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Oxygen Minimum Zones prevail in most of the world’s oceans and are particularly

extensive in Eastern Boundary Upwelling Ecosystems such as the Humboldt and

the Benguela upwelling systems. In these regions, euphausiids are an important

trophic link between primary producers and higher trophic levels. The species are

known as pronounced diel vertical migrators, thus facing different levels of oxygen

and temperature within a 24 h cycle. Declining oxygen levels may lead to vertically

constrained habitats in euphausiids, which consequently will affect several trophic levels

in the food web of the respective ecosystem. By using the regulation index (RI), the

present study aimed at investigating the hypoxia tolerances of different euphausiid

species from Atlantic, Pacific as well as from Polar regions. RI was calculated from

141 data sets and used to differentiate between respiration strategies using median

and quartile (Q) values: low degree of oxyregulation (0.25 < RI median < 0.5); high

degree of oxyregulation (0.5 < RI median < 1; Q1 > 0.25 or Q3 > 0.75); and

metabolic suppression (RI median, Q1 and Q3 < 0). RI values of the polar (Euphausia

superba, Thysanoessa inermis) and sub-tropical (Euphausia hanseni, Nyctiphanes

capensis, and Nematoscelis megalops) species indicate a high degree of oxyregulation,

whereas almost perfect oxyconformity (RI median ≈ 0; Q1 < 0 and Q3 > 0) was

identified for the neritic temperate species Thysanoessa spinifera and the tropical

species Euphausia lamelligera. RI values of Euphausia distinguenda and the Humboldt

species Euphausia mucronata qualified these as metabolic suppressors. RI showed

a significant impact of temperature on the respiration strategy of E. hanseni from

oxyregulation to metabolic suppression. The species’ estimated hypoxia tolerances and

the degree of oxyconformity vs. oxyregulation were linked to diel vertical migration

behavior and the temperature experienced during migration. The results highlight

that the euphausiid species investigated have evolved various strategies to deal

with different levels of oxygen, ranging from species showing a high degree of

oxyconformity to strong oxyregulation. Neritic species may be more affected by hypoxia,

as these are often short-distance-migrators and only adapted to a narrow range of

environmental conditions.
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INTRODUCTION

Oxygen concentration and water temperature are two important
abiotic factors influencing several physiological processes,
such as metabolic rate, energy expenditure, as well as the
horizontal and vertical distribution of animals living in the
world’s oceans (Torres and Childress, 1983; Claireaux and
Lagardère, 1999; Ekau et al., 2010). However, both factors
are not evenly distributed and temperature and oxygen
levels at the surface area are usually higher, compared to
deeper water layers. Water temperature is influenced by solar
radiation, i.e., latitude and water turbulence. In contrast, oxygen
concentration is affected by physical replenishment (mixing),
bacterial decomposition and animal respiration. Temperature
and oxygen profiles of the water column show a more or
less steady decline from upper to deeper water layers (weak
thermo- and oxycline) or a more saltatory pattern (strong
thermo- and oxycline). In the oceans, the depth and strength
of the thermocline vary between season and year. It is
semi-permanent in the tropics, variable in temperate regions,
and shallow to non-existent in Polar regions. High oxygen
concentrations are found at high latitudes, whereas at mid-
latitudes, in particular off the western coasts of the continents,
oxygen-deficient zones, so-called Oxygen Minimum Zones
(OMZs), prevail. Consequently, the ecosystems in the world’s
oceans are characterized by distinct oxygen and temperature
regimes shaping the different species’ behavior, distribution and
physiological processes.

In the anticipated future, anthropogenic induced changes,
such as rising nutrient loads coupled with climate change, will
cause regional declines in oceanic dissolved oxygen, mainly due
to increased stratification and reduced mixing, and an increase
in water temperature (Diaz and Rosenberg, 2008; Keeling
et al., 2010). Increasing temperature is known to negatively
impact the hypoxia tolerance of animals and at the same
time raise their energy expenditures. Furthermore, as water
temperature rises, oxygen solubility decreases. Thus, decreasing
oxygen levels accompanied by increasing temperatures may affect
key processes and trophic interactions including community
composition, energy flows, migration patterns, and consequently
biogeochemical processes (Ekau et al., 2018) and will exert
significant pressure on pelagic communities. This applies
particularly to planktonic species, such as euphausiids, which
cannot, or only to a very limited degree, escape unfavorable
environmental conditions (Verheye and Ekau, 2005). As a
consequence, it is expected that some areas may experience
a shift from an abundant and diverse regime to one that is
lean and dominated by vertical migrators (Wishner et al., 2013;
Elder and Seibel, 2015).

Evaluation of time series already revealed vertical expansion
of OMZs during the last decades (Stramma et al., 2008). It is
assumed that these OMZs will further expand, which can happen
horizontally into areas previously not experiencing hypoxic
conditions, or consist of vertical expansion of an existing OMZ,
while coastal hypoxia will increase in extent and severity (Levin,
2018). Compared to other hypoxic habitats, the particular nature
of such an OMZ is that it is characterized by moderate to severe

