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Oxygen Minimum Zones prevail in most of the world's oceans and are particularly
extensive in Eastern Boundary Upwelling Ecosystems such as the Humboldt and
the Benguela upwelling systems. In these regions, euphausiids are an important
trophic link between primary producers and higher trophic levels. The species are
known as pronounced diel vertical migrators, thus facing different levels of oxygen
and temperature within a 24 h cycle. Declining oxygen levels may lead to vertically
constrained habitats in euphausiids, which consequently will affect several trophic levels
in the food web of the respective ecosystem. By using the regulation index (RI), the
present study aimed at investigating the hypoxia tolerances of different euphausiid
species from Atlantic, Paci c as well as from Polar regions. Rl was calculated from
141 data sets and used to differentiate between respiration strategies using median
and quartile (Q) values: low degree of oxyregulation (0.28 RI median< 0.5); high
degree of oxyregulation (0.5< Rl median< 1; Q1 > 0.25 or Q3 > 0.75); and
metabolic suppression (Rl median, Q1 and Q3 0). Rl values of the polarEuphausia
superba, Thysanoessa inermi¥ and sub-tropical Euphausia hanseni Nyctiphanes
capensis, and Nematoscelis megalopg species indicate a high degree of oxyregulation,
whereas almost perfect oxyconformity (Rl median 0; Q1 < 0 and Q3 > 0) was
identi ed for the neritic temperate species Thysanoessa spiniferaand the tropical
species Euphausia lamelligeraRI values ofEuphausia distinguendaand the Humboldt
species Euphausia mucronataquali ed these as metabolic suppressors. RI showed
a signi cant impact of temperature on the respiration strategy ofE. hanseni from
oxyregulation to metabolic suppression. The species' estimated hypoxia tolerances and
the degree of oxyconformity vs. oxyregulation were linked to diel vertical migration
behavior and the temperature experienced during migration. The results highlight
that the euphausiid species investigated have evolved various strategies to deal
with different levels of oxygen, ranging from species showing a high degree of
oxyconformity to strong oxyregulation. Neritic species may be more affected by hypoxia,
as these are often short-distance-migrators and only adapted to a narrow range of
environmental conditions.

Keywords: oxygen minimum zones, diel vertical migration, krill, respiration rate, regulation index

