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A B S T R A C T   

Accurate spatial information of agricultural parcels is fundamental to any system used in monitoring greenhouse 
gas emissions, biodiversity developments, and nutrient loading in agriculture. The inefficiency of the traditional 
methods used in obtaining this information is increasingly paving the way for Remote Sensing (RS). The 
Multiresolution Segmentation (MRS) algorithm is a well-known method for segmenting objects from images. The 
quality of segmentation depends on the a priori knowledge of which scale, shape and compactness values to use. 
With each parameter taking a varied range of input values, this research developed an automated approach for 
identifying the optimal parameter set without testing all possible combinations. At the core of our approach is 
Bayesian optimization, which is a sequential model-based optimization (SMBO) method for maximizing or 
minimizing an objective function. We maximized the Jaccard index, which is a measure that indicates the 
similarity between segmented agricultural objects and their corresponding reference parcels. As the optimal 
parameter combination varies between different agricultural landscapes, they were determined at a grid re
solution of 10 km. Mono-temporal Sentinel-2 images covering Lower Saxony in Germany were tiled to these 
grids and the optimal parameters were subsequently identified for each tiled grid. The optimal parameter 
combinations identified over the grids varied considerably, which indicated that a single parameter combination 
would have failed to achieve optimal segmentation. We found that the quality of segmentation correlated with 
the size of agricultural parcels. Under-segmentation was largely minimized but in areas with a predominant 
agricultural land-use, it was unavoidable. In agricultural parcels composed of heterogeneous pixels, over-seg
mentation was prevalent. Our approach outperformed other segmentation optimization methods existing in the 
literature.   

1. Introduction 

The increasing world population places enormous pressure on 
agricultural lands due to the growing demand for food. To meet this 
demand, natural habitats are being converted to farmlands, while ex
isting farmlands are being intensively utilized (Dudley and Alexander, 
2017). These conversions often lead to the destruction of biodiversity, 
high nutrient surpluses, and greenhouse gas emissions (Dudley and 
Alexander, 2017). The challenge then is to increase food production 
through sustainable agricultural management practices that leave 
minimal impact on the environment (Foley et al., 2011). 

The foundation of any effective agricultural management scheme is 
accurate spatial information of all agricultural parcels. The most pro
minent agricultural parcel information system within the European 
Union (EU) is the Land Parcel Identification System (LPIS), which is a 

spatial record of agricultural parcels declared by farmers (Taşdemir and 
Wirnhardt, 2012). It was established as part of the Common Agri
cultural Policy (CAP) framework to ensure that subsidies are correctly 
paid to farmers (Schmedtmann and Campagnolo, 2015). There have 
been suggestions by land managers to use LPIS as the foundation for 
developing sustainable agricultural schemes (Zielinski et al., 2008). 
Unfortunately, the LPIS has some drawbacks, which limits its use in an 
effective agricultural management scheme. Firstly, the LPIS does not 
record all agricultural parcels especially those with large grassland 
shares used for purposes like nature conservation and horse farming. 
This makes it difficult to monitor those parcels. Secondly, even though 
the LPIS is increasingly becoming available as open data in some EU 
countries, there is still restricted access in many countries including 
Germany. Thirdly, LPIS comes with a time lag, which makes in-season 
monitoring of parcels infeasible. In-season monitoring is critical to 
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understanding any emerging threats to biodiversity on agricultural 
lands in near real-time so that timely action can be taken to deal with 
those threats. Additionally, using LPIS requires a lot of pre-processing 
effort due to different technical implementations between different 
regions and countries within the EU. These drawbacks inhibit various 
agricultural bodies including public institutions from making use of the 
LPIS as source data for developing real-world agronomic and environ
mental applications. 

An automated system for generating a spatial database of all agri
cultural parcels could provide a solution to these drawbacks. With sa
tellite data becoming more accessible, Remote Sensing (RS) presents the 
best means of obtaining cost-effective, accurate and up-to-date in
formation of agricultural parcels due to its ability to obtain information 
over large areas with a high repetition rate (Atzberger, 2013). The 
launch and subsequent provision of free data by the Sentinel-2 satellites 
provide us a unique opportunity to obtain spatial information on 
agricultural parcels at a high spatial resolution over large geographical 
areas. The use of Sentinel-2 data for obtaining information on agri
cultural parcels is an active area of research as depicted by these studies 
(Belgiu and Csillik, 2018; Immitzer et al., 2016; Nasrallah et al., 2018; 
Watkins and Van Niekerk, 2019). The main limitation of those studies is 
that their respective methodologies were applied to small test areas and 
not geographic regions. One commonality amongst them is the use of 
object-based image analysis (OBIA), where spectrally similar pixels are 
grouped into homogenous objects through image segmentation and 
then the land-use type of each object is determined through object 
classification. A successful image segmentation process is the most 
critical step in this OBIA paradigm (Baatz and Schäpe, 2000; Benz et al., 
2004). 

Various algorithms have been developed to segment agricultural 
parcels from satellite images. The first category of algorithms is based 
on edge detection. They involve the extraction of edges and the sub
sequent linking of those edges to form boundaries. Turker and Kok 
(2013) and Ji (1996) applied edge-based methods to extract agri
cultural fields from SPOT and Landsat images respectively. The edge- 
based methods generate incomplete objects and often fail in landscapes 
where agricultural fields are small and boundaries are indistinct 
(Persello et al., 2019). Due to this limitation, region-based methods are 
more favored. Their underlying principle is that neighboring pixels with 
similar spectral values are merged into objects. Image clustering is one 
of the most simple and popular region-based methods. The Simple 
Linear Iterative Clustering (SLIC) algorithm developed by Achanta et al. 
(2012) was combined with supervised classification to segment agri
cultural fields from a WorldView-2 image by García-Pedrero et al. 
(2017). Nasrallah et al. (2018) used the mean shift clustering 
(Fukunaga and Hostetler, 1975) algorithm to delineate wheat fields 
from Sentinel-2 images. The main problem with clustering-based 
methods is that they often create very big objects, which do not follow 
the natural boundaries of image features. To deal with this problem, the 
third category of algorithms, a hybrid approach, is sometimes used. 
This approach involves the use of an edge extraction algorithm to 
produce an edge map, which is then given as an input to a region- 
growing algorithm. Using this approach, Li and Xiao (2007) and Yan 
and Roy (2014) respectively segmented crop fields from SPOT and 
Landsat images. The last category of algorithms, which is gaining 
traction in the RS world, is the use of Deep Neural Networks (DNN). A 
Fully Convolutional Network (FCN) called SegNet was employed by  
Persello et al. (2019) to identify initial agricultural boundaries from 
WorldView-3 images, which were later post-processed through a wa
tershed transform and combinatorial grouping to obtain complete 
agricultural fields. Rieke (2017) adopted the Fully Convolutional In
stance-aware Semantic Segmentation (FCIS) architecture of Li et al. 
(2016) for the segmentation of agricultural fields from a Sentinel-2 
image. The computationally complex nature of DNNs puts them at a 
disadvantage for use in RS because they take a lot of time for model 
training and optimization (Kamilaris and Prenafeta-Boldú, 2018). 

