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Summary 

Changing boundary conditions through environmental shifts, worldwide as well as regional, 
challenge well- established agricultural production systems. While the extraordinary impacts 
on crop development through adverse environmental conditions during critical development 
stages are frequently considered a risk, they are rarely analysed. This is likely due to the 
complexity of the problem, with interactions and interdependencies between numerous abiotic 
and biotic factors entangled on various levels. 

This thesis investigates these complex interactions between adverse environmental conditions 
and critical development stages and their impact on agricultural production of the North 
German Plain. It identifies important, critical development stages, it develops an outlook for 
the abundance of adverse environmental conditions, and it identifies mitigation strategies for 
this specific problem by pattern analysis. 

A literature study identifies prominent critical development stages that help navigate the topic 
of adverse environmental conditions and critical development stages in agricultural 
production. Further, it shows that crop simulation models seemingly lack in capacities to model 
development-stage specific stress responses. 

A modelling study provides an outlook; it finds a consistent increase in abundance of numerous 
adverse environmental conditions throughout the North German Plain. The inabilities of crop 
simulation models (DSSAT) are omitted by neglecting modelled yield response and focusing on 
the evaluation of the abundance of adverse environmental conditions within phenological 
development stages. 

A case study of drought impact on yield variability approaches the problem from another 
angle. The inventory of drought patterns shows that diversification of production systems is a 
possible mitigation strategy. Further, it found a starting point for improvements of crop 
simulation models towards a better assessment of critical development stages in the poorly 
simulated drought response around flowering. This inventory was derived for various 
production systems for an example region in the North German Plain. 

  



4 
 

Zusammenfassung  

Widrige Witterungsbedingungen während kritischer Wachstumsphasen können eine 
außergewöhnlich starke Wirkung auf die pflanzliche Entwicklung haben, z.B. Trockenheit 
während der Blüte. Dabei reichen die Auswirkungen von Ertragsrückgängen über 
Qualitätseinbußen bis zum Totalausfall. Es ist anzunehmen, dass die etablierten 
Produktionssysteme künftig nicht mehr an die veränderten Umweltbedingungen angepasst 
sein werden und sich solche Konsequenzen häufen werden. Damit geht das Risiko einher, dass 
die Produktion nicht mehr auf dem gewohnt hohen und zuverlässigen Niveau stattfinden 
kann. Dies gilt für die Landwirtschaft im Norddeutschen Tiefland wie weltweit. Um diese 
Risiken für das Norddeutsche Tiefland im speziellen einzuschätzen, wurde in dieser Arbeit eine 
Übersicht zu kritischen Phasen der pflanzlichen Entwicklung und Ertragsbildung erstellt, eine 
Perspektive für Risiken der Landwirtschaft im Norddeutschen Tiefland entwickelt und ein 
systematischer Ansatz zur Verbesserung von Analysemethoden und Werkzeugen getestet. 

Kritische Phasen werden schon lange als Herausforderung wahrgenommen. Die 
Literaturübersicht zeigt, dass je nach Fragestellung zahlreiche spezifische Definitionen genutzt 
werden, und dass systematische Ansätze zur Analyse der Wirkung von widrigen 
Witterungsbedingungen auf kritische Phasen selten sind. Zusätzlich wird gezeigt, dass 
kritische Phasen als Phänologie-spezifische Reaktionen auf bestimmte Umweltbedingungen in 
Pflanzenwachstumsmodellen, dem Werkzeug der Wahl zur Analyse von 
Produktionssystemen, kaum entwickelt sind. 

Mit dem Pflanzenwachstumsmodell DSSAT (Decision Support System for Agricultural Transfer) 
konnte, trotz der für Pflanzenwachstumsmodelle typischen Beschränkungen, die Häufigkeit 
von widrigen Witterungsbedingungen während ausgesuchter Pflanzenwachstumsphasen für 
drei Zukunftsszenarien abgeleitet werden. Unter der Voraussetzung, dass es zu keinerlei 
Anpassungen kommt, ergeben sich für das Norddeutsche Tiefland folgende Perspektiven: Die 
Häufigkeiten für widrige Witterungsbedingungen während ausgewählter Wachstumsphasen 
nimmt durch alle evaluierten Szenarien durchgängig zu und dies trotz vorteilhafter, 
phänologischer Entwicklungen wie der Verlängerung der Vegetationsperiode. Darüber hinaus 
fordert der Klimawandel den etablierten Pflanzenbau im Norddeutschen Tiefland teils auch 
auf unerwartete Weise heraus, so muss trotz Temperaturerhöhung weiterhin mit Spätfrost 
gerechnet werden. 

Häufig treten widrige Umweltbedingungen nicht vollständig willkürlich auf. Eine Auswertung 
langer Ertragszeitreihen durch eine Musteranalyse zeigt und klassifiziert die Wirkung von 
Trockenheit auf die Ertragsvariabilität in Niedersachsen. Neben der Klassifizierung der 
rezenten Produktionssysteme, die Schlüsse über eine Risiken-vermindernde Gestaltung von 
zukünftigen Produktionssystemen geben kann, identifiziert die Anwendung der Methode auf 
modellierte Ertragsreihen Ansatzpunkte, an denen das Pflanzenwachstumsmodell gezielt 
mittels Phänologie-spezifischer Prozesse verbessert werden kann, z. B. der verbesserten 
Simulation des Übergangs zur reproduktiven Entwicklung.  
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Introduction 

 

Success of any agricultural pursuit requires suitable environmental conditions throughout the 

production process. Adverse environmental conditions, especially during critical production 

stages, can impact the agricultural pursuit negatively and jeopardise reliable crop production 

outputs on high levels. Shifting climate conditions in a political setting that demands high 

yields and yield stability challenge the well-established and long-evolved agricultural 

production systems at the global and regional scale. 

The agricultural production systems of the North German Plain, as elsewhere, are shaped 

around regional climate patterns to provide optimal boundary conditions for agricultural 

production (Gömann et al. 2015; BMEL 2019; van Rüth et al. 2019). Each crop has its specific 

requirements shifting along with its development (Wollenweber 2003; Porter and Semenov 

2005; Semenov 2009; Trnka et al. 2011, 2014; Mäkinen et al. 2018; Hoffmann et al. 2018). 

Some development stages stand out; they harbour the potential for severe yield losses, if 

demands are not met, or if adverse environmental conditions impact them. The complex 

issues of adverse environmental conditions and critical development stages certainly is a 

plague for risk assessment of crop production systems (Porter and Semenov 2005; Tao et al. 

2018). It is easy to conclude, that insight in the interaction between adverse environmental 

conditions and critical development stages can be valuable to assess yield variability of 

agricultural production systems. 
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Motivation 

Holistic approaches, e.g. the NaLaMa-nT-project (Nachhaltiges Landmanagment für das 

norddeutsche Tiefland project, sustainable land use management for the North German Plain 

project), show the importance of climate change impact on regional development (Spellmann 

et al. 2017). While they produce general mitigation strategies, they lack in depths to resolve 

specific issues, i.e. adverse environmental conditions and critical development stages that can 

have strong, unforeseen impact on yield variability. Ultimately, not assessing the impact of 

environmental variability and extremes and using inadequate evaluation tools leads to severe 

consequences. For example, ill-focused breeding schemes might already have led to a 

significant depletion of wheats’ genetic variability, including resilience to environmental 

extremes (Kahiluoto et al. 2019). Many valuable and frequently discussed mitigation strategies 

are neglected in modelling studies because they cannot be tested with crop simulation models 

(Challinor et al. 2018). 

State-of-the-art 

The basic concept of critical development stages and adverse environmental conditions, as 

well as their complex interactions, is quite intuitive. On the one hand, some development 

stages require specific environmental conditions to be successful, e.g. specific temperature 

ranges to develop reproductive organs (Barnabás et al. 2008; Lizaso et al. 2018). From the 

production perspective, critical development stages are those that determine the 

development of the harvestable product such as roots, tubers, or grains, or even endanger 

the survival of the total crop (Fowler et al. 1996). On the other hand, specific environmental 

conditions, such as e.g. hail storms, droughts, heatwaves, can hamper crop development; or 



17 
 

they can inhibit significant production processes, e.g. high soil moisture reducing 

machinability (Gobin 2012). 

The topic is challenging and intriguing because all these factors stand in correlation, depend 

on each other, and they can lead to unforeseen consequences when combined (Wollenweber 

2003). One could argue on philosophical level that ‘adverse’ and ‘critical’ can only be defined 

through the duality between crop development and environmental conditions. 

The North German Plain is an important agricultural region in Germany (Spellmann et al. 

2017). The temperate climates found in Germany support reliable outputs of well-established 

and long evolved production systems. These systems account for a wide range of 

environmental variability, e.g. winter frost to occasional summer droughts (Trnka et al. 2011, 

2014; Gobin 2012; Spellmann eft al. 2017). Today this generally positive assessment of the 

region is only disrupted by local conditions, e.g. poor soil properties (Richter et al. 2007). 

However, shifts in environmental patterns challenge this picturesque idyll (Barker 2007; IPCC 

2014; Gömann et al. 2015). These shifts include an increase of the mean temperature by 1.5 K 

since 1881 (Barker 2007; IPCC 2007, 2014; Trnka et al. 2011; Gömann et al. 2015; van Rüth et 

al. 2019), shifts in vegetation period (Menzel and Fabian 1999; Chmielewski and Kühn 2000; 

Walther 2003; Chmielewski et al. 2004), and an increase in abundance and severity of heat 

days (van Rüth et al. 2019). The decrease in frost days will not lead to the exclusion of frost in 

general (van Rüth et al. 2019). Precipitation shifts are not as clear - more winter precipitation 

is possible (Gömann et al. 2015; Ljungqvist et al. 2016). Water scarcity is likely to increase in 

summer as the elongated vegetation period increases water demand (Svoboda et al. 2015; 

van Rüth et al. 2019). 
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Despite some beneficial developments, shifts will exacerbate environmental stress for 

agricultural production systems (Chmielewski et al. 2004; Menzel et al. 2006; Estrella et al. 

2007; Trnka et al. 2011, 2014; Mäkinen et al. 2018). Yet unprecedented conditions are 

expected to impact and complicate agricultural production (IPCC 2014; Gömann et al. 2015; 

van Rüth et al. 2019). 

Process-based dynamic crop simulation models are a valuable tool to analyse the response of 

complex systems like the soil-plant-system to various inputs, e.g. different management 

schemes (Bindi and Olesen 2011; Trnka et al. 2011; Rötter et al. 2012, 2018a; Gobin 2012; IPCC 

2014; Gömann et al. 2015; Martre et al. 2015; Pirttioja et al. 2015; Wang et al. 2017; Wallach 

et al. 2018). Provided sufficient calibration and validation, they can test general performance 

of cropping systems in climate change studies over broad ranges of different environments 

(Jones et al. 2003a; Palosuo et al. 2011; Hoogenboom et al. 2012; Trnka et al. 2014). They are 

flexible enough to simulate various crops (Palosuo et al. 2011; Kollas et al. 2015), and variable 

in their application to different topics (Rötter et al. 2012; Pirttioja et al. 2015; Stratonovitch 

and Semenov 2015). They show reasonable performance in predicting mean yield and mean 

crop development of various production systems (Palosuo et al. 2011; Rötter et al. 2012; Kollas 

et al. 2015). However, if not adjusted for the specific problem, they can fail to provide specific 

responses (Challinor et al. 2009, 2018; Rötter et al. 2018b). 

Knowledge gaps  

Complexity per se is certainly not a knowledge gap; however, every insight can be helpful to 

navigate the complexity found between environmental conditions and development stages. 

Many approaches analysing arbitrarily selected environmental conditions and development 

stages show that systematic definitions are needed to characterise the problem. Only a 
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broader systematic knowledge base will provide adequate risk assessment (Challinor et al. 

2005, 2007, 2018; Rötter et al. 2011; Eitzinger and Thaler 2012; Lizaso et al. 2017). 

Risk assessment is needed to identify threats from shifting environmental conditions’ impact 

on local crop production in the North German Plain or other regions. A risk assessment can 

anticipate calamities and provide mitigation and adaption strategies that will minimize these 

impacts. An overview of abundances of adverse environmental conditions during critical 

development stages for the North German Plain can be a useful starting point for this kind of 

assessment. 