hypoxia (<2 mg O2 L−1) over very large areas (∼8% of total
oceanic area; Paulmier and Ruiz-Pino, 2009) and over long time
periods. They differ from the “dead zones” phenomena caused by
anthropogenic coastal eutrophication found, e.g., in the Gulf of
Mexico (Rabalais et al., 2002; Diaz and Rosenberg, 2008). OMZs
are permanentmidwater features occurring at intermediate depth
(300–2,500 m) in most of the oceans (Emelyanov, 2005). The
largest and most pronounced OMZs are located in the Northern
Indian Ocean, the Eastern Atlantic off northwest Africa, and
the Eastern Tropical Pacific (ETP) (Wyrtki, 1962; Kamykowski
and Zentara, 1990; Olson et al., 1993). Notably, the OMZ of
the ETP and the Eastern Atlantic off northwest Africa have
expanded to higher latitudes during the past 50 years (Stramma
et al., 2008), suggesting changes in zoogeographic distribution
patterns, compression of habitats, and restricted zones of biomass
production (Prince and Goodyear, 2006; Koslow et al., 2011;
Stramma et al., 2011; Gilly et al., 2013). The shallow and
severe OMZ in the ETP is due to the poor lateral ventilation
of surface waters (Reid, 1965; Luyten et al., 1983) and the
formation of a strong thermocline, which limits O2 diffusion
into the deeper layers of the ocean (Lavín et al., 2006). Very
high temperatures at the surface result in strong stratification, at
which the zooplankton aggregate and locally increase the oxygen
consumption (Bianchi et al., 2013). At this depth, oxygen is
consumed faster than it is replaced by the horizontal mixing
of the water mass (Wyrtki, 1962; Fiedler and Talley, 2006;
Karstensen et al., 2008), creating the shallow OMZ. The oxygen
utilization is particularly enhanced during El Niño-Southern
Oscillation and inter-annual changes in upwelling conditions,
thus partly explaining the vertical OMZ expansion of the ETP
since the 1980s (Ito and Deutsch, 2013).

Compared to Eastern Boundary Upwelling Systems (EBUEs),
such as the California, Humboldt, and Benguela Current
ecosystems with their pronounced OMZs, the oxygen levels of
Polar regions are higher and water temperatures are much lower.
No real OMZs exist in these areas and species living there may
not be forced to develop adaptations to cope with low oxygen
levels. However, mild-hypoxia (50% air saturation) was reported
in the Indian sector of the Southern Ocean at depth greater than
500 m (Dehairs et al., 1990) and deoxygenation in the Southern
Ocean is currently taking place at 200–400 m depth between
50 and 60◦ of latitude (Matear et al., 2000; Aoki, 2005). In the
Artic, the potential effects of global warming and changes in
deep-sea circulation on the oxygenation of the deep ocean is
monitored continuously in Fram Strait, West Spitsbergen, the
only deep connection between the central Arctic Ocean and the
Nordic Seas (Friedrich et al., 2014). The Arctic ecosystem is
far from being classified as hypoxic, but strong increase in the
annual mean net heat transport within the waters of the West
Spitsbergen Current could potentially affect oxygen levels to less
than 80% air saturation.

Euphausiids, or krill, are distributed ubiquitously across
the globe and often dominate zooplankton communities in
terms of abundance and biomass throughout the world‘s
oceans. Euphausiids form a pivotal component of many food
webs and are known as pronounced diel vertical migrators,
thereby contributing to the vertical flux of carbon and facing
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different levels of oxygen and temperature within a 12 h
period. During diel vertical migration (DVM), many euphausiid
species cross pronounced gradients of temperature, salinity,
and oxygen indicating that these species must be of a broad
ecophysiological plasticity. In this regard, euphausiids are
ideal model organisms for studying the interactions between
organismal and environmental variability (Mangel and Nicol,
2000). Euphausiids and other taxa living in areas with
pronounced OMZs have to physiologically and/or behaviorally
adapt to low oxygen levels or will be excluded from these areas
or at least their vertical distribution ranges will be limited.
A typical euphausiid DVM pattern consists of an upward
migration at dusk to feed in the upper, productive layers of the
oceans, and a downward movement at dawn to avoid visual
predators (Zaret and Suffern, 1976; Ohman, 1984), decreasing
at the same time their metabolic rates due to the lower water
temperature and O2 concentrations (McLaren, 1963; Enright,
1977). Euphausiids channel energy from lower (phytoplankton,
small zooplankton) to higher (fish, birds, and even whales)
trophic levels. Accordingly, as varying oxygen and temperature
levels will likely alter these species’ vertical and horizontal
distribution ranges, this may impact a larger part of the whole
food web, and even impinge on fisheries yield.

Adaptations of animals to low dissolved oxygen
concentrations are driven by strong selective pressures to
maintain aerobic metabolism (Seibel, 2011). Most animals
facing low oxygen concentrations respond either by decreasing
their oxygen consumption rates, known as oxyconformity,
or by maintaining a constant oxygen uptake irrespective of
the ambient oxygen levels, known as oxyregulation. However,
as analyzed mathematically by Cobbs and Alexander (2018)
using/applying seven different functions and as discussed by
Wood (2018), animals seldom show perfect oxyconformity or
oxyregulation. Accordingly, species’ metabolic responses to
declining oxygen levels lay somewhere between the two ends of
this continuum (Mueller and Seymour, 2011). Furthermore, at
a certain species-specific oxygen pressure, animals are unable
to maintain their normoxic metabolic rate and have to goose
anaerobic metabolism. This point is called ‘critical oxygen
partial pressure’ (Pcrit) and can be determined by analyzing the
response of the metabolic rate (respiration) to declining oxygen
concentrations. Oxyconformers do not regulate their oxygen
demand as, physiologically, these species do not need to enhance
the transport of oxygen to the metabolizing tissues when oxygen
is decreasing. Thus, the capability of an animal to either regulate
its oxygen uptake in combination with the Pcrit value or reduce
its respiration rate when ambient oxygen levels decrease provides
meaningful information about their ability to survive hypoxic
events and represent an important ecological tipping point to
understand the resilience of populations to declining levels of
oxygen (Mueller and Seymour, 2011). A third strategy called
metabolic suppression entails the suppression of total energy
consumption by shutting down intensive energy demanding
processes (Seibel, 2011; Seibel et al., 2016). This strategy has
been observed in euphausiid species inhabiting regions where
oxygen decline was faster than euphausiid oxygen demands
(Seibel et al., 2016).

