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Abstract

Background: Large area forest inventories often use regular grids (with a single random start) of sample locations
to ensure a uniform sampling intensity across the space of the surveyed populations. A design-unbiased estimator
of variance does not exist for this design. Oftentimes, a quasi-default estimator applicable to simple random
sampling (SRS) is used, even if it carries with it the likely risk of overestimating the variance by a practically
important margin. To better exploit the precision of systematic sampling we assess the performance of five
estimators of variance, including the quasi default. In this study, simulated systematic sampling was applied to
artificial populations with contrasting covariance structures and with or without linear trends. We compared the
results obtained with the SRS, Matérn’s, successive difference replication, Ripley’s, and D’Orazio’s variance estimators.

Results: The variances obtained with the four alternatives to the SRS estimator of variance were strongly correlated,
and in all study settings consistently closer to the target design variance than the estimator for SRS. The latter
always produced the greatest overestimation. In populations with a near zero spatial autocorrelation, all estimators,
performed equally, and delivered estimates close to the actual design variance.

Conclusion: Without a linear trend, the SDR and DOR estimators were best with variance estimates more narrowly
distributed around the benchmark; yet in terms of the least average absolute deviation, Matérn’s estimator held a
narrow lead. With a strong or moderate linear trend, Matérn’s estimator is choice. In large populations, and a low
sampling intensity, the performance of the investigated estimators becomes more similar.

Keywords: Spatial autocorrelation, Linear trend, Model based, Design biased, Matérn variance, Successive difference
replication variance, Geary contiguity coefficient, Random site effects

Introduction
Forest inventories have a long history of using systematic
sampling (Spurr 1952, p 379) that continues to this date
at both local, regional, and national levels (Brooks and
Wiant Jr 2004; Kangas and Maltamo 2006; Nelson et al.
2008; Tomppo et al. 2010; Vidal et al. 2016). Since for-
ests exhibit non-random spatial structures (Sherrill et al.
2008; Alves et al. 2010; von Gadow et al. 2012; Pagliar-
ella et al. 2018), the main benefit of a uniform sampling

intensity across a population under study (i.e. spatial bal-
ance) is an anticipated lower variance in an estimate of
the population mean (total). However, the lack of a
design-unbiased estimator of variance for the mean
(total) remains a detractor (Gregoire and Valentine
2008, p 55). We do not have a design-unbiased estimator
of variance for systematic sampling because the sampling
locations are fixed by one independent random selection
of a starting point and a sampling interval (d). With only
one random draw, the systematic sample can be
regarded as a random selection of one cluster with an
undefined design-based variance (Wolter 2007, p 298).
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Without a design-unbiased estimator of variance, it
becomes a challenge to quantify the advantage of sys-
tematic sampling, and to compute reliable confidence
intervals for estimated population parameters. The
wide-spread use of a variance estimator for SRS without
replacement (Särndal et al. 1992, p 28) masks the ad-
vantage (efficiency) since this estimator tends to over-
estimate the actual variance (Wolter 1984; Fewster
2011). An overestimation that is, possibly, regarded as
less problematic than an underestimation, and often re-
ferred to as a “conservative estimate”.
The bias in the variance estimator for SRS when ap-

plied to data from a single systematic sample was recog-
nized early on in Scandinavian countries by Lindeberg
(1924), Langsæter (1926), and Näslund (1930), and in
North America by Osborne (1942), and Hasel (1942).
Lindeberg, Langsæter, and Näslund also proposed new
estimators of variance that generated more realistic esti-
mates of variance for line-transect surveys (Ibid.). Varia-
tions of these estimators were later credited to others
(Wolter 2007, ch. 8.2).
To convince an inventory analyst – with sample data

collected under a systematic design – to employ an al-
ternative to the estimator for SRS requires assurance that
the alternative is nearly design-unbiased. That is, the ex-
pected value of the alternative estimator, over all pos-
sible (K) systematic samples from a finite population, is
equal to or close to the variance among the K sample
means (Madow and Madow 1944). Assurances of this
kind will have to come from simulated systematic sam-
pling from actual or artificial populations.
The lack of a design-unbiased estimator of variance

means that any applied estimator is biased for the actual
design variance (Opsomer et al. 2012; Fattorini et al.
2018b). Variance estimators used in lieu of the design
variance may carry the assumption that the sampling de-
sign is ignorable, or that any explicitly or implicitly
stated model regarding the population is true (Gregoire
1998; Magnussen 2015). For example, when the estima-
tor for SRS is applied to a systematic sample from a fi-
nite population, the design is ignored, and the variance
is computed under the assumption that the sample
values are independent.
In this study, we compare the performance of four al-

ternatives to the estimator of variance for SRS in a suite
of artificial populations with contrasting covariance
structures and with or without a global linear trend. The
performance in actual forest populations is deferred to a
forthcoming study. The alternatives achieved – with re-
spect to accuracy – a top ranking amongst 11 candidates
in a preliminary study with 27 superpopulations de-
scribed in Magnussen and Fehrmann (2019).
Although our primary focus is on systematic sampling

designs with small populations (to expedite computations),

and higher than practiced sampling intensities, we demon-
strate that a ranking of the relative performances of estima-
tors will be preserved in larger populations and a lower
sampling intensity. We extend the same expectations to
non-aligned and quasi systematic designs (Särndal et al.
1992, 3.4.2; Grafström et al. 2014; Mostafa and Ahmad
2017; Wilhelm et al. 2017), and possibly the random tessel-
lated stratified design (Stevens and Olsen 2004; Fattorini
et al. 2009; Magnussen and Nord-Larsen 2019).

Materials and methods
Artificial populations
The four alternative estimators of variance are evaluated
in realizations of two superpopulations: one (U1Þ with a
stronger positive spatial autocorrelation between units in
a single sample, and the other ðU0Þ with a near zero
spatial autocorrelation. Global linear trends (‘strong’,
‘moderate’, ‘weak’, or ‘none’) are present in both U1 and
U0: Populations without a linear trend are weakly sta-
tionary (Cressie 1993, p 53). An attractive estimator of
variance will generate estimates that are close to the ac-
tual variance regardless of the strength of a spatial auto-
correlation or the presence of a global trend. In practice,
the effects of a significant trend can be mitigated by for-
mulating a model (parametric or non-parametric) for
the trend (Valliant et al. 2000, p 57; Opsomer et al.
2012) or stratification (Dahlke et al. 2013).
The two superpopulations U1 and U0 are composed of