Further, there is evidence that the approaches and tools available are insufficient for analysing 

the development stage-specific response to adverse environmental conditions needed for this 

kind of risk assessment (Trnka et al. 2011; Gallusci et al. 2017; Challinor et al. 2018). Therefore, 

new tools and approaches are needed. For instance, analysis of environmental patterns can 

help to narrow the complexity down and provide starting points to develop new analysis 

approaches systematically or improve existing tools, i.e. crop simulation models to model 

specific stress response, more adequately (Gallusci et al. 2017; Challinor et al. 2018). 

Research questions  

The impact of adverse environmental conditions and critical development stages on 

agricultural production is an intriguing problem, and the knowledge gaps clearly indicate both 

general and specific research demands. Here, the impact of adverse environmental conditions 

and critical development stages of crop production is studied for the example North German 

Plain. Each of the three identified research questions is answered in a chapter of this thesis. 

1. Which critical development stages are relevant in the context of adverse environmental 

conditions for the North German Plain? 
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Relevant development stages were identified through a literature study. It provides an 

overview of research about critical development stages and adjacent adverse environmental 

conditions in agricultural production and for common crops grown in the North German Plain. 

Further, it assesses crop simulation model capabilities to model critical development stages. 

2. How will the abundance of critical development stages shift in the future of the North 

German Plain? 

The answer gives an outlook to a potential future for agriculture in the North German Plain by 

partitioning the problem and focusing on the abundance of adverse environmental conditions 

during critical development stages. By applying the decision support system for agricultural 

transfer (DSSAT) crop simulation model, three climate projections are evaluated for the 

abundance of adverse environmental conditions of various climate elements during selected 

development stages at four representative sites in the North German Plain. 

3. In which regard are models capable of depicting the specific impact of adverse 

environmental conditions on crop development? 

Ideally, the study will provide if and where more systematic research on models is needed to 

simulate adverse environmental conditions and critical development stages adequately. 

Relative drought impact on observed and simulated yield variability is analysed exemplarily 

with environmental patterns for the Federal State of Lower Saxony, Germany. The comparison 

of responses of observed and simulated production systems showcases the model’s sensitivity 

to drought impacts. 
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Structure 

 

The background chapter provides definitions and context about processes and resources 

relevant to the conducted research. It includes the establishment of general definitions for 

adverse environmental conditions and critical development, an introduction of the NaLaMa-

nT-project (Nachhaltiges Landmanagment für das norddeutsche Tiefland, Sustainable land use 

management for the North German Plain) as the general framework for this thesis, and an 

introduction of the crop simulation model used in this study; decision support system for 

agricultural transfer (DSSAT). This chapter replaces in some regards a classical general 

methods section by providing background for decisions, e.g. general methods, tools, e.g. 

DSSAT and resources, e.g. sites, data, climate change projections. Each of the three individual 

chapters will describe specific methods applied. 

Each of the three research questions, established before, is answered by individual research 

studies that can be found in three chapters: Chapter 1, Chapter 2, and Chapter 3.  

General discussion includes a general synthesis section that recapitulates the answers to the 

initial research questions and aggregates them in the overarching context. The reflection 

section discusses the findings in a broader context providing additional perspectives for 

identifying adverse environmental conditions and critical development stages, handling 

uncertainties in predicting climate change, and using crop simulation models for this task. It 

derives mitigation strategies for agricultural production in the NGP, and it develops some 

solution improving and applying crop simulation around the problem.
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Background 

Definitions 

There is a duality between ‘adverse’ environmental conditions and ‘critical’ development 

stages: one defines the other. This results in the application of various, specific definitions and 

assessments of these phenomena. 

Adverse environmental conditions have always been a concern in the field of agricultural 

meteorology (Vining 1990). There are many names and specific definitions for adverse 

environmental conditions, e.g. adverse agroclimatic extremes (Rötter et al. 2018b), 

‘Agrarrelevante Extremwetterlagen’ (Gömann et al. 2015), adverse environmental conditions 

(Trnka et al. 2014), or adverse weather conditions (Vining 1990). All share the idea that there 

are these conditions that have a negative impact on crop production, e.g. yield loss. Adverse 

environmental conditions must not be considered independent of crops. They have crop and 

development stage-specific impacts (Daryanto et al. 2017; Strer et al. 2018; Zampieri et al. 

2019). In the present work, more specific definitions of Trnka et al. (2014) and Gobin (2012) 

were followed: environmental conditions are unfavourable events of several days or some 

weeks that hamper crop development or crop production substantially. Arbitrary short-term 

events, e.g. hail storms, or fire, are not considered due to their unpredictability. The use of 

the more general environmental conditions instead of weather conditions opens the 

definition to other factors, e.g. biotic antagonists. 

Critical development stages are phenological stages or production stages that need to be 

successful for the general crop development or the development of the harvestable crop part. 

Additionally, the absence of essential production steps, e.g. harvesting due to inadequate soil 

conditions can hamper agricultural production severely. Development stages are a well-
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established concept; specific stages have specific requirements to environmental conditions 

(Porter and Gawith 1999; Barnabás et al. 2008; Meier et al. 2009; Sánchez et al. 2014). 

Frequently, these requirements are rooted in the development of specific crop organs, e.g. 

tubers, seeds (Porter and Gawith 1999; Barnabás et al. 2008; Sánchez et al. 2014). 

Where necessary specific definitions will be introduced, providing further focus to the 

assessment of adverse environmental conditions and critical development stages by, e.g. 

specifically defined thresholds. 

Framework: NaLaMa-nT 

The Nachhaltiges-Landmanagement-im-Norddeutschen-Tiefland-project (NaLaMa-nT, 

https://www.nalama-nt.de/projekt.html, Spellmann et al. (2017), Figure 7) provides the 

framework for this thesis. The project aimed at developing a general future sustainable land 

use management for the North German Plain using a holistic approach that integrates 

agricultural, forestry, and environmental aspects. However, the approach needed 

supplementation by an assessment for yield risk of the future North German Plain. The general 

observation and solutions found by the project left this specific topic unexplored. 

While, this thesis - not at least through the highly specific objective - is largely independent of 

the initial project, the plethora of shared resources and boundaries available through NaLaMa-

nT-project made their mark on some decisions and selected approaches. This includes 

selected sites as well as using the same climate scenarios. 

Most evident the geographical definition provided by the NaLaMa-nT -project was used, and 

the present work focused on the four representative model regions Diepholz, Uelzen, Fläming 

and Oder-Spree (Spellmann et al. (2017), Figure 7, Supplementary material 1). The North 

German Plain can be defined geographically, culturally, economically, and in numerous other 
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ways. Indeed, man shaped the region into the highly economized cultural landscapes with 

agriculture, forestry, settlements, transportation, dykes, etc. that we find today. It is a highly 

productive agricultural area, dominated by adapted and elaborate agricultural production 

systems (Spellmann et al. 2017). These have been fine-tuned and developed - over centuries - 

around the local climate and environmental patterns to generate and ensure high and reliable 

yield. Various environmental conditions impacted these developments, e.g., the climate 

gradient from oceanic to continental climate, specific soils that developed on numerous 

substrates from glacial valley sands to loess accumulations, or the impact of the sea through 

floods. 

The general and regional climatic conditions are especially important in the context of adverse 

environmental conditions and critical development stages. The region holds a magnitude of 

challenges from cold periods with occasional freezing and thawing in winter to heatwaves and 

droughts in summer. Generally, the climate of the North German Plain classifies as Cfb in 

Koeppen’s effective climate classification (Peel et al. 2007). East of the Elbe river the climate 

is in the transition towards Dfb class climates: with lower precipitation sums, more summer 

precipitation and larger temperature ranges (Figure 1, Figure 2, Figure 3, Figure 4) 

The typical abiotic adverse environmental conditions for crop production are in the North 

German Plain - alone or in combination – drought and water surplus; frost, especially late 

frost; and occasional heatwaves (Gömann et al. 2015; BMEL 2017; van Rüth et al. 2019). 

Various other abiotic and biotic stressors will occasionally impact crop production: numerous 

diseases, pest, fires and large-scale floods are regularly encountered locally or regionally in 

the North German Plain. Out of these, especially, droughts and heatwaves are reported to 

have increased in frequency and severity - indicated by events in the years 2003, 2006, 2015, 
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and 2018, and they are likely to increase even further in future (Gömann et al. 2015; van Rüth 

et al. 2019). 

Table 1 basic statistics fort the model regions (Supplementary material 1, Figure 7) 

Region   Diepholz Uelzen Fläming Oder-Spree 

Abbreviation  DH UE FL OS 

area [km²] 2000 1500 2100 2200 

agricultural [%] 75 50 40 40 

precipitation [mm] 701 714 663 560 

 

Climate change is expected to have an impact on regional environmental conditions, including 

shifting weather patterns (Trnka et al. 2011; IPCC 2014). 

Widely accepted are temperature-related shifts, they tell a consistent story for the North 

German Plain: mean temperature increased by 1.5 K compared to 1881 and will further 

increase (Barker 2007; IPCC 2007, 2014; Trnka et al. 2011; Gömann et al. 2015; van Rüth et al. 

2019). 
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Figure 1 climograph for Diepholz weather stations one of the four NaLaMa-nT model regions 

 

Figure 2 climograph for Uelzen weather stations one of the four NaLaMa-nT model regions 
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Figure 3 climograph for Wittenberg stations one of the four NaLaMa-nT model regions 

 

Figure 4 climograph for Fürstenwalde weather stations one of the four NaLaMa-nT model 
regions 
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A consequence in terms of crop development is an elongation and earliness of the vegetation 

period of approx. ten days (Menzel and Fabian 1999; Chmielewski and Kühn 2000; Walther 

2003; Chmielewski et al. 2004). In regards to adverse environmental conditions, there is a 

discussion of a further increase of extreme temperatures in frequency and severity (Jacob et 

al.; Trnka et al. 2011; Gömann et al. 2015). Heat days will increase in abundance and 

severity (van Rüth et al. 2019). Frost days will decrease; however, they will not vanish (van 

Rüth et al. 2019). Some benefits and chances are seen for agricultural production in Central 

Europe in temperature increase respectively the elongated vegetation period (Menzel and 

Fabian 1999; Chmielewski and Kühn 2000; Walther 2003; Menzel et al. 2003; Chmielewski et 

al. 2004; Barker 2007; Estrella et al. 2007; IPCC 2007, 2014; Trnka et al. 2011; Gömann et al. 

2015). 

Projected shifts in precipitation are vaguer. Agricultural production could be challenged by 

higher water requirements through the elongated vegetation period and precipitation shifts, 

with more precipitation taking place outside the vegetation period (Gömann et al. 2015; 

Svoboda et al. 2015). This could make water availability to a potentially limiting factor in 

rainfed systems of the North German Plain (Simon 2009). Frequently, it is emphasised that 

regional or local conditions might overrule common trends in precipitation (Gömann et al. 

2015; Svoboda et al. 2015; van Rüth et al. 2019). 

The main regional climate pattern is the gradient from oceanic to continental climate across 

the North German Plain. Projections show climate change intensifies along the gradient; with 

climate change impacts being more pronounced in the East (Trnka et al. 2004, 2011; Gömann 

et al. 2015). 



30 
 

Shifts in adverse environmental conditions challenge the well-established local agricultural 

production systems and will have a substantial impact if no mitigation takes place (Trnka et al. 

2011; Gobin 2012; Gömann et al. 2015). Exceptional events are expected to increase in 

abundance and intensity, e.g. heatwaves and droughts not yet reported for this part of Europe 

(Russo et al. 2015; Hanel et al. 2018). 

A primary tool to access these shifts in more detail are climate change scenarios based on 

global circulation models. They provide reasonable projections of future climate 

developments. This thesis uses the climate scenario and projections developed for the 

NaLaMa-nT-project: The Potsdam Institute for Climate Impact Research (PIK) provided three 

projections for the future climate. They are set in the representative concentration pathways 

(RCP) 8.5 continuum of the Intergovernmental Panel on Climate Change (IPCC), based on 

general circulation model and regionalised with a regional statistical model (here STARS). The 

three different scenarios are: min scenario is a run from the INM-CM4 of the IMN, Russia, med 

scenario is a run from ECHAM6 of the Max-Planck-Institute (MPI), Germany, and max scenario 

is a run of the ACCESS1.0 model from CSIRO-BOM, Australia. Each scenario represents a single 

model run. Supplementary material 1 and Table 2 comprise the range of available climate 

scenario data and give some overview (Strer et al. 2014). 