Frontiers in Physiology | www.frontiersin.org 1

March 2020 | Volume 11 | Article 248



Tremblay et al. Hypoxia Tolerance in Euphausiids

INTRODUCTION hypoxia €2 mg O L 1) over very large areas 8% of total
oceanic aread?aulmier and Ruiz-Pino, 20)@nd over long time
Oxygen concentration and water temperature are two importaieriods. They di er from the “dead zones” phenomena caused by
abiotic factors inuencing several physiological processesnthropogenic coastal eutrophication found, e.g., in the Gulf of
such as metabolic rate, energy expenditure, as well as Wexico Rabalais et al., 20pRiaz and Rosenberg, 200©MZs
horizontal and vertical distribution of animals living in the are permanent midwater features occurring at intermediate depth
world's oceans Torres and Childress, 198Xlaireaux and (300-2,500 m) in most of the ocean&ngelyanov, 2005 The
Lagardere, 1999Ekau et al., 2090 However, both factors largest and most pronounced OMZs are located in the Northern
are not evenly distributed and temperature and oxygemdian Ocean, the Eastern Atlantic o northwest Africa, and
levels at the surface area are usually higher, compared th@ Eastern Tropical Paci c (ETP)\(yrtki, 1962 Kamykowski
deeper water layers. Water temperature is in uenced by soland Zentara, 19900Ison et al., 1993 Notably, the OMZ of
radiation, i.e., latitude and water turbulence. In contrast, oxygahe ETP and the Eastern Atlantic o northwest Africa have
concentration is aected by physical replenishment (mixing)expanded to higher latitudes during the past 50 ye&tsamma
bacterial decomposition and animal respiration. Temperaturet al., 2008 suggesting changes in zoogeographic distribution
and oxygen proles of the water column show a more opatterns, compression of habitats, and restricted zones of biomass
less steady decline from upper to deeper water layers (wesbduction (Prince and Goodyear, 200&oslow et al., 2031
thermo- and oxycline) or a more saltatory pattern (strongStramma et al., 2011Gilly et al., 2013 The shallow and
thermo- and oxycline). In the oceans, the depth and streng§evere OMZ in the ETP is due to the poor lateral ventilation
of the thermocline vary between season and year. It i surface watersReid, 1965 Luyten et al., 1993and the
semi-permanent in the tropics, variable in temperate regionformation of a strong thermocline, which limits £di usion
and shallow to non-existent in Polar regions. High oxygeinto the deeper layers of the oceabhayin et al., 2006 Very
concentrations are found at high latitudes, whereas at midvigh temperatures at the surface result in strong strati cation, at
latitudes, in particular o the western coasts of the continentsyhich the zooplankton aggregate and locally increase the oxygen
oxygen-de cient zones, so-called Oxygen Minimum Zonesonsumption Bianchi et al., 2013 At this depth, oxygen is
(OMZs), prevail. Consequently, the ecosystems in the worldé®nsumed faster than it is replaced by the horizontal mixing
oceans are characterized by distinct oxygen and temperatwfe the water mass\Wyrtki, 1962 Fiedler and Talley, 2006
regimes shaping the di erent species' behavior, distribution andarstensen et al., 20)&reating the shallow OMZ. The oxygen
physiological processes. utilization is particularly enhanced during El Nifio-Southern
In the anticipated future, anthropogenic induced change®)scillation and inter-annual changes in upwelling conditions,
such as rising nutrient loads coupled with climate change, wilhus partly explaining the vertical OMZ expansion of the ETP
cause regional declines in oceanic dissolved oxygen, mainly cirece the 19803t0 and Deutsch, 2013
to increased strati cation and reduced mixing, and an increase Compared to Eastern Boundary Upwelling Systems (EBUES),
in water temperature Miaz and Rosenberg, 200&eeling such as the California, Humboldt, and Benguela Current
et al., 201 Increasing temperature is known to negativelyecosystems with their pronounced OMZs, the oxygen levels of
impact the hypoxia tolerance of animals and at the sanfeolar regions are higher and water temperatures are much lower.
time raise their energy expenditures. Furthermore, as wathio real OMZs exist in these areas and species living there may
temperature rises, oxygen solubility decreases. Thus, decreasiogbe forced to develop adaptations to cope with low oxygen
oxygen levels accompanied by increasing temperatures may a &stels. However, mild-hypoxia (50% air saturation) was reported
key processes and trophic interactions including communitin the Indian sector of the Southern Ocean at depth greater than
composition, energy ows, migration patterns, and consequent§00 m QOehairs et al., 199@nd deoxygenation in the Southern
biogeochemical processegkau et al., 20)8and will exert Ocean is currently taking place at 200-400 m depth between
signi cant pressure on pelagic communities. This applieS0 and 60 of latitude (Matear et al., 20Q0Aoki, 2009. In the
particularly to planktonic species, such as euphausiids, whiéitic, the potential e ects of global warming and changes in
cannot, or only to a very limited degree, escape unfavoraldeep-sea circulation on the oxygenation of the deep ocean is
environmental conditions \(erheye and Ekau, 20p5As a monitored continuously in Fram Strait, West Spitsbergen, the
consequence, it is expected that some areas may experiemly deep connection between the central Arctic Ocean and the
a shift from an abundant and diverse regime to one that idlordic Seas Kriedrich et al., 2014 The Arctic ecosystem is
lean and dominated by vertical migratorg/(shner et al., 20133 far from being classi ed as hypoxic, but strong increase in the
Elder and Seibel, 201.5 annual mean net heat transport within the waters of the West
Evaluation of time series already revealed vertical expansiSpitsbergen Current could potentially a ect oxygen levels to less
of OMZs during the last decadeS$ttamma et al., 2008It is than 80% air saturation.
assumed that these OMZs will further expand, which can happen Euphausiids, or krill, are distributed ubiquitously across
horizontally into areas previously not experiencing hypoxithe globe and often dominate zooplankton communities in
conditions, or consist of vertical expansion of an existing OMzgerms of abundance and biomass throughout the world's
while coastal hypoxia will increase in extent and sevetigy{n, oceans. Euphausiids form a pivotal component of many food
2019. Compared to other hypoxic habitats, the particular naturgvebs and are known as pronounced diel vertical migrators,
of such an OMZ is that it is characterized by moderate to sevetigereby contributing to the vertical ux of carbon and facing
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dierent levels of oxygen and temperature within a 12 h In this paper, we aim to characterize the hypoxia tolerance of
