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ABSTRACT 

 
Length growth as a function of time has a non-linear relationship, so nonlinear equations are recommended 
to represent this kind of curve. We used six nonlinear models to calculate the length gain of rainbow trout 
(Oncorhynchus mykiss) during the final grow-out phase of 98 days under three different feed types in 
triplicate groups. We fitted the von Bertalanffy, Gompertz, Logistic, Brody, Power Function, and 
Exponential equations to individual length-at-age data of 900 fish. Equations were fitted to the data based 
on the least square method using the Marquardt iterative algorithm. Accuracy of the fitted models was 
evaluated using a model performance metrics combining mean squared residuals (MSR), mean absolute 
error (MAE) and Akaike's Information Criterion corrected for small sample sizes (AICc). All models 
converged in all cases tested. Evaluation criteria for the Logistic model indicated the best overall fit (0.67 
of combined metric MSR, MAE and AICc) under all different feeding types, followed by the Exponential 
model (0.185), and the von Bertalanffy and Brody model (0.074, respectively). Additionally, ∆AICc results 
identify the Logistic and Gompertz models as being substantially supported by the data in 100% of cases. 
The logistic model can be suggested for length growth prediction in aquaculture of rainbow trout. 
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RESUMO 
 

O crescimento em comprimento em função do tempo tem uma relação não linear; por isso, funções não 

lineares são recomendáveis para descrever essa relação. Seis modelos não lineares foram usados para 

calcular o ganho em comprimento de truta-arco-íris (Oncorhynchus mykiss) durante 98 dias, na fase final 

da engorda, submetidas a três dietas diferentes em grupos triplicados. Foram ajustadas as equações de 

von Bertalanffy, Gompertz, logístico, Brody, função potencial e exponencial a dados individuais de 

comprimento-idade de 900 peixes. O ajuste foi feito pelo método dos mínimos quadrados, usando-se o 

algoritmo iterativo de Marquardt. A precisão do ajuste foi avaliada pelo uso de critérios combinados de 

ajuste: quadrado médio do resíduo (QMR), erro médio absoluto (EMA) e o critério de informação de 

Akaike corrigido para tamanhos amostrais pequenos (AICc). Todos os modelos atingiram a convergência 

para cada caso avaliado. Os critérios de avaliação do modelo logístico indicaram o melhor ajuste geral 

(0,67 vez dos critérios combinados MSR, MAE e AICc) para cada grupo de peixe avaliado, seguido pelo 

modelo exponencial (0,185) e os modelos von Bertalanffy e Brody, com 0,074, respectivamente. 

Similarmente, os resultados de ΔAICc identificaram-se ao modelo logístico e ao de Gompertz, com grande 

suporte das informações em 100% dos casos. Por fim, o modelo logístico pode ser sugerido na predição 

do crescimento em comprimento de truta-arco-íris cultivada.  
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INTRODUCTION 

 

Mathematical modeling is defined as the use of 
equations to describe or simulate processes in a 
system, such as animal growth (Santos, 2008). 
Mostly, growth is described as an increase in body 
dimension (mass, volume or length) as a function 
of time, and when this relationship is plotted, it 
results in a growth curve.  
 
Length increase in fish has been studied for a long 
time in population and fisheries research. In 
contrast, aquaculture studies mostly refer to body 
weight. Because both measurement (weight and 
length) are understood to be largely caused by the 
same genes (Gunnes and Gjedrem, 1981) weight 
and length are closely linked by mathematical 
relationships. Accordingly, length, just as weight, 
can be affected by the environmental factors 
present in aquaculture facilities, i.e. tank design 
(Ross et al., 1995; Üstündağ and Rad, 2014) water 
quality and stocking density (Person et al., 2008). 
 
Therefore, length growth and other size related 
treatment studies in cultured fish have received 
increasing attention since they can be used in the 
management of aquaculture production (Furuya et 

al., 2014; Silva et al., 2015; Lugert et al., 2017). 
In fact, during the last decade the interest to record 
these growth measurements in situ has grown, in 
order to improve the automatization of rearing 
practices in commercial fish aquaculture with the 
goal to advance in terms of productivity and 
profitability (Miranda et al., 2017; Saberioon and 
Císař, 2018). 
 