Therefore, they are mostly applied to small test areas as was done by  
Persello et al. (2019) and Rieke (2017). 

Even though there are many segmentation algorithms of choice, the 
Multiresolution Segmentation (MRS) algorithm proposed by Baatz and 
Schäpe (2000) and implemented in eCognition Developer (Trimble 
Germany GmbH, 2019) is the most widely used segmentation algorithm 
as evidenced by Marpu et al. (2010) and Neubert et al. (2008). Many 
researchers (Belgiu and Csillik, 2018; Conrad et al., 2010; Lebourgeois 
et al., 2017; Peña-Barragán et al., 2011; Vogels et al., 2019) have ap
plied the MRS algorithm for the delineation of agricultural parcels. MRS 
is a bottom-up region merging algorithm that starts with one-pixel 
objects and then subsequently merges neighboring objects into bigger 
objects where the change in the combined spectral and spatial hetero
geneity is minimal (Benz et al., 2004). In the implementation in 
eCognition Developer, the three main parameters that control the 
output of the MRS algorithm are scale, shape, and compactness. Each of 
these parameters takes a varied range of input values, thereby yielding 
an infinite number of parameter combinations. Therefore, determining 
the optimal parameter combination is critical to achieving optimal 
segmentation results. 

This research aims to develop an efficient approach to identify the 
optimal parameters needed to segment agricultural parcels using the 
MRS algorithm. The traditional approach to parameter optimization is 
the grid search method. Given any domain space of parameters, this 
method evaluates all possible parameter combinations using a given 
model and then returns the combination with the highest or lowest 
evaluation score as the optimal. As the number of parameters and 
elements in each parameter space increases, the computational time 
exponentially increases. This limitation was dealt with through the 
random search (Bergstra and Bengio, 2012) method. Using a smaller 
number of model evaluations within a shorter time frame, the random 
search method outperformed grid search (Bergstra and Bengio, 2012). 
However, these two methods are very inefficient in the process of 
identifying the optimal parameter because they do not consider the 
results of previous model evaluations before sampling new combina
tions, thereby wasting time on needless model evaluations. Overcoming 
these limitations requires the use of sequential model-based optimiza
tion (SMBO) (Bergstra et al., 2011). SMBO intuitively makes an in
formed prediction of which new combinations to test based on results 
from the previous model evaluations. 

SMBO is a succinct formalism of Bayesian optimization (Dewancker 
et al., 2016). Bayesian optimization is used in globally optimizing 
black-box functions (Mockus, 2012) with unknown derivatives that 
take a long time to evaluate (Frazier, 2018). It outperforms the grid and 
random search methods (Bergstra et al., 2011; Snoek et al., 2012). In
stead of directly solving a computationally expensive objective func
tion, Bayesian optimization first constructs a surrogate model with 
prior information of the objective function. The surrogate model is in
itiated with some samples drawn from the domain space to obtain 
posterior information of the objective function. A new sample is auto
matically identified by maximizing an acquisition function over the 
posterior surrogate model. This new sample is evaluated with the ob
jective function, and then the posterior surrogate model is updated with 
the result. This process is repeated until the maximum number of 
iterations or time allocation given by a user is reached (Dewancker 
et al., 2016; Shahriari et al., 2016). The sample from all the tests that 
minimized or maximized the surrogate model is returned as the op
timal. The usage of Bayesian optimization for parameter optimization 
has become an active research area (Eggensperger et al., 2013). It has 
been used in solving optimization problems (Brochu et al., 2010; 
Shahriari et al., 2016) in various areas such as robotics (Lizotte, 2007), 
environmental monitoring (Marchant and Ramos, 2012), sensor net
works (Osborne et al., 2010), and machine learning (Snoek et al., 2012; 
Thornton et al., 2013). To the best of our knowledge, there has not been 
any research geared towards the use of Bayesian optimization to opti
mize the parameters needed for segmenting satellite images, hence our 
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research is novel. 
To apply Bayesian optimization, the objective function must take a 

parameter combination from any domain space as an input and then 
return an evaluation score. We derived this score by making use of 
empirical segmentation evaluation (Zhang, 1996), where the similarity 
between segmented agricultural parcels and their corresponding re
ference objects was numerically assessed through the Jaccard index. 
The combination with the highest Jaccard index is returned by the 
Bayesian optimization method as the optimal. We tested our approach 
on mono-temporal Sentinel-2 images covering Lower Saxony, which is a 
federal state in Germany. The result achieved was compared with other 
optimization methods based on the MRS algorithm. 

The rest of the paper is structured as follows: the study area and the 
data are first described. Afterward, we explain the overall methodology 
including data preparation, development of our optimization approach, 
and its application to images in Lower Saxony. The results achieved are 
then discussed. We finish the paper by drawing some conclusions and 
pointing out further research directions. 

2. Study area and data 

We selected Lower Saxony (Fig. 1) as the study area because the 
Ministry of Food, Agriculture and Consumer Protection of Lower 
Saxony permitted us to use the LPIS as reference data. The coordinates 
of the map in Fig. 1 and all other maps in this paper are in UTM Zone 
32 N (EPSG:32632). Most of its landmass is located in the temperate 
climate zone of Europe. The southeastern part is located in the con
tinental climate zone. Apart from the southeastern part, where one can 

locate the Harz mountain range, the terrain is relatively flat, making it 
suitable for farming. Various agricultural land-use types cover about 
62% of its total land area of about 4,770,041 ha. The LPIS data is made 
up of 907,564 agricultural parcels. Based on this data, the most domi
nant agricultural land-use types, in order of percentage coverage, are 
grasslands (40%), summer cereals (23%), winter cereals (17%), pota
toes (3%), winter rapeseed (3%), and sugar beet (2%). The size of the 
agricultural parcels ranges from as low as 0.1 ha to as high as 155 ha. 
The average parcel size is 3 ha. Even though the agricultural landscape 
is composed of heterogeneous parcel sizes, the minimum parcel size is 
large enough to be detected by the Sentinel-2 satellite. To ensure that 
the optimal segmentation parameters are representative of the wide 
range of parcel sizes, a square tile grid system made up of 
10 km × 10 km tiles covering Lower Saxony was created. The total 
number of tiles came up to 562. Neighboring tiles have an overlap of 
1 km. These tiles served as the basic unit for which the optimal MRS 
parameter combination had to be determined. 