period. During diel vertical migration (DVM), many euphausiid 10 dominant euphausiid species from the Atlantic and the Paci c
species cross pronounced gradients of temperature, salini@gean, including three prominent EBUEs (Benguela, California,
and oxygen indicating that these species must be of a broadd the Humboldt Current system), and both Polar regions at
ecophysiological plasticity. In this regard, euphausiids are situ temperatures by analyzing the regulation index (RI) to
ideal model organisms for studying the interactions betweesxplain the DVM behavior in their habitat.
organismal and environmental variabilitM@ngel and Nicol,
2000. Euphausiids and other taxa living in areas with
pronounced OMZs have to physiologically and/or behavioralMATERIALS AND METHODS
adapt to low oxygen levels or will be excluded from these areas
or at least their vertical distribution ranges will be limited.Ten euphausiid species were collected between 2010 and 2013
A typical euphausiid DVM pattern consists of an upwardduring several small- or large-scale expeditions to the Benguela,
migration at dusk to feed in the upper, productive layers of th€alifornia, and Humboldt Current systems (BCS, CCS, and
oceans, and a downward movement at dawn to avoid visudCS), the Eastern Tropical Pacic (ETP), the Arctic and the
predators Zaret and Su ern, 19760hman, 198), decreasing Antarctic (details compiled inTable 1). Polar (Antarctic and
at the same time their metabolic rates due to the lower watéyctic: between 0.5 C and 5.5C), temperate (NCCS and HCS:
temperature and @ concentrations I{icLaren, 1963Enright, between 6.8C and 15.1C), sub-tropical (BCS: between 8D
1977. Euphausiids channel energy from lower (phytoplanktorand 21C), and tropical (ETP: between 14® and 30.2C)
small zooplankton) to higher (sh, birds, and even whalestemperature gradients as well as dierent hypoxic conditions
trophic levels. Accordingly, as varying oxygen and temperatutgevere and shallow: ETP and HCS; severe and deep: BCS;
levels will likely alter these species' vertical and horizontgroderate: NCCS; and non-existent: Antarctica and Arctic) are
distribution ranges, this may impact a larger part of the wholéus covered by the habitat of the species studiggure 1).
food web, and even impinge on sheries yield. All samplings were executed during night time, when
Adaptations of animals to low dissolved oxygeruphausiids are more abundant at the surface, to avoid
concentrations are driven by strong selective pressures Querstressing the experimental animals by reducing catch time.
maintain aerobic metabolism Sgibel, 2011 Most animals Live adult euphausiids, in healthy condition (showing a lot of
facing low oxygen concentrations respond either by decreasiftpvement and with no visible damage), were manually sorted
their oxygen consumption rates, known as oxyconformityinto bins lled with Itered seawater atn situ temperature and
or by maintaining a constant oxygen up[ake irrespective (ﬁcclimated for atleast 6 (CCS, HCS, ETP, and Antarctica) orl2h
the ambient oxygen levels, known as oxyregulation. HowevéBCS and Arctic) prior to starting respirometry procedures to
as analyzed mathematically byobbs and Alexander (2018)make sure that all animals are in a post-absorptive state.
using/applying seven dierent functions and as discussed by )
Wood (2018) animals seldom show perfect oxyconformity olRespirometry
oxyregulation. Accordingly, species' metabolic responses The measurements were conducted in the dark to mimic
declining oxygen levels lay somewhere between the two enddte conditions of the time of the day when euphausiids
this continuum (Mueller and Seymour, 20).1Furthermore, at should be in deeper water and hypoxic conditions when
a certain species-speci ¢ oxygen pressure, animals are undmypoxia applied to the area. The same closed con guration
to maintain their normoxic metabolic rate and have to goossystem, chamber volume (20 mL; except for Antarctica where
anaerobic metabolism. This point is called “critical oxygechamber volume was 250 mL to account for the larger size
partial pressure'Rqit) and can be determined by analyzing theof Euphausia superbaand measurement method were used
response of the metabolic rate (respiration) to declining oxygen all areas. The oxygen level within the chamber decreased
concentrations. Oxyconformers do not regulate their oxygeas the e ect of respiration. Measurements were carried out at
demand as, physiologically, these species do not need to enhancsitu temperature for the 10 species, and at four di erent
the transport of oxygen to the metabolizing tissues when oxygéemperatures forThysanoessa inermi@rctic; 2, 4, 8, and
is decreasing. Thus, the capability of an animal to either regulat® C) and Euphausia hansen{BCS; 5, 10, 15, and 20)
its oxygen uptake in combination with th.; value or reduce to assess how temperature modulates intraspecic hypoxia
its respiration rate when ambient oxygen levels decrease providelerance Table 1). Both species were acclimated at a rate of
meaningful information about their ability to survive hypoxicl C h ! to colder and warmer temperatures for at least 12 h
events and represent an important ecological tipping point tafter completion of the 12 h post-capture acclimation. The
understand the resilience of populations to declining levels ¢iiermal ramp steepness and amplitude took into consideration
oxygen (Mueller and Seymour, 20).1A third strategy called the vertical migration temperature gradient th&. hanseni
metabolic suppression entails the suppression of total energyperience during DVM \(Verner and Buchholz, 20)3and
consumption by shutting down intensive energy demandinthe Arrhenius breakpoint temperature (12) of T. inermis
processesSeibel, 20L1Seibel et al., 20)6This strategy has (Huenerlage and Buchholz, 2QHuenerlage et al., 20).6
been observed in euphausiid species inhabiting regions whereOXY-4 or -10 channel PreSens Oxygen Measurement system
oxygen decline was faster than euphausiid oxygen demar({@®egensburg, Germany) was used with dipping probes DP-PSt3
(Seibel et al., 20).6 or planar oxygen-sensitive foils PSt3 integrated in the chambers.
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FIGURE 1 | Temperature and oxygen during sampling periods. Depth pro les ofA) mean water temperature and(B) dissolved oxygen in Antarctica, the Humboldt
current system [HCS], the Eastern Tropical Paci c [ETP], the Benguela Current System [BCS], and the Northern California Current System [NCCS]. Bold lines
represent summer conditions and dashed lines the ETP aregC) Monthly mean temperature (line) and dissolved oxygen (dots) in the Arctic with sampling periods
shaded in gray. Data were compiled from the AWIPEV underwater observatory located at 12 m water deptfgcher et al., 2018a,}).