Predicting growth in aquaculture facilities with 
high accuracy is possible using statistically based 
models, i.e. nonlinear equations, since statistical 
processing software are capable of handling 
complex mathematical algorithms in order to 
achieve analytical solutions (Lugert et al., 2016; 
Powel et al., 2019). Thus, the aim of this work was 
to fit six nonlinear models to length growth data 
of cultured rainbow trout by nonlinear regression 

and evaluate which model or models have the 
highest accuracy to display the growth curve. 
 

MATERIAL AND METHODS 

 

The data were collected at a commercial rainbow 
trout farm. The farm is located in the municipality 
of Nova Friburgo, a mountain region of the state 
of Rio de Janeiro, Brazil (22 ° 23'36 "S, 42 ° 
29'12" W, 1.032 m altitude). This research was 
approved by the Ethics Committee on Animal Use 
(CEUA) of the Rio de Janeiro State Fisheries 
Foundation-FIPERJ with document number 
007/2017007/2017. 
 
The fish, without sex distinction, were acquired 
from the farms’ own breeding program. Nine 
hundred fish with an age of 273 days post-hatch 
(dph), and length (fork length) mean of 22.42 ± 
0.71cm, were selected. Fish were distributed 
randomly into nine masonry tanks with a volume 
of 40 m3 each. Fish were fed with three different 
types of extruded pellets (two commercials diets, 
A and B, and one experimental diet, C) in 
triplicates [(A/1, A/2, A/3) (B/1, B/2, B/3) (C/1, 
C/2, C/3)]. Rations were offered twice a day until 
apparent saturation. The experimental period was 
98 days. Length measures at the beginning and the 
end of the trial for each feed type are shown in 
Table 1. 
 
The six nonlinear equations chosen were von 
Bertalanffy, Brody, Gompertz, Logistic, 
Exponential, and Power Function; the 
mathematical expression of each function is 
presented in Table 2. Models were fitted using the 
Levenverg-Marquardt algorithm through the 
nlsLM computational process in the statistical 
software R (Elzhov et al., 2015). This process 
uses the nonlinear least squares (nls) method. The 
default convergence conditions were used with 
the exception of the maximum number of 
iterations being increased to 1000. 
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Table 1. Average length (AL) of cultured rainbow trout in centimeters with Standard Deviation (SD) at the 
beginning and the end of grow-out phase 

Diet/Repetition AL (cm) ± SD 
Beginning  
All repetitions 22,42 ± 0,71cm 
Final  
A/1 32.31 ± 1.62 
A/2 29.80 ± 1.88 
A/3 32.06 ± 1.45 
B/1 33.09 ± 1.41 
B/2 33.00 ± 1.66 
B/3 33.42 ± 1.69 
C/1 33.07 ± 1.78 
C/2 33.45 ± 1.72 
C/3 33.01 ± 1.84 

 
Table 2. Mathematical expression of the seven equations fitted to length growth data of cultured rainbow 
trout 

Models Equation References 
Bertalanffy 𝑌 =  𝐴 ∗ (1 –  𝑒𝑥𝑝 (−𝐵 ∗  (𝑡 − 𝑇0)) Bertalanffy, 1934 
Brody 𝑌 =  𝐴 ∗ (1 –  𝐶 ∗  𝑒𝑥𝑝 (−𝐵 ∗ 𝑡)) Brody, 1945 
Logistic 𝑌 =  𝐴 ∗ (1 +  𝑒𝑥𝑝 (−𝐵 ∗ (𝑡 − 𝑇)))-1 Pearl, 1930 
Gompertz 𝑌 =  𝐴 ∗ 𝑒𝑥𝑝 (−𝑒𝑥𝑝 (−𝐵 ∗ (𝑡 − 𝑇))) Tjorve and TJorve, 2017 
Exponential 𝑌 =  𝐿0 ∗ 𝑒𝑥𝑝(𝑡 ∗ 𝑘) Santos et al., 2008 
Power Function 𝑌 =  𝐿0 ∗ (𝑡 k) Huxley, 1932 

Y = dependent variable; t = independent variable; A = asymptote; B = exponential rate of approximation to the asymptote; T = the 
location of the point of inflection (POI); C = an integration constant without biological interpretation; T0 = is the intercept on the x-
axis; Y1 and Y2 = first and the last recorded length data, respectively; T1 and T2 = age of fish at the beginning and the final of period 
experiment, respectively; L0 = is the intercept on the y-axis; and k = exponential rate to infinity. 
 