In this paper, we aim to characterize the hypoxia tolerance of
10 dominant euphausiid species from the Atlantic and the Pacific
Ocean, including three prominent EBUEs (Benguela, California,
and the Humboldt Current system), and both Polar regions at
in situ temperatures by analyzing the regulation index (RI) to
explain the DVM behavior in their habitat.

MATERIALS AND METHODS

Ten euphausiid species were collected between 2010 and 2013
during several small- or large-scale expeditions to the Benguela,
California, and Humboldt Current systems (BCS, CCS, and
HCS), the Eastern Tropical Pacific (ETP), the Arctic and the
Antarctic (details compiled in Table 1). Polar (Antarctic and
Arctic: between −0.5◦C and 5.5◦C), temperate (NCCS and HCS:
between 6.5◦C and 15.1◦C), sub-tropical (BCS: between 8.0◦C
and 21◦C), and tropical (ETP: between 14.6◦C and 30.2◦C)
temperature gradients as well as different hypoxic conditions
(severe and shallow: ETP and HCS; severe and deep: BCS;
moderate: NCCS; and non-existent: Antarctica and Arctic) are
thus covered by the habitat of the species studied (Figure 1).

All samplings were executed during night time, when
euphausiids are more abundant at the surface, to avoid
overstressing the experimental animals by reducing catch time.
Live adult euphausiids, in healthy condition (showing a lot of
movement and with no visible damage), were manually sorted
into bins filled with filtered seawater at in situ temperature and
acclimated for at least 6 (CCS, HCS, ETP, and Antarctica) or 12 h
(BCS and Arctic) prior to starting respirometry procedures to
make sure that all animals are in a post-absorptive state.

Respirometry
The measurements were conducted in the dark to mimic
the conditions of the time of the day when euphausiids
should be in deeper water and hypoxic conditions when
hypoxia applied to the area. The same closed configuration
system, chamber volume (20 mL; except for Antarctica where
chamber volume was 250 mL to account for the larger size
of Euphausia superba) and measurement method were used
in all areas. The oxygen level within the chamber decreased
as the effect of respiration. Measurements were carried out at
in situ temperature for the 10 species, and at four different
temperatures for Thysanoessa inermis (Arctic; 2, 4, 8, and
10◦C) and Euphausia hanseni (BCS; 5, 10, 15, and 20◦C)
to assess how temperature modulates intraspecific hypoxia
tolerance (Table 1). Both species were acclimated at a rate of
1◦C h−1 to colder and warmer temperatures for at least 12 h
after completion of the 12 h post-capture acclimation. The
thermal ramp steepness and amplitude took into consideration
the vertical migration temperature gradient that E. hanseni
experience during DVM (Werner and Buchholz, 2013) and
the Arrhenius breakpoint temperature (12◦C) of T. inermis
(Huenerlage and Buchholz, 2015; Huenerlage et al., 2016).

OXY-4 or -10 channel PreSens Oxygen Measurement system
(Regensburg, Germany) was used with dipping probes DP-PSt3
or planar oxygen-sensitive foils PSt3 integrated in the chambers.
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FIGURE 1 | Temperature and oxygen during sampling periods. Depth profiles of (A) mean water temperature and (B) dissolved oxygen in Antarctica, the Humboldt

current system [HCS], the Eastern Tropical Pacific [ETP], the Benguela Current System [BCS], and the Northern California Current System [NCCS]. Bold lines

represent summer conditions and dashed lines the ETP area. (C) Monthly mean temperature (line) and dissolved oxygen (dots) in the Arctic with sampling periods

shaded in gray. Data were compiled from the AWIPEV underwater observatory located at 12 m water depth (Fischer et al., 2018a,b).

Probes and foils were calibrated at in situ temperature prior to
measurements at 0% air saturation with sodium sulfite (Na2SO3;
1 g in 100 mL water) and at 100% air saturation with air-
saturated water (10 min after air injection in stirred water for
20 min). The system was equipped with four (OXY-4) or ten
(OXY-10) chambers including respectively one or two blanks
(for seawater bacterial oxygen demand). All chambers were
filled with filtered local seawater at 100% air saturation and the
oxygen concentration in each chamber was measured every 15
or 30 s. The first 30 min of each measurement were discarded
to allow acclimation to chamber. Movements of the pleopods
and/or heartbeats of the animals were visually monitored to
make sure that they were alive during the entire duration
of the measurement. Wet or dry (48 h at 50◦C) weight of
the preserved animal was measured after completion of the
respiration measurement (information provided in Table 1). All
respiration rates were reported as mL O2 h−1 g wet weight−1.

For some species, only the dry weight was available and it
was converted to wet weight using the euphausiids conversion
equation of Kiørboe (2013) to allow comparison among the
10 species. The programming environment for data analyses
and graphics R (R Core Team1) was used to calculate the
RI [see section “Regulation Index (RI)”] [script provided as
Supplementary Material (see Supplementary Data Sheet 1)].