Probes and foils were calibratediatsitu temperature prior to For some species, only the dry weight was available and it
measurements at 0% air saturation with sodium sul te {8@3; was converted to wet weight using the euphausiids conversion
1 g in 100 mL water) and at 100% air saturation with airequation ofKigrboe (2013)to allow comparison among the
saturated water (10 min after air injection in stirred water forlO species. The programming environment for data analyses
20 min). The system was equipped with four (OXY-4) or temnd graphics R (R Core Tedmwas used to calculate the
(OXY-10) chambers including respectively one or two blankRl [see section “Regulation Index (RI)"] [script provided as
(for seawater bacterial oxygen demand). All chambers weBaipplementary Material(seeSupplementary Data Sheet)L

lled with ltered local seawater at 100% air saturation and the

oxygen concentration in each chamber was measured everyR&gulation Index (RI)

or 30 s. The rst 30 min of each measurement were discardedeller and Seymour (2011ere the rst to propose the use of

to allow acclimation to chamber. Movements of the pleopodge RI to assess regulation ability of aquatic organisms that do
and/or heartbeats of the animals were Visua"y monitored tQot present a clear critical oxygen partia| pressur&imn their
make sure that they were alive during the entire duratiofespiration pattern. The authors advised to t a curve (straight
of the measurement. Wet or dry (48 h at %) weight of |ine, quadratic or one-phase association) with the high&si the

the preserved animal was measured after completion of thgspiration rate data for each individual plotted against the whole
respiration measurement (information provided able 1). All

respiration rates were reported as ml, @ 1 g wet weight!.  www.r-project.org
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oxygen concentration range measured within the respiratiof@among temperature folE. hanseniand T. inermi§ hypoxia
chamber (ideally from 100 to 0% air saturation). Rl correspondedlerance comparison, the non-parametric Kruskal-Wallis test
to the proportion of the area bounded by a linear regression thatas conducted (normality and variance homogeneity were not
represented how respiration rates would decline if the animatset). Signi cant level of all comparisons was xed at 95%
showed complete oxyconformity (perfect oxyconformity; Rl = Ofp < 0.05). Forpost hocomparison a multiple comparison test
and a horizontal line at maximum oxygen consumption (perfedrom the package “pgirmess(raudoux, 201Bwas applied.
regulation; RI = 1). The perfect oxyconformity linear regression
assumes zero respiration rate at 0% air saturatiogure 2A).

The present work used 141 respiration data sets [availlafRESULTS
in Supplementary Material (see Supplementary Data Sheet
1)], in which the experimental oxygen concentration dropped’he overall view of the euphausiids' respiration rates over
to 50% of the respective experiments' start concentratiodecreasing dissolved oxygen concentratiomaitu temperature
In order to reduce user interpretation in calculating RI byshows di erent magnitude and patterngigure 3). Comparing
mean of the best tted curve, no parametric model washis magnitude by area, the highest respiration rates were
tted to the original data sets. The area under curve wasbserved inEuphausia paci cdNCCS),Euphausia lamelligera
computed using R package “MESSEkétram, 201B with  (ETP), andNematoscelis megalofCS). Di erent magnitude
the natural spline interpolation (loess) for dissolved oxygeand patterns were also seen intraspeci cally wheninermis
concentration ax-values and respiration rates gs/alues. The andE. hansenwere acclimated at lower or higher temperatures
same procedure was conducted with the linear regression tH{&igures 4 5). The respiration rates off. inermis increased
represents perfect oxyconformity and perfect oxyregulatiomt 8 and 10C (Figures 4C,D in comparison to 2 and &
When the natural spline interpolation of the data was beloWFigures 4A,B during the whole oxygen range measured. For
the linear regression of perfect oxyconformity, RI becami. hansenirespiration rates were similar at all temperatures
negative and was calculated from the area bounded by thethe high-oxygen levels between 80 and 100% air saturation
horizontal line aty = 0 and the linear regression that represente¢Figure 5).
perfect oxyconformity Eigure 2B). A negative RI value can The RI of Euphausia superbgAntarctica), Thysanoessa
thus be interpreted as hypoxia-sensitivitAléxander and inermis (Arctic), Euphausia hansen(BCS), andNyctiphanes
McMahon, 200% but could be an indication of metabolic capensigBCS) were signi cantly higher than the RI of the
suppression, as respiration rates are signicantly reducettopical and temperate speci€&uphausia distinguendéETP)
Respiration strategies using median and quartile valuesid Euphausia mucronatg HCS), respectively Higure 6A,
were dened as: low degree of oxyregulation (0.25RI $2 = 56.05,p < 0.000,Table 2. Median RI values 0.5 of
median < 0.5); high degree of oxyregulation (05 RI the polar €. superbaT. inermig, temperate E. paci cg, and
median< 1; Q1> 0.25 or Q3> 0.75); oxyconformity (Rl sub-tropical E. hanseniN. megalopsand N. capens)sspecies
median 0; Q1< 0 and Q3> 0) and metabolic suppression (Rlindicated a high degree of oxyregulation, whereas the neritic

median, Q1 and Q3 0). temperate {. spinifera and tropical €. lamelligerp species
showed a low regulation ability as Rl values uctuated between
Statistical Analysis 0.25 and 0.25HKigure 6A and Table 2. Quartiles values

All statistics and gures were done with RR(Core Team, below and above 0 of. spinifea and E. lamelligerandicate

2020). For interspeci ¢ {n situ temperature) and intraspeci c almost perfect oxyconformity of these species. The oceanic
tropical species. distinguendaand the Humboldt endemic