The accuracy of the fitted models was evaluated 
using a model performance metrics. The 
performance criteria to evaluate the goodness of 
fit are: The mean squared residuals (𝑀𝑆𝑅 = 𝑅𝑆𝑆 ∗  [𝑛 −  𝑝] -1); where RSS is the residual 
sum of squares, n is the number of observations, p 
is the number of parameters of the model 
(Rawlings et al., 1998). The Akaike Information 
Criterion (AIC) corrected for small sample sizes 
(AICc). 𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿̂); where k is the 
number of estimated parameters in the model and 
L̂ is the maximum value of the likelihood function 
for the model, and ln is the natural logarithm 

(Akaike, 1973). 𝐴𝐼𝐶𝑐 = AIC + 2k2+2𝑘n−k−1 ; where n is 

the sample size and k is the number of parameters. 
 
We calculated the difference in AICc (∆AICc) 
values to test the support of inferior models by the 
data. ∆AICc is calculated as: AICc (AICc i – AICc 
min) (Katsanevakis and Maravelias, 2008). Models 
with ∆AICc >10 have no support from the data, 
while models with ∆AICc < 2 have substantial 
support (Burnham and Anderson, 2002). Models 
with ∆AICc between 4-7 are somewhat supported 
by the data and might be taken into consideration. 

The Mean Absolute Error (MAE) is the average 
absolute difference between observed and 
predicted outcomes and is calculated as: 𝑀𝐴𝐸 =𝑚𝑒𝑎𝑛(|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|). The MSR, 
AICc, and MAE were calculated using SAS 
(Statistical…, 2013). Finally, the results from 
MSR, AICc, and MAE were analyzed using a 
scoring system in which each best fit accounted 
for one score. The model that had the best fit in 
most tested cases achieved the highest score. In 
addition, we interpreted the estimated regression 
parameters of each model in regard to the 
biological attributes of the species whenever 
possible.  
 

RESULTS 

 
All models met convergence in all (9 of 9 
evaluations) tested cases through Levenverg-
Marquardt´s iterative method. All models needed 
a comparably low number of iterations, and 
convergence was generally met within 100 
iterations. The estimated parameters for each 
model are shown in Table 3. 
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Table 3. Estimated parameters of Bertalanffy, Brody, Logistic, Gompertz, Exponential and Power function 

Diet/Repetition Bertalanffy Brody Logistic Gompertz Exponential Power Function 
A/1     --- --- 
A 680.637 350.691 353.047 10740.9 --- --- 
B 0.0001 0.0003 0.0040 0.0006 --- --- 
T0 59.533 --- --- --- --- --- 
T --- --- 930.653 3156.32 --- --- 
C --- 1.0205 --- --- --- --- 
L0 --- --- --- --- 7.9986 0.02517 
K --- --- --- --- 0.0038 1.2097 
       

A/2       
A 630.258 422.841 925.313 30423 --- --- 
B 0.0001 0.0002 0.0030 0.0004 --- --- 
T0 -14.539 --- --- --- --- --- 
T ---  1491.86 5010.23 --- --- 
C --- 0.9979 --- --- --- --- 
L0 --- --- --- --- 9.8555 0.1116 
K --- --- --- --- 0.0029 0.9421 
       

A/3       
A 127.134 127.133 48.1825 59.0688 --- --- 
B 0.001 0.001 0.0086 0.0048 --- --- 
T0 81.7453 --- --- --- --- --- 
T --- --- 290.004 267.306 --- --- 
C --- 1.086 --- --- --- --- 
L0 --- --- --- --- 8.1859 0.0279 
K --- --- --- --- 0.0037 1.1919 
       

B/1       
A 47.6917 47.6918 39.627 42.2835 --- --- 
B 0.0058 0.0058 0.0144 0.0101 --- --- 
T0 164.443 --- ---  --- --- 
T --- --- 255.23 228.48 --- --- 
C --- 2.6016 --- --- --- --- 
L0 --- --- --- --- 7.633 0.0159 
K --- --- --- --- 0.004 1.2946 
       