N = 57,600 equal size (area) spatial units arranged in a
regular array with 240 rows and 240 columns. Edge ef-
fects is therefore not an issue in our study (Gregoire and
Scott 2003). In an attempt to generate unit level auto-
correlation in values of y compatible with forest struc-
tures, we generated random realizations (populations)
U1, U2, …. from U1 and U0 with three additive random
‘site’ effects (s1, s2, s3), operating at different spatial
scales, plus unit-level random noise. The number of ran-
dom spatial site effects is arbitrary. We know that forest
attribute values depend on a multitude of factors operat-
ing at different spatial scales (Weiskittel et al. 2011). We
consider three levels of site effects (e.g. soil, climate, and
management) in our simulations of forest populations
with a complex spatial structure.
To generate a site effect, the population under study

was tessellated into a set of convex polygons (Møller
1994). Then a site effect was assigned to each polygon
by a random draw from a distribution specified for the
site effect in question. All units with at least half their
area in a polygon inherit the site effect of the polygon.
The number, size, and centroids of polygons for a site
effect varies from one realization of a superpopulation to
the next according to random draws from distributions
for the number and placement of polygons. A complete
population was then composed of three spatial layers of
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polygon specific site effects (Fig. 1), and one complete
(240 × 240) layer of unit-level random noise.
Accordingly, the unit-level value yij in the ith row and

jth column (i, j = 1, …, 240) in a realization from a
superpopulation is the sum of three random site effects
s1, s2, and s3, a global trend τ, and random noise (e).
We have

yij ¼ s1ij þ s2ij þ s3ij þ τij þ eij ð1Þ

where sTij (T = 1, 2, 3) is the random site effect associ-
ated with the polygon in which unit ij resides, τij is a
unit specific trend effect, and eij is an independent ran-
dom Gaussian noise. All units within a polygon share
the site effect assigned to the polygon, which gives rise
to a positive covariance among unit site effects within
the polygon (Searle et al. 1992, ch. 11.2). To control the
total variance in a study variable, the sum of site effects
and random noise was standardized to a mean of zero
and a variance of one. Technical details are deferred to
the Additional file 1.

In addition to the spatial autocorrelation, we simu-
lated three levels of a non-null global linear trend
(Table 1) in addition to the simulations without a trend
(τij = 0 ∀ {i, j}).
Six random realizations of population values of yij

without a trend are shown in Fig. 2. They convey, as
intended, a complex mosaic of the overlapping site ef-
fects. The visual resemblance of different realizations
from a single superpopulation is low.
Sample-based maximum likelihood estimates of the

autocorrelation function (acf, Anderson 1976, p 4) in the
six populations in Fig. 2 are given in Fig. 3. One acf is
shown for each of the possible samples under a given
design. A considerable sample-to-sample variation is vis-
ible in some illustrations.
There is no variance heteroscedasticity in the simu-

lated noise. To gauge its impact, we ran separate simula-
tions with heteroscedasticity but only sketch the results
in the discussion.
The population size in simulation studies are typically

orders of magnitude smaller than actual finite populations.

Fig. 1 A random example of site effects (s1, s2, s3), and their sum. A darker gray level indicates a lower value than a lighter tone
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For the purpose of evaluating the relative performance of
alternative variance estimators against a design variance, it
is only important to stage: i) gradients of a spatial autocor-
relation as done by choices of sample size; and ii) linear
trends that will interact with sample size. A testing in a
series of increasingly larger populations and across mul-
tiple spatial covariance structures is necessary if the rela-
tive performances of our estimators of variance are
sensitive to sample size and/or trends. To assuage con-
cerns about population size and sample size, we extended
the simulations to include larger populations and a
smaller sample size.

Sampling designs
Four systematic sampling designs are employed in the
main study. Each design is defined by the sampling
interval (d) in units in both of the two cardinal direc-
tions defining the population (here rows and columns)
and a starting position (Cochran 1977, ch. 8.1; Särndal
et al. 1992, ch. 3.4.1; Fuller 2009, ch. 1.2.4). We have
d = 6, 8, 10, and 12. With a population matrix structure
of 240 rows and 240 columns, the corresponding sam-
ple sizes were n = 1600 (d = 6), 900 (d = 8), 576 (d = 10),

and 400 (d = 12). We simulated all possible systematic
samples (K) under a given design. The K starting posi-
tions by row and column were (di, dj), (di, dj) = 1, …, d.
Accordingly, K = d2 or 36, 64, 100, and 144 for the de-
signs with d = 6, 8, 10, and 12. All K samples for a fixed
sample size were executed and replicated 30 times, each
time with K samples from a new random realization of
a superpopulation ðU1 or U0Þ . Hence our results come
from 2 (superpopulations) × 4 (linear trends) × 4 (sample
sizes) × 30 = 960 random realizations ð480 from U1
and 480 from U0Þ. With 30 realizations from a superpo-
pulation, the relative standard error of the mean of a
design variance was approximately 3% for sample sizes
400 and 576, and 5% for sample sizes 900 and 1600.
A sampling design was implemented by selecting all

possible (K) different (or non-identical) systematic
samples under the given sampling interval d. Specific-
ally, we first divide a 240 × 240 population into n =
(240/d)2 square blocks each with d rows and d col-
umns. To select a single systematic sample, one
would pick a random integer (k) from the set {1, …,
K = d2) and then select one unit at position k from
each of the n blocks. An example with d = 6, and k =
4 and k = 20 is in Fig. 4.
Note, Thompson (1992) defines a systematic sampling

by primary and secondary sampling units. For designs
with one primary unit and n secondary units, as the case
is here, and in most natural resource surveys, we can,
without consequence, dispense with the notion of primary
sampling units, consider the secondary units as sample
units, and take n as sample size (Thompson 1992, p 113).

Table 1 Linear trend models and unit level trend components
τij (i, j = 0.5, 1.5, …, 239.5; cf. (1))

Trend τij min(τij) mean(τij) max(τij)

Strong (i + j − 241)/120 –2 0 2

Moderate (i + j − 241)/240 –1 0 1

Weak (i + j − 241)/480 −0.5 0 0.5

Fig. 2 Six random realizations of the superpopulation U1 (size 240 × 240 units) with an autocorrelation but no trend in unit level values (yij). The
gray levels indicate scaled values of the study variable with darker tones for smaller values, and lighter tones for greater values

Magnussen et al. Forest Ecosystems            (2020) 7:17 Page 4 of 19



Supplementary populations and sample designs
A population size of 240 × 240 = 57,600 is orders of mag-
nitude smaller than the size of actual finite regional or
national forest populations. Conversely, even a sampling
intensity of n/N = 400/57,600 or 0.7% is an order of mag-
nitude greater than in practice. To augment the practical
relevancy of our simulations, we gauged the impact of
reducing the sample size to n = 100 in trendless popula-
tions with a spatial autocorrelation and sizes N = 57,600
unit (as in the main study), N = 230,400 units in a 480 ×
480 array, and N = 921,600 units in a 960 × 960 array.
The site effects were preserved at the levels detailed for
the main study, but the number of polygons carrying a
site specific effect was either defined as for the 240 × 240
unit populations in the main study, or doubled for N =
230,400 units, or quadrupled for N = 921,600 units. Thus
the sample autocorrelation functions driving the variances

will depend exclusively on the sampling interval (d = 24,
48, or 96), the size (number) of the site polygons and their
overlaps. Results with the RIP estimator of variance were
dropped in consideration of the time required to compute
the results with this estimator.