Crop simulation models 

Crop simulation models, here especially dynamic process-based models of the soil-plant-

system, are an excellent tool to analyse the response of complex systems, i.e. agricultural 

production systems to shifting environmental conditions. They can help, as they do in this 

thesis, to partition and simplify complex systems like agricultural production systems into 

manageable and analysable parts. 
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Table 2 mean observed annual temperatures for the period 1990-2010 (obs) and projected by 
three climate models (med, min, and max) for 2040-2060 at the four model regions. P-values 
belong to Student’s t-test applied to test on differences in means between observation and 
projection. Asterisks indicate levels of significance (*). 

region   DH UE FL OS 

obs [°C] 9.7 ± 0.7 9.3 ± 0.7 10.7 ± 1.2 9.7 ± 0.8 

med [°C] 11.6 ± 0.6 10.9 ± 0.6 12 ± 0.6 11.9 ± 0.6 

p-value [ ] 2.1E-11*** 5.7E-10*** 7.3E-13*** 1.9E-12*** 

min  [°C] 10.8 ± 0.6 10.2 ± 0.7 11 ± 0.7 11 ± 0.7 

p-value [ ] 1.80E-12*** 1.00E-10*** 6.10E-13*** 5.4E-13*** 

max [°C] 12.3 ± 0.9 11.6 ± 1 12.7 ± 1 12.5 ± 1 

p-value [ ] 9.1E-06*** 5.3E-05*** 2.2E-06*** 2.0E-06*** 

 

Crop simulation models analyse the response of crops to changing environmental conditions 

and management schemes (Bindi and Olesen 2011; Trnka et al. 2011; Rötter et al. 2012, 

2018a; Gobin 2012; IPCC 2014; Gömann et al. 2015; Martre et al. 2015; Wang et al. 2017; 

Wallach et al. 2018). They can simulate various crops (Palosuo et al. 2011; Kollas et al. 2015), 

apply to a wide range of topics including (Rötter et al. 2012; Pirttioja et al. 2015; Stratonovitch 

and Semenov 2015): water availability (Barlow et al. 2015; Rötter et al. 2018b), phenological 

development (Lizaso et al. 2017), and stress-specific yield response (Challinor et al. 2007). 

While they occasionally are tasked with analysing specific stress responses, they developed 

around solving general crop development issues; with results being especially satisfying in 

predicting mean yields and mean crop development of generalised production systems 

(Palosuo et al. 2011; Rötter et al. 2012; Kollas et al. 2015). 

Out of many options, the decision support system for agricultural transfer (DSSAT) for crop 

simulations was selected for this thesis (Jones et al. 2003a; Hoogenboom et al. 2012). It is 
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applied worldwide and presents a well-established bundle of process-based dynamic crop 

models. It is tested over a broad range of environments (Jones et al. 2003a; Palosuo et al. 

2011; Hoogenboom et al. 2012; Trnka et al. 2014) and has shown to have a reasonable 

performance in yield prediction in model comparison studies (Thorp et al. 2007; Rötter et al. 

2012). The modular design harbours the possibility to easily access different crop simulation 

modules for various crops without the need to manipulate input data (Travasso et al. 1996; 

Jones et al. 2003a; Soler et al. 2007; Hlavinka et al. 2010; Hoogenboom et al. 2012). Therefore, 

it seems suitable to analyse the complex correlations between adverse environmental 

conditions and critical development stages. DSSAT shares sufficient basic traits, concepts, and 

processes with other models to derive some general insight in model behaviour to this specific 

problem.  
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Chapter 1 
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Evaluation of crops and crop models for critical growth 

stages of major crops in temperate climate conditions – A 

Review 

 

 

Abstract 

High crop yield and yield stability under varying climatic conditions remains a major challenge 

for agricultural production, especially in view of climate change. Many crops show a high 

sensitivity to environmental conditions, such as heat and drought, in specific, critical growth 

stages. The objective of the current study was to analyse if these specific crop responses are 

represented by crop growth models commonly applied for risk assessment in climate change 

scenarios. The focus was on arable crops grown in temperate regions representing the highly 

productive agricultural areas of Central Europe. A literature survey revealed that for wheat, 
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maize and rapeseed, flowering and early seed fill are regarded as the main critical growth 

stage, whereas for potato, stem elongation, tuber formation and inflorescence emergence are 

crucial, and for sugar beet germination is most sensitive. Although adverse environmental 

conditions during these critical stages can have a detrimental impact on crop yield, the 

implementation of these stages in most common process-based crop growth models was 

found to be non-satisfactory, as shown for the example of wheat models. Therefore, various 

strategies were identified to account for critical growth stages in a risk assessment context. 

These are developed either for the purpose of accounting for critical growth stages directly, or 

for some other use, but are still suitable to add significant improvement to dynamic crop 

growth models. 

Keywords: adverse environmental conditions; phenological development; critical crop 

growth stages; crop modelling 

 

Introduction 

Crop responses to adverse environmental conditions that result in stress to the crop are very 

complex and variable since they depend on the crop developmental stage and timing of the 

stress, together with its duration and intensity. Critical growth stages are phenological stages 

during which crops have specific requirements or are highly susceptible to specific 

environmental conditions (Porter and Gawith 1999; Sánchez et al. 2014). These requirements 

are related to the development of sensitive crop organs (Barnabás et al. 2008), or specific 

processes taking place along critical stages, e.g. meiosis (Porter and Semenov 2005). There are 

numerous published studies on the physiological impact of stresses during specific growth 

stages of different crops, e.g. heat during flowering (Ewing 1981; Barnabás et al. 2008; van der 
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Velde et al. 2012; Stratonovitch and Semenov 2015), drought during anthesis (Saini and 

Westgate 1999; Ahmadi and Bahrani 2009b; Shrestha et al. 2010), or frost during early 

development (Rácz et al. 1996). Adverse environmental conditions during these sensitive 

growth stages, e.g. drought (Trnka et al. 2014), high temperature (Porter and Gawith 1999; 

Sánchez et al. 2014), or waterlogging can cause substantial yield reduction (Gobin 2012) or 

even crop failure (Challinor et al. 2005), as in the case of the summer drought of 2003, which 

resulted in drastic yield losses in Central Europe (van der Velde et al. 2012). Generally, 

cropping systems are adapted to the environmental conditions prevailing in specific 

production regions. Climate change, however, will inevitably result in changes in the 

frequency and distribution of environmental parameters, e.g. rainfall and extremes of 

temperature, and be accompanied by increased carbon dioxide concentrations (Porter and 

Semenov 2005; Barker 2007). For Central Europe, it is considered highly likely that distribution 

will change towards an increased risk of high-temperature events compared with the present 

conditions (Trnka et al. 2014; Harrison et al. 2014; Pirttioja et al. 2015). 

Dynamic crop growth models, simulating crop response to specific environmental conditions, 

are frequently applied in climate change and risk assessment studies (Palosuo et al. 2011; 

Rötter et al. 2012). It is only recently, however, that risk assessment studies have started to 

focus on the impact of adverse environmental conditions on crop growth processes during 

specific phenological stages (Gobin 2012; Trnka et al. 2014; Pulatov et al. 2015; Liu et al. 2016). 

Further, there are efforts to improve models to ensure better accountancy of critical growth 

stages (Challinor et al. 2005; Stratonovitch and Semenov 2015; Ruane et al. 2016). Thus, it may 

be assumed that crop growth models will differ in their capabilities to reflect interactions of 

adverse environmental conditions and critical growth stages (Porter and Semenov 2005; Liu 

et al. 2016; Ruane et al. 2016). 
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Various development stages can be identified as critical growth stages, and these depend 

strongly on the prevailing environmental conditions. There is yet no overview, however, for 

temperate environmental conditions, as represented by Central Europe as an important crop 

production area. Further, an evaluation of the implementation of these critical development 

stages in process-based dynamic crop growth models as major tools for risk assessment of 

cropping systems in climate change studies would be beneficial for assessing the reliability of 

these tools. 

Therefore, the objectives of the current review are (1) to identify critical crop growth stages 

most commonly regarded to be relevant in crop production, (2) consideration of critical 

growth stages in dynamic crop growth models and (3) evaluation of these implementations, 

with respect to risk assessment for crop production in Central Europe under future climate 

change conditions. Due to the large number of models simulating different crops, the focus in 

the second and third item is on wheat models. 

Methodology 

Identification of critical crop growth stages 

To identify critical crop growth stages, we conducted a keyword search using scientific 

databases (Web of Knowledge, Science Direct, Google Scholar). The analysis was restricted to 

crop species important for Central Europe, i.e. wheat (Triticum aestivum ssp aestivum L.), 

maize (Zea mays ssp mays L.), rapeseed (Brassica napus ssp napus L.), potato (Solanum 

tuberosum ssp vulgaris L.), and sugar beet (Beta vulgaris ssp vulgaris L.). Review and research 

articles were considered for evaluation. The search was restricted to articles investigating 

yield response to adverse environmental conditions during specific phenological stages. In this 

respect, the definition for adverse environmental conditions provided by Trnka et al. (2014) 
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was applied. In detail, the authors considered winter frost without snow cover, late frost, 

waterlogging from sowing to anthesis, severely dry growing season (sowing–maturity), severe 

drought events between sowing and anthesis or between anthesis and maturity, heat stress 

at anthesis or during grain filling. Environmental conditions with a small spatial or temporal 

resolution, e.g. storms or hail events, were excluded from our study; although they are of 

importance at a local scale, they have a lower impact at a regional scale (Olesen et al., 2011). 

Likewise, articles focusing on the effect of salinity were not considered since this is not a key 

factor limiting crop production in the focus area. Further, articles analysing the impact of biotic 

factors such as competition, pests or diseases were also excluded. 

Phenological growth stages were considered as critical growth stages if they were regarded to 

be especially susceptible to adverse environmental conditions or to be more susceptible than 

other stages investigated in the same article. Multiple entries per article are possible if, for 

example, an article addressed several crops or compared the impact of environmental stress 

in different development stages. For analysis, principal growth stages were assigned according 

to Meier (2001). Articles were discarded from the evaluation if growth stages could not be 

identified appropriately. 

Implementation of critical stages in crop models 

The second part of the current study focuses on the implementation of critical crop growth 

stages in dynamic crop growth models. We evaluated the APSIM, APES, CROPSYST, DAISY, 

DSSAT, FASSET, HERMES, MONICA, STICS and WOFOST models (Table 3), These are all well 

established and validated (Rosenzweig et al. 2013) but differ with respect to origin and 

philosophy. The evaluation was mainly restricted to wheat growth modules, which are 

provided by all the above-mentioned models. Two main aspects were addressed: (i) the types 
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of phenological growth stage scales applied in the different models were identified, i.e. the 

algorithms and key drivers of phenological development, and (ii) the implementation of 

adverse environmental conditions was analysed. That is, specific response patterns to 

environmental stress impacts, such as drought or heat, in specific phenological growth stages. 

Particular attention was paid to crop growth stages, which had been identified as critical 

phases by the literature analysis.  

Results 

Critical growth stages relevant for crop growth 

The literature search gave 129 articles fulfilling the search criteria, and a total of about 198 

hits were obtained for phenological stages considered to be critical for yield formation. Entries 

were identified for all crops investigated and for various principal growth stages (Meier 2001). 

The descriptive graphical analysis revealed that the distribution of entries is not uniform, but 

differs with respect to crop species and principal growth stage (Figure 5). Regarding crop 

species, three groups were identified displaying specific distribution patterns: (i) grain crops 

(wheat, maize, and rapeseed), (ii) potato and (iii) sugar beet. 

Grain crops 

Grain crops show a common pattern of principal growth stages recognised as critical growth 

stages (Figure 5). For the early developmental stages of germination and leaf development, 

there were few entries for critical stages, in particular for rapeseed. For wheat and maize, the 

number of entries increased slightly in the booting and heading stages. A peak was found for 

the flowering stage in all grain crops, contributing to about 50% of all entries. In maize and 

rapeseed, seed filling also seems critical, whereas seed ripening and senescence were of 
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marginal importance. In wheat, the number of entries increased slightly from the seed 

ripening to the senescence stage. 