The Sentinel-2 images provided by the European Space Agency 
(ESA) were used for this research. Sentinel-2 is an optical satellite with 
thirteen spectral bands in the visible, near-infrared, and short-wave 
infrared regions of the electromagnetic spectrum. The spatial resolution 
ranges from 10 m to 60 m. The Level 1C images with a maximum cloud 
cover of 20% in May of 2018 were downloaded from the data repository 
of ESA. In May, winter crops are nearly at peak growth, while summer 
crops are just about shooting up. This makes it easier to differentiate 
and segment agricultural parcels, hence the choice of images in May. 
Fourteen Sentinel-2 images were downloaded to cover every part of 
Lower Saxony. For each tile, the first image that is cloud-free and non- 

Fig. 1. The study area is Lower Saxony, Germany. This federal state was divided by a tile grid system made up of 10 km × 10 km tiles (blue polygons) numbering 
562. For each tile, a Sentinel-2 image was extracted and used as input for segmentation. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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defective was identified via visual inspection. The final image acquisi
tion dates used in this research came up to six (Fig. 2). 

Three auxiliary datasets were used to mask out non-agricultural 
areas from the Sentinel-2 images. The first dataset was the German 
Official Topographic Cartographic Information System (ATKIS) pro
vided by the German Federal Agency for Cartography and Geodesy. 
ATKIS is a geographic database that captures the topography of 
Germany. The agricultural and non-agricultural vector layers covering 
Lower Saxony were extracted from this database. Out of the total 
agricultural land-cover area of about 2,936,292 ha, 65% are farmlands, 
33% are grasslands, and the rest is composed of fruit plantations, tree 
nurseries, horticultural lands, and orchard meadows. The second one 
was the hydrological network dataset provided by the German Federal 
Institute of Hydrology, which contains all watercourses in Germany. 
Finally, linear features representing roads in Lower Saxony were 
downloaded from Open Street Map (OSM). The total length of roads is 
about 268,529 km. According to the OSM feature classification, there 
are 22 different types of roads in Lower Saxony. Majority of them are 
tracks (38%), followed by residential roads (16%), minor roads that 
link villages and hamlets (9%), service roads (7%), cycleways (6%), 
tertiary roads (6%), paths (5%), and the others. 

3. Methodology 

This section describes the development of our optimization ap
proach and its application to image tiles in Lower Saxony, Germany. 
Our approach is a framework for identifying the optimal parameters 
needed for the segmentation of agricultural parcels and the actual de
lineation of those parcels from satellite images. Fig. 3 shows the general 
workflow. 

3.1. Data preparation 

Using the Sen2Cor (Main-Knorn et al., 2017) plugin in the Sentinel 
Application Platform (SNAP) of ESA, the Sentinel-2 Level 1C images 
were atmospherically and terrain corrected to obtain Bottom-Of-At
mosphere (BOA) Level 2A images. For each Level 2A image, only the 
visible (red, green, blue) and near-infrared bands were used. These four 

bands have a spatial resolution of 10 m, unlike the other bands that 
have a lower spatial resolution (≥20 m). A higher spatial resolution 
leads to a higher segmentation quality (Mesner and Oštir, 2014). We 
stacked the four bands together into an image. Therefore, this image, 
which is henceforth named S2-VNIR, has a spatial resolution of 10 m. 

The LPIS and ATKIS datasets sometimes contain sliver polygons. 
Those polygons were deleted based on their perimeter-to-area ratio. 
This deletion was more significant in the LPIS as the total number of 
parcels reduced to 853,892. The motorway line features in the OSM 
were buffered by 10 m, while the other line features like tracks and 
residential roads were buffered by 5 m to obtain polygon features. A 
buffer distance of 10 m was applied to all the watercourse line features. 
All the buffer distances were empirically determined by overlaying the 
line features on different images and testing various buffer distances 
such that the area of any resultant polygon was large enough to contain 
at least one pixel. Out of the various buffer distances we tested, the 
aforementioned buffer distances we used in this study were identified as 
optimal because they resulted in polygons with minimal encroachment 
on the boundaries of neighboring agricultural parcels. A no-data mask 
layer was created by merging the non-agricultural vector layer with the 
OSM and watercourse polygons. All pixels in each S2-VNIR data that 
intersected the no-data mask layer were masked out. Finally, each S2- 
VNIR data was clipped to the tile grid it spatially covered. These clipped 
S2-VNIR datasets were used for further processing. Fig. 4a shows one 
S2-VNIR image containing both agricultural and non-agricultural areas, 
while Fig. 4b shows the same image with all non-agricultural areas 
removed using the no-data mask layer. 

3.2. Optimization design and application 

At the heart of our optimization approach are image segmentation, 
supervised evaluation of segmentation quality, and Bayesian optimi
zation. 

3.2.1. Image segmentation 
The Multiresolution Segmentation (MRS) algorithm as implemented 

in eCognition Developer 9.5.0 was used for image segmentation. MRS is 
a pair-wise merging process that starts with single-pixel objects well 

Fig. 2. A total of six cloud-free Sentinel-2 images covering Lower Saxony were used. The total number of tiles for each image acquisition date is shown as well. The 
majority of the tiles were captured by images from 5 May to 8 May 2018. The 5 May image covered most tiles. 
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distributed over an image. For each pixel object, a neighboring pixel 
object is found such that the change in heterogeneity between them is 
minimal. The heterogeneity of each object is computed as a function of 
the color and shape of that object. Where the change in heterogeneity is 

minimal, the two objects are merged into a bigger object. Each object is 
handled once per loop cycle. This merging process stops as soon as the 
number of pixels in any object exceeds a user-given threshold value. 

The three parameters that influence the segmentation outcome are 

Fig. 3. The general workflow that was followed to determine the optimal parameter combinations for Lower Saxony.  