Regulation Index (RI)
Mueller and Seymour (2011) were the first to propose the use of
the RI to assess regulation ability of aquatic organisms that do
not present a clear critical oxygen partial pressure (Pcrit) in their
respiration pattern. The authors advised to fit a curve (straight
line, quadratic or one-phase association) with the highest r2 to the
respiration rate data for each individual plotted against the whole

1www.r-project.org
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oxygen concentration range measured within the respiration
chamber (ideally from 100 to 0% air saturation). RI corresponded
to the proportion of the area bounded by a linear regression that
represented how respiration rates would decline if the animals
showed complete oxyconformity (perfect oxyconformity; RI = 0)
and a horizontal line at maximum oxygen consumption (perfect
regulation; RI = 1). The perfect oxyconformity linear regression
assumes zero respiration rate at 0% air saturation (Figure 2A).

The present work used 141 respiration data sets [available
in Supplementary Material (see Supplementary Data Sheet

1)], in which the experimental oxygen concentration dropped
to ≤50% of the respective experiments’ start concentration.
In order to reduce user interpretation in calculating RI by
mean of the best fitted curve, no parametric model was
fitted to the original data sets. The area under curve was
computed using R package “MESS” (Ekstrøm, 2018) with
the natural spline interpolation (loess) for dissolved oxygen
concentration as x-values and respiration rates as y-values. The
same procedure was conducted with the linear regression that
represents perfect oxyconformity and perfect oxyregulation.
When the natural spline interpolation of the data was below
the linear regression of perfect oxyconformity, RI became
negative and was calculated from the area bounded by the
horizontal line at y = 0 and the linear regression that represented
perfect oxyconformity (Figure 2B). A negative RI value can
thus be interpreted as hypoxia-sensitivity (Alexander and
McMahon, 2004), but could be an indication of metabolic
suppression, as respiration rates are significantly reduced.
Respiration strategies using median and quartile values
were defined as: low degree of oxyregulation (0.25 < RI
median < 0.5); high degree of oxyregulation (0.5 < RI
median < 1; Q1 > 0.25 or Q3 > 0.75); oxyconformity (RI
median≈0; Q1 < 0 and Q3 > 0) and metabolic suppression (RI
median, Q1 and Q3 < 0).

Statistical Analysis
All statistics and figures were done with R (R Core Team,
2020). For interspecific (in situ temperature) and intraspecific

FIGURE 2 | Examples of regulation index (RI) calculations. As shown by

Mueller and Seymour (2011), the area under the curve and above the linear

regression of perfect oxyconformity was used to calculate a positive RI (A). In

contrast, a negative RI was calculated as the area bounded by the area above

the curve and the linear regression of perfect oxyconformity (B).

(among temperature for E. hanseni and T. inermis) hypoxia
tolerance comparison, the non-parametric Kruskal–Wallis test
was conducted (normality and variance homogeneity were not
met). Significant level of all comparisons was fixed at 95%
(p < 0.05). For post hoc comparison a multiple comparison test
from the package “pgirmess” (Giraudoux, 2018) was applied.

RESULTS

The overall view of the euphausiids’ respiration rates over
decreasing dissolved oxygen concentration at in situ temperature
shows different magnitude and patterns (Figure 3). Comparing
this magnitude by area, the highest respiration rates were
observed in Euphausia pacifica (NCCS), Euphausia lamelligera
(ETP), and Nematoscelis megalops (BCS). Different magnitude
and patterns were also seen intraspecifically when T. inermis
and E. hanseni were acclimated at lower or higher temperatures
(Figures 4, 5). The respiration rates of T. inermis increased
at 8 and 10◦C (Figures 4C,D) in comparison to 2 and 6◦C
(Figures 4A,B) during the whole oxygen range measured. For
E. hanseni, respiration rates were similar at all temperatures
in the high-oxygen levels between 80 and 100% air saturation
(Figure 5).

The RI of Euphausia superba (Antarctica), Thysanoessa
inermis (Arctic), Euphausia hanseni (BCS), and Nyctiphanes
capensis (BCS) were significantly higher than the RI of the
tropical and temperate species Euphausia distinguenda (ETP)
and Euphausia mucronata (HCS), respectively (Figure 6A,
χ
2 = 56.05, p < 0.000, Table 2). Median RI values ≥0.5 of

the polar (E. superba, T. inermis), temperate (E. pacifica), and
sub-tropical (E. hanseni, N. megalops, and N. capensis) species
indicated a high degree of oxyregulation, whereas the neritic
temperate (T. spinifera) and tropical (E. lamelligera) species
showed a low regulation ability as RI values fluctuated between
−0.25 and 0.25 (Figure 6A and Table 2). Quartiles values
below and above 0 of T. spinifera and E. lamelligera indicate
almost perfect oxyconformity of these species. The oceanic
tropical species E. distinguenda and the Humboldt endemic
species E. mucronata were qualified as metabolic suppressors
with RI median and quartile values well below 0 (Figure 6A

and Table 2).
Regulation index did not change significantly with

temperature for T. inermis (Figure 6B), but it did in E. hanseni
from high oxyregulation to metabolic suppression, when
acclimation temperature was decreased to 5◦C (compared to
20◦C; χ2 = 14.53, p = 0.002; Figure 6C).