speciesE. mucronatawere qualied as metabolic suppressors

A B with Rl median and quartile values well below Biqure 6A
andTable 2.
, Regulation index did not change signicantly with
® perfect oxyregulation (RI= 1) . . . . Ly .
b temperature forT. inermis(Figure 6B), but it did in E. hanseni
5 from high oxyregulation to metabolic suppression, when
K acclimation temperature was decreased t&€ Jcompared to
g' 20 C;$2=14.53p= 0.002Figure 60).
DISCUSSION
[Dissolved oxygen]
Euphausiids and other zooplankton taxa perform DVM to
FIGURE 2 | Examples of regulation index (RI) calculations. As shown by feed on the phytoplankton-rich upper water layers during
Mueller and Seymour (2011,)the area under the curve and above the linear night time and to reduce morta”ty from visual predation
regression of perfect oxyconformity was used to calculate a positive RR). In during the day These benets are counteracted by higher
contrast, a negative Rl was calculated as the area bounded by the area above d d d to i d . . d d
the curve and the linear regression of perfect oxyconformit{B). e.nergy emands ue to .Increase swimming speeds an
higher water temperatures in upper water layers and reduced
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FIGURE 3 | Euphausiids' respiration rates over decreasing dissolved oxygen concentration at situ temperature. The 10 euphausiids species were from both Polar
regions, three major Eastern Boundary Upwelling Systems (NCCS, Northern California Current System; BCS, Benguela Current System; HCS, Humboldt Current|
System), and one tropical region (ETP, Eastern Tropical Paci c).
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FIGURE 4 | Respiration rates ofThysanoessa inermisover decreasing dissolved oxygen concentration at four temperaturegA)at 2 C (n =6), (B)at6 C (n = 4), (C)
at8 C (n=8),and(D)at 10 C (n = 4).

growth and reproduction rates in deeper, cold water layersxygen levels constitutes a physiological threshold at which
Thus, animals performing DVM have to compensate witleuphausiids must signi cantly shut down their metabolic
increased energy expenditures. Furthermore, they must haumctions Seibel et al., 20).6

evolved physiological and behavioral adaptations to the strong

gradients of oxygen and temperature in the water column. AShallow OMZs

some species suppress their metabolisteilfel et al., 20)6 The hypoxia tolerance of the euphausiid species adapted to the
determination of metabolic rates of diel vertical migrators i©MZs of the HCS and the ETP was assessed using the RI.
crucial to assess the role and quantify the contribution dh the literature, typical lowPgir between 0.6 and 1.7 kPa at
these animals to the downward transport of carbon and thus3 C and 23C (corresponding to 3% and 8% air saturation)
carbon uxes in the oceans. The environmental conditionsvere obtained byeal and Carey (1967@ndKiko et al. (2016)
prevailing in the dierent ecosystems in terms of oxygemwho were working onEuphausia mucronatdrom the HCS.
availability and vertical temperature proles seem to hav&@his euphausiid species performs extensive DVM down to
caused speci ¢ physiological adaptations in euphausiids — mosg#g0 m into the OMZ in all seasons=¢cribano et al., 2000
irrespective of the actual oxygen and temperature level arthtezana, 2009b However, highest abundances of this species
the time spent in the OMZs. Species which come acrosscur in areas where the upper boundary of the OMZ is deeper
the shallowest severe hypoxia levels during their DVM sho{iscribano et al., 2000 During the warm season at 1@
metabolic suppression [in the Humboldt Current System (HCS3nd 13C, E. mucronatamaintains the same rate regardless
and ETP]. In contrast, the three species from the Benguab® whether exposed to surfagaO, (70% air saturation or
Current System (BCS), characterized by a deeper OMZ, maintdi@ kPa), or topO, typical for OMZ layers (20% air saturation
constant oxygen uptakes irrespective of the ambient oxygen 4 kPa;Antezana, 2002dDonoso and Escribano, 20L4The
levels. These dierences may indicate that a steep declineteémperature used by the authors cited above represents the
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FIGURE 5 | Respiration rates ofEuphausia hanseniover decreasing dissolved oxygen concentration at four temperaturegA) at5 C (h = 4), (B) at 10 C (0 = 22),
(C)at15 C (n=4),and(D)at 20 C (n = 11).

warmer range in subsurface water of the area (50-200 m), whi®3 mL Q L 1 (48 to 58% air saturation) at 28, meaning
the present study was simulating the coldest temperature thifat the species was still relying on aerobic processes half-way
can be encountered in the same water depth or at surface duriagthin the oxycline. This ETP species is also reported in the
“normal” or cold (La Nifia) years between 4 and 17S o OMZ of the HCS Qntezana, 2009 Both E. distinguendand
Chile (Strub et al.,, 1993 As seen from the changes in RIE. mucronatapossess larger gills relative to their body size
following the decreasing temperaturefiuphausia hansefiom  (Antezana, 200Jaincreasing contact surface for,Q@li usion
the BCS, the OMZ-adapted species of the gewhausiamay  from the hypoxic environmentAntezana (2009also observed
regulate their metabolic rates when exposed to warmer surfagt both were among the last OMZ species to begin their ascent
temperature and tend to conform or suppress their metabolisto the surface at dusk in the HCS, thus extending the deep hypoxic
when exposed to the colder thermal limit of their deeper habitaiesidence time to a maximum. Habitat segregation was suggested
This may explain why no oxyregulation pattern at all wasgo explain this behavior, which consists in avoiding spatial and
observed at & in E. mucronatadespite the long duration of temporal co-occurrence with other species within the same area.
the measurement. This nding was based on body and gills size analysis, feeding
The tendency to conform or suppress the metabolism aippendages, and HCS food resour&sgphausia lamelligersghe
colder temperature may be also true #uphausia distinguenda other ETP species also endemic to the OMZ, dominates the
from the ETP (corresponding to sub-surface temperature) aferitic zone whileE. distinguendalistributes more in oceanic
shown here with our measurement at Z0 From eld samples waters Brinton, 1962, 1979Farber-Lorda et al., 1994, 2004,
collected at di erent depths above and into the OMZ of the201(). Because of its neritic preferendg, lamelligeraloes not
ETP o Mexico, Herrera et al. (2019pbserved the highest migrate as much a&. distinguendaexplaining probably why this
speci ¢ Electron Transfer System (ETS) activity between 3.20 aggkecies is almost a perfect oxyconformer rather than a metabolic
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FIGURE 6 | Euphausiids' regulation indices ain situ temperature and after temperature acclimation(A) Regulation indices of the 10 euphausiid species investigated
at in situ temperature, (B) regulation indices ofT. inermisacclimated at 2, 6, 8, and 10 C, and (C) regulation indices ofE. hanseniacclimated at 5, 10, 15, and 20 C.
Es, E. superba Ti, T. inermis Ep, E. paci ca; Ts, T. spiniferg Ed, E. distinguenda El, E. lamelligeraEh, E. hansenj Nm, N. megalops, Nc, N. capensis, Em,