Fig. 4. (a) A non-masked S2-VNIR image. (b) The same image with non-agricultural areas, watercourses, and streets removed.  
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scale, shape, and compactness. Scale refers to the minimum object size, 
which is used as the stopping criteria for the algorithm. It is not 
bounded but mathematically, it cannot be lesser than one or greater 
than the size of the input image. The shape indicates the weight to put 
on the form of objects during the segmentation process as compared to 
color (spectral) information. Any change made to shape inversely af
fects color. The sum of the shape and color weights is equal to 1. Color 
is always required during the segmentation process, hence shape ranges 
from 0 to 0.9. The compactness weight defines the influence of the 
squareness of objects as opposed to their smoothness. The compactness 
and smoothness weights also add up to 1. Compactness ranges from 0 to 
1. For a more detailed mathematical explanation of the MRS algorithm, 
readers are referred to the relevant literature (Baatz and Schäpe, 2000; 
Benz et al., 2004; Trimble Germany GmbH, 2019). 

3.2.2. Evaluation of segmentation quality 
Empirical segmentation evaluation (Zhang, 1996) was adopted for 

this research. It involves the computation of the geometric discrepancy 
or similarity between the LPIS and each segmentation layer. For each 
segmentation layer, the first step is to identify the segment that corre
sponds to a reference parcel in the LPIS. This was done using the two- 
sided overlap criteria (Clinton et al., 2010). A segment was considered 
to be a corresponding segment if the area of the intersection between 
that segment and a reference parcel was either more than half of the 
area of the segment or the reference parcel. A modification was made 
such that if a segment has more than one reference parcel with the same 
land-use type, those parcels are merged as a single reference parcel for 
that segment (Fig. 5). This was done to minimize under-segmentation. 

The similarity between the reference parcel and the corresponding 
segment was computed via the Jaccard index (Jaccard, 1901), which is 
popularly known as Intersection over Union (IoU). It is a statistic widely 
used in computer vision tasks to measure the accuracy at which objects 
in an image or a video are detected by an algorithm. Its mathematical 
formulation is shown in Eq. (1); 

=IoU Y Area X Y
Area X Y

( ) ( )
( ) (1)  

where X is the reference parcel, Y is the corresponding segment, X 
Y is the spatial intersection between the two objects and X Y re
presents the spatial union of the two objects. It is bounded between 0 
(no spatial similarity) and 1 (complete spatial match). The overall 
segmentation quality (OSQ) of each segmentation layer was finally 
computed as a weighted average of IoU over all segments using Eq. (2); 

= =

=
OSQ

Area Y IoU Y
Area Y
( ) ( )

( )
i
n

i i

i
n

i

1

1 (2) 

where Y represents a segment and n is the total number of segments in 

each segmentation layer. The segments along the spatial boundary of 
each segmentation layer were eliminated from the computation of the 
OSQ since they are artifacts created as a result of clipping the S2-VNIR 
images to the tiles. 

3.2.3. Bayesian optimization 
The essential components of our Bayesian optimization approach 

are:  

(a) Domain space: this refers to the parameter space of each MRS 
parameter, of which the Bayesian optimization routine has to 
identify the optimal parameter combination. Scale ranged from 20 
to 200, shape from 0 to 0.9, and compactness from 0 to 1.  

(b) An objective function to minimize: our objective function, f(x), 
takes a parameter combination, x, from the domain space, gen
erates a segmentation vector layer, uploads the vector layer into a 
PostgreSQL database, computes the OSQ, and then returns an in
verted OSQ as 1 – OSQ.  

(c) A surrogate model: it is a predictive probability model that captures 
the prior probability distribution, p(y), of the objective function and 
is iteratively updated to capture the objective function’s posterior 
probability distribution, p(y|x), where y is the inverted OSQ. The 
surrogate model is a realization of the Bayes’ rule (Eq. (3)); 

=p y x p x y p y
p x

( ) ( ) ( )
( ) (3) 

where p x y( | ) is a likelihood distribution and is a marginal prob
ability. To build the posterior probability distribution, we need to 
define two things: the prior distribution function and the initial 
parameter combinations with their corresponding inverted OSQ. 
Two of the most used prior distribution functions are Gaussian 
Process (GP) (Rasmussen and Williams, 2006) and Random Forest 
(RF) (Breiman, 2001). However, GP has become a standard prior 
(Brochu et al., 2010; Dewancker et al., 2016) in Bayesian optimi
zation. GP is parametrized by a mean function, μ, and covariance or 
kernel function, k. For convenience, μ is set as a zero function, 
leaving the user with the more interesting k, which defines the 
quality of the surrogate model (Brochu et al., 2010). The default 
choice of k for GP regression is the automatic relevance determi
nation (ARD) squared exponential kernel (Brochu et al., 2010; 
Snoek et al., 2012). However, Snoek et al. (2012) recommended the 

Fig. 5. The merger of reference parcels based on their land-use type. The seg
ment corresponds to three reference parcels based on the two-sided overlap 
criteria. The three parcels were merged into one because winter wheat is grown 
on all of them. 

Fig. 6. The scatterplot showing the non-inverted OSQ computed for each seg
mentation layer of the test image. Each dot represents a data point of scale, 
shape, and compactness with its corresponding non-inverted OSQ. The blue 
dots (125) represent the initial parameter combinations and the red dots (25) 
represent the actual Bayesian iterations. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this 
article.) 
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use of the ARD Matérn kernel (Stein, 1999) as captured by Eq. (4) 
because the squared exponential kernel is unrealistically smooth for 
practical optimization problems; 

=k x x
v

v
l

d x x K v
l

d x x( , ) 1
( )2

2 ( , ) 2 ( , )i j v i j

v

v i j1 (4) 

where v and l are non-negative parameters, d x x( , )i j is the distance 
between two parameter combinations xi and xj, is the gamma 
function, and Kv is the modified Bessel function (Rasmussen and 
Williams, 2006). We tested the first and second-order Matérn ker
nels recommended by Rasmussen and Williams (2006) for machine 
learning, and the first order proved superior, so we kept that. For 
first-order, v is 1.5 and for the second-order, it is 2.5. The next step 
is to initialize the GP prior model with actual data. This is usually 
done by randomly sampling a user-given number of parameter 
combinations from the domain space and then the inverted OSQs 
are computed with f(x). This randomness would prevent reprodu
cibility, so we opted for systematic sampling. To obtain the initial 
samples, D, we always sampled 125 parameter combinations cov
ering the low, middle and high ends of each parameter range. The 
values for scale are [40, 80, 120, 160, 200], and for both shape and 
compactness [0.1, 0.3, 0.5, 0.7, 0.9]. We used two parallel pro
cesses for segmenting and calculating the inverted OSQ of each 
parameter combination in D.  