Table 3 Reference material and supplementary sources, e.g. handbooks and online 
documentations used for the literature review on the implementation of phenological phases 
and phenology specific features of dynamic crop growth models. Different production 
systems e.g. winter and spring are not included, here. Frequently, crops of the same genus are 
accessible through altered parameter sets. * Minimal number of crops available. 

Model Version Number of 

crops* 

Reference 

APES V1.0 11  Donatelli et al., 2010 

APSIM 7.7 24 McCown et al., 1996; 

Zheng et al., 2014; Keating et al., 2003 

CROPSYST V.3.04.08 > 10 Stöckle et al., 2003 

DAISY V. 5.19  Abrahamsen and Hansen, 2000; H 

ansen et al., 2012; Abrahamsen, 2015 

DSSAT 

(CERES) 

4.6 42  Jones et al., 2003, 

Hoogenboom et al., 2012,  

FASSET V.2.0 > 7 Olesen et al., 2002 

MONICA V 1.2 13 Nendel and Specka, 2013; 

Nendel et al., 2011 

HERMES V.4.26 >8 Kersebaum, 2006; Kersebaum, 2011  

STICS V.6.9 24 Brisson et al., 2003 

WOFOST V.7.1.7 11 Boogaard et al., 2014; Supit et al., 1994 
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Figure 5 Relative abundance of phenological growth stages identified as critical growth stages 
in articles, by crop. Crop development is provided as principal growth stages according to the 
BBCH scale (Meier 2001) for wheat (a), maize (b), rapeseed (c), potato (d), and sugar beet (e), 
respectively. 

 

The observed pattern suggests that the impact of stress on plant physiological processes and 

crop development is similar among the three grain crops, with flowering being reflected as 

the most sensitive stage. Differences in the method of pollination, however, may affect the 

crop sensitivity at this critical stage. In particular, pollen, when transported by wind over larger 

distances, is prone to desiccation, resulting in reduced longevity (Fonseca and Westgate 

2005). Thus, based on the amount of wind-pollination by crops, a higher susceptibility to heat 

and drought stress might be expected for maize, which is primarily cross pollinated by 

wind (> 95%, (Emberlin et al. 1999), while rapeseed is self-fertile and partly cross pollinated 

by wind and insects (30%, (OECD 1997)), and wheat is characterized by a usually low 

proportion of cross pollination (1-2%, (OECD 1999)).  
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For Central Europe, we assume high temperature and water limitation to be the most relevant 

adverse environmental conditions during flowering (Trnka et al. 2011; Gobin 2012). Cereals 

have a high requirement for optimal temperature and sufficient water supply in the period 

from inflorescence emergence to early grain filling (Barnabás et al., 2008). In the subsequent 

growth stages, crops acquire capabilities to compensate partly for the impact of stress by 

redistributing resources from vegetative plant parts to storage organs, resulting in a gradual 

decrease of susceptibility to stress. For rapeseed, a similar response has been reported 

(Angadi & Cutforth, 2000). Importantly, it is emphasised frequently that grain crop reaction to 

single as well as multiple stress is related strongly to specific cultivar behaviour (Angadi and 

Cutforth 2000; Farooq et al. 2014). 

Temperature 

Crop growth and development is driven substantially by temperature, with each crop being 

characterized by specific temperature ranges (minimum, optimum, maximum), which may 

differ among developmental stages (Porter and Gawith 1999; Sánchez et al. 2014). For the 

developmental phase around wheat anthesis, values of 9.5±0.1°C, 21.0±1.7°C and 31.0°C have 

been reported as minimal, optimal and maximal temperature for growth (Porter and Gawith 

1999). Exposure of wheat to temperatures below -17.2±1.2°C and above 47.5±0.5°C are 

assumed to cause lethal damage (Porter and Gawith 1999). For maize, values of 7.7±0.5°C 

(minimum), 30.5±2.5°C (optimum), and 37.3±1.3°C (maximum) indicate a somewhat higher 

temperature requirement. Similarly, the lower lethal temperature (-1.8±1.9°C) is higher than 

for wheat, whereas the upper limit (46.0±2.9°C) is similar (Sanchez et al. 2014). Rapeseed is 

characterized by a relatively wide temperature range of cardinal temperatures (e.g., 

4.5±2.5°C, 27.8±2.1°C, 42.6±2.8°C (Suanda 2012)). During flowering, floral sterility may occur 

when temperatures exceed 27°C (Morrison and Stewart 2000). 
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Yield loss by heat stress during flowering can be attributed to different physiological 

processes, e.g. reduction in photosynthesis and transpiration, increase in respiration, or a 

modified assimilate allocation, which then impairs the development of reproductive organs 

(Young, Wilen, and Bonham-Smith 2004). Although crops are capable of adapting to high-

temperature stress to a limited extent, e.g. by the production of heat shock proteins, and 

canopy cooling through transpiration (Barnabás et al. 2008), these heat-stress tolerance 

mechanisms are limited. 

The development of ovaries and pollen seems to be highly susceptible to heat stress impact 

(Saini and Aspinall 1982; Barnabás et al. 2008). High temperature adversely affects fertilisation 

by reducing the viability and germination ability of pollen and, therefore, of fertilisation 

success (Barnabás et al. 2008), probably due to the reduced amount of heat shock proteins 

produced (Masearenhas and Crone 1996). For wheat, a maximum temperature of 20°C was 

identified for spikelet formation (Porter and Semenov 2005). Temperatures above 30°C during 

floret formation were reported to lead to sterility in wheat, and male infertility occurs at even 

lower levels of stress exposure than female sterility (Saini and Aspinall 1982). In rapeseed, 

heat stress during flowering was found to lead to a decrease in the number of pods (Chauhan 

et al. 1992) although heat-tolerant cultivars are less affected. 

Recent work suggests that plant sugars may serve as a substrate and a signal to control seed 

set under drought and heat stress (Liu et al. 2013). In maize, for instance, changes in the 

carbon metabolism were found to be a consequence rather than the cause of seed abortion 

(Oury et al. 2016). In addition, sugar metabolism contributes to antioxidant protection and 

heat shock protein synthesis (Liu et al. 2013). Apart from the level of heat stress, the duration 

of exposure is relevant; for instance in rapeseed, where longer exposure is reported to result 
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in a reduction in the number of fertilized flowers (Angadi and Cutforth 2000). Partial recovery 

after short stress pulses is possible, whereas long-term stress exposure of several days’ 

duration has a fatal impact. In maize, heat stress additionally can lead to asynchrony between 

male and female flowering, thereby preventing successful fertilization (Cárcova and Otegui 

2001). Thus, during flowering and early grain fill the component of yield most affected is seed 

number, while in the later growth stages, heat stress mainly reduces seed weight. This is also 

due to the acceleration of crop development, resulting in a shorter seed fill duration (Barnabás 

et al. 2008). However, it is emphasised that maize grain filling is elongated under heat 

conditions. Further, it is suggested that this is explainable by different enzyme types utilized 

in starch production (Barnabás et al. 2008). 

Low temperature generally slows down all plant metabolic processes (Porter and Gawith 

1999; Barnabás et al. 2008), and differences in species sensitivity are well documented, with 

maize being characterized by lower tolerance to chilling than wheat and rapeseed, especially 

in the early crop developmental stages (Porter and Gawith 1999, Sánchez et al. 2014). Specific 

organs and processes, however, can remain highly susceptible to the effects of cold 

temperature (Levy 1985; Ortega and Santibanez 2007). Frost damage is unlikely during the 

flowering of maize and wheat in the geographical focus area of this study, but it may occur 

during the flowering period of rapeseed. 

Water supply 

Quantification of water stress impact is not always straightforward. Various different 

approaches and quantifications are used to classify water stress, e.g. vapour pressure deficit 

(Gobin 2012), waterlogging index (Gobin 2012), spectral vegetation index (Moran et al. 1994), 

water balance (Zirgoli and Kahrizi 2015), and canopy temperature. These different approaches 
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hamper attempts to analyse the impact of water stress. Furthermore, water surplus, as well 

as water limitation, exerts an impact on crop development and growth. 

Water limitation impacts on crop growth and development in various ways (Kumar et al. 

2015), and water stress is associated with water-limited conditions in crop production, 

primarily. The most severe impact of drought is reported to occur between onset of meiosis 

and early seed formation in cereals (Saini 1997), whereas the impact is less pronounced during 

later seed fill, but nevertheless is evident. This aligns with Potopová et al. (2015) who 

conducted statistical analysis for rapeseed and different cereals in temperate climate 

conditions in order to identify monthly drought patterns affecting yield. The authors found 

that July/August was most relevant for maize, while May/June and also October (early 

development) turned out to be the most important months for wheat, and April and May 

following a dry winter in the case of rapeseed. Water limitation during the flowering of wheat 

results in a yield reduction of up to 50% (Farooq et al. 2014). Generally, water stress affects 

the female inflorescence and thus fertilisation, whereas the male inflorescence is less 

impaired (Barnabás et al. 2008). In contrast, Barnabás et al. (2008) found that water shortage 

did not affect fertilisation of wheat unless the severity of water shortage was lethal. In maize, 

drought has a high influence on viability and germination potential of pollen (Barnabás et al. 

2008). Furthermore, a drought-induced expansion of the anthesis-silking interval may 

adversely affect fertilisation and yield (Barnabás et al. 2008). In rapeseed, drought-stress-

induced constraints are also well documented. For instance, Zirgoli and Kahrizi (2015) found 

shifts in yield, flowering duration, days to maturity, pods per plant, seeds per pod, and 1000 

seed weight under drought conditions. A flowering duration reduction of up to 10% and yield 

reduction of 30% were observed following drought during flowering (Zirgoli and Kahrizi 2015). 

Reduction in the number of seeds per pod caused by drought stress at flowering was 
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attributed to a reduction of the time course between flowering and silique 

formation (BirunAra et al., 2011). During seed filling, the yield impact of drought was reported 

to be similar or even stronger than during the flowering stage (Ghobadi et al. 2006). 

Additionally, seed chemical composition may be influenced by water limitation, with a 

modified relation of protein to oil (Ghobadi et al. 2006). 

Excess water is also regarded as an adverse environmental condition for crop development 

(Mittra and Stickler 1961; Gobin 2012), and in particular waterlogging has an impact on the 

physiological development of crops, mainly by the immediate interruption of oxygen supply 

(Gutierrez Boem et al. 1996). A lower diffusion of oxygen in water, relative to diffusion in air, 

can result in soil oxygen concentrations of below 2% (Zhou and Lin 1995). Furthermore, crop 

nutrient uptake is affected. In the case of rapeseed, for instance, Gutierrez Boem et al. (1996) 

reported reduced N, P, K and Ca contents in aboveground biomass under waterlogging 

conditions. Generally, the length of flooding correlates with the severity of crop damage. In 

addition, other environmental factors may amplify the effects of waterlogging. Gutierrez 

Boem et al. (1996) found evidence that high temperatures can exacerbate the impact of 

waterlogging by a higher crop metabolic activity. The organs most affected will be those under 

development at the time when waterlogging occurs, and those with the strongest resource 

demand (Mittra and Stickler 1961; Gutierrez Boem et al. 1996). Consequently, flowering is a 

development stage that is susceptible to waterlogging. Significant decreases in grain yield 

were observed in wheat, barley and maize, when excess water was applied, particularly at 

anthesis, whereas during grain maturation cereal crops were more tolerant of flooding (Mittra 

and Stickler 1961). For rapeseed, the findings are less consistent. Stem width, leaf area and 

overall plant height were found to be reduced significantly (Zhou and Lin 1995; Gutierrez 

Boem et al. 1996). However, Zhou and Lin (1995) emphasise that the impact of waterlogging 
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is stronger during germination and early seed development than during flowering. Overall, 

water surplus, especially waterlogging, is a minor problem for the typical well-drained 

agricultural production sites in the North German plain. Its occurrence requires a combination 

of specific local soil and topographic conditions and intensive rainfall events. 