DISCUSSION

Euphausiids and other zooplankton taxa perform DVM to
feed on the phytoplankton-rich upper water layers during
night time and to reduce mortality from visual predation
during the day. These benefits are counteracted by higher
energy demands due to increased swimming speeds and
higher water temperatures in upper water layers and reduced
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FIGURE 3 | Euphausiids’ respiration rates over decreasing dissolved oxygen concentration at in situ temperature. The 10 euphausiids species were from both Polar

regions, three major Eastern Boundary Upwelling Systems (NCCS, Northern California Current System; BCS, Benguela Current System; HCS, Humboldt Current

System), and one tropical region (ETP, Eastern Tropical Pacific).
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FIGURE 4 | Respiration rates of Thysanoessa inermis over decreasing dissolved oxygen concentration at four temperatures. (A) at 2◦C (n = 6), (B) at 6◦C (n = 4), (C)

at 8◦C (n = 8), and (D) at 10◦C (n = 4).

growth and reproduction rates in deeper, cold water layers.
Thus, animals performing DVM have to compensate with
increased energy expenditures. Furthermore, they must have
evolved physiological and behavioral adaptations to the strong
gradients of oxygen and temperature in the water column. As
some species suppress their metabolism (Seibel et al., 2016),
determination of metabolic rates of diel vertical migrators is
crucial to assess the role and quantify the contribution of
these animals to the downward transport of carbon and thus
carbon fluxes in the oceans. The environmental conditions
prevailing in the different ecosystems in terms of oxygen
availability and vertical temperature profiles seem to have
caused specific physiological adaptations in euphausiids – mostly
irrespective of the actual oxygen and temperature level and
the time spent in the OMZs. Species which come across
the shallowest severe hypoxia levels during their DVM show
metabolic suppression [in the Humboldt Current System (HCS)
and ETP]. In contrast, the three species from the Benguela
Current System (BCS), characterized by a deeper OMZ, maintain
constant oxygen uptakes irrespective of the ambient oxygen
levels. These differences may indicate that a steep decline in

oxygen levels constitutes a physiological threshold at which
euphausiids must significantly shut down their metabolic
functions (Seibel et al., 2016).

Shallow OMZs
The hypoxia tolerance of the euphausiid species adapted to the
OMZs of the HCS and the ETP was assessed using the RI.
In the literature, typical low Pcrit between 0.6 and 1.7 kPa at
13◦C and 23◦C (corresponding to 3% and 8% air saturation)
were obtained by Teal and Carey (1967) and Kiko et al. (2016),
who were working on Euphausia mucronata from the HCS.
This euphausiid species performs extensive DVM down to
250 m into the OMZ in all seasons (Escribano et al., 2000;
Antezana, 2002b). However, highest abundances of this species
occur in areas where the upper boundary of the OMZ is deeper
(Escribano et al., 2000). During the warm season at 12◦C
and 13◦C, E. mucronata maintains the same rate regardless
of whether exposed to surface pO2 (70% air saturation or
17 kPa), or to pO2 typical for OMZ layers (20% air saturation
or 4 kPa; Antezana, 2002a; Donoso and Escribano, 2014). The
temperature used by the authors cited above represents the
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FIGURE 5 | Respiration rates of Euphausia hanseni over decreasing dissolved oxygen concentration at four temperatures. (A) at 5◦C (n = 4), (B) at 10◦C (n = 22),

(C) at 15◦C (n = 4), and (D) at 20◦C (n = 11).

warmer range in subsurface water of the area (50–200 m), while
the present study was simulating the coldest temperature that
can be encountered in the same water depth or at surface during
“normal” or cold (La Niña) years between 40◦S and 17◦S off
Chile (Strub et al., 1998). As seen from the changes in RI
following the decreasing temperature in Euphausia hanseni from
the BCS, the OMZ-adapted species of the genus Euphausia may
regulate their metabolic rates when exposed to warmer surface
temperature and tend to conform or suppress their metabolism
when exposed to the colder thermal limit of their deeper habitat.
This may explain why no oxyregulation pattern at all was
observed at 8◦C in E. mucronata, despite the long duration of
the measurement.

The tendency to conform or suppress the metabolism at
colder temperature may be also true for Euphausia distinguenda
from the ETP (corresponding to sub-surface temperature) as
shown here with our measurement at 20◦C. From field samples
collected at different depths above and into the OMZ of the
ETP off Mexico, Herrera et al. (2019) observed the highest
specific Electron Transfer System (ETS) activity between 3.20 and

3.93 mL O2 L−1 (48 to 58% air saturation) at 25◦C, meaning
that the species was still relying on aerobic processes half-way
within the oxycline. This ETP species is also reported in the
OMZ of the HCS (Antezana, 2009). Both E. distinguenda and
E. mucronata possess larger gills relative to their body size
(Antezana, 2002a), increasing contact surface for O2 diffusion
from the hypoxic environment. Antezana (2009) also observed
that both were among the last OMZ species to begin their ascent
to the surface at dusk in theHCS, thus extending the deep hypoxic
residence time to a maximum. Habitat segregation was suggested
to explain this behavior, which consists in avoiding spatial and
temporal co-occurrence with other species within the same area.
This finding was based on body and gills size analysis, feeding
appendages, and HCS food resources. Euphausia lamelligera, the
other ETP species also endemic to the OMZ, dominates the
neritic zone while E. distinguenda distributes more in oceanic
waters (Brinton, 1962, 1979; Färber-Lorda et al., 1994, 2004,
2010). Because of its neritic preference, E. lamelligera does not
migrate as much as E. distinguenda, explaining probably why this
species is almost a perfect oxyconformer rather than a metabolic
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FIGURE 6 | Euphausiids’ regulation indices at in situ temperature and after temperature acclimation. (A) Regulation indices of the 10 euphausiid species investigated

at in situ temperature, (B) regulation indices of T. inermis acclimated at 2, 6, 8, and 10◦C, and (C) regulation indices of E. hanseni acclimated at 5, 10, 15, and 20◦C.