(d) An acquisition function: it is used to propose new x combinations in 
the domain space to evaluate with f(x) by making use of the GP 
posterior probability distribution, p(y|x). Even though there are 
many acquisition functions, expected improvement (EI) (Jones 
et al., 1998) is the most commonly used (Frazier, 2018). The 

possible improvement on the current optimal parameter combina
tion, xo, at any new parameter combination, x , is given by Eq. (5); 

=I x max f x f x( ) { ( ) ( ), 0}o (5) 

where f(xo) is the inverted OSQ value at xo. Given that f x( ) is com
putationally expensive to evaluate, the approach to identifying which x 
to evaluate next is rather to compute the expected value of I x( ) using 
the GP posterior, p(y|x), which is faster to compute. Computing this 
expected value involves several partial integrations of I x( ) to obtain a 
closed form (Jones et al., 1998) as shown by Eq. (6); 

= +EI x y y y y
s

s y y
s

( ) ( )o
o o

(6) 

where yo is the inverted OSQ value at xo, y is the GP posterior p(y|x), 
and are the standard normal density and distribution functions, and s
is the standard error of the GP posterior at x. Normally, many para
meter combinations are randomly sampled from the given domain 
space, and the combination with the highest expected improvement is 
selected as a candidate and passed to f(x) as the next point to evaluate. 
We used 10,000 random parameter combinations from our domain 
space as defined in (a). Alternatively, the x candidate can be identified 
using the Limited Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) (Liu 
and Nocedal, 1989) algorithm. From the 10,000 random combinations, 
we identified the first five combinations with the highest expected 
improvement. Using these combinations as initialization points, L-BFGS 
is iteratively able to find the local minima of EI, of which the optimal is 
then selected as the best candidate. We chose L-BFGS simply because it 
is more intuitive and ensures some level of reproducibility. This x 
candidate is then given to f(x) to compute the inverted OSQ. The x 

Table 1 
The impact of different initial parameter combinations on the results of Bayesian optimization. The number of initial combinations for TS1 was 64 and TS2 was 27. 
The number of Bayesian iterations for TS1 was 86 and for TS2 123.              

Test Scale Shape Comp. Optimal Parameters OSQ Time  

Range Interval Range Interval Range Interval Scale Shape Comp.    

TS1 20–200 60 0.0–0.9 0.3 0.0–0.9 0.3 60 0.884 0.919 66.82% 36 min 
TS2 30–190 80 0.0–0.8 0.4 0.0–0.8 0.4 56 0.9 0.677 67.54% 49 min 

Fig. 7. The highest OSQ computed for each tile in Lower Saxony.  
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candidate and its inverted OSQ are then appended to D. The process is 
repeated from (c) to (d) with the current p(y|x) replacing p(y) to con
tinuously update the posterior probability distribution. The repetition is 
done until a user-given number of iterations is completed. We allowed 
150 function calls to f(x) including the 125 initial samples, meaning the 
actual number of Bayesian iterations was 25. 

For the complete mathematical foundation of Bayesian optimiza
tion, readers are referred to Brochu et al. (2010), Frazier (2018) and 
Shahriari et al. (2016). For automation purposes, we used eCognition 
Server 9.5.0 and its command-line interface (CLI) for segmentation. We 
limited parallel execution of the MRS segmentation to two because we 
have two eCognition Server licenses. The Python programming lan
guage was used to chain everything together. We used the Bayesian 

optimization implementation of Scikit-optimize in Python. It is im
portant to mention that, the computed OSQ was inverted because Scikit- 
optimize is programmed for function minimization. 

We randomly selected one of the 562 tiled images to test the ef
fectiveness of our Bayesian optimization approach in identifying the 
optimal MRS parameters. To visualize the parameter combinations 
sampled by the Bayesian optimization routine alongside the corre
sponding non-inverted OSQs in two-dimensions, we first conflated each 
parameter combination of scale, shape, and compactness into a single 
value using Euclidean Distance (ED). Each scale value was normalized 
between zero and one before being used in the calculation of the ED. 
We then plotted each ED against its corresponding non-inverted OSQ 
(Fig. 6). Our Bayesian optimization approach was very efficient as it 

Fig. 8. Some of the contributing factors preventing the segmentation quality from reaching 100%. (a) A parcel in LPIS with three corresponding segments (CSs) 
overlaid on a Sentinel-2 image. The overlapping area, over-segments, and under-segments between each CS and the LPIS parcel are shown in (b), (c) and (d) 
respectively. 

Fig. 9. The prevalent instances of over-segmentation. (a) A sentinel 2 image. (b) LPIS parcels and their corresponding segments overlaid on the Sentinel-2 image. Two 
corresponding segments were respectively created for each reference parcel due to the heterogeneity of the soil pixels in both parcels. 

G.O. Tetteh, et al.   Computers and Electronics in Agriculture 178 (2020) 105696

8



mostly exploited parameter combinations that yielded high OSQs. Out 
of the 25 combinations it sampled, 16 of them yielded OSQs above 
60%. Using a total execution time of 16 min, the highest OSQ of 67.33% 
(ED = 1.1) was achieved with the parameter combination of 55 for 
scale, 0.9 for shape, and 0.602 for compactness. 

Additional information discernable from Fig. 6 is that the distribu
tion of the initial parameter combinations can play a role in identifying 
the optimal combination. Therefore, before applying our approach to 
the 562 tiles, we also tested it to see how the variation of the initial 
parameter combinations could affect the OSQ. Table 1 shows two tests 
labeled TS1 and TS2 that were done using different initial parameter 
combinations. It also captures the optimal parameter combination, 
OSQ, and execution time per test. The number of initial combinations 
for TS1 was 64 and for TS2 27. For all tests, the number of iterations 
was kept at 150, meaning 86 and 123 Bayesian iterations were run for 
TS1 and TS2 respectively. 

From Table 1, the differences in OSQ between each test and the 
approach we adopted, which yielded an OSQ of 67.33%, was very 
marginal. Therefore, we concluded that the initial parameter combi
nations do not significantly affect the Bayesian optimization results as 
long as they are well distributed over the domain space and the number 
of Bayesian iterations is increased accordingly. Due to the increased 
number of Bayesian iterations, the execution time per test drastically 
increased. It is imperative to mention here that the actual optimal 
parameter combination needed for segmentation based on the MRS 
algorithm is unknown. This is true especially for shape and 

compactness because they take floating-point numbers as input unlike 
scale, which accepts only integers, hence more deterministic. Ad
ditionally, different methods under different time constraints will most 
likely yield different results, an example of which is shown in Table 1. 
Therefore, a method that can approximate this unknown optimal 
combination in a time-efficient manner is the goal of any segmentation 
optimization approach. Our approach of using 125 initial combinations 
was more viable than the other two tests (TS1 and TS2) in terms of 
approximating the optimal MRS parameter combination within a 
shorter execution time. Therefore, we applied our approach to the 562 
tiles in Lower Saxony to approximate the optimal segmentation para
meters and delineate agricultural parcels. The execution was completed 
in seven days. 