B/2       
A 88.5135 88.5139 46.3962 54.5543 --- --- 
B 0.0018 0.0018 0.0101 0.0059 --- --- 
T0 113.95 --- --- --- --- --- 
T --- --- 280.435 254.149 --- --- 
C --- 1.23147 --- --- --- --- 
L0 --- --- --- --- 7.59 0.0165 
K --- --- --- --- 0.004 1.2868 
       

B/3       
A 60.645 60.6451 43.0691 47.8483 --- --- 
B 0.0036 0.0036 0.0124 0.0079 --- --- 
T0 145.668 --- --- --- --- --- 
T ---  266.573 238.481 --- --- 
C --- 1.694 --- --- --- --- 
L0 --- --- --- --- 7.3661 0.0127 
K --- --- --- --- 0.0041 1.3341 

 

Parameter A, values range between 39.63 and 
10740.9. Within each group, the lowest value was 
mostly obtained by the Logistic and Gompertz 
models, while the highest value was usually 
estimated by the Bertalanffy and Brody models. 
In contrast, values in parameter B range between 
0.00144 and 0.0001 with the lowest values being 
obtained by the Brody and Bertalanffy models, 

and the highest values by the Logistic and 
Gompertz models. Parameter T ranges between 
5010.23 and 228.48 in the Gompertz model, and 
between 1491.86 and 255.23 in the Logistic 
model. Parameter T0 for the von Bertalanffy 
model has values between -14.539 to 164.443. 
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Table 3 (continue). Estimated parameters of Bertalanffy, Brody, Logistic, Gompertz, Exponential, and 
Power Function models 

Diet/Repetition Bertalanffy Brody Logistic Gompertz Exponential Power Function 
       

C/1       
A 75.084 75.084 45.5924 52.3174 --- --- 
B 0.0023 0.0023 0.0103 0.0063 --- --- 
T0 119.958 --- --- --- --- --- 
T --- --- 275.762 246.341 --- --- 
C --- 1.3212 --- --- --- --- 
L0 --- --- --- --- 7.7727 0.0186 
K --- --- --- --- 0.0039 1.2663 
       

C/2       
A 309.924 244.385 52.7605 68.3329 --- --- 
B 0.0004 0.0005 0.0088 0.0046 --- --- 
T0 89.1451 --- --- --- --- --- 
T --- --- 308.098 297.346 --- --- 
C --- 1.05 --- --- --- --- 
L0 --- --- --- --- 7.3111 0.0131 
K --- --- --- --- 0.0041 1.3263 
       

C/3       
A 80.0456 80.0459 45.4537 52.7584 --- --- 
B 0.0021 0.0021 0.0105 0.0063 --- --- 
T0 120.185 --- --- --- --- --- 
T --- --- 276.587 249.388 --- --- 
C --- 1.2927 --- --- --- --- 
L0 --- --- --- --- 7.5515 0.0159 
K --- --- --- --- 0.004 1.2929 

 
L0 values are between 7.31 and 9.85 for the 
Exponential model, and between 0.0127 and 
0.0279 for the Power Function Model. Similarly, 
k values are between 0.0029 and 0.0041 for the 
Exponential model, and between 1.3341 and 
1.3341 for the Power Function Model. k values are 
between 0.004 to 0.041 for the Exponential 
model, and between 0.9421 to 1.3341 for the 
Power Function model. Graphic growth 
simulations for dph (days post hatch) 100 to 600 
by each equation are shown in Figure 1 for three-
parameter functions (Logistic, von Bertalanffy, 
Gompertz and Brody models) and, two-parameter 
functions (Power Function and Exponential 
models). 
 
The model performance metrics for each model 
are presented in Table 4. Lowest MSR-values are 
produced by the Logistic model in 0.67 of tested 
cases, followed by the Von Bertalanffy (0.11), 
Brody (0.11), Exponential (0.11) and Power 
Function (0.11) models. The Gompertz model did 
not perform the lowest MSR in any case. MAE is 
lowest in the Logistic model in 5 out of 9 tested 
groups, 0.55 respectively. The Gompertz, 
Exponential and Power function models produced 
lowest MAE once (0.11) (Table 4). 

The AICc values of each model and all tested 
cases are listed in Table 4. Lowest AICc values 
are most often obtained by the Logistic model (6 
of 9 cases). The Exponential model produced 
lowest AICc in 2 out of 9 cases, and the von 
Bertalanffy and Brody model both achieved 
lowest AICc values in 1 of 9 cases. The Gompertz 
and Power Function models never achieve lowest 
AICc. 
 