Variance estimators
In accordance with the populations under consideration,
the variance estimators considered are cast for finite
populations composed of N units. For these populations
under a given systematic design there is a finite number
(K) of distinct (non-overlapping) samples. With minor
modifications the estimators also apply to infinite (con-
tinuous) populations of sample locations (points), but
here K =∞ {Mandallaz 2008 #10986} and there is no fi-
nite population correction in the variance estimators.

Fig. 3 Sample-based maximum likelihood estimates of the autocorrelation functions (acf) in a fractional Gaussian noise process (cf. (7)). The
examples are from the populations in Fig. 2. The horizontal axis is the lag in units and the vertical axis is the autocorrelation. One acf is drawn for
each possible sample under a given design

Fig. 4 Execution of a systematic sampling design with a sampling interval of d = 6 (n = 1600) from a population composed of 57,600 units
arranged in an array with 240 rows and 240 columns. Left: the n = 40 × 40 = 1600 sampling blocks. Right: A sampling block with indication of the
position of the 4th and 12th of the K = 36 possible samples
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Design variance
The design-based variance (DES) for systematic sam-
pling in a finite population (Madow and Madow 1944) is

VDES yk
� � ¼ K−1

XK

k¼1
yk−y
� �2

; k ¼ 1;…;K ð2Þ

where yk is the mean of y in the kth systematic sample, y
is the population mean of y, and K is the number of pos-
sible samples under the design and population under
study. To compute the design-based variance in Eq. (2),
the sample mean from each of the K possible samples
under a systematic sampling design must be known.
Considering the finite populations in our simulation as
described above, we have complete knowledge about the
population and no uncertainty in the mean (total).
Hence the design variance in Eq. (2) only serves as a
benchmark in analytical developments, and in simulation
studies like ours, where the value of y is known for every
unit in a population under study.

Variance estimator for simple random sampling
The SRS estimator of variance – when applied to a sam-
ple selected under a systematic design – ignores the ac-
tual (spatial) ordering of the sampled units, and, by
extension, any covariance between these units. Let yi de-
note the ith unit in one of the K possible samples ob-
tained under a systematic design. For a systematic
sample of size n, taken from a population of N units, the
estimator of variance is

V̂ SRS yð Þ ¼ n−1ð Þ−1n−1 1−
n
N

� �Xn

i¼1
yi−yð Þ2 ð3Þ

where y is the sample mean of yi. Subscripting to identify
a specific sample out of the K possible is omitted here
and forthwith. With a slight abuse of designation, we use
the abbreviation SRS for the estimator in Eq. (3) as a
synonym for the variance of an expansion estimator
(Valliant et al. 2000, p 51).

Matérn’s estimator of variance
Matérn (1947) proposed a per point (i.e. local) esti-
mator of variance inspired, in part, by the pioneering
work of Langsæter (1932), Langsæter (1926), and Lin-
deberg (1924). These authors suggested the use of
first- and second-order differences as a mean to re-
duce the effect of local trends resulting in autocorrel-
ation (Wolter 2007, ch. 8.2.1.). To our knowledge, the
Swedish and Finnish national forest inventories (NFI)
were the first to adopt a variant of his estimator
(Ranneby et al. 1987; Heikkinen 2006).
In Matérn’s estimator, the sample locations are split

into Q non-overlapping groups of four nearest neigh-
bours. An example is in Fig. 5. Two predictions of the
local mean are constructed for each group, and the

squared difference of these predictions is taken as the
per point variance.
With the notation in Fig. 5, the two local predictions are

computed as (yi, (j + 1) + y(i + 1), j)/2 and (yi, j + y(i + 1), (j + 1))/2.
The final estimator of variance is the average per point
variance. Modern parallels to this estimator can be found
in texts on ordinary kriging (for example, Cressie 1989,
ch. 3.2). Examples of practical applications with this esti-
mator can be found in (Kangas 1993, 1994; Lappi 2001;
Ekström and Sjöstedt-de Luna 2004; Tomppo 2006).
In populations where a sample location can be outside

the domain of interest (here forest), at least one sample
location in each group must be in the domain. Compu-
tation of Matérn’s variance estimate is carried out with
mean-centred values of yij. Within each group, the value
of yij in locations outside the domain of interest is set to
0 (viz. the mean of all yij in the sample). We have
(Matérn 1980, ch. 6.7, p 121; Ranneby et al. 1987)

V̂MAT yð Þ ¼ 1
Q

XQ
q¼1

yq∋ i; jf g þ yq∋ iþ1; jþ1f gs
� �

− yq∋ iþ1; jf g þ yq∈ i; jþ1f g
� �� �2

n2q

ð4Þ
where nq is the number of sample locations in a group
in forest, and q ∋ {i, j} means that group q includes sam-
ple location {i, j}. Note, when all Q groups have four lo-
cations in the domain of interest, there is no need to
mean-centre the observations. Conversely, the implicit
imputation of the mean to location outside the domain
of interest will, on average, inflate the variance in popu-
lations with autocorrelation.

Successive difference replication estimator of variance
The successive difference replication estimator of vari-
ance (SDR) was proposed by Fay and Train (1995). Ac-
cording to Fay and Train, SDR is an improvement over
the first- and second-order difference estimators first
proposed by (Lindeberg 1924) and later detailed in
Wolter (2007). Like in a jackknife estimator of variance
(Efron 1982), a number 2r - with r an integer and 2r − n −
2 ≥ 0 - of pseudo-values of the sample mean is produced,
and then the variance among these pseudo-values is taken
as an estimate of the design variance in Eq. (1). For a
sample size of, for example 400, we take r = 9, and the
number of pseudo-values becomes 512. Each pseudo-
value is a weighted average of the n observations in a
sample. To apply the SDR to a systematic sample from a
spatial population, the sample units must be brought into
an order compatible with a sample selected from a popu-
lation with units arranged in a linear (one-dimensional)
structure. SDR is applicable to a wide array of sampling
designs (Opsomer et al. 2016).
The key feature of the SDR estimator of variance is

that the r pseudo-values are independent. To achieve
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this, a square Hadamard matrix (H) with 2r rows and
2r columns is required with elements hst= 1 or hst = –
1, and the first row is filled with 1 s. Also, HH′ = 2rI
where I is an 2r × 2r identity matrix. Each pseudo
value is computed as a weighted average of the n
sample observations, whereby the weight (w), in the
sth SDR replication (s = 1, …, 2^r [editor: this should
be 2 raised to the power of r]) assigned to the ith
sample unit, is w�

st ¼ f stwt with f st ¼ 1þ 1
2
ffiffi
2

p ðhsþ1;t−

hsþ2;tÞ and wt as the original design weight (i.e. N/n).
The distinct values of fst are 1, 1− 1ffiffi

2
p and 1þ 1ffiffi

2
p . For

n = 400, the frequencies of the three distinct values
assigned to a unit are 256, 128, and 128, respectively.
With our population units, identified by their row

and column position in a grid, we applied the SDR
estimator of variance with the n sample units ordered
row-wise, column-wise, and to a shortest path (with
start in the first sampled unit) through the n sample
locations (Fig. 6).
The simple average of the three SDR estimates of vari-

ance obtained with the row-wise, the column-wise, and

the shortest path ordering of the sample is our SDR esti-
mate of variance for a single systematic sample. The
SDR estimator applicable to an ordered sample with r
pseudo-values of the population mean is:

V yð Þ ¼ 4
512−1

1−
n
N

� �X512
s¼1

ys−ys
� �2

;

with ys ¼
1
n

Xn
t¼1

f styt

and ys ¼
1

512

X512
s¼1

ys

ð5Þ

where y is the weighted sample mean (pseudo-value) in
the sth replicate of successive differences.