Es, E. superba; Ti, T. inermis; Ep, E. pacifica; Ts, T. spinifera; Ed, E. distinguenda; El, E. lamelligera; Eh, E. hanseni; Nm, N. megalops; Nc, N. capensis; Em,

E. mucronata. Numbers in parentheses give the numbers of samples analyzed. Horizontal bars in the box plots indicate the median. The upper and lower edges of

the rectangles show the first and third quartiles, respectively. Vertical error bars extend to the lowest and highest values in a 1.5-fold inter-quartile range (R Core

Team, 2020). Lower case letters indicate significant differences.

suppressor. Both species are thus highly hypoxia tolerant,
reflected mainly by their low RI. As high temperature pushes
physiological limits, a small sub-mesoscale oxygen variability
in the ETP of ≤1% could affect their vertical and horizontal
distribution (Wishner et al., 2018). Accordingly, even small
changes in oxygen availability may exert strong pressure on
these animals, leading to unexpected changes in ecosystem
structure and functioning in the near future. Species of the
ETP are adapted to low oxygen and high temperature, but as
they live at the edge of their maximum thermal limit, further
warming could have negative impact on the fitness of both species
as their higher brood size depends on the coastal upwelling
dynamics between January and June (Ambriz-Arreola et al.,
2015, 2018). A negative RI was initially not proposed by Mueller
and Seymour (2011) when developing the RI as a new method
to assess hypoxia tolerance of aquatic ectotherms. However,
as shown for weak oxyregulating (or perfect oxyconformers)
and metabolic suppressing species presented in this study, a
negative RI is relevant and thus presents a further development
for the use of this index. The corroboration of the presence of
metabolism suppression associated with a negative RI remains

to be shown looking at physiological metabolic markers (e.g.,
enzymatic activity, ATP production, anaerobic end-products).
This pattern was previously described as hypoxia-sensitivity by
Alexander and McMahon (2004).

Deep OMZ
In the BCS, E. hanseni and Nematoscelis megalops dominate
the shelf break surroundings, i.e., partly sharing one habitat
in this upwelling region (Barange and Stuart, 1991; Barange
et al., 1991). The species E. hanseni performs extensive DVM
from 0 to 200 and even 1,000 m water depth (Barange, 1990;
Barange and Stuart, 1991; Barange and Pillar, 1992; Werner
and Buchholz, 2013), while N. megalops is characterized as
a weak migrator (Werner and Buchholz, 2013). In contrast
to E. hanseni, N. megalops has a broader distribution and
can be found at both sides of the equator: in the mid-
latitude zones of the subtropical-temperate North Atlantic (10–
60◦N), in the warm-temperate belts of the South Atlantic,
the Indian Ocean and the South Pacific (35–50◦S), in the
Mediterranean Sea (e.g., Gopalakrishnan, 1974), in subarctic
regions (Zhukova et al., 2009), even up to 79◦N in the high
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TABLE 2 | Regulation index (RI) for 10 euphausiid species investigated.

Temperature RI

Species (◦C) Median Quartile 1 Quartile 3 Strategy

Euphausia superba 4 0.48 0.29 0.58 High oxyregulation

Thysanoessa inermis 2 0.34 0.32 0.46 Low oxyregulation

2–6 0.48 0.35 0.60 High oxyregulation

6 0.66 0.60 0.72 High oxyregulation

8 0.43 0.17 0.54 Low oxyregulation

10 0.49 0.30 0.60 High oxyregulation

Euphausia pacifica 10 0.36 0.16 0.55 Low oxyregulation

Thysanoessa spinifera 10 0.07 −0.31 0.24 Conformity

Euphausia distinguenda 20 −0.19 −0.26 −0.03 Metabolic suppression

Euphausia lamelligera 20 −0.03 −0.04 0.14 Conformity

Euphausia hanseni 5 −0.38 −0.50 −0.15 Metabolic suppression

10 0.50 0.29 0.69 High oxyregulation

15 0.25 −0.11 0.58 Conformity/regulation

20 0.74 0.59 0.79 High oxyregulation

Nematoscelis megalops 10 0.52 0.37 0.67 High oxyregulation

Nyctiphanes capensis 10 0.59 0.16 0.78 High oxyregulation

Euphausia mucronata 8 −0.26 −0.40 −0.15 Metabolic suppression

RI was calculated from 141 data sets and used to differentiate between respiration strategies using median and quartile values: low degree of oxyregulation (0.25 < RI

median < 0.5); high degree of oxyregulation (0.5 < RI median < 1; Q1 > 0.25 or Q3 > 0.75); oxyconformity (RI median≈0; Q1 < 0 and Q3 > 0), and metabolic

suppression (RI median, Q1 and Q3 < 0).

Arctic Kongsfjord (Buchholz et al., 2009; Huenerlage and
Buchholz, 2015). Morphologically and ecologically, N. megalops
is very similar to Nematoscelis difficilis from the ETP and
California Current System (Karedin, 1971; Gopalakrishnan, 1974,
1975). Those species are observed within the OMZ, but in its
upper boundary (Tremblay et al., 2010; Werner and Buchholz,
2013), probably taking advantage of the accumulation of
organisms to actively feed. The third speciesNyctiphanes capensis
shows extraordinarily high abundances over the Namibian
shelf in water <200 m depth (Barange and Stuart, 1991;
Barange and Pillar, 1992).