The overall score obtained by the models are 
presented at the bottom of Table 4. Undisputedly, 
the Logistic model achieved the best overall-
scoring with 18 of 27 best fits (0.67). The 
Exponential model achieved best overall fit in 5 
of 27 cases. The von Bertalanffy, and the Brody 
models scored only 2 out of 27 (0.07), and the 
Gompertz, and Power Function models achieved 
best fit just in one tested case and criteria (0.04). 
∆AICc values range between 0.026 as the lowest 
and 44.61 as the highest. The Logistic and 
Gompertz models had substantial support by the 
data in all cases (Table 4). The von Bertalanffy 
and Brody models in 6 cases and, the Exponential 
and Power Function models in 2 cases each. 
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Figure 1. Growth simulations of rainbow trout from 100 until 600 age-days obtained by Logistic (solid 
line), von Bertalanffy (dotted), Gompertz (dot dash), Brody (long dash), Exponential (two dash) and Power 
function (dashed) models. Average length in cm (○) ± Standard Deviation.  
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Table 4. Goodness of fit criteria of the von Bertalanffy, Brody, Logistic, Gompterz, Exponential and Power 
Function equations fitted to length gain data of rainbow trout. Mean Square Residual (MSR), Mean 
Absolute Error (MAE) and Akaike Information Criterion corrected for small sample sizes (AICc). ∆AICc 
values indicate support of the model by the data. *best value on same criteria. **number of times that the 
best score for each model is met 

Diet    
Criteria 

Bertalanffy Brody Logistic Gompertz Exponential Power 
Function 

A/1       
MSR 1.2147166 1.217811 1.1796001 1.1801987 1.1737527* 1.194842 
MAE 0.8236849 0.824574 0.8183127 0.8180777* 0.8188233 0.820356 
AICc 598.4779364 598.979191 592.6988709 592.7988288 592.6727535* 596.180959 
∆AICc 5,805 6,306 0,026 0,126 0,000 3,508 
A/2       
MSR 2.12683 2.128863 2.046860 2.055098 2.034366* 2.117822 
MAE 1.11847 1.119290 1.094625 1.097862 1.093890* 1.118859 
AICc 701.63786 701.824204 694.164381 694.947650 693.922849* 701.762634 
∆AICc 7,715 7,901 0,242 1,025 0,000 7,840 
A/3       
MSR 1.4333163 1.4333163 1.4308570* 1.432026 1.4826628 1.4324416 
MAE 0.9358926 0.9358926 0.9349358* 0.935386 0.9506103 0.9365388 
AICc 631.0775059 631.0775059 630.7392007* 630.900026 638.6985844 631.9101009 
∆AICc 0,338 0,338 0,000 0,161 7,959 1,171 
B/1       
MSR 1.2999818 1.2999818 1.2862617* 1.2928879 1.6090242 1.4409779 
MAE 0.9030997 0.9030996 0.8998888* 0.9015261 0.9885733 0.9384269 
AICc 605.6428412 605.6428412 603.5738641* 604.5758229 648.1843622 626.6747177 
∆AICc 2,069 2,069 0,000 1,002 44,610 23,101 
B/2       
MSR 1.3745884 1.3745884 1.3689902* 1.3716829 1.4727694 1.3902388 
MAE 0.8820453 0.8820452 0.8791945* 0.8804776 0.9140912 0.8842226 
AICc 619.6801683 619.6801683 618.8803047* 619.2654429 634.1548813 622.8517529 
∆AICc 0,800 0,800 0,000 0,385 15,275 3,971 
B/3       
MSR 2.144757 2.144757 2.127780* 2.136353 2.350096 2.210897 
MAE 1.022760 1.022760 1.021003* 1.021942 1.084951 1.038324 
AICc 703.274695 703.274695 701.724975* 702.509058 722.055856 710.149607 
∆AICc 1,550 1,550 0,000 0,784 20,331 8,425 
C/1       
MSR 1.5411509* 1.5411509* 1.5423322 1.5416740 1.6465393 1.5620830 
MAE 0.9567037 0.9567037 0.9565924* 0.9566168 0.9970732 0.9699101 
AICc 642.0976960* 642.0976960* 642.2478726 642.1642159 656.0149855 645.6945052 
∆AICc 0,000 0,000 0,150 0,067 13,917 3,597 
C/2       
MSR 1.3967752 1.3968260 1.3949278* 1.3957112 1.4559129 1.395989 
MAE 0.9172188 0.9175387 0.9158973 0.9165441 0.9292423 0.915059* 
AICc 622.8184881 622.8256100 622.5590881* 622.6691286 631.8986434 623.660770 
∆AICc 0,259 0,267 0,000 0,110 9,340 1,102 
C/3       
MSR 1.807639 1.807639 1.799842* 1.803624 1.918966 1.827667 
MAE 1.012463 1.012463 1.009982* 1.011283 1.032893 1.013757 
AICc 676.787560 676.787560 675.935976* 676.349501 689.514099 679.911158 
∆AICc 0,852 0,852 0,000 0,414 13,578 3,975 
       