Ripley’s estimator of variance
Ripley’s estimator Ripley (2004) is model based and ap-
plies to a continuous (in y) population with infinitely
many possible sampling locations (Mandallaz 2008, pp.
60–62). Applied to a systematic sample of size n from a

Fig. 5 Formation of groups of four sample locations in Matérn’s estimator of variance under systematic sampling from a regular grid of sample
locations (black dots). The domain of interest (forest) is the grey polygon. A group of four must have at least one location in the domain of
interest, and be (spatially) nearest neighbours (NNs). Groups satisfying this condition are indicated by two dashed diagonals. The formation of
groups was initiated with the four NNs in the upper left corner
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contiguous spatial area (A) equal to the extent of the fi-
nite populations under study, we have

V̂ RIP yð Þ ¼ 1
n2

X
i; j

Ĉ yi; y j
� �

−
2
n

X
i

N−1
Z

A

Ĉ yi; yð Þdy

þ
Z

A

Z

A

Ĉ y0; yð Þdy0dy

ð6Þ

where Ĉðyi; y jÞ is an estimate of the covariance between

sample observations of y in units i and j,
R
AĈðyi; yÞdy is

the integral of the covariance between the y-values in
the sample and the y-values in the assumed continuous

surface of y-values in the area A defining the population
under study. The last term (double integral) is the vari-
ance of the population mean. Stated differently, the first
two terms on the r.h.s. of Eq. (6) is the expected variance
of y−y; while the last term is the variance of the expect-
ation (i.e. the actual population mean y).
We chose the distance-dependent covariance func-

tion for an isotropic weakly stationary fractional
Gaussian noise process (FNG, Baillie 1996). FNG’s
have been used to characterize ‘long-term’ memory
processes (Johannesson et al. 2007; Nothdurft and
Vospernik 2018). Accordingly, the covariance between
observations from two units or two points separated
by a distance h is

Fig. 6 An example of ordering a systematic sample from a spatial population arranged in a regular array. A row-wise ordering (top left), a
column-wise ordering (top right), and the shortest path through a sample of n = 400 units selected with a sampling interval of 12 from a
population with a regular array of 240 × 240 units (bottom). The two dots indicate the start and finish of the path

Magnussen et al. Forest Ecosystems            (2020) 7:17 Page 8 of 19



Ĉ hð Þ ¼ σ̂2 h−1j j2t̂−2h2t̂ þ hþ 1ð Þ2t̂
� �

=2 ð7Þ

where σ̂2 and t̂ are ordered sample-based maximum
likelihood estimates (MLE) of the two parameters σ2

(process variance), and t ∈ (0, 1) controlling the rate of
change in the covariance as a function of distance.
Again, we used each of the three orderings outlined
above, and took the average of the MLEs as our final
estimates.
Computation of the last two terms in Eq. (6) can

be demanding, in particular for large populations with
an irregular spatial outline. In our computations we
used Monte-Carlo integration (Robert and Casella
1999, ch. 5.3.2) over 2400 random points in A to ob-
tain the second term on the r.h.s. of Eq. (6). To com-
pute the third term on the r.h.s of Eq. (6) we
exploited the fact that in a spatially continuous popu-
lation with a simple geometric structure, we can inte-
grate over all possible distances with a probability
distribution function for the distance between two
randomly selected points (Ripley 1977).

D’Orazio’s estimator of variance
D’Orazio’s estimator of variance (D'Orazio 2003) pro-
vides a correction (c) to the SRS estimator of variance
intended to capture the effect of a spatial autocorrel-
ation. The correction is through Geary’s contiguity ra-
tio c – a measure of the spatial association between a
sample unit value of y and the y-values in its nearest
(spatial) neighbours (Geary 1954). Geary’s c takes a
value of 1.0 when there is no association, while a c <
1 suggests a positive spatial association, and a c > 1 a
negative association. The estimator showed promising
results in a recent simulation study (Magnussen and
Fehrmann 2019).
The idea behind D’Orazio’s estimator, hereafter re-

ferred to as DOR, is simple. From Eq. (2) it is clear that
the desired design variance is the variance among the K
sample means whereas the SRS variance in Eq. (3) is the
within sample variance of a sample mean. Consider a
breakdown of the fixed total variance in a (finite) popu-
lation into a within- and between sample variance. With
a positive (negative) spatial covariance among units in a
population the among-sample variance will decrease (in-
crease) relative to a population without a spatial covari-
ance. This follows because the sum of the within-sample
variance is inflated (deflated) by the covariance. Since
the SRS estimator does not account for the within sam-
ple covariance, it requires a correction. D’Orazio opted
to use Geary’s contiguity ratio as a correction factor
since it represents an extension of the Durbin–Watson
(DW) statistic (Durbin and Watson 1950) to a spatial
context. The DW statistic was successful in explaining

the apparent efficiency of nearest-neighbour post-
stratification in systematic sampling from populations
arranged in a linear array (Ripley 2004, pp. 26 − 27). The
DOR estimator of variance is

V̂ DOR yð Þ ¼ ĉ V̂ SRS yð Þ with ĉ

¼
Pn

i¼1

P
j�iwij y j−yi

� �2

2
Pn

i¼1

P
j�iwij

V̂ yið Þ ð8Þ

where wij are distance dependent weights, and V̂ ðyiÞ is
the sample-based estimate of the population variance in
y. The symbol j~i indicates that sample unit j is a first-
order neighbour of sample unit i. We assigned a weight
wij = 1.0 if sample units i and j are separated by a dis-
tance d units equal to the sampling interval in the design
under study (see next), and a weight of 1=

ffiffiffi
2

p
to sample

units separated by a distance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ d2

p
units. Other

weighting schemes are possible (Cliff and Ord 1981, ch.
1.4.2).

Monte-Carlo error in estimated variances
With 30 replications of K possible samples, the
Monte-Carlo error (Koehler et al. 2009) on the aver-
age of an estimated variance was 4.6% (n = 400) to
1.6% (n = 1600) with the SRS estimator, 2.7% with the
MAT estimator, 2.6% with the SDR estimator, and
1.2% (n = 400) to 13.8% (n = 1600) with the RIP esti-
mator, and 2.4% with DOR.