E. hanseni and N. capensis have one of the highest RI values
of all species analyzed meaning that they cover their energy
requirements at low oxygen levels in the coldest temperature
experienced in their habitat. RI values were enhanced in
E. hanseni acclimated at 20◦C compared to 10◦C, which is similar
to results of Teal and Carey (1967) and Kiko et al. (2016) at sub-
surface temperature conditions with the species E. mucronata
from the HCS. However, the respiration rate of N. megalops
investigated here was 10-fold higher than of E. hanseni and
N. capensis, which is not consistent with what was reported
before by Werner et al. (2012). The number of individuals here
reported is small, and the specimens were probably stressed as the
duration of the measurement was short (less than 1 h) compared
to other nine species analyzed. Despite this fast decrease in
oxygen, it is possible to say that N. megalops was regulating
its respiration rate. This ability may explain its persistence in
the OMZ 24 h a day. Consequently, N. megalops must have
evolved efficient adaptations to deal with low oxygen levels, such
as, e.g., a high respiratory surface (gills) and/or a general low
oxygen demand due to its smaller vertical migration movement.

Thus, the ability of an animal to either maintain a constant
oxygen uptake irrespective of the ambient oxygen levels or
decrease its oxygen consumption rates when ambient oxygen
levels decrease seems not to be influenced by its DVM behavior
in the first place.

Seasonal OMZ
Off Oregon (United States), in the Northern California
Current System (NCCS), two euphausiid species dominate the
macrozooplankton community: the oceanic Euphausia pacifica
(Brinton, 1962) with DVM between the surface and depths of
at least 250 m (Brinton, 1967) and the neritic cold upwelling-
associated Thysanoessa spinifera (Brinton, 1962; Smith and
Adams, 1988; Lavaniegos and Ambriz-Arreola, 2012). Because
of its neritic lifestyle, T. spinifera does not migrate as deep
as E. pacifica, but, instead, remain within the upper 100 m
during day and night and swarm in summer at surface for
reproduction (Brinton, 1962; Smith and Adams, 1988). This
species is also known for its narrow plasticity when facing
changes in the physical oceanographic conditions (Brinton,
1979). Indeed, T. spinifera is strongly influenced by the North
Pacific Gyre Oscillation (Di Lorenzo et al., 2008; Sydeman
et al., 2013). This oscillation is connected with the winds and
upwelling responses (Chenillat et al., 2012) and corroborates
the upwelling preference of this species. Important changes in
both species’ distribution occurred during the El Niño event of
1992–1993, after which biomass of T. spinifera fell by more than
70% off Oregon and British-Columbia (Tanasichuk, 1999). In
the southern part of the CCS (at approximately 30◦N; Off Baja
California), E. pacifica took some time to recover after the El Niño
event of 1997–1998, but was abundant again during summers of
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2000, 2002, and 2005. These high abundances were linked to La
Niña in 2000, a sub-Arctic water intrusion in 2002 and to high
upwelling conditions in 2005 (Lavaniegos and Ambriz-Arreola,
2012). It is clear that El Niño brings low upwelling conditions
(low food availability) and warmer deoxygenated water, which are
not optimal for the temperate species of the NCCS.

A different pattern within the respiratory response to
declining pO2 was observed between T. spinifera and E. pacifica.
The neritic lifestyle, short vertical migration distance, and
strong association with upwelling areas (high nutrients, cold
temperature, and lower oxygen concentration) match the
comparatively low metabolic rate of T. spinifera compared to
oceanic E. pacifica. The strong association of T. spinifera with
upwelling conditions likely signifies an oxyconformity strategy to
tolerate the typical low oxygen concentration of upwelled water.
So far, no acoustic or direct observations of hypoxia and warming
effects on T. spinifera have been reported. However, massive
stranding events in several bays on the US West Coast over an
area of approximately 400 km between Oregon and California
were observed in summer of 2013 and related to the strongly
hypoxic conditions prevailing regionally (Leising et al., 2014).
This hypoxic zone was extending into the upper 50–100 m of
the water column. A similar situation was observed in the Gulf
of California (Mexico) with the subtropical species N. difficilis
(López-Cortés et al., 2006), the counterpart in the Pacific of
N. megalops. The authors proposed that high unusual upwelling
conditions promoted a phytoplankton bloom, which indirectly
depleted the oxygen concentration with the sinking of organic
matter. This would have forced the mesopelagic N. difficilis to
migrate upward toward more oxygenated waters and then to be
washed out by the surface currents. N. difficilis was shown to be
relatively tolerant to hypoxic conditions, but less than the tropical
species Euphausia eximia (Tremblay et al., 2010; Seibel et al.,
2016) and Nemastocelis gracilis (Seibel et al., 2016).

High tolerance to hypoxia was assumed in the past for
E. pacifica because of its low critical oxygen partial pressure
(Pcrit = 18 mm Hg, 2 kPa or 11% air saturation at 10◦C),
lower than what the species experiences in situ at 350 m
depth in its habitat (off South California; Childress, 1975). In
fjords and bays their downward migration is often reduced
(Bollens et al., 1992), sometimes limited by seasonal hypoxic or
anoxic conditions in bottom water layers (Kunze et al., 2006).
In these environments, Pcrit values of E. pacifica were higher
(Pcrit = 4 kPa or 20% air saturation at 10◦C), showing less hypoxia
tolerance (Ikeda, 1977). The RI of E. pacifica indicated that this
species is not an outstanding oxyregulator as BCS and polar
species. The high standard deviation of RI may speak for a lack
of a consistent strategy when dissolved oxygen concentration
decrease at in situ temperature.

Alternation between El Niño and La Niña events maintains
the abundance of krill across time in the NCCS, but it is clear
that if strong El Niño event like the one of 1997–1998 last longer
or occurs more often, both T. spinifera and E. pacifica stocks
would probably disappear from the NCCS and continue their
life cycle at higher latitudes in the Gulf of Alaska, where they
are not so affected by the El Niño event. This would have strong
consequences for the higher trophic levels of the NCCS.