Multiple stress effects 

Although the mechanisms underlying plant response to single stress factors have been studied 

extensively, the patterns of plant response to stress combinations are still largely 

unknown (Suzuki et al. 2014). Multiple stress effects, however, cannot be predicted from the 

plant’s response to single stress exposure (Rizhsky et al. 2004), since adaptation strategies 

may comprise ‘shared’ or ‘unique’ mechanisms (Pandey et al. 2015). Thus, the overall 

response can be additive or antagonistic, and there is some evidence that the dominant 

stressor mainly determines the impact of the stress combination. If heat and drought result in 

different patterns of growth limitation, the combination of both stresses may result in a 

greater extent of plant damage, as has been reported for spring wheat, where combined heat 

and drought stress was found to cause higher yield reduction than heat or drought alone 

(Prasad et al. 2011). In addition, reproductive organs have been found to be more sensitive 

than vegetative plant parts. Beneficial effects resulting from multiple stresses have not been 

reported, although the impact of the stress may be relieved. Yang and Zhang (2006), for 

instance, found that the impact of the reduction of grain filling duration through water 

shortage on cereal yield was partly compensated by increased temperature promoting the 

reserve translocation from leaf and stem to the grain. 
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Potato 

Adverse environmental conditions may affect not only tuber yield but also tuber quality in 

terms of size, form and constituents, which is crucial for marketing. Stem elongation, tuber 

formation and inflorescence emergence are regarded as critical stages in potato 

development (Figure 5).  

Frost is known to have a damaging effect on the growth and development of potato plants. 

Soil temperatures of -1.4°C to -1.9°C at the tuber planting depth were found to lead to 

increased mortality, and this negative impact will be increased by lower temperatures 

(Boydston et al. 2006). Therefore, planting is recommended to take place after the frost 

period, and a minimum soil temperature of 8°C is assumed appropriate. An air temperature 

range of 15°C to 25°C is regarded as optimal, whereas tuber growth is restricted by air 

temperatures above 32°C as well as below -1.5 °C (Ewing 1981). Temperatures exceeding 45°C 

have been reported to be lethal. Heat stress affects tuber yield by different processes, i.e. a 

reduction of the stimulation of tuberization, an increase in assimilate respiration and a shift 

of assimilate allocation to aboveground vegetative plant parts. Stimulation of tuberization by 

ensuring adequate temperatures is crucial for tuber setting (Ewing 1981), and a limitation in 

tuber initiation can hardly be compensated during further development. The balance between 

potato haulm and tuber growth is essential for a high tuber yield. Thus, environmental 

conditions negatively affecting the source-sink relationship will inevitably decrease tuber 

yield. For haulm development, cardinal temperatures of 5°C, 17-25°C and 30°C (minimum, 

optimum and maximum) have been reported (Ewing 1981). Lethal low temperature of -1.5°C 

is similar to that identified for tuber development. However, the lethal upper temperature of 

40°C for the haulm is substantially lower than for tubers (Levy and Veilleux 2007). The impact 

of specific temperatures on the development and viability of different crop parts can be 
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explained by different processes located in specific parts (Struik et al., 1989, 1989a, 1989b). 

Frost affects potato development in many ways, e.g. by its impact on tuber development. Days 

with cold temperature and frost have been reported to reduce the available bulking time. The 

worst-case scenario in terms of economic output would be high temperatures during early 

development promoting sprouting, followed by cold temperatures forcing increased 

tuberization, and high temperatures thereafter reducing tuber growth, resulting in many 

small, deformed potatoes (Reynolds and Ewing 1989). Apart from tuber yield, tuber quality is 

affected by temperature. Low temperatures, especially low night-time temperatures, are 

known to promote tuberization and potentially leading to a large amount of small tuber size 

classes (Struik et al., 1989, 1989a, 1989b). Levy & Veilleux (2007) emphasise that high night 

temperatures are especially harmful, by promoting metabolization of resources rather than 

storage. Starch accumulation is regarded to be optimal at a temperature of about 20°C, 

whereas it stagnates above 30°C (Struik and Wiersema 2012). However, Van Dam et al. (1996) 

emphasise that temperature impact is not always straightforward and it varies depending on 

the cultivar. 

Potato is characterised by a high sensitivity to water shortage, with the most critical 

developmental stage being tuber initiation (Gobin 2012). Water use is high during tuber 

initiation, and drought stress decreases the photosynthetic rate and leaf area, which leads to 

an increased number and proportion of tubers in the smaller size categories (Dwyer and 

Boisvert 1990). Based on laboratory and field experiments, Haverkort, Van De Waart, and 

Bodlaender (1990) reported a linear relationship between the number of tubers initiated and 

the amount of available water during the first 40 days of development, which comprised 

mainly the vegetative growth stage. In contrast, phenological development was not affected 

(Dwyer and Boisvert 1990). Drought effects are less pronounced during later stages of 
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development (Dwyer and Boisvert 1990). Further details concerning the impact of 

environmental conditions and stresses on different plant organs are reported by (Levy and 

Veilleux, 2007; Struik et al., 1989; 1989a, 1989b). 

Sugar beet 

For sugar beet, the development stages which were found to show higher sensitivity to 

adverse environmental conditions deviate from the pattern detected for grain crops and 

potatoes. This can be mainly attributed to the biennial life cycle of sugar beet, since only 

entries for growth stages in the first development year till harvest have been accounted for 

evaluation. As already mentioned, germination was more often identified as the critical 

growth stage, whereas the abundance of the remaining stages was similar (Figure 5). 

Sugar beet generally shows a relatively high tolerance to heat, drought and salinity (Ober and 

Rajabi 2010), which is commonly attributed to its progenitor, Beta vulgaris subsp. maritima 

((L.) Arcangeli), being a plant adapted to hot, dry and mildly saline environments (Ober and 

Rajabi 2010). Nevertheless, heat and drought can have a significant negative impact on sugar 

beet yield. Furthermore, there seems to be large variability in stress tolerance, and in 

particular for heat tolerance, among cultivars. The optimal temperature range for growth of 

16-25°C is rather wide (Terry 1970). The lethal upper temperature of 42°C is considered to be 

in the top range for heat susceptibility (35°C -45°C) of arable crops (Jackson and Black 1993). 

During early stages, growth and development of sugar beet plants are severely limited by low 

temperatures. Young plants are susceptible to frost (Ober and Rajabi 2010). Cary (1975) 

identified temperatures in the range -2.5°C to -0.5°C as lethal during early development. Thus, 

frost during early development is a threat for sugar beet under Central European conditions. 

Further, early bolting is a specific problem (Stout and Owen 1942) not uncommon in practical 
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cultivation. Normally, the transition from vegetative to generative growth of beets takes place 

in the second year of crop development under European growing conditions (Meier 2001). 

However, under specific environmental conditions (i.e., day length and temperature), 

vernalisation can occur in the year of sowing and initiate early bolting. Consequently, 

resources are translocated to reproductive organs and yield and yield quality is reduced 

(Hoffmann, 2010). Mutasa-Gottgens et al. (2010) reported that temperatures below 4°C over 

9 days or below 6°C for 18 days would successfully vernalize the crop and induce bolting. 

Wood & Scott (1974) found a positive correlation between days with minimal air temperatures 

below 7°C and the proportion of bolted sugar beet plants. In later growth stages, a 

temperature of 17°C is regarded as optimal for sucrose accumulation (Cary 1975; Ober and 

Rajabi 2010). 

Despite a pronounced drought tolerance, yield fluctuations up to 30% in Central and Western 

European sugar beet production are attributed to drought impact, resulting in a reduction of 

sucrose accumulation (Ober 2001; Jones et al. 2003b). Under conditions of increasing aridity, 

these yield losses are expected to increase (Romano et al. 2012). A modelling study by Qi et 

al. (2005) found drought to have the same yield-reducing impact as heat. A phenology-specific 

susceptibility of sugar beet to water limitation is generally not assumed for temperate 

climates (Hoffmann, 2010; Hoffmann et al., 2009; Ober and Rajabi, 2010; Shrestha et al., 

2010). Brown et al. (1987) in contrast, reported younger crops to be more drought-sensitive, 

which the authors attribute to the smaller root system not being able to fully support the crop 

in case of stress impact. 
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Crop development in process-based crop models 

The damaging impact of abiotic stress may vary depending on the development stage of the 

crop. Thus, an accurate simulation of crop phenological development and its adaptation to 

abiotic stress is a condition for modelling stress impact on yield and quality. In the following 

section, therefore, our aims are (i) to present the approaches for implementing phenological 

development chosen in different wheat growth models before analysing, and (ii) to evaluate 

the representation of stress impact in critical growth stages. 

Basic types of representing phenological development in crop growth models 

The algorithms describing crop phenology vary depending on the model’s purpose. Conse-

quently, we found differences among the models with respect to the number of phenological 

stages represented and the level of complexity in their representation (Figure 5). Generally, 

the conceptual stages utilised in the models deviate from those defined in phenological 

growth scales (Meier 2001). The model algorithms quantifying phenological development 

always differentiate between vegetative and reproductive growth and mainly focus on 

temperature, photoperiod and vernalisation as driving factors. The latter is considered in most 

models (Table 4), but not in all (FASSET, DAISY). It is implemented, for instance, by modifying 

the developmental rate, as in APES (Streck and Weiss 2003). Only a few models consider the 

impact of further potential stressors on wheat development, for example, nutrient or water 

shortage in APSIM.   

Basically, the models adopt one of two different philosophies in quantifying crop phenology: 

thermal time (TT) or development stage variable (DVS) (Table 4, Figure 6).  
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Figure 6 Schematic representations of growth phases in wheat crop growth models assigned 
to the corresponding principal phenological growth stages (Meier 2001). 

 

Thermal time-based models simulate important development stages, e.g. flowering and grain 

filling (Table 4), by the accumulation of thermal time and fixed cultivar-specific thresholds per 

stage. APSIM, CROPSYST, DSSAT-CERES, FASSET, HERMES, MONICA and STICS belong to this 

group. FASSET differentiates six phenological stages (Laegdsmand 2011), DSSAT-CERES 

includes seven (Jones et al., 2003), and APSIM up to eleven different stages (Zheng et al. 2014). 

STICS uses two independent phenological development scales, one for leaf and root and 

another one for reproductive organs, both of the TT type (Brisson et al. 2003). Photoperiod is 

implemented in all models belonging to the TT group and, generally, the accumulation of 

thermal time is reduced by a photoperiod factor or function. APSIM, for instance, uses an 

empirical, species-specific scaling function, which reduces the effective accumulated 

temperature, whereas MONICA calculates a daily reduction factor to scale the daily increment 
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of phenological development. Thermal time models utilise an approach adjusted to the actual 

physiological development in number and type of reproduced development stages, but 

nevertheless are strong simplifications of most relevant phenological stages, e.g. flowering. 

The second group of crop growth models, to which APES, DAISY and WOFOST belong, applies 

a dimensionless stage variable (DVS) for quantifying phenological development. The 

development stage variable (DVS) is calculated from the sum of a daily increment D, with 

𝐷𝑉𝑆 = 𝐷𝑉𝑆 + ∆𝐷. 

The daily increment D is obtained from the development stage rate d, which is modified by 

a temperature 𝑓 (𝑇) and a photoperiod function 𝑓  (𝐷𝐿): 

∆𝐷 = 𝑑 𝑓 (𝑇) 𝑓  (𝐷𝐿) 

The DVS system distinguishes between two main growth phases - vegetative and reproductive 

growth - i.e. sowing (DVS = 0) to flowering/anthesis (DVS =1) and flowering and maturity (DVS 

= 2) (Figure 6). Following the assumption that basic processes act in the same way during crop 

development, the DVS system focuses on the representation of these. Consequently, this 

group utilises fewer conceptual growth stages (basically: vegetative, reproductive). Flowering 

is considered in each of the models in some way. Further, the DVS approach allows for 

additional processes to be considered by scaling factors or scaling functions, for instance, 

when implementing heat stress or vernalisation. However, these aspects are rarely considered 

(Table 4).
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Table 4 Implementation of phenological development in wheat growth models and of stress impact during critical growth stages (a actual, p- 
potential, T –transpiration, E- evaporation). * utilises two development scales for vegetative and reproductive development. ** Identifies conditions 
and gives warning 

Model Phenology       

 
Number Type Temperature Photoperiod Vernalisation Specific heat 

mortality 

Water stress implementation 

on biomass development 

APES 2 DVS yes yes yes no ETa/ ETp 

APSIM 11 TT yes yes yes anthesis Available soil water 

CROPSYST 6 TT yes yes yes no Ta/ Tp 

DAISY 2 DVS yes yes no no Available soil water 

DSSAT-CERES 7 TT yes yes yes no** Ta/ Tp 

FASSET 4 TT yes yes no no ETa/ ETp 

HERMES 6 TT  yes yes yes no Ta/ Tp 

MONICA 6 TT yes yes yes anthesis ETa/ ETp 

STICS 5|4* TT yes yes yes no Available soil water 

WOFOST 3 DVS yes yes no no Available soil water 
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Evaluation and comparison of the two basic approaches (TT and DVS) are complex due to 

various, different and specific functions implemented in each model. Generally, phenological 

development is well represented in dynamic crop growth models. All models have shown that 

they are capable of predicting phenological development under various environmental 

conditions (Asseng et al. 1998; Rötter et al. 2011; Palosuo et al. 2011). Furthermore, they are 

capable of producing high-quality predictions of phenological development when 

appropriately parameterised (Asseng et al. 1998; Pohanková et al. 2013). In larger ensemble 

studies comparing various crop models under standardised settings; however, differences in 

model accuracy became evident (Palosuo et al. 2011; Rötter et al. 2012). These inaccuracies 

were, in part, attributed to simplifications inherent in the structure of the models (Brisson et 

al. 2003). Asseng (2014) regarded minor inaccuracies in predicting phenological development 

to have a negligible impact on yield prediction. This is in contrast to Liu et al. (2016) who found 

for several wheat models (DSSAT-CERES, DSSAT, NWheat, APSIM, WheatGrow) accurate 

prediction of phenological development to be a prerequisite for predicting crop yield. 