E. mucronata Numbers in parentheses give the numbers of samples analyzed. Horizontal bars in the box plots indicate the median. The upper and lower edges of
the rectangles show the rst and third quartiles, respectively. Vertical error bars extend to the lowest and highest values in a 1.5-fold inter-quartile rangec(ore
Team, 2020). Lower case letters indicate signi cant differences.

suppressor. Both species are thus highly hypoxia toleratd, be shown looking at physiological metabolic markers (e.g.,
re ected mainly by their low RI. As high temperature pushegnzymatic activity, ATP production, anaerobic end-products).
physiological limits, a small sub-mesoscale oxygen variabilithis pattern was previously described as hypoxia-sensitivity by
in the ETP of 1% could a ect their vertical and horizontal Alexander and McMahon (2004)

distribution (Wishner et al., 2018 Accordingly, even small

changes in oxygen availability may exert strong pressure &eep OMZ

these animals, leading to unexpected changes in ecosysienthe BCS,E. hanseniand Nematoscelis megalogeminate
structure and functioning in the near future. Species of ththe shelf break surroundings, i.e., partly sharing one habitat
ETP are adapted to low oxygen and high temperature, but &s this upwelling region Barange and Stuart, 199Barange
they live at the edge of their maximum thermal limit, furtheret al., 199). The specie€. hansenperforms extensive DVM
warming could have negative impact on the tness of both speci@®m 0 to 200 and even 1,000 m water depthatange, 1990
as their higher brood size depends on the coastal upwellifitarange and Stuart, 199Barange and Pillar, 1992Verner
dynamics between January and Jurmempriz-Arreola et al., and Buchholz, 20)3 while N. megalopds characterized as
2015, 2018 A negative RI was initially not proposed bjueller a weak migrator \(Verner and Buchholz, 20)3In contrast
and Seymour (2012when developing the Rl as a new methodo E. hanseni N. megalopshas a broader distribution and
to assess hypoxia tolerance of aquatic ectotherms. Howewam be found at both sides of the equator: in the mid-
as shown for weak oxyregulating (or perfect oxyconformer&titude zones of the subtropical-temperate North Atlantic (10—
and metabolic suppressing species presented in this study6@N), in the warm-temperate belts of the South Atlantic,
negative RI is relevant and thus presents a further developmehe Indian Ocean and the South Pacic (35-5), in the
for the use of this index. The corroboration of the presence dflediterranean Sea (e.gGopalakrishnan, 1934 in subarctic
metabolism suppression associated with a negative Rl remaregions Zhukova et al., 2009 even up to 79N in the high
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TABLE 2 | Regulation index (RI) for 10 euphausiid species investigated.

Temperature RI
Species (O Median Quartile 1 Quatrtile 3 Strategy
Euphausia superba 4 0:48 0:29 0:58 High oxyregulation
Thysanoessa inermis 2 0:34 0:32 0:46 Low oxyregulation
2-6 0:48 0:35 0:60 High oxyregulation
6 0:66 0:60 0:72 High oxyregulation
8 0:43 0:17 0:54 Low oxyregulation
10 0:49 0:30 0:60 High oxyregulation
Euphausia paci ca 10 0:36 0:16 0:55 Low oxyregulation
Thysanoessa spinifera 10 0:07 0:31 0:24 Conformity
Euphausia distinguenda 20 0:19 0:26 0:03 Metabolic suppression
Euphausia lamelligera 20 0:03 0:04 0:14 Conformity
Euphausia hanseni 5 0:38 0:50 0:15 Metabolic suppression
10 0:50 0:29 0:69 High oxyregulation
15 0:25 0:11 0:58 Conformity/regulation
20 0:74 0:59 0:79 High oxyregulation
Nematoscelis megalops 10 0:52 0:37 0:67 High oxyregulation
Nyctiphanes capensis 10 0:59 0:16 0:78 High oxyregulation
Euphausia mucronata 8 0:26 0:40 0:15 Metabolic suppression

RI was calculated from 141 data sets and used to differentiate between respiration strategies using median and quartile values: low degree of oxyregulation (8.2%I
median < 0.5); high degree of oxyregulation (0.5 RI median< 1; Q1 > 0.25 or Q3 > 0.75); oxyconformity (Rl median 0; Q1 < 0 and Q3 > 0), and metabolic
suppression (Rl median, Q1 and Q3 0).