Estimator performance
Two metrics are used to assess the expected performance

of an estimator of variance. The first is the ratio meanðV̂ EST Þ
VDES

;

EST ¼ fSRS;MAT ; SDR;RIP;DORg with meanðV̂ EST Þ
equal to the mean of the K estimates of variance. The
second is the absolute difference j1−meanðV̂ EST Þ=VDESj as
a measure of bias. In practice, the anticipated performance
(Isaki and Fuller 1982; Kish and Frankel 1974) in a single
application is more relevant. Consequently we report on

the distribution of the ratio V̂ EST
VDES

; EST ¼ fSRS;MAT ; SDR;

RIP;DORg and j1−V̂ EST=VDESj across all 10,320 combina-
tions of sample sizes, samples, and realizations of a
superpopulation.

Results
Populations with autocorrelation and no trend
The SRS variance estimator was consistently conserva-
tive (Fig. 7). In all but four out of 120 cases in the
main study (4 sample sizes × 30 realizations of a
superpopulation), the estimated variance was greater
than the design based variance (VDES). The average,
over 30 realizations of a superpopulation, of the ratio
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meanðV̂ SRSÞ=VDES - with the mean taken over the K
samples - varied from 1.4 ± 0.04 (n ≤ 900) to 1.6 ± 0.08
(n = 1600). For all estimators, and visible in Fig. 7, the

variation in this ratio increases with sample size be-
cause VDES declines faster than the mean of the SRS
estimator of variance.

Fig. 7 Variance ratios (meanðV̂ EST Þ
VDES

; EST ¼ fSRS;MAT ; SDR; RIP;DORg) in simulated systematic sampling with sample size n = 400, 576, 900, and 1600

(y-axis). A dot represents a ratio of the mean over K samples to the design-based variance in one realization of a superpopulation. The larger red
dot is the mean ratio in 30 realizations. Dots above 1.6 have been clipped (34 values > 1.6 from SRS and 6 values > 1.6 from RIP)
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The 30 averages of K SRS estimates of variance were
perfectly and negatively correlated with VDES ðρ̂ðSRS;
DESÞ ¼ −1Þ . With the total variance fixed at 1.0 in all
cases - and recalling that the total variance in y is equal
to the among-sample variance plus the within-sample
variance (Särndal et al. 1992, p 78) - the result was ex-
pected inasmuch the SRS variance equals the within-
sample variance (divided by n), and DES equals the
among-sample variance. If one increases, the other has
to decrease. Otherwise, the SRS estimator was negatively
correlated (~ − 0.6) with the remaining four estimators
when sample size was 400. At larger sample sizes, the
correlation between SRS and RIP estimates deteriorated
to values around − 0.2, but remained around − 0.6 with
MAT, SDR, and DOR for sample sizes ≤900. With n =
1600, the maximum correlation was − 0.3.
Matérn estimates of variance were much closer to the

design variance than the SRS estimates of variance (Fig.
7). The average ratio of meanðV̂MAT Þ=VDES , varied from
0.96 ± 0.02 (n = 400) to 1.01 ± 0.04 (n = 1600). The cor-
relation between meanðV̂MAT Þ and VDES (across the 30
realizations of a superpopulation) also decreased with an
increase in n. From 0.64 (n = 400) to 0.29 (n = 1600). A
confirmation that V̂MAT decreases at a rate slightly
slower than n−1.
The performance of the SDR estimator was - by and

large - similar to the performance of Matérn’s estimator
with a meanðV̂ SDRÞ=VDES varying from 1.01 ± 0.02 to
1.04 ± 0.04 across the four sample sizes (Fig. 7). The cor-
relation between SDR and MAT variances was consist-
ently strong (0.996 to 0.998). SDR estimates of variance
from either a row-, a column-wise, or shortest path or-
dering of sample locations (cf. section on estimators)
were always within 10% of each other.
Ripley’s estimator of variance showed the strongest ef-

fect of sample size (Fig. 7). The ratio meanðV̂ RIPÞ=VDES

increased from 1.28 ± 0.03 to 3.06 ± 0.52 as sample size in-
creases from 400 to 1600. The increase was expected. By
adding more sample units, the average covariance among
unit observations in a sample increases; hence the numer-
ical values of the first and second terms on the r.h.s. of Eq.
(6) will increase, but the first term increases at a faster rate
than the second term. Otherwise, the variability and cor-
relation with VDES was similar to what is reported for
VMAT and VSDR. Again, V̂ RIP was strongly correlated
(0.978–0.989) with both V̂MAT and V̂ SDR.
Results with D’Orazio’s estimator of variance in Fig. 7

were nearly perfectly correlated with results from
Matérn’s (0.992–0.995) and the SDR estimator (0.999–
1.000) and therefore not detailed separately.
In terms of absolute deviations from the design-based

variance, Matérn’s estimator was attractive when sample
sizes were 400 and 576. In these settings, the average

MAT estimate of variance - over the K samples - was in
17 (n = 400) and 18 (n = 576) out of 30 realizations of a
superpopulation the least biased (Fig. 8). With n = 900,
the MAT estimator was in 13 realizations the least
biased, and Ripley’s estimator was 9 times the least
biased. With the largest sample size (n = 1600) RIP and
DOR are the least biased in 11 and 10 realizations,
respectively.
The anticipated performance of an estimators in a single

application is captured by the density distribution of V̂ EST
VDES

;

EST ¼ fSRS;MAT ; SDR;RIP;DORg across all settings of
sample size, samples, and realizations of a superpopulation
(Fig. 9). The almost perfectly correlated estimators SDR
and DOR have distributions that are more concentrated
around 1.0 than distributions for SRS, RIP, and MAT. The

median squared difference of 1– V̂ EST
VDES

was 0.23 for SRS,

0.02 for MAT, 0.01 for SDR and DOR, and 0.09 for RIP.
The anticipated performance in terms of j1−V̂ EST=VDESj

is in Fig. 10 in the form of density distributions of
j1−V̂ EST=VDESj across the settings of sample sizes, samples,
and realizations of a superpopulation.
In terms of the distribution of absolute deviations,

Fig. 10 indicates a better anticipated performance of
DOR and SDR with MAT as the runner up. RIP is a dis-
tant fourth and closest to the distribution provided by
SRS.
Should an analyst prefer an estimator that has a vari-

ance that is not only at least 20% below the variance
with SRS, but also not underestimating the design vari-
ance, the choice would again be SDR and DOR with an
estimated probability of 0.45 and 0.48 for satisfying this
criterion in our simulations. Corresponding results for
MAT and RIP were 0.34 and 0.12.