The representation of phenology response to temperature is mostly simple (Parent and 

Tardieu 2014). In TT systems (e.g. CERES-wheat), a linear temperature response is most 

common, whereas more complex temperature response functions - bilinear (e.g. STICS, 

CropSyst), trilinear (e.g. APSIM-maize) or others (GECROS (Parent and Tardieu 2014)) - are 

more likely to be found in the DVS systems. This, however, is a highly simplified categorisation. 

In many cases, the simple description of phenology is the starting point for model 

improvement. More complex temperature response functions require a larger set of 

parameters, but obviously, seem better suited to predict crop phenology with higher precision 

(Kumudini et al. 2014). For instance, Li, McMaster, Yu, & Du (2008) improved their wheat 

model by implementing a temperature response function that slows down the development 
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for both supra- and suboptimal temperatures, which improved prediction of wheat flowering. 

Pulatov et al. (2015) compared different potato models and found linear temperature 

response functions to be sufficient for predicting development under temperate conditions. 

However, they emphasised non-linear functions to be more appropriate under increasing 

temperature environments, because they account for critical thresholds. Universal effects on 

crop development, such as lethal temperature limits, are frequently implemented in crop 

growth models. Temperature thresholds show immediate impact and are applied, for 

instance, in STICS (heat) or DSSAT (freezing). Such temperature thresholds can affect 

simulations in different ways. In DSSAT, for example, leaf growth is hampered if a first 

threshold is exceeded, while crop growth and development is terminated as the lethal 

temperature is reached (Jones et al., 2003).  

Although water and nitrogen supply can have strong effects on phenological development 

(Wang and Engel 1998), their impact is rarely implemented in crop growth models. Models 

are exceptions that include more environmental factors than temperature and photoperiod 

(Table 4). APSIM, being one of these models, incorporates a water stress function (Zheng et 

al. 2014), which delays the phenological development by reducing the daily temperature sum. 

Moreover, in the phase from sowing till germination, soil moisture has a stronger impact than 

temperature.  

With respect to climate change scenarios, the potential impact of CO2 concentration, either 

directly or indirectly via its impact on canopy temperature, might also be of importance for 

crop development (Hussain et al. 2013). With respect to wheat, however, the studies available 

so far do not reveal a clear effect (Oehme 2012). 
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Models show various ways to implement general water limitation. Some utilise actual 

transpiration in relation to potential transpiration, while others utilise evapotranspiration or 

vapour pressure deficit thresholds (Table 4). DAISY uses - oversimplified - the ratio between 

actual and potential evaporation to scale down potential photosynthesis to a water-stress 

hampered one. A similar approach is delivered by APSIM, water-stress sensitive processes, 

e.g. photosynthesis and leaf expansion, are influenced by water demand index calculated from 

general water parameters (Zheng et al. 2014). The index scales the photosynthesis in the 

model by reduction of daily biomass accumulation rate. Phenological development is also 

impacted in APSIM. General stress impact is evaluated as sufficient, and model comparison 

studies show reasonable results, for instance, in predicting mean yield (Palosuo et al. 2011; 

Rötter et al. 2012). 

Process-based crop models as tools for risk assessment of critical growth stages 

Climate variability is generally considered important for risk assessment of cropping systems 

under climate change conditions. Ray et al. (2015) found that a third of the world’s annual 

crop yield variability is caused by climate variability. In this respect, the interactions of crop-

specific critical growth stages and the occurrence of adverse environmental conditions have 

to be taken into consideration. Crop models, frequently applied for risk assessment, should 

be interpreted as an abstracted representation of reality; they are purpose-built, and 

consequently, their complexity varies according to the application, data availability, and 

objective of the model (Motha 2011). 

Generally, process-based crop growth models achieve reasonable results in reproducing crop 

growth and crop development, i.e. prediction of yield and phenology, and various other plant 

parameters. This applies particularly to models successfully validated and calibrated for a 
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specific region and problem (Jones and Thornton, 2003; Palosuo et al., 2011; Pirttioja et al., 

2015; Rötter et al., 2012; Ruane et al., 2016). The reasonable performance is achieved despite 

rather basic simulations of phenological development (Table 4). In terms of risk assessment, 

they are frequently used to evaluate the impact of adaptation strategies, e.g. modifications of 

crop management to circumvent specific environmental conditions. Pulatov et al. (2015), for 

instance, identified a reduction of risks for potato yield stability through earlier planting. 

A number of other process-based dynamic crop models are applied at various scales and in 

various regions with different climates, and they produce reasonable results (Jones and 

Thornton, 2003; Kollas et al., 2015; Palosuo et al., 2011; Pirttioja et al., 2015; Pulatov et al., 

2015; Rötter et al., 2012), such as the models tested in the AGMIP crop model comparison 

network. APSIM, for instance, originally developed for Australian conditions, has been 

validated for various regions and climates (Trnka et al. 2004; Palosuo et al. 2011). The same 

holds true for DSSAT, which is applied to improve crop production all over the world (Jones 

and Thornton, 2003). Essential, however, is the impact of typical environmental conditions for 

a specific region, which may jeopardise yield stability and crop development (Eyshi Rezaei et 

al. 2015; Stratonovitch and Semenov 2015) and this should not remain unaccounted for if a 

model is transferred to a new region-specific problem. Nevertheless, specific regional stress 

adaptations in a model can be useful, when transferred to other regions. 

Weaknesses of process-based models in considering critical growth stages 

Despite the generally satisfactory model performance concerning the simulation of 

phenological development, yield and yield stability, further, development is required to 

remedy the weaknesses and deficits, which for instance became evident in model ensemble 

comparisons (Palosuo et al. 2011; Rötter et al. 2012; Asseng et al. 2013; Pirttioja et al. 2015). 
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Commonly, the divergence in model performance is attributed to differences in model 

purposes (Rötter et al. 2011). An agronomic focus of model development will favour holistic 

approaches, acknowledging the interdependencies of weather, soil and plant. But even in this 

group, we find models customised for specific research questions, such as nutrient fluxes (e.g. 

HERMES, MONICA). Therefore, these models represent only a small portion of the soil-crop 

system in an appropriate way. At the same time, vital features of critical growth stages are 

neglected, because they are of minor concern for the primary purpose. Thus, process-based 

crop models may result in a biased evaluation of potential risks (Rötter et al. 2011). 

With respect to specific stress reactions in critical growth stages most process-based crop 

models are less well-equipped than for dealing with general stress impact on crop growth, i.e. 

independent of phenology, such as drought or nutrient deficiencies, which are implemented 

for instance by thresholds. Phenological development specific impact is implemented only 

occasionally, e.g. temperature response functions accounting for specific reactions during 

specific growth stages by specific high and low-temperature limits, as found in APSIM. It thus 

might be concluded that simplification and abstraction of specific reactions in dynamic crop 

growth models seem not to be a disadvantage for larger-scale problems such as yield 

development of a region (Jones and Thornton, 2003). When dealing with other issues, for 

instance analysing the performance of cultivars or suitability of plant functional traits for 

target environments, the shortcomings of process-based models in accurately representing 

the response of crops during specific growth stages, become clearer. Lobell et al. (2012), for 

example, identified weaknesses of CERES and APSIM in predicting senescence of wheat under 

high-temperature conditions in India. Consequently, APSIM was improved for the critical stage 

impact on grain number and grain filling (Lobell et al. 2015). 
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Apart from model algorithms quantifying crop stress response, calibration procedures have 

an impact on the suitability of crop growth models to cope with climate variability (Ruane et 

al. 2016). In most models, calibration of parameters comprises the minimization of the 

difference between modelled and measured yield. Thus, the focus is on the mean yield as an 

indicator of model performance, which may entail a lower sensitivity to variation in 

environmental conditions (Ruane et al. 2016). 

Solution strategies to better represent critical growth stages by crop models 

Although rare, some approaches have been developed for enabling a better representation of 

the impact of adverse environmental conditions in critical crop growth stages (Table 4), which 

will be exemplified for the stage of flowering. An advantage of process-based crop models is 

that they can be modified to suit a new problem by modifying existing processes or 

introducing new processes - provided sufficient knowledge and resources are available 

(Challinor et al. 2005; Pulatov et al. 2015). 

The implementation of high-temperature effects during specific developmental stages was 

shown to improve the quality of prediction (Challinor et al. 2005; Lobell et al. 2012; Wang et 

al. 2013; Ruane et al. 2016). MONICA follows the approach described (Challinor et al. 2005) to 

model heat stress response during flowering by a specific temperature function reducing 

biomass accumulation. Stankowski et al. (2015) improved yield prediction by the inclusion of 

empirically derived heat-sensitive grain number simulation. APSIM uses a stress module active 

during the simulation of flowering. Here, a temperature response function is used. This 

hampers temperature accumulation up to termination of development and reduces biomass 

accumulation (Zheng et al. 2014). A further attempt is suggested by Lobell et al. (2015), APSIM 

is modified to simulate the specific impact of heat on grain number and weight for a 
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sophisticated evaluation of wheat and yield losses under climate change in Western Australia. 

It is reasonable to assume that application in other regions and climate change scenarios will 

benefit from the implementation of specific environmental processes during specific stages.  

Another critical issue refers to a cultivar-specific stress response, which applies to general 

stress reactions and stress reactions during critical growth stages. Breeding for abiotic stress 

tolerance or resistance, e.g. heat tolerance during flowering, and identification of the 

corresponding plant functional traits have been identified as key to increase yield stability 

under climate change conditions (Stratonovitch and Semenov 2015; Liu et al. 2016). Thus, 

another approach would be to include cultivar-specific stress responses. Commonly, a 

genotypic response is not sufficiently implemented in dynamic crop growth models (Challinor 

et al. 2007; Rötter et al. 2011; Liu et al. 2016), but it would improve risk assessment by 

providing the opportunity for testing different plant functional traits (Rötter et al. 2011). 

Acclimation is a crucial mechanism in crop development which enables crops to cope with 

adverse environmental conditions (Yordanov et al. 2000). Risk assessment studies could be 

improved substantially by crop growth models, including acclimation effects. A sudden late 

frost, for instance, affects crop development and survival considerably (Gutschick and 

BassiriRad 2003; Pulatov et al. 2015). The same below-zero temperatures during winter after 

gradual cooling might have little or no effect on the crop’s viability and development. Thus, 

including information on the immediate or historical environmental experience of crops will 

improve the prediction of risks arising from sudden adverse environmental conditions 

(Gutschick and BassiriRad 2003). Crop growth models, however, rarely include such 

mechanisms (Gutschick and BassiriRad 2003). In DSSAT, winter hardiness is simulated by a 

stepwise decrease of lethal minimal temperature during germination and emergence to 
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account for higher temperature sensitivity during early development of wheat. Acclimation 

for water deficit, achieved, for instance, in plants by the accumulation of solutes (Yordanov et 

al. 2000), is not accounted for in dynamic crop growth models.  