3.3. Other optimization methods 

Two existing segmentation optimization methods based on the MRS 
algorithm in eCognition Developer were compared with our approach. 
The first one is the segmentation accuracy assessment (SAA) method 
(Anders et al., 2011). The SAA, just like our approach, is a supervised 
method. It creates segments at different scale levels, computes the 
discrepancy between reference objects and their corresponding seg
ments at each level, and then identifies the level with the least dis
crepancy as optimal. To calculate the discrepancy measure for any 
segmentation layer, it first generates a frequency distribution from the 
spectral values of pixels that fall within each reference object and its 
corresponding segment, respectively. The two frequency distributions 
are then normalized with the respective number of pixels in each dis
tribution. The segmentation error between the reference object and its 
corresponding segment is then calculated as the sum of absolute error 
between the two normalized frequency distributions. The discrepancy 
measure is finally computed as the average sum of absolute error over 
all segments (Eq. (7)); 

=
=

AAE
n

H
a

H
b

1

i

n
x

x

y

y i1 (7) 

where n is the total number of segments in the segmentation layer, Hx is 
the frequency distribution of pixels in the reference object, Hy is the 
frequency distribution of pixels in the corresponding segment, and ax
and by are the number of pixels within the reference object and the 
corresponding segment, respectively. The segmentation layer with the 
lowest AAE value is the optimal. The default values of 0.1 for shape and 
0.5 for compactness were used. The scale ranged from 20 to 200 with 

Fig. 10. Under-segmentation caused by adjacent parcels with similar spectral behavior. (a) A Sentinel-2 image. (b) Two LPIS parcels and their corresponding segment 
overlaid on the Sentinel-2 image. One corresponding segment was created due to the spectral similarity of winter barley and winter triticale. 

Fig. 11. Correlation between the highest OSQ and the median area of agri
cultural parcels for all tiles. 
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increments of 5. 
The second optimization method is the estimation of scale para

meter (ESP-2) tool (Drăguţ et al., 2014), which is an improvement of 
the original version (Drǎguţ et al., 2010). Unlike the SAA and our ap
proach, the ESP-2 tool is an unsupervised method, which is purely 
driven by the image content and does not use any reference data. Ad
ditionally, it is fully automated and applicable to images with multiple 
bands. Due to those characteristics, it is very popular in the world of 
MRS. It is underpinned on the concept of local variance (LV) 
(Woodcock and Strahler, 1987). It creates segments in a stepwise 
manner using incremental scale values. For each segmentation layer, 
the standard deviation of pixels in each segment is computed for each 
image band. The LV per band is calculated as the average standard 
deviation over all segments. The LV is finally averaged over all bands to 
obtain one LV per segmentation layer (Eq. (8)); 

=
= =

ALV
b n
1 1

j

b

i

n

i
j1 1 (8) 

where b is the total number of bands in an image, n is the total number 
of segments in a segmentation layer, and i is the standard deviation of 
pixels per segment. ALV is a measure indicating the level of 

homogeneity within a segmentation layer. When the ALV of the current 
scale level is equal to or lower than the previous ALV, the iteration 
stops, and the segments created at the previous scale level are main
tained. Here again, the default values of 0.1 for shape and 0.5 for 
compactness were kept and the scale was automatically determined by 
the ESP-2 tool. 

4. Results and discussion 

4.1. Analysis of segmentation quality 

The highest OSQ identified for each tile is shown in Fig. 7. Most of 
the values ranged from 42.0% to 69.2%. The three tiles with values 
above 69.2% are highly dominated by non-agricultural land-use such 
that only a few reference parcels were used for segmentation evalua
tion. The lower the number of reference parcels, the higher the prob
ability of obtaining high OSQ values. This relationship was also ob
served by Novelli et al., (2017), who emphasized the importance of 
using a high number of reference objects in supervised segmentation 
evaluation after establishing a positive correlation between segmenta
tion accuracy and the amount of reference data used for evaluation. 

It is important to state that a 100% OSQ is not achievable for a 

Fig. 12. Segmentation evaluation at the segment level for T1 (highest OSQ) and T2 (lowest OSQ). (a) and (b) show the Sentinel-2 images used for segmenting the T1 
and T2 tiles respectively. The created segments have been colored according to the IoU computed for each of them and subsequently overlaid on each image 
respectively at (c) and (d). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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couple of reasons. The LPIS parcels are polygons with straight edges 
representing a single land-use digitized from orthophotos. Conversely, 
the segments automatically extracted from the Sentinel-2 images have 
pixelated edges. Additionally, the orthophotos have a higher spatial 
resolution (≤1 m) than the Sentinel-2 images. These differences cul
minate in the segments and the LPIS parcels being misaligned especially 
at the borders (Fig. 8a). Simplifying the segments did not eliminate this 
problem. 

Over-segmentation was the main contributing factor that negatively 
affected the OSQ. It mostly occurred due to the heterogeneity of pixels 
within a parcel. In Fig. 8a, the LPIS indicates that there is one parcel on 
which three types of clover are grown. Due to the different growth 
stages, the MRS algorithm created three different segments (CS1, CS2, 
and CS3) as captured by Fig. 8a. This led to over-segmentation 
(Fig. 8b–d). Even though this type of over-segmentation is acceptable 
within the context of biodiversity monitoring and structural change 
analysis of agricultural parcels, it reduces the OSQ. The IoU computed 
respectively for CS1, CS2, and CS3 are 49.27%, 16.48% and 26.59%. 
Using those three segments, the OSQ amounted to 37.39%. When all the 
segments are first merged into a single polygon before computing the 
OSQ, the OSQ increased to 90.51%. This underscores the negative 
impact of over-segmentation on the OSQ. Even though this instance of 
over-segmentation led to a lower OSQ, it is entirely acceptable given 
that the segmentation algorithm correctly delineated the different 
parcels present in that area as visible from the satellite image. The in
ability of LPIS to correctly capture the different agricultural parcels 
present in that area was the negative driving force behind the low OSQ. 
Therefore, the low OSQ can largely be attributed to the error in LPIS 
and not the segmentation. 