Populations with autocorrelation and a linear trend
A global linear trend, unless accounted for by modelling
or stratification, will increase the variance in sampled
values of y. In the scenarios with a linear trend the SRS
estimator of variance was again, by a wide margin, the
most conservative of the five tested estimators (Table 2).
The overestimation of variance increased rapidly with
the strength of the linear trend, from 50% with a weak
trend to 188% with a strong trend. Sample size (from
400 to 1600) had, in comparison, only a minor effect.
Results with the MAT estimator were better. Its poorest
performance was an overestimation of 19% in popula-
tions with a strong linear trend and a sample size of 400
(d = 12), in all other settings the estimated variance was
within 4 percentage points of the design variance. The
performances of SDR and DOR were similar but consist-
ently lagged that of MAT, especially in the populations
with a strong linear trend. The RIP estimator performed
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worse than MAT, SDR, and DOR in combinations of a
strong or moderate trend and a sample size of 400. With
a sample size of 1600 and a moderate or a weak trend,
the performances of the four estimators MAT, SDR, RIP,
and DOR were, from a practical perspective, similar.

Populations with near zero autocorrelation and no trend
In a population with a near zero autocorrelation, the
proposed alternative estimators (MAT, SDR, RIP, and
DOR) and the SRS should, ideally, generate estimates
of variance close to the actual design variance (DES).
As can be taken from Table 3, this was the case
across all sample sizes and realizations of a superpo-
pulation (hint: paired equal variance t-test p-values
for the null hypothesis of no difference were all
greater than 0.05). The applicability of the t-distribu-
tion was ascertained with a KS-test (Kolmogorov-

Smirnov, P > 0.34, Barr and Davidson 1973). We failed
in all cases to reject the null hypothesis of a t-
distribution.

Populations with a near zero autocorrelation and a linear
trend
In populations with a near zero autocorrelation and a linear
trend, the SRS estimator of variance was consistently the
most conservative (Table 4) with an overestimation that in-
creased with sample size and strength of a linear trend. Es-
timates obtained with MAT, SDR, RIP, and DOR were all
closer to the actual design variance than the SRS estimates
of variance, but with a distinct sensitivity to the interaction
between sample size (sampling interval) and strength of the
linear trend. With n = 1600 the four alternative overesti-
mated the actual variance by 22%–24%, but with n = 400
the MAT, SDR, and DOR estimator underestimated the

Fig. 8 Relative estimator frequency of the lowest value of j1−meanðV̂EST Þ=VDESj: The area occupied by an estimator is proportional to the
number of times (out of 30) that the average (over K) estimate of variance was closest to the design-based variance
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variance by 1% to 5%, whereas RIP overestimated the de-
sign variance, most (22%) in presence of a strong trend, and
least (2%) with a weak trend.

Scaling to larger populations and a smaller sample
fraction
With the results from the supplementary populations
and sample designs we gauge the scalability of the re-
sults from the main study in Table 5. DES and SRS
variances were almost constant across the three popu-
lation sizes (57,600; 230,400; and 921,600), as pre-
dicted by theory. Variances obtained with MAT, SDR,

and DOR were in all cases closer to the estimates of
design variance than were the variances obtained with
SRS. MAT was in each case closest to the DES vari-
ance but with a standard deviation across realizations
almost twice as great as the standard deviation with
DES. We also note that as the population size in-
creased and the sample fraction decreased, the vari-
ances obtained with MAT, SDR, and DOR drifts – at
a slow rate – towards the results of SRS. The DOR
estimator has a much smaller standard deviation than
MAT and SDR, suggesting that in even larger popula-
tions and smaller sample sizes, this estimator may, on

Fig. 10 Density distributions of j1−V̂ EST=VDESj. For DES the value is 0. Each distribution covers 10,320 single sample analytical estimates
of variance

Fig. 9 Density distributions of standardized variance ratios V̂ EST
VDES

. For DES the ratio is a constant 1.0. Each distribution covers 10,320 single sample

analytical estimates of variance

Magnussen et al. Forest Ecosystems            (2020) 7:17 Page 13 of 19



a single-sample basis, frequently outperform MAT
and SDR.

Discussion
Although we have a general methodology for constructing
a model-based estimator of variance for systematic sam-
pling that is model unbiased with a minimum root mean

squared error (Wolter 2007, ch. 8.2.2), and we appreciate
Tobler’s first law of geography (“units separated by a
shorter distance are, on average, more similar than units
separated by a longer distance”, Tobler 2004), we are still
evaluating model-based variance estimators for systematic
sampling (McGarvey et al. 2016; Strand 2017; Magnussen
and Fehrmann 2019) or proposing new ones (D'Orazio
2003; Clement 2017; Pal and Singh 2017; Fattorini et al.
2018a; Magnussen and Fehrmann 2019). A century long
occupation that appears to have begun with the efforts by
Lindeberg (1924) and Langsæter (1932).
There is a simple explanation as to why a single omni-

bus estimator for systematic sampling is unlikely to
emerge, and that is the sensitivity of the design variance
to a non-random ordering of the population units (Särn-
dal et al. 1992, ch. 3.3.4). In forestry, we may have nu-
merous non-random structures in any population of
forest trees and associated vegetation that directly influ-
ence a study variable (Burslem et al. 2001; Scherer-
Lorenzen and Schulze 2005). Spatial autocorrelation is
just one of many manifestations of a non-random order-
ing, but it is pivotal for computation of variance in a
spatial population.
The sensitivity of the design variance to a non-random

ordering of population units calls for caution when we,
from simulation studies, attempt to infer the perform-
ance of a variance estimator in a population with an un-
known ordering. In particular when an estimator explicit
or implicitly assumes a particular model for the study
variable. Since “all models are wrong, but some are use-
ful” (Box 1976), it is risky to assume that a model is true
(Wolter 2007, p 305).
Yet, simulated systematic sampling from artificial or

actual populations remains the most expedient method
to screen variance estimators for systematic sampling.
By necessity artificial populations will be simpler and
smaller than actual ones. Ultimately, however, it is the
spatial covariance structures in a population that drive
the performance of a variance estimator (Fortin et al.

