from the zero-order moment. In our study
using moment analysis, we evaluated m0 values to check if the probability was preserved. If the

Fig. 2. Code for zero-order moment.

Fig. 3. Code for degradation term.
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probability was not preserved, we included the degradation term in the analytical solution. The code
for the degradation term is shown in Fig. 3.

Drift term

The first-order normalized moment M1 characterizes the mean pore size hri [L]:

M1 ¼   < r >   ¼  rm  exp
s2

2

� �
  ð9Þ

Fig. 4. Code for drift term.
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The first-order moment can also be obtained from other independent models [1]. For instance, the
rather popular expression from Thornley [10] is used for the drift term.

V tð Þ ¼  
d
dt
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rh i
b

� �
rh i where  rh i ¼  

b r0h i
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The code for both these scenarios are shown in Fig. 4.

Dispersion term

Finally, the second-order centralized moment m2 characterizes the variance [11]:

m2 ¼ r2mexp s2� �
exp s2� �� 1
	 
 ð11Þ

However, our lack of knowledge on how the dispersion behaves with respect to the pore size paved
the way to use the dispersivity l.

l ¼ DðtÞ
jVðtj    ð12Þ

l is obtained by fitting Eq. (5) to the observed values by means of the Levenberg-Marquardt method

Fig. 5. a) Part 1 of the code for optimizing lambda (and obtaining the analytical solution). b) Part 2 of the code for optimizing
lambda (and obtaining the analytical solution).

2124 P. Chandrasekhar et al. / MethodsX 6 (2019) 2118–2126



Analytical solution

As a final step, the pore size distribution (analytical solution in Eq. 5) is obtained using the code in
Fig. 5a and b.

The optimized lambda value should now be used in the code (Fig. 5a and b) instead of lam to get the
predicted pore size distribution curves. The reader is directed to Chandrasekhar et al. [1] for the output
curves.

Outlook

The possibility of using other independent models for the coefficients exists and is being looked into.
Further, the optimization process for lambda necessitates the final water retention parameter values
making the model redundant. However, lack of sufficient data sets that capture the temporal dynamics of
soil structure hampers our quest to establish a range of values for the coefficients as well as for the
validation process. In conclusion, the model is able to capture very well the evolution of soil pore size
distribution in its current state with scope for improvement in how we estimate the coefficients.
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Supplementary material related to this article can be found, in the online version, at doi:https://doi.
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