A general criticism concerning the consideration of heat impact refers to the database 

underlying model calibration. Weather data mainly comprise temperature, radiation, 

precipitation and some other well-established, standardised environmental variables, easily 

accessible with climate stations (Thimme Gowda et al. 2013). These, however, describe only a 

small part of the environmental conditions experienced in cropping systems. Consequently, 

their suitability may be limited for assessing the impact of specific adverse environmental 

conditions during critical stages. Siebert et al. (2014), for instance, reported an improved 

model prediction when using canopy temperature instead of air temperature for an actual risk 

assessment of heat stress on wheat productivity. 

Drought as an agricultural phenomenon is hard to identify in the first place. Not only is drought 

often hidden by slow onset, but there is also a lack of a clear definition of drought (Wu 2003). 

Thus, various environmental parameters are used to identify drought, for instance, the ratio 

between actual and potential evapotranspiration, precipitation shortage, or soil moisture 

deficit. General drought limitation of growth processes is implemented in most crop growth 

models by reducing the potential production by a water-limitation factor (Van Ittersum et al. 

2003). Realistic implementation of drought, however, should account for the susceptibility of 

crops at different development stages. Available approaches are rare and rather generic 

(Geerts et al. 2008). CropSyst, for instance, includes drought stress as an accelerator of general 

phenological development (Stöckle et al. 2003), while STICS utilises a drought factor to 

accelerate maturity and senescence for specific stages (Brisson et al. 2003). In APSIM, a 
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temperature stress factor is accumulated, which affects water availability ratio and prolongs 

phenological development up to growth termination.  

Findings on drought response of quinoa (Chenopodium quinoa Willd., 1797), a crop known to 

alter phenological development to exploit favourable environmental conditions, have been 

implemented in AquaCrop (Geerts 2008; Geerts et al. 2008, 2009). The authors found that 

pre-anthesis drought stress delayed phenological development, whereas post-anthesis stress 

led to its acceleration. Furthermore, they showed that these relations are well quantifiable by 

drought indicators. Corresponding model modifications improved model performance, but 

require sufficient experimental data to analyse such mitigation strategies.  

Multiple stresses are well known to have an impact on crop growth as well as crop 

development (Rizhsky et al. 2004; Barnabás et al. 2008), and crop model predictions would 

most likely benefit from an implementation of these. However, the implementation of 

multiple stresses in dynamic crop growth models is restricted by the knowledge gap on the 

interactions between stress factors (Rizhsky et al. 2004; Barnabás et al. 2008). Nevertheless, 

dynamic crop growth models are highly non-linear and therefore, able to access different 

feedback mechanisms. 

Alternative modelling approaches 

Functional-structured plant models (FSPM) have been developed in recent years 

(Prusinkiewicz and Rolland-Lagan 2006; Vos et al. 2010; Parent and Tardieu 2014). This type 

of model connects some decisive physiological processes with a 3D plant structure, localising 

selected organs and their exposition to the environment, e.g. leaf position within a canopy 

structure. FSPM models analyse individual plant development and physiological plant 

processes (Vos et al. 2010; Dejong et al. 2011). Therefore, they seem to enable a more 
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adequate simulation of critical growth stages than process-based dynamic models which focus 

mostly on general processes of crop growth and development. This higher level of detail in 

FSPM is achieved at the cost of data requirement. Yield and yield variability, however, are not 

yet a primary topic of FSPM. Nevertheless, they can be of value to access the problem of risk 

assessment. Thus, Parent and Tardieu (2014) proposed to include at least sub-models of this 

type to explore drought and temperature impact on crops and to analyse genetic traits by crop 

models. 

Ensemble studies are another way to omit the shortcomings of crop models in dealing with 

specific conditions important in climate change risk assessment (Rötter et al. 2012; Nendel et 

al. 2013). The concept underlying ensemble studies is that different approaches utilised in the 

models equalise their strength and weaknesses. Primarily, they are applied to compare 

different modelling concepts, to identify traits to improve the models on various sites and to 

obtain more reliable yield estimates and risk assessments. Despite the success of ensemble 

studies, at first sight, the aspect of crop response in critical development stages is widely 

neglected in process-based crop models utilised in the ensembles. 

Conclusion 

Although the quantity and distribution of resources relevant for crop growth are mostly 

adequate in temperate Central Europe, there is a considerable variation in environmental 

conditions, e.g. yearly temperature amplitude of 40°C and more. Consequently, adverse 

environmental conditions may coincide with particularly sensitive crop growth stages. In the 

context of risk assessment of climate change impact based on process-oriented, dynamic crop 

growth models, it is essential to reflect crop response reliably in these critical growth stages. 

The current study identified critical growth stages for the most important crops grown in 
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Central Europe. These relatively clear-cut critical phases, however, are implemented 

insufficiently in crop growth models. While principle stress reactions, for instance, caused by 

drought conditions, definitely are available, most models lack a profound representation of 

crop stress response in critical growth stages. Also, the models differ substantially in the 

representation of phenological development, which is often designed in such a way to serve 

the main model purpose best, e.g. analysing nutrient flows. Yet, in most cases, they were not 

intended to reflect the development of organs specifically sensitive to environmental 

conditions, which determine yield variability. 

Users of crop growth models should carefully check if variability is reliably reflected, for 

instance, using a sensitivity analysis. Where appropriate, models have to be supplemented by 

further study to complement risk assessment or need to be extended by processes that have 

been lacking. For recipients of climate-change risk assessments, we recommend that the 

original purpose of a given model should be taken into consideration when interpreting 

results. Furthermore, it should be critically examined to determine if sensitivity analyses, 

calibration and validation are available and in which range statements concerning yield 

variability are feasible. 
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Abundance of adverse environmental conditions during 
critical stages of crop production in Northern Germany 
 

Abstract 

Background: Understanding the abundance of adverse environmental conditions, e.g. frost, 

drought, and heat during critical crop growth stages, which are assumed to be altered by 

climate change, is crucial for an accurate risk assessment for cropping systems. While a 

lengthening of the vegetation period may be beneficial, higher frequencies of heat or frost 

events and drought spells are generally regarded as harmful. The objective of the present study 

was to quantify shifts in maize and wheat phenology and the occurrence of adverse 

environmental conditions during critical growth stages for four regions located in the North 

German Plain. First, a statistical analysis of phenological development was conducted based 

on recent data (1981-2010). Next, these data were used to calibrate the DSSAT-CERES wheat 

and maize models, which were then used to run three climate projections representing the 

maximum, intermediate and minimum courses of climate development within the RCP 8.5 

continuum in the years 2021 to 2050. By means of model simulation runs and statistical 

analysis, the climate data were evaluated for the abundance of adverse environmental 

conditions during critical development stages, i.e., the stages of early crop development, 

anthesis, sowing and harvest. 

Results: Proxies for adverse environmental conditions included thresholds of low and high 

temperatures as well as soil moisture. The comparison of the baseline climate and future 

climate projections showed a significant increase in the abundance of adverse environmental 

conditions during critical growth stages in the future. The lengthening of the vegetation period 
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in spring did not compensate for the increased abundance of high temperatures, e.g., during 

anthesis.  

Conclusion: The results of this study indicate the need to develop adaptation strategies, such 

as implementing changes in cropping calendars. An increase in frost risk during early 

development, however, reveals the limited feasibility of early sowing as a mitigation strategy. 

In addition, the abundance of low soil water contents that hamper important production 

processes such as sowing and harvest were found to increase locally. 

 

Keywords: critical growth stages, modelling shifts in phenological patterns, maize, wheat, 

risk of crop production for the North German Plain, heat and frost stress 

 

Background 

The crop yield attained in the field and its variability are both influenced by a range of climate 

factors, such as radiation, ambient CO2 concentration, precipitation, temperature, and soil 

conditions. Variation in environmental conditions from year to year and in response to climate 

change may result in substantial shifts in the beginning, duration and end of crop 

developmental stages. Adequate assessment of these shifts by means of crop modelling will 

promote understanding of the processes affecting the threats to crop production for specific 

regions and allow the development of adaptation strategies for climate change. 

For the North German Plain, an agricultural highly productive region, climate change is 

assumed to have a substantial impact on crop production (Maracchi et al. 2005; Bindi and 

Olesen 2011). Shifts in crop phenology, e.g., by a lengthening of the vegetative period due to 

changes in management or variation of cultivars exploits more favourable conditions– and has 
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beneficial effects on the yield (Menzel 2002; Chmielewski et al. 2004; Menzel et al. 2006; 

Estrella et al. 2007; Trnka et al. 2011; Svoboda et al. 2015). The extent to which yield will be 

increased may vary regionally; while the western part of the North German Plain yield may 

stay at a similar level as today, the eastern regions might benefit from temperature and 

radiation changes (Wolf and Van Diepen 1995; Olesen et al. 2007; Trnka et al. 2011). In this 

respect, climate variability is of great importance (Harrison et al. 2014; Lesk et al. 2016), since 

30% of wheat and up to 50% of maize yield variability observed in Western Europe can be 

attributed to climate variability (Ray et al. 2015). Adverse environmental conditions, such as 

temperature stress, that occur during critical growth stages may result in severe yield loss and 

negatively affect yield stability (Semenov and Shewry 2011; Trnka et al. 2014). Shifts in adverse 

environmental conditions are expected for temperate Europe, e.g., heat stress during 

flowering periods (Gobin 2012; Trnka et al. 2014) and changes in precipitation distribution 

(Metzger et al. 2005; Trnka et al. 2011). 

The impact of adverse environmental conditions depends on a crop’s susceptibility in a given 

growth stage, which is indicated by, e.g., stage-specific temperature thresholds (Porter and 

Gawith 1999; Sánchez et al. 2014). Consequently, an assessment of shifts in regional 

phenological development resulting from climate change – as found in various arable crops 

grown in Germany (Menzel 2002; Chmielewski et al. 2004; Menzel et al. 2006; Estrella et al. 

2007) - is fundamental for the assessment of risk to crop yields. Iglesias et al. (2012) reported 

varying risks through shifts in crop phenology for different European regions. Trade-offs 

stabilising yield variability could also be conceivable, e.g. bringing forward of specific growth 

stages may reduce the probability of heat stress (Harrison et al. 2014). Typically, process-

based dynamic crop growth models are utilised in assessment studies (Jones and Thornton 

2003a; Palosuo et al. 2011; Iglesias et al. 2012). These models mostly focus on basic crop 
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growth and development processes; however, within they are only capable to focus on a few 

development-stage specific responses to environmental stress. 

Recent studies have mainly focused on the patterns and impact of adverse environmental 

conditions (Gobin 2012; Trnka et al. 2014; Harrison et al. 2014; Gömann et al. 2015). Trnka et 

al. (2014), for instance, performed a general analysis of the abundance of various adverse 

environmental conditions on European crop production but did not consider critical growth 

stages. Gobin (2012) provided an analysis of shifts of critical growth stages, but the study was 

restricted to Belgium. For the North German Plain, no study has yet comprehensively analysed 

the impact of adverse environmental conditions during critical growth stages under the 

pressure of climate change.  

The objective of the current study, therefore, was to identify and evaluate shifts in patterns 

of adverse environmental conditions during critical growth stages on the North German Plain, 

as a prerequisite for assessing risks and developing management strategies to improve 

cropping systems under climate change conditions. The work was conducted within the 

framework of an interdisciplinary project (https://www.nalama-nt.de (Spellmann et al. 2017)), 

assessing threats of climate change and globalisation and developing a basis for an integrated 

and sustainable land management for the benefit of the environment and society on the North 

German Plain. 

In the current study, an inventory of the abundance of adverse environmental conditions 

during critical growth stages was created for wheat and maize grown in four regions 

representing the North German Plain. The study was based on recent (1981-2010) 

phenological and weather data. These data furthermore served to calibrate and validate the 

dynamic crop growth model DSSAT, which than allowed the assessment of shifts in 
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phenological development and in the abundance of adverse environmental conditions in 

different climate projections for the period 2021 to 2050. 