Table 3 Paired t-tests under the hypothesis of equal variances.
Δ̂ is the difference between the mean estimate derived with
SRS, MAT, SDR, RIP, or DOR and the design based variance (DES).
ĵtj is the absolute value of the t-statistics (effect size), and Pðĵtj j
Δ ¼ 0Þ is the probability of a greater ĵtj under the null
hypothesis of a zero difference

Estimator contrast n Δ̂ � 104 ĵtj PðĵtjjΔ ¼ 0Þ
SRS-DES 400 0.8 1.31 0.20

576 0.2 0.37 0.72

900 0.0 0.16 0.87

1600 0.0 0.11 0.91

MAT-DES 400 0.2 0.30 0.77

576 0.3 0.52 0.61

900 0.3 0.60 0.55

1600 0.1 0.40 0.69

SDR-DES 400 0.3 0.54 0.60

576 0.2 0.43 0.67

900 0.2 0.54 0.59

1600 0.1 0.40 0.69

RIP-DES 400 0.5 0.73 0.47

576 0.2 0.34 0.74

900 0.3 0.68 0.50

1600 0.2 0.80 0.43

DOR-DES 400 −0.5 0.84 0.41

576 −0.7 1.39 0.17

900 −0.5 1.22 0.23

1600 −0.2 0.73 0.47

Table 2 Estimated variances in populations with spatial autocorrelation and a strong, a moderate, and a weak global linear trend. All
table entries are means across 30 realizations of a super-population with autocorrelation and a linear trend, and the K possible
sample for a given sampling interval (d). Variances in parentheses are relative variances with the DES variance fixed at 100. τi, j is the
trend component for unit in row i and column j (i, j = 0.5, 1.5, …, 239.5)

Trend Trend
variance
(%)

Site
effect
variance
(%)

Sample
size
(units)

Sample
interval
(units)

Variance estimator × 103

DES SRS MAT SDR RIP DOR

Strong τi, j = (i + j − 241)/120 45 25 400 12 0.88 (100) 2.52 (288) 1.04 (119) 1.15 (131) 1.58 (180) 1.20 (137)

1600 6 0.24 (100) 0.62 (262) 0.25 (104) 0.26 (107) 0.21 (88) 0.26 (110)

Moderate τi, j = (i + j − 241)/240 16 35 400 12 1.50 (100) 2.56 (171) 1.51 (101) 1.64 (109) 2.06 (138) 1.65 (110)

1600 6 0.34 (100) 0.62 (182) 0.34 (101) 0.35 (104) 0.35 (105) 0.36 (106)

Weak τi, j = (i + j − 241)/480 4 40 400 12 1.71 (100) 2.56 (150) 1.67 (98) 1.81 (106) 2.20 (129) 1.81 (106)

1600 6 0.38 (100) 0.62 (162) 0.38 (100) 0.39 (105) 0.40 (103) 0.39 (103)
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2012). Casting the covariance process as the outcome of
shared random effects is consistent with Tobler’s first
law of geography (Tobler 2004). With autocorrelation
arising from three additive site effects – of different
strength and operating at three spatial scales – our pop-
ulations are one step closer to resemble actual forested
landscapes than possible with a parametric spatial co-
variance model (Wolter 2007, ch. 8.3; Magnussen and
Fehrmann 2019). A different approach was taken by
Hou et al. (2015). They generated spatial covariance
structures by manipulating the spatial distribution of live
trees in an actual plantation. In terms of the sampling
distribution in estimated means, their approach deliv-
ered results consistent with ours. A nearly constant rela-
tive performances of the five estimators of variance, in
populations of different size and more realistic sample
fractions, vouch for the scalability of our findings and
main results.
Regional trends are commonplace in large-area forest

inventories as they include sites with different climates,
soils, species, forest structures, and associated forest man-
agement practices. If regional trends are not dealt with
through modelling or a (post) stratification, they may
drastically change the estimate of variance (Matérn 1980,
ch. 4.6; Särndal et al. 1992, p 82; Breidt and Opsomer
2000; Wolter 2007, Table 8.3.1). Our results with a strong,

moderate, and weak global linear trend confirmed the sen-
sitivity of the design variance to such trends. Each of the
K sample means will differ by an amount determined by
the average difference in y between adjoining population
units. Regardless of the strength of a global trend, the four
tested alternative variance estimators generated variances
that were closer to the design variance than possible with
the SRS estimator of variance. The MAT estimator is, in
theory, robust against a unidirectional trend, but not
against our bi-directional trends. In populations with a
suspected trend, and no attempt to address the trend by
modelling or a stratification, the MAT estimator emerged
as most attractive followed by DOR and SDR. In larger
populations, the less variable DOR estimator becomes
more attractive. To be successful in populations with a
trend, the RIP estimator requires a separation of trend and
spatial covariance structures, otherwise the performance
will be less predictable and more variable.
Heteroscedasticity is commonplace in data from actual

forest inventories, but not included in our study settings.
To gauge it importance, we ran simulations with a noise
variance that increased linearly by a factor 3 across both
rows and columns, and sample sizes 400 and 1600. The
results (not shown) were similar to the results in Table 4
for a moderate trend and a near zero autocorrelation.
That is, SRS was the most conservative with an

Table 5 Estimated variances with a systematic sample size of n = 100 in trend-less populations with autocorrelation, scaled sizes (N),
and scaled expected number of site polygons (n(sT), T = 1, 2, 3). All results are based on 30 realizations of a superpopulation, and all
or a maximum of 2000 random selections of all possible samples under a systematic sampling design. The standard deviation ðσ̂Þ
across realizations is indicated ð�σ̂Þ. Relative variances with DES fixed at 100 are in parentheses

N Array d n
(s1)

n
(s2)

n
(s3)

Variance ×102

DES SRS MAT SDR DOR

57,600 240 × 240 24 96 12 6 0.73 ± 0.10 (100) 1.00 ± 0.13 (137) 0.73 ± 0.22 (100) 0.79 ± 0.22 (107) 0.76 ± 0.13 (104)

230,400 480 × 480 48 96 12 6 0.69 ± 0.08 (100) 1.00 ± 0.12 (145) 0.74 ± 0.22 (107) 0.79 ± 0.22 (114) 0.76 ± 0.12 (111)

– – – 192 24 12 0.70 ± 0.08 (100) 1.00 ± 0.13 (143) 0.76 ± 0.22 (108) 0.81 ± 0.22 (115) 0.78 ± 0.11 (112)

921,600 960 × 960 96 96 12 6 0.73 ± 0.08 (100) 1.00 ± 0.12 (136) 0.76 ± 0.22 (104) 0.80 ± 0.23 (110) 0.78 ± 0.12 (106)

– – – 384 48 24 0.71 ± 0.08 (100) 1.00 ± 0.13 (141) 0.81 ± 0.23 (114) 0.87 ± 0.23 (122) 0.83 ± 0.11 (118)

Table 4 Estimated variances in populations with a near zero autocorrelation and a strong, a moderate, and a weak global linear
trend. All table entries are means across 30 realizations of a super-population and the K possible samples for a given sampling
interval (d). Variances in parentheses are relative variances with the DES variance fixed at 100. τi, j is the trend component for unit in
row i and column j (i, j = 0.5, 1.5 …, 239.5)

Trend Trend
variance
(%)

Site effect
variance(%)

Sample
size
(units)

Sample
interval
(units)

Variance estimator × 103

DES SRS MAT SDR RIP DOR

Strong τi, j = (i + j − 241)/120 45 2 400 12 1.51 (100) 2.50 (166) 1.46 (97) 1.47 (98) 1.84 (122) 1.48 (98)

1600 6 0.29 (100) 0.63 (214) 0.36 (124) 0.37 (125) 0.36 (124) 0.37 (126)

Moderate τi, j = (i + j − 241)/240 14 2 400 12 2.12 (100) 2.49 (117) 2.09 (98) 2.09 (98) 2.28 (107) 2.03 (96)