Score** 2 2 18 1 5 1 

 
DISCUSSION 

 
Convergence is met when the iterative process 
successfully estimates parameters for the function 
within the given maximum number of iterations 
set in the fitting algorithm. In this study, all 
models met convergence in all tested cases using 
the Marquardt algorithm. This algorithm is 

described to be more robust than others offered on 
statistical software (Elzhov, et al., 2015; Lugert et 

al., 2017). This is especially important, as non-
convergence situations of models for aquaculture 
data are described by several authors (Costa et al., 
2009; Mansano et al., 2012; Allaman et al., 2013; 
Sousa et al., 2014). 
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Parameter A for three-parameter models (von 
Bertalanffy, Brody, Logistic and Gompertz) 
describe the infinite size of an organism and can 
be interpreted as the possibility of the model to 
reflect the biological properties of the species. O. 

mykiss is known to exceed 120cm in length (Eaton 
et al., 1995). Accordingly, Logistic and Gompertz 
models, estimated A within the biological range of 
the species in 7 of 9 cases, and for von Bertalanffy 
and Brody models in 5 of 9 cases.  
 
Parameter B for three-parameter models denotes 
the precocity index. This means the larger the 
numeric value, the quicker the fish will reach the 
asymptotic or infinite size (Malhado et al., 2009). 
Estimated B values for Logistic and Gompertz 
models (0.0001 and 0.0144) in this study have the 
tendency to be greater than those being obtained 
from wild rainbow trout (0.002 to 0.049) in 7 and 
6 of 9 cases, respectively (Blair et al., 2013; Sloat 
and Reeves, 2014; Cilbiz and Yalim, 2017). 
Similarly, Lugert et al. (2016) found similar 
differences in parameter B between cultured and 
wild Scophthalmus maximus, referring these 
differences to the positive effect of controlled 
environmental conditions in recirculating 
aquaculture systems (RAS). There are no 
differences in parameter B observed between von 

Bertalanffy and Brody models, having values 
between 0.001 and 0.058. The Logistic model had 
the highest values of B followed by the Gompertz 
model. Von Bertalanffy and Brody models 
generally have the lowest values. Contrary to our 
findings, Gomiero et al. (2009) showed larger B 
estimates for Brody and von Bertalanffy models 
on length growth of cultured Brycon orbignyanus. 
Our results agree with results by Santos et al. 
(2013) on length growth modeling of 
Oreochromis niloticus. 

 
The point of inflection (POI) (parameter T) of the 
growth curve is only parameterized in the 
Gompertz and the Logistic model. At the POI, the 
rate of grow this largest, before diminishing 
asymptotically against zero. In this study, T values 
obtained by the Gompertz and Logistic models are 
generally lower than those estimated by Sloat and 
Reeves (2014) in weight data of wild rainbow 
trout using the Gompertz model. Furthermore, in 
aquaculture operations, the parameter T can be 
useful in the empiric adjustment of management 
strategies, as it is proven to correlate with other 
husbandry information. For instance, T parameter 
has significant meaning on cultured Carassius 

auratus gibelio because it positively correlates 
with dietary protein levels (Yun et al., 2015). 
Likewise, Oreochromis niloticus shows 
significant influence of water temperature on 
weight gain and at the age at the inflexion point 
(Santos et al., 2013).  
 