Arctic Kongsfjord Buchholz et al., 20Q9Huenerlage and Thus, the ability of an animal to either maintain a constant
Buchholz, 201p Morphologically and ecologicall{y. megalops oxygen uptake irrespective of the ambient oxygen levels or
is very similar to Nematoscelis dicilisfrom the ETP and decrease its oxygen consumption rates when ambient oxygen
California Current Systeni(aredin, 197 1Gopalakrishnan, 1974, levels decrease seems not to be in uenced by its DVM behavior
1979. Those species are observed within the OMZ, but in it the rst place.
upper boundary {remblay et al., 2050Nerner and Buchholz,
2013, probably taking advantage of the accumulation oSeasonal OMZ
organisms to actively feed. The third spedisstiphanes capensisO Oregon (United States), in the Northern California
shows extraordinarily high abundances over the NamibiaGurrent System (NCCS), two euphausiid species dominate the
shelf in water<200 m depth Barange and Stuart, 1991 macrozooplankton community: the ocearfitiphausia paci ca
Barange and Pillar, 1992 (Brinton, 1963 with DVM between the surface and depths of
E. hansenand N. capensibave one of the highest RI valuesat least 250 mErinton, 1967% and the neritic cold upwelling-
of all species analyzed meaning that they cover their energysociatedThysanoessa spinifei@rinton, 1962 Smith and
requirements at low oxygen levels in the coldest temperaturgiams, 1988Lavaniegos and Ambriz-Arreola, 20Q1Because
experienced in their habitat. Rl values were enhanced of its neritic lifestyle,T. spiniferadoes not migrate as deep
E. hansencclimated at 20C compared to 10C, which is similar as E. pacicag but, instead, remain within the upper 100 m
to results ofTeal and Carey (196@ndKiko et al. (2016at sub- during day and night and swarm in summer at surface for
surface temperature conditions with the speciesmucronata reproduction @rinton, 1962 Smith and Adams, 1998 This
from the HCS. However, the respiration rate Nf megalops species is also known for its narrow plasticity when facing
investigated here was 10-fold higher than Bf hanseniand changes in the physical oceanographic conditioisinton,
N. capensjswhich is not consistent with what was reportedi979. Indeed,T. spiniferais strongly in uenced by the North
before byWwerner et al. (2012)The number of individuals here Pacic Gyre Oscillation i Lorenzo et al., 2008Sydeman
reported is small, and the specimens were probably stressed asthel., 201R This oscillation is connected with the winds and
duration of the measurement was short (less than 1 h) compare@welling responsesChenillat et al., 207)2and corroborates
to other nine species analyzed. Despite this fast decreasethi® upwelling preference of this species. Important changes in
oxygen, it is possible to say that. megalopsvas regulating both species' distribution occurred during the El Nifio event of
its respiration rate. This ability may explain its persistence im992-1993, after which biomassTofspiniferafell by more than
the OMZ 24 h a day. Consequentli{. megalopsnust have 70% o Oregon and British-ColumbiaTanasichuk, 1999 In
evolved e cient adaptations to deal with low oxygen levels, sudime southern part of the CCS (at approximately RQ O Baja
as, e.g., a high respiratory surface (gills) and/or a general |I@alifornia),E. paci catook some time to recover after the El Nifio
oxygen demand due to its smaller vertical migration movemengvent of 1997-1998, but was abundant again during summers of
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2000, 2002, and 2005. These high abundances were linked ta@@ld Regions and OMZ-Free

Nifia in 2000, a sub-Arctic water intrusion in 2002 and to h|gh]'he p0|ar SpecieEuphausia Superband Thysanoessa inermis
upwelling conditions in 2005L@vaniegos and Ambriz-Arreola, exhibit also one of the highest Rl among the 10 species assessed.
2013. Itis clear that El Nifio brings low upwelling conditions The Antarctic krill E. superbs a central constituent of Antarctic
(low food availability) and warmer deoxygenated water, which afgod webs and forms large biomasses in the Southern Ocean
not optimal for the temperate species of the NCCS. (Atkinson et al., 2004Mlurphy et al., 200y, Cumulative impacts