1600 6 0.42 (100) 0.62 (149) 0.52 (123) 0.52 (124) 0.52 (124) 0.52 (123)

Weak τi, j = (i + j − 241)/480 4 2 400 12 2.36 (100) 2.49 (105) 2.34 (99) 2.33 (99) 2.41 (102) 2.25 (95)

1600 6 0.47 (100) 0.62 (133) 0.58 (123) 0.58 (123) 0.58 (122) 0.57 (122)
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overestimation of variance of 40% (n = 400) and 22% (n =
1600), and MAT was the estimator with the performance
closest to that of the target design variance (i.e. an over-
estimation of 10% for n = 400, and an underestimation of
6% for n = 1600). SDR was in this regard the runner up.
Despite marked differences in formulation of the

MAT, SDR, RIP, and DOR estimators of variance, their
expected performance was quite similar in populations
without a global trend. The strong correlations among
the variances obtained under these conditions, confirms
the importance of a first-order autocorrelation since it
alone was captured by all four. Higher order autocorrela-
tions enters only in the SDR and RIP estimators.
The MAT estimator had the lowest expected absolute

bias, i.e. the lowest expected risk of over- or under-
estimating the actual variance. Yet, in practical applica-
tions MAT will be sensitive to edge effects. In a frag-
mented forest landscape, its performance may suffer.
The expected performance of DOR and SDR was close
to that of MAT. From a practical perspective there is no
strong rationale for preferring one over the other in pop-
ulations with either no trends or with a trend dealt with
through modelling or stratification. Otherwise the MAT
estimator followed by SDR and DOR can be
recommended.
The expected performance of RIP was sensitive to

trends and varied with sample size which makes recom-
mendations to practice more difficult. The sensitivity to
sample size is largely a question of the number of inte-
gration points for computing the second term in Eq. (6).
With 9600 integration points the performance was
nearly constant across sample sizes (not shown), but
with this number of integration points the computation
time became impractical. Moreover, computational chal-
lenges in applications with large populations and a frag-
mented forest landscape, may further detract from its
appeal in terms of supportive theory in spatial statistics
(Thompson 1992, ch. 21; Ripley 2004).
In populations with a very weak autocorrelation, all es-

timators reproduced the design variance with a low mar-
gin of error. Thus, the risk of a counter-factual or a
spurious result appears to be low with the four alterna-
tive estimators of variance.
In terms of the anticipated performance in a single ap-

plication (without trends), the DOR and SDR estimators
generated a higher frequency of estimates closer to the
design variance than estimates from MAT and RIP.
Moreover, DOR and SDR were also best in terms of the
odds of generating a variance estimate that is at least
20% below the SRS without underestimating the actual
variance.
DOR has two advantages over SDR, it is computa-

tionally simpler, and it provides a metric (Geary’s c)
of the first-order spatial correlation (association). The

magnitude and sign of Geary’s c provides a useful
and interpretable statistic. It is fairly straightforward
to implement a spatial randomization of the sample
locations and repeat the estimation of Geary’s c a
large number of times to obtain the distribution of c
under the null hypothesis of no spatial association
amongst first-order neighbours. A rejection of the
null hypothesis serves to argue against the SRS vari-
ance estimator.
As suggested from the supplementary yet limited sim-

ulations with larger populations (without a trend) and
lower sample fractions, the estimates of variance ob-
tained with the five estimators will gradually converge as
N increases and n/N decreases. This was expected since
d is inverse proportional to n/N and the average auto-
correlation typically declines with an increase in d.
Several estimators of variance tailored to semi-

systematic sampling (Stevens and Olsen 2003; Magnus-
sen and Nord-Larsen 2019), quasi-systematic sampling
(Wilhelm et al. 2017), or designs with a spatial balance
in auxiliary space (Grafström et al. 2014) were beyond
the scope of this study. Given the model-based nature of
MAT, SDR, RIP, and DOR, we expect they will be of
interest also for these variations on systematic sampling.
We made no use of auxiliaries from remote sensing al-

though they are omnipresent. As pointed out by
Opsomer et al. (2012) and Fattorini et al. (2018a) “… for
a model that fit the data well, any variance estimation
method that targets the residual variability will perform
satisfactorily regardless of the autocorrelation in the
sample data”. In the forerunner to this study (Magnus-
sen and Fehrmann 2019), we confirmed that the conser-
vative nature of the SRS estimator of variance diminishes
with the strength of the correlation between y and an
auxiliary variable (x).
All our results apply to finite populations considered

as realizations of a superpopulation (Bartolucci and
Montanari 2006). We could have employed the infinite
population paradigm on the finite-area populations
under study with the constraint of equality in size (area)
of a population unit and a sample plot. We would, in
theory, have an infinite number of possible samples for a
fixed sample size, but if we excluded samples with edge-
effects and samples with overlapping plots – which vio-
lates the strong assumption of independent samples –
we would generate results very similar to those
presented.
We recognize that an analyst, accustomed to applica-

tion of the SRS estimator of variance to data obtained
under a systematic sampling design, may not be swayed
by results from simulations or simulated sampling from
actual populations. Yet, to continue with the SRS with-
out an attempt to gauge the need for an alternative is
not best practice. With today’s powerful computers and
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readily available software for spatial analysis, it is not dif-
ficult to obtain statistics to guide an analyst towards a
suitable estimator of variance. While issues of trend and
heteroscedasticity may be addressed with a modelling,
post-stratification (D'Orazio 2003; Westfall et al. 2011;
Strand 2017; McConville and Toth 2017; Magnussen
and Fehrmann 2019) or the one-per-stratum design pro-
posed by Breidt et al. (2016), the issue of autocorrelation
will persist across spatial scales.

Conclusions
The conservative nature of the SRS estimator of variance
when applied to data collected under a systematic design
was confirmed. The provision of conservative estimates
of variance is counter-productive in an era where forest
resource estimates are increasingly important in a num-
ber of policy issues where precise estimates are expected.
Inflated estimates of variance may obscure opportunities
for cost-savings from reduced sampling efforts that do
not imperil targets set for precision. Additional compu-
tational complexities are encountered when switching
from the SRS estimator to a better alternative, but they
are not necessarily dissuasive.
In populations with spatial autocorrelation, the four al-

ternative estimators of variance generated estimates of
variance that were much closer to the actual design vari-
ance than possible with the SRS estimator. In the popu-
lations with near zero spatial autocorrelation the four
alternatives closely tracked the actual design variance.
No single alternative estimator emerged as uniformly
best in terms of bias. In terms of expected performance
in populations without a trend, MAT was slightly better
than SDR and DOR. In terms of the anticipated (single
sample) performance, DOR and SDR emerge as less vari-
able than MAT. In populations with a strong or a mod-
erate global linear trend, we would recommend MAT.
Nevertheless, in a large population and a low sampling
intensity, the performances of the investigated estimators
will be less distinct.
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