Fig. 9 captures another instance of over-segmentation. In Fig. 9b, 
both LPIS parcels are used to grow maize. When the Sentinel-2 image 
(Fig. 9a) was taken on 5 May 2018, the parcels were bare consisting of 
soil patches with different colors, which led to the creation of small 
fragments within those parcels (Fig. 9b). Such instances of over-seg
mentation were more prevalent. As over-segmentation increases, the 
OSQ decreases. In general, the best possible way to deal with over- 
segmentation will be to merge neighboring segments with the same 
land-use type after classifying the segments. 

Under-segmentation, which mostly occurred when the same crop 
types are grown on adjacent parcels, was highly minimized due to the 

modification made at the segmentation evaluation stage. In adjacent 
parcels with different crop types but similar spectral properties, under- 
segmentation was unavoidable. In Fig. 10b, even though the LPIS in
dicates that two distinct parcels are present, one big segment was cre
ated because winter barley and winter triticale have similar spectral 
properties as shown in Fig. 10a. 

Another factor that influenced the segmentation quality was the size 
of agricultural parcels. Fig. 11 shows the linear relationship between 
the OSQ and the median area of agricultural parcels per tile. The 
Pearson correlation coefficient (r) of 0.56 indicated that at tiles with 
larger agricultural parcels, the OSQ was higher as opposed to tiles with 
smaller agricultural parcels. Tiles with similar median areas have si
milar OSQ values, thereby naturally clustering together as visible in  
Fig. 7. 

To further demonstrate the impact of the area of agricultural parcels 
on the segmentation quality, two tiles with contrasting agricultural 
parcel structures were selected for analysis at the segment level.  
Fig. 12a captures the Sentinel-2 image of tile T1 with the highest OSQ 
(69.17%), while Fig. 12b shows that of tile T2 with the lowest OSQ of 
42.04%. The median area of agricultural parcels in T1 and T2 is 4.12 ha 
and 1.73 ha respectively. The segments created for each tile are shown 
in Fig. 12c and d respectively. Each segment is colored by the geometric 
match, here the IoU, between that segment and its corresponding LPIS 
parcel. In Fig. 12a, the agricultural parcels are big and compact. Dif
ferent agricultural land-use types like sugar beets and winter wheat 
exist there. This made it easier to delineate the parcels, which led to 
most parcels having high IoU values. Fig. 12b, on the other hand, shows 
that the parcels are small and elongated. Almost all of them are used to 
grow pome fruits with virtually no boundaries between them discern
able from the Sentinel-2 image. This led to the creation of segments way 
bigger than the LPIS parcels, which led to most of the segments having 
very low IoU values. This consequently led to a low OSQ for that tile. 

The fidelity of the OSQ was checked by visually inspecting tile T3, 
which has a relatively high OSQ of 68.46%. The Sentinel-2 image and 
the generated segments are shown in Fig. 13. About 86% of this tile is 
made up of pasture lands. With our segmentation evaluation process 
mostly focused on minimizing under-segmentation, it culminated in the 
creation of big segments, which were not representative of real-world 
agricultural parcels. Therefore, the OSQ should not be used alone but 
supported with visual inspection to make full deductions on 

Fig. 13. Visual inspection of tile T3 with a relatively high OSQ of 68.46%. (a) The Sentinel-2 image of T3. (b) The evaluated corresponding segments colored by their 
respective IoU and draped over the Sentinel-2 image. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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segmentation quality. 

4.2. Optimal parameter combination per tile 

The scale, shape, and compactness values that resulted in the 
highest OSQ for each tile are presented here. Fig. 14a shows the optimal 
scale values. Most of the scale values were from 34 to 53, with the 
modal value being 40. Scale values above 77 correspond to the tiles 
with a very small number of LPIS parcels for evaluation. The optimal 
shape value identified for each tile is depicted in Fig. 14b. The shape 
values did not show a lot of variability over its possible range. Most of 
the values were above 0.8 and often reached the maximum of 0.9, 
which signifies the dominance of the shape of the agricultural parcels as 
compared to their spectral information during the segmentation eva
luation process. Fig. 14c shows the optimal compactness values for the 
tiles. Unlike shape, the compactness values were so variable that visible 
clusters were not established. Even though the values stretched over the 
possible compactness range, most of them were above 0.5, with 0.7 
being very dominant. This stands to reason given that the optimal shape 

values were relatively high. Additionally, in Germany most agricultural 
farms have square or rectangular shapes, hence very compact. 

4.3. Comparison with other optimization methods 

The SAA and ESP-2 methods were applied to the T1, T2, and T3 
images. Table 2 captures the optimal parameters and corresponding 
OSQ values obtained by the two optimization methods and ours. As a 
reminder, the other two methods only optimized scale, while shape and 
compactness were kept at their default. At all tiles, SAA and ESP-2 
obtained different scale and OSQ values, which is contrary to the results 
of Belgiu and Drǎguţ (2014). Belgiu and Drǎguţ (2014) evaluated the 
SAA and ESP-2 methods for optimal extraction of buildings from very 
high-resolution satellite images. In the test areas with big buildings, 
both methods achieved very similar results. In general, buildings are 
very compact and have very homogeneous surfaces making it easier to 
delineate them compared to agricultural parcels. This could have con
tributed to the differences in the results alongside the different satellite 
images used. 

At all three tiles, the OSQs of SAA and ESP-2 were significantly 
lower than our approach (Table 2). The optimal shape and compactness 
values identified by our approach gave a better indication of the 
structural composition of parcels in each tile. Further, the visual as
sessment of the IoU computed at the segment level showed that there 
were more segments with higher qualities based on our optimization 
approach (Fig. 15a–c) than the SAA (Fig. 15d–f) and the ESP-2 
(Fig. 15g–i) methods. 

The outcome of the two methods using the optimal shape and 
compactness values identified with our optimization approach is shown 
in Table 3. This time around, their OSQs improved significantly and got 
closer to those of our approach. This underscores the importance of 
determining the optimal values not only for scale as is done by the SAA 
and ESP-2 but also for the other MRS parameters. This is what differ
entiates our approach from the other two, making ours demonstrably 
more accurate. At T2, the segmentation challenge remained. Both 
methods, as well as our approach, performed poorly due to the over
whelming presence of small and elongated agricultural parcels. This is 
more of a data issue than the segmentation optimization method. The 
likely solution to this problem is the use of an image with a higher 
spatial resolution than Sentinel-2 such that distinct boundaries between 
the agricultural parcels can be identified, thereby making it easier to 
delineate the parcels while minimizing under-segmentation. 