Parameter T0 for the von Bertalanffy model 
defines the hatching day of rainbow trout. In this 
study, this parameter does not have congruence 
with biological features since it is not possible to 
have negative or positive hatching age (up to 54 
days). Similarly, parameter L0 for Exponential 
and Power Function models which define the 
hatching length differ between both models. In 
addition, L0 of the Power function model shows 
values (0.0127 to 0.1116cm) smaller than the 
biologic features of rainbow trout (1.2 to 2cm) as 
described by Lavens and Sorgeloos (1996). 
 
Parameter k represents the constant growth rate of 
rainbow trout trough all growth-curve for 
Exponential and Power Function model. k values 
of Exponential model are lower than those 
obtained by the Power Function. These values 
must be taken with care since both models display 
exponential shape and are not intended for longer 
growth periods or extrapolation of data. However, 
because of their simplicity they are frequently 
used in aquaculture studies (Santos et al., 2008; 
Costa et al., 2009).  
 
In model selection, the goodness of fit should 
generally not be based on a single criterion. 
Correspondingly, it has become common practice 
to evaluate the most suitable model based on an 
evaluation metrics of mostly three statistical 
parameters of different properties (e.g. Yun et al., 
2015; Lugert et al., 2017; Powell et al., 2019). 
One parameter should be based on the residuals 
from fitting the model. The second parameter is 
often based on information theory either AIC, 
AICc or BIC. A third parameter is mostly 
somehow based on the deviation between 
estimated and sampled data. For these three 
categories of evaluation parameters, several 
different statistical parameters are available. In 
each scenario, the author needs to decide 
individually, which parameter is most suitable for 
the current study.  
 
In our study, we used Mean Squared Residual 
(MSR), Akaike Information Criterion for small 
sample sizes (AICc) and Mean Absolute Error 
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(MAE). The non-linear least squares method aims 
to achieve non-linear equation parameter by 
minimizing the Residual Sum of Squares (RSS). 
The smaller RSS, the smaller the MSR and the 
better the fit (Rawlings et al., 1998). In this study, 
the Logistic model most often achieved the 
smallest MSR values. Similar results were 
obtained by Costa et al. (2009) in growth studies 
of Orechormis niloticus, but are in contrast to 
Mansano et al. (2012) on Lithobates 

catesbeianus, with both species being reared 
under aquaculture conditions.  
 
We used ∆AICc to identify whether our datasets 
were supported by more than one model. This was 
necessary, as the outcome from the analysis 
revealed very close numeric results between 
different models within tested groups. ∆AICc < 2 
indicates substantial support of a model by the 
data (Burnham and Anderson, 2002). Indeed, in 
all 9 analysis, 2 out of 6 tested models were 
supported by the data, namely Logistic and 
Gompertz. This might be due to the specific 
pattern of our recorded data (grow-out phase), 
which are distributed around the POI of the 
growth curve. Accordingly, several models of 
sigmoidal behavior can equally well reflect this 
segment of the curve. 
 
Primarily, we observed that the different non-
linear models adjusted their fit individually to the 
various growth trajectories expressed by rainbow 
trout caused by different diet treatments. Araneda 
et al. (2013) observed similar results when fitting 
models on various growth data of Penaeus 

vannamei. This specific application has huge 
potential in predicting the effects of new feed 
formulations, harvest size and production period 
in all aquaculture species. However, it is 
necessary to verify and validate this potential 
through studies with rigorous control of diet 
quality and quantity as recorded in carp (Yun et 

al., 2015). 
 

CONCLUSION 

 

All six models (von Bertalanffy, Brody, Logistic, 
Gompertz, Exponential and Power Function) have 
shown the capacity to fit the length-at-age data of 
cultured rainbow trout during the grow-out phase. 
However, in the current study, the Logistic model 
achieved the highest accuracy in fit. Despite the 
growth-length curve of cultured rainbow trout not 
clearly follows a sigmoidal shape, the 

diminishing-return shaped von Bertalanffy and 
Brody models, as well as the exponential shaped 
Power Function and Exponential models do not 
meet the mathematical attributes needed to reflect 
length-at-age data. This is also verified by ∆AICc 
values, which indicate the Logistic and Gompertz 
model, as the only models having substantial 
support by the data in all cases. Furthermore, we 
showed that it is possible to model the impact of 
varies feeding strategies to predict long-term 
influences on growth and harvest size and 
production period. 
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