A dierent pattern within the respiratory response to of sea ice decline and ocean warming have negatively modi ed
decliningpO> was observed betwedn spinifersaand E. pacica  the abundance, distribution and life cycle of this speciésres
The neritic lifestyle, short vertical migration distance, andt a., 201p The specied. inermisis restricted to the North
strong association with upwelling areas (high nutrients, colftlantic, North Paci ¢ and the shelf region around Spitsbergen,
temperature, and lower oxygen concentration) match thgontinuously advected to the Arctic by the ocean currents
comparatively low metabolic rate df. spiniferacompared t0 from the Barents Sea where they have their major spawning
oceanicE. paci ca The strong association af. spiniferawith  ground. Both polar species are known as pronounced vertical
upwelling conditions likely signi es an oxyconformity strategy tomigrators with some exibility depending on food availability
tolerate the typical low oxygen concentration of upwelled watesnd predation risk Kaartvedt et al., 199€resswell et al., 2009
So far, no acoustic or direct observations of hypoxia and warming as oxygen levels in Polar regions are relatively high, it appears
eects on T. spiniferahave been reported. However, massivghat there is no compelling need to evolve adaptations to low
stranding events in several bays on the US West Coast over@iygen levels. However, both species are well known for their
area of approximately 400 km between Oregon and Californigense swarming behavior and may experience reduced oxygen
were observed in summer of 2013 and related to the strongbyels in these dense aggregatiolsiley and Cox, 2090
hypoxic conditions prevailing regionally_¢ising et al., 2034 according toBrierley and Cox (2010the oxygen concentration
This hypoxic zone was extending into the upper 50-100 m @4 a median packecE. superbaswarm (40 m diameter, 111
the water column. A similar situation was observed in the Gulfd. m 3) can fall from 6.8 to 5.8 mL @L 1 (76 to 65% air
of California (Mexico) with the subtropical specié dicilis  saturation or 16 to 14 kPa in South Georgia) after approximately
(Lopez-Cortes et al., 20))éthe counterpart in the Pacic of 3 min spent in the middle. Swarm density can reach 25,000
N. megalopsThe authors proposed that high unusual upwellingnd m 3 (Hamner and Hamner, 20QG®r spread over hundreds
conditions promoted a phytoplankton bloom, which indirectlykm 2 (Nowacek et al., 20)1so it can be easily envisaged
depleted the oxygen concentration with the sinking of organighat the reduction in oxygen availability in the middle of these
matter. This would have forced the mesopelal§icdi cilis to  pjplogical features may be dramatically higher. This is probably
migrate upward toward more oxygenated waters and then to Bge reason whyE. superbaand T. inermisdeploy unexpected
washed out by the surface currenté.di cilis was shown to be hjgh hypoxia tolerance ah situ temperatures. As temperature
relatively tolerant to hypoxic conditions, but less than the tropicgjenerates higher energy demandsTininermis (> three-fold),
speciestuphausia eximigTremblay et al., 203G5eibel et al., temperature rise in the North-Arctic of & above the current
2019 andNemastocelis graci(iSeibel et al., 20).6 summer conditions could lead to increased competition with

High tolerance to hypoxia was assumed in the past fgjther warmer adapted species, lieganyctiphanes norvegica
E. paci cabecause of its low critical oxygen partial pressurgnd N. megalopgHuenerlage and Buchholz, 201%o0 far, this
(Perit = 18 mm Hg, 2 kPa or 11% air saturation at @), Arcto-boreal species seems to benet from the current higher
lower than what the species experiendessitu at 350 m water temperatures in the Arctic as it seems to reproduce

depth in its habitat (O South Californiaphildress, 197)5 In Successfu”y in the KongsfjordeBmchhou et a|., 2032
fiords and bays their downward migration is often reduced

(Bollens et al., 1992sometimes limited by seasonal hypoxic or
anoxic conditions in bottom water layers(nze et al., 2006 RI or Others?
In these environmentsP: values ofE. paci cawere higher Even though temperature increases the metabolic activity, hence
(Perit = 4 kPa or 20% air saturation at 10), showing less hypoxia the energy demands of an animal, the present study suggests that
tolerance (keda, 197). The RI ofE. paci caindicated that this the ability to cope with low oxygen levels is not always worse
species is not an outstanding oxyregulator as BCS and po&rhigher temperatures for hypoxia-adapted species. A possible
species. The high standard deviation of Rl may speak for a lagkplanation could be that despite higher energy expenditure
of a consistent strategy when dissolved oxygen concentratiother processes such as diusion rates are also enhanced,
decrease ah situtemperature. providing su cient oxygen for an animal. As a consequence, we
Alternation between El Nifio and La Nifia events maintainsuggest that it is of crucial importance to measure respiration
the abundance of krill across time in the NCCS, but it is cleaates atin situ temperatures when comparing the hypoxia
that if strong El Nifio event like the one of 1997-1998 last longéolerances of various species within and between ecosystems.
or occurs more often, botfl. spiniferaand E. paci castocks Furthermore, the RI value, as a proxy for the capability of an
would probably disappear from the NCCS and continue theianimal to withstand low oxygen levels, seems to be indicative for
life cycle at higher latitudes in the Gulf of Alaska, where thethe oxygen tolerance for its own. Low RI values were possible to
are not so a ected by the El Nifio event. This would have strondetermine for species such Bsmucronatak. distinguendaand
consequences for the higher trophic levels of the NCCS. E. lamelligeras they were showing oxyconformity or metabolic
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suppression patterns. In contradt. hanseniand N. capensis the experiments and contributed to data analysis, writing and
occurring in the BCS show high RI values. However, all speciewvision of the manuscript. TW conducted the experiments,
are known to withstand comparably low oxygen levels. Thanalyzed the results, and contributed to writing and revision
highlights the need to analyze the RI, additionallftg, to geta of the manuscript.

wider understanding of the species-speci ¢ adaptation strategies.

Standardization to calculate Rl is important as its determination

depend on the model usedpbbs and Alexander, 20).8n the FUNDING

presentwork, in order to reduce user interpretation in calculatin

RI by mean of the best tted curve,weusedtheareaundercurf}é1is study was funded by the GENUS project,
of the original data sets. Bundesministerium fir Bildung und Forschung (BMBF,

The analysis of the ETS activity and the contribution of th@3F0497F, Germany) and supported by the Alfred-Wegner-
alternative oxidase (AOX) pathway are parameters that could Bistitute for Polar and Marine Research (PACES, WP2T2) as well
implemented to understand other metabolic adaptations relatétp the French-German AWIPEV project KOP 124, RIS ID 3451.
to vertical oxygen and temperature gradients. High speci tV€ acknowledge support by the Open Access Publication Funds
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Equatorial-Subtropical Atlantic mesopelagic zome(nandez- Meeresforschung.
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