5. Conclusions 

Accurate and up-to-date information on agricultural parcels is pi
votal to any agricultural management system. The most prominent 
spatial database of agricultural parcels within the European Union (EU) 
called the Land Parcel Identification System (LPIS) suffers certain 
drawbacks such as the inadequate coverage of all agricultural parcels, 
restricted access to the data, the time lag that comes with the data, and 

Fig. 14. The optimal parameter values identified for each tile in Lower Saxony.  

Table 2 
The optimal parameters and corresponding OSQ values obtained by the two 
optimization methods and our approach.        

Tile Method Shape Compactness Scale OSQ  

T1 SAA 0.1 0.5 85 55.65% 
ESP-2 0.1 0.5 73 50.81% 
Our approach 0.9 0.966 51 69.17% 

T2 SAA 0.1 0.5 45 30.24% 
ESP-2 0.1 0.5 147 33.23% 
Our approach 0.9 0.3 40 42.04% 

T3 SAA 0.1 0.5 65 48.59% 
ESP-2 0.1 0.5 83 52.52% 
Our approach 0.842 0.906 77 68.46% 
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the different implementation methods used by the different EU coun
tries to generate the data leading to different sources of error. To deal 
with those drawbacks, a supervised and automated Bayesian optimi
zation framework was developed to identify the optimal parameters of 
the Multiresolution Segmentation (MRS) algorithm for segmenting 

agricultural parcels in the federal state of Lower Saxony in Germany 
based on mono-temporal Sentinel-2 images. 

To determine the optimal parameters, an area-weighted Jaccard 
index was used as a proxy for segmentation quality. The parameter 
combination with the highest weighted Jaccard index was adjudged the 
optimal for each 10 km × 10 km tile grid in Lower Saxony. The es
tablished optimal parameters were variable especially the compactness 
and scale, which indicated that a single parameter combination could 
not have guaranteed optimal segmentation for Lower Saxony. This re
inforces the significance of our approach to determine the optimal 
parameters for different parts of Lower Saxony using tile grids. Given 
that the sizes of agricultural parcels in Germany do not drastically 
change from one year to another, the MRS parameters established for 
one year can potentially be used to segment agricultural parcels from 
images acquired within the same time window (month) from another 
year. We came to this preliminary conclusion after doing two tests. In 

Fig. 15. Segmentation evaluation at the segment level for the different optimization approaches at T1 (a, d, g), T2 (b, e, h), and T3 (c, f, i). Each segment is 
symbolized by its IoU and draped over their respective images. (a)–(c) are the segments based on our optimization approach, (d)–(f) are based on the SAA method, 
and (g)–(i) are those of the ESP-2 method. 

Table 3 
The optimal scale and corresponding OSQ values obtained by the other opti
mization methods using the shape and compactness values identified with our 
approach.         

Tile Shape Compactness Scale OSQ    

SAA ESP-2 SAA ESP-2  

T1 0.9 0.966 35 45 63.91% 68.75% 
T2 0.9 0.3 30 54 42.00% 39.30% 
T3 0.842 0.906 35 64 58.50% 67.48% 
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the first test, we used the MRS parameters established for tiles in May of 
2018 to segment cloud-free images of those same tiles in May of 2019 
and then used the LPIS data of 2019 to calculate the overall segmen
tation quality (OSQ) per tile. For the second test, we applied our 
Bayesian optimization approach to optimally segment those cloud-free 
images in May of 2019 using the LPIS data of 2019 as a reference and 
subsequently identified the OSQ of the optimal parameter combination 
per tile. The average difference in OSQ between those two tests over all 
the tiles was below 2%. Therefore, in the absence of LPIS for a parti
cular year, the optimal MRS parameters established from a previous 
year can be used to segment images acquired within the same month of 
the current year. The developed approach can also be used to segment 
images taken at different times of the year to do in-season monitoring of 
the structural changes on agricultural parcels. Our approach out
performed the scale optimization method of the SAA and ESP-2 in all 
test areas. Those methods only focus on scale optimization, neglecting 
the other MRS parameters like shape and compactness. Given that 
different agricultural landscapes may have different structural compo
sitions, our approach proved the importance of optimizing all three 
MRS parameters to achieve optimal segmentation. Our approach is 
independent of the input data, hence can be applied to any satellite 
image and reference data to optimize segmentation. 

The research showed that the structural composition of agricultural 
parcels in a particular area influences the segmentation quality. The 
bigger the sizes of agricultural parcels are, the higher the segmentation 
quality. Over-segmentation was another factor that influenced the 
segmentation quality. It showed up when crops on a parcel are at 
substantially different stages of growth or when pixels within a parcel 
are very heterogeneous, thereby leading to the creation of small objects 
within a parcel. Under-segmentation, on the other hand, was largely 
dealt with in this research by merging LPIS parcels of the same land-use 
type during the segmentation evaluation process. This research also 
revealed that discrepancy measures alone do not give a complete pic
ture of segmentation quality. Therefore, they should not be used in 
isolation but supported by visual inspection to make final decisions. 

It is imperative to finally mention here that as we used LPIS as re
ference data to optimize the segmentation process, we did not achieve 
better geometric results than the LPIS as we saw in the best obtained 
OSQ being 69.17% at T1. LPIS is generated based on very high-re
solution orthoimages with the spatial resolution being at least 1 m. We 
used Sentinel-2, which has a lower spatial resolution. With very high- 
resolution orthoimages like those used to create the LPIS, our Bayesian 
optimization approach can potentially be used to generate segments 
with similar geometric accuracy as the LPIS. 

6. Future outlook 

Going into the future, we will focus on the tiles with low segmen
tation quality to develop new methods of improving the segmentation 
quality. In this research, we applied our optimization approach to 
mono-temporal images. Therefore, multi-temporal Sentinel-2 images 
would be tested. Other auxiliary datasets like a Digital Elevation Model 
(DEM) and soil map would be used to augment the satellite images 
during the segmentation process to check if they can improve the seg
mentation quality. Instead of segmenting all agricultural areas in an 
image at once, segmentation would be done by separating arable and 
grassland areas. Initial tests based on mono-temporal images show 
promising results when this separation is done. In areas dominated by a 
single land-use, the merger of reference parcels with the same land-use 
would be turned off during the segmentation evaluation stage. This can 
potentially lead to the creation of smaller segments. Finally, another 
area of possible improvement could be the creation of tile grids based 
on similar structural compositions of agricultural parcels. 
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