Cold Regions and OMZ-Free
The polar species Euphausia superba and Thysanoessa inermis
exhibit also one of the highest RI among the 10 species assessed.
The Antarctic krill E. superba is a central constituent of Antarctic
food webs and forms large biomasses in the Southern Ocean
(Atkinson et al., 2004; Murphy et al., 2007). Cumulative impacts
of sea ice decline and ocean warming have negatively modified
the abundance, distribution and life cycle of this species (Flores
et al., 2012). The species T. inermis is restricted to the North
Atlantic, North Pacific and the shelf region around Spitsbergen,
continuously advected to the Arctic by the ocean currents
from the Barents Sea where they have their major spawning
ground. Both polar species are known as pronounced vertical
migrators with some flexibility depending on food availability
and predation risk (Kaartvedt et al., 1996; Cresswell et al., 2009).

As oxygen levels in Polar regions are relatively high, it appears
that there is no compelling need to evolve adaptations to low
oxygen levels. However, both species are well known for their
dense swarming behavior and may experience reduced oxygen
levels in these dense aggregations (Brierley and Cox, 2010).
According to Brierley and Cox (2010), the oxygen concentration
in a median packed E. superba swarm (40 m diameter, 111
ind. m−3) can fall from 6.8 to 5.8 mL O2 L−1 (76 to 65% air
saturation or 16 to 14 kPa in South Georgia) after approximately
3 min spent in the middle. Swarm density can reach 25,000
ind m−3 (Hamner and Hamner, 2000) or spread over hundreds
km−2 (Nowacek et al., 2011), so it can be easily envisaged
that the reduction in oxygen availability in the middle of these
biological features may be dramatically higher. This is probably
the reason why E. superba and T. inermis deploy unexpected
high hypoxia tolerance at in situ temperatures. As temperature
generates higher energy demands in T. inermis (>three-fold),
temperature rise in the North-Arctic of 3◦C above the current
summer conditions could lead to increased competition with
other warmer adapted species, like Meganyctiphanes norvegica
and N. megalops (Huenerlage and Buchholz, 2015). So far, this
Arcto-boreal species seems to benefit from the current higher
water temperatures in the Arctic as it seems to reproduce
successfully in the Kongsfjorden (Buchholz et al., 2012).

RI or Others?
Even though temperature increases the metabolic activity, hence
the energy demands of an animal, the present study suggests that
the ability to cope with low oxygen levels is not always worse
at higher temperatures for hypoxia-adapted species. A possible
explanation could be that despite higher energy expenditure
other processes such as diffusion rates are also enhanced,
providing sufficient oxygen for an animal. As a consequence, we
suggest that it is of crucial importance to measure respiration
rates at in situ temperatures when comparing the hypoxia
tolerances of various species within and between ecosystems.

Furthermore, the RI value, as a proxy for the capability of an
animal to withstand low oxygen levels, seems to be indicative for
the oxygen tolerance for its own. Low RI values were possible to
determine for species such as E. mucronata, E. distinguenda, and
E. lamelligera as they were showing oxyconformity or metabolic
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suppression patterns. In contrast, E. hanseni and N. capensis
occurring in the BCS show high RI values. However, all species
are known to withstand comparably low oxygen levels. This
highlights the need to analyze the RI, additionally to Pcrit , to get a
wider understanding of the species-specific adaptation strategies.
Standardization to calculate RI is important as its determination
depend on the model used (Cobbs and Alexander, 2018). In the
present work, in order to reduce user interpretation in calculating
RI by mean of the best fitted curve, we used the area under curve
of the original data sets.

The analysis of the ETS activity and the contribution of the
alternative oxidase (AOX) pathway are parameters that could be
implemented to understand other metabolic adaptations related
to vertical oxygen and temperature gradients. High specific
ETS activities were observed in zooplankton collected in the
Equatorial-Subtropical Atlantic mesopelagic zone (Hernández-
León et al., 2019), also coinciding with a previous observation
in the Eastern Equatorial Pacific (Herrera et al., 2019). The
authors discussed this observation as an adaptation of migrant
zooplankton to endure the adverse conditions of low temperature
and low oxygen in deep waters. The AOX pathway is also a
promising avenue to explore in response to temperature and
oxygen vertical gradients as it has been identified and expressed
in the copepod Tigriopus californicus in response to cold and heat
stress compared to normal rearing temperature (Tward et al.,
2019). This pathway could be an important player to support
partial electron transport in order to stabilize mitochondrial
membrane potential during metabolic suppression of OMZ-
adapted species when residing for some hours in hypoxic
conditions, as seen in the gills of freshwater bivalves adapted to
hypoxia (Yusseppone et al., 2018).

It is known that species or populations of species confined
to one hemisphere or a particular part of the ocean (neritic vs.
oceanic) become often specialists (Jones and Cheung, 2017). They
are in most cases neither widely distributed nor physiologically
versatile, and can be predicted to especially suffer from the
effects of ocean warming and OMZs’ expansion. This may be
also true for euphausiid species, but this study clearly illustrates
that most euphausiids, using different strategies, cope with a
range of different oxygen and temperature levels – showing
high physiological plasticity – and hence, explaining why this
successful taxon is predominate in all the world’s oceans.
However, species from the NCCS, ETP and the Arctic may
be more vulnerable to future environmental conditions with
increased water temperatures and decreased oxygen levels.
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