Material and Methodology 

The study area comprised four regions of the North German Plain: Diepholz (DH), Uelzen (UE), 

Fläming (FL), and Oder-Spree (OS) (Figure 7). The regions largely correspond to local 

administration districts - allocated from west to the east along 52°N latitude corridor. The 

North German Plain is characterised by a temperate oceanic climate (Cfb) in the west and a 

humid continental climate in the east (Dfb) following the Köppen climate classification 

(Metzger et al. 2005). It provides a major fraction of German crop production (BMEL 2015; 

Spellmann et al. 2017). In the western regions, fertile silty-loam soils dominate, cultivated with 

wheat, maize, rapeseed and sugar beet (Richter et al. 2007). In the eastern part, shallower 

sandy to silty-loam soils, are dominant, in which wheat, maize, rye and rapeseed are grown 

(Richter et al. 2007). In the present study, we only considered grain wheat and maize 

production, common in all regions and of have high economic relevance. They represent a 

winter annual and a summer annual crop, respectively. 
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Figure 7 Regions (light grey) located in the North German Plain (black); characterised by total 
area, cultivated area in percentage of total area (in brackets), average annual precipitation sum 
(Psum [mm]) and annual average temperature (Tmean [°C]) (Black dot - weather station 
Salzwedel) (Spellmann et al. 2017).  

 

Weather and phenological data 

Weather data from representative weather stations in each region were provided at a daily 

resolution by the German Weather Service (DWD). Phenological data were obtained from 

DWD database. It comprises sowing dates, the beginning of various phenological stages of 

wheat and maize in several repetitions for each district in the baseline period (1981-2010) 

(Figure 7). 

Three climate projections were utilised for future climate evaluation in the projection period 

from 2021 to 2050 (IPCC 2014; Spellmann et al. 2017). Ensemble comprised 21 GCM; all were 

set in the scenario RCP 8.5. For the present study, we selected 3 out of 21 GCM on the basis 
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of their performance in the baseline period and their representation of mean temperature 

increase in the projection period (2021- 2050): a minimum increase of mean temperature to 

baseline by 1°C (min, INM-CM4, Russia), an intermediate increase of 1.5°C (med, ECHAM6, 

MPI Hamburg, Germany), and a maximum increase of 2°C (max, ACCESS1.0, CSIRO-BOM, 

Australia). The utilisation of three different GCM in the RCP 8.5 continuum (IPCC 2014) ensures 

a wide range of climate change manifestation in respect to e.g. mean temperature or 

precipitation distribution. Climate data were provided by the Potsdam Institute for Climate 

Impact Research (PIK). The regionalisation of the GCM output was realised by the statistical 

analogue resampling scheme (STARS by PIK) at weather station sites. 

Modelling 

The Decision Support System for Agro-Technological Transfer (DSSAT) (Jones and Thornton 

2003a; Hoogenboom et al. 2012) was used to assess crop phenological development in future 

climate projections. Calibration for obtaining crop parameter sets was performed on 

phenological data averaged for the North German plain (Figure 7, dark grey, Supplementary 

material 2), while validation was based on averaged phenological data within each region 

(Figure 7) with weather, soil, and management given as input. The calibration model was set 

to fit the general environmental conditions of the North German Plain for both crops. The 

selected phenological time series were prepared by averaging phenological data at various 

sites throughout Northern Germany for each year to obtain a time series for each phenological 

growth stage. Weather data for calibration of crop parameter sets was obtained from the 

centrally located Salzwedel weather station to represent the North German Plain. Soil 

properties were set to generic medium silty clay ( 
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Supplementary material 3). Such soil types are frequent in fertile alluvial areas throughout 

Northern Germany (German soil survey (BUEK1000n), (Richter et al. 2007)). Crop parameters 

sets were estimated for maize and wheat by minimisation of the root mean square error 

(RMSE) between simulated and observed phenological data. In addition, goodness of model 

fit was evaluated in terms of the coefficient of determination (R²). 

For validation, crop parameter sets were tested on averaged phenological development time 

series (DWD) available for each region for the baseline (Figure 8, 1981-2010). General 

production system settings were identical with the calibration procedure. Changes, however, 

were made to reflect the region-specific environmental conditions, i.e., soils (DH, UE: 

Supplementary Material 3, FL, OS: Supplementary Material 4, BUEK1000n, (Richter et al. 2007; 

Spellmann et al. 2017), weather conditions (stations of the DWD representative for each of 

the region, see Figure 7). Validation was assessed by the coefficient of determination and 

RMSE for each phenological development stage. 

Data analysis 

First, the phenological data were analysed to provide a general description of phenological 

development for the baseline (1981-2010) and the projection period (2021-2050). For this 

purpose, linear regression models were fitted to the time series of phenological development 

with the year as the independent variable and the beginning (day of year) of prominent 

phenological growth stages of maize and wheat as the dependent variable. The correlated 

linear model gives information over trends of phenological development in the considered 

period. Trends were characterised by the slope of the linear regression for each crop in each 

region. All regression slopes were tested for significance against zero. Statistical analysis was 
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performed utilising GNU R (R Development Core Team 2013). Generally, significance levels are 

denoted as follows: “.” for p<0.1, “*” for p<0.05, “**” for p<0.01, and “***” for p<0.001. 

Second, the abundance of adverse environmental conditions during critical growth stages of 

maize and wheat was quantified for the baseline period (1981-2010) and the projection period 

(2021-2050) in each region. Critical growth stages were defined according to Porter and 

Gawith (1999); Porter and Semenov (2005); and Sánchez et al. (2014) as phenological 

development stages especially susceptible to adverse environmental conditions. For wheat 

and maize, the critical stages are provided Table 5. Adverse environmental conditions were 

utilised here in the sense of Trnka et al. (2014) and Gobin (2012) as abiotic environmental 

events of a relevant length, i.e., days or weeks, that are harmful for crop growth and 

development. In the present study, we focused on temperature and water limitation, where 

heat, drought, and frost were analysed on a daily level and heatwaves were analysed for 

longer periods of time (2 days and more). Furthermore, we included an analysis of high soil 

water content during sowing and harvest, which is known to be a limiting factor for soil 

trafficability. Short-term and narrowly localised events exerting mostly rapid physical damage 

to crops, such as storms, or hailstorms, were excluded from the analysis. The beginning and 

end of the critical growth stages in question were obtained from DSSAT model runs, and 

weather data during these stages were evaluated for days exceeding temperature or soil 

water thresholds as indications of adverse environmental conditions (Table 5). Furthermore, 

the abundance of drought was evaluated by an assessment of the number of days with soil 

water content falling below a threshold (Table 5). The percentages of abundance refer to 

mean growth stage length at each site and each period respectively the pre-set number of 

days evaluated for each crop or around sowing respectively maturity in the 30-year period for 

soil moisture (Table 5).
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Table 5 Types and limits of adverse environmental conditions, critical growth stages, and sites especially susceptible to these environmental 
conditions (Tmin – minimum daily temperature, Tmax – maximum daily temperature, Tlethal – lethal temperature for crop development). 

Stage 
Expected Adverse 
Environmental  
Condition 

Problem Sites Thresholds / Limits References 

MAIZE      

Sowing soil moisture trafficability western regions 
45% of water content 
(gravimetric) 

trafficability limit 30% water content 
(Frielinghaus and Schindler) 

Emergence 
Stem Elongation 

late frost damage organ tissue eastern regions 
 

Tmin < 0°C 
Tlethal < -1.9°C 

(Sánchez et al. 2014) 

Flowering heat 
damage 
reproduction all Tmax 37.3°C (Anthesis) (Sánchez et al. 2014) 

 heat days  all 
Tmax > 30°C and  
Tmin > 20°C DWD 

 
heat spells 

following days 
above limit all 

Tmax > 30°C   
 DWD 

Harvest soil moisture trafficability DH/ UE 
45% of water content 
(gravimetric) 

trafficability limit 30% water content 
(Frielinghaus and Schindler) 

WHEAT      

Sowing soil moisture trafficability western regions 
45% of water content 
(gravimetric) 

trafficability limit 30% water content 
(Frielinghaus and Schindler) 

Stem elongation –
Heading  frost frost damage all Tmin < 0°C 

(Porter and Gawith 1999) 
 

Heading – 
Flowering - Milking 

heat heat all 
Tmax = 31.0°C 
following days above limit 

(Porter and Gawith 1999) 

   
all 

Tmax > 30°C and Tmin > 20°C 
DWD 

(Heading –Milking) heat spells 
following days 
above limit all 

Tmax > 30°C   
DWD 

Harvest soil moisture trafficability DH/ UE 45% of water content 
(gravimetric) 

trafficability limit 30% water content 
(Frielinghaus and Schindler) 
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Results 

Model performance 

Crop parameter sets for maize and wheat were successfully fitted to mean phenological 

development data (Figure 8, Supplementary material 2). Simulated phenological growth 

stages for maize and wheat mostly lay within the limits of the standard deviation of observed 

data, e.g. 84% of cases for wheat anthesis and 89% for maize milk ripening (Figure 8), and the 

goodness of model fit depended on the phenological development stage. For maize, R² values 

for comparison of simulations and observations over 30 years tended to decrease from sowing 

to maturity (sowing: R²= 0.94 (RMSE =2.5), emergence: R² = 0.83 (RMSE =3.8), end of juvenile 

development: R² = 0.46 (RMSE= 15.2), flowering: R²= 0.54 (RMSE = 9.2), maturity: 

R² = 0.61 (RMSE= 18.7). For wheat, R² values remained relatively constant (stem 

elongation: 0.53 (RMSE =2.9), inflorescence emergence: 0.59 (RMSE = 3.9), and milk 

ripening: 0.59, RMSE = 3.8). The onset of maturity, however, was better 

reflected (R²:0.75, RMSE = 3.0). 

 

Figure 8 Calibration of phenological development; observed (averaged over the North German 
Plain) and simulated beginning of specific phenological developmental stages for maize (a) 
and wheat (b) on the North German Plain. 
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The model validation revealed comparable results as the model calibration for both crops 

(Table 6, Table 7). Phenological development was predicted reasonably but varied depending 

on the region, phenological developmental stage and crop, partly due to differences in the 

amount and quality of data. Restructuring of administration in the course of the German re-

unification led to occasionally missing data in the eastern regions. The smallest deviation 

between observed and predicted values was found for the centrally located UE region. For 

maize, the developmental stage of tasselling showed an inferior model fit at sites UE and OS 

(Table 6), while for wheat, simulation of maturity stage was closer to observations than stem 

elongation, inflorescence emergence and ripening. Simulated maturity at days of the year > 

300, which occurred in a few year-region combinations, was due to simulation termination 

rather than achievement of maturity. 

The deviation between observed and modelled dates in the sowing of maize indicated by a 

relatively low R² (0.8) in DH and FL is due to the comparison of sowing dates as the means 

from observed, regional data (Table 6) and the actual, natural numbered input data for the 

simulation. 

Table 6 Model validation for the beginning of different phenological developmental stages of 
maize, specified as day of year. Goodness of model fit is provided as the coefficient of 
determination (R²) and root mean square error (RMSE). 

  Sowing Emergence Tasselling  Flowering Maturity 

 R²  RMSE R²  RMSE R²  RMSE R²  RMSE R²  RMSE 

DH 0.80 2.54 0.80 3.02 0.40 13.96 0.57 6.08 0.90 14.86 

UE 1.00 0.25 0.56 3.42 0.17 17.78 0.38 8.43 0.87 21.95 

FL 0.80 2.31 0.39 5.18 0.46 7.18 0.60 4.14 0.61 11.96 

OS 1.00 0.29 0.57 5.84 0.18 10.92 0.84 11.77 0.45 17.37 
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Table 7 Model validation for different phenological developmental stages of wheat, specified 
as day of year. Goodness of fit is provided as the coefficient of determination (R²) and root 
mean square error (RMSE). 

 Stem Elongation Inflorescence Emergence Ripening Maturity 

 R² RMSE R² RMSE R² RMSE R² RMSE 

DH 0.36 7.06 0.58 4.11 0.36 9.07 0.68 7.11 

UE 0.6 4.48 0.63 4.13 0.63 5.02 0.73 6.13 

FL 0.53 5.18 0.53 4.85 0.64 7.81 0.90 12.27 

OS 0.21 7.46 0.47 5.95 0.07 14.9 0.66 3.76 

 

Shifts in phenology in the recent data set 

The observed phenological data showed shifts to earliness for various phenological stages of 

both crops. In maize, tendencies towards earlier occurrence – indicated by the slopes of linear 

regression models - were identified for nearly all developmental stages (Figure 9, Table 8). An 

exception was emergence in OS (0.09 ± 0.13 d/y or 1.2 ± 1.7 d/°C), where R², i.e. the portion 

of the phenological time series development described by the linear trend was very low 

(<0.01), as well as tasselling in UE (0.27 ± 0.18 d/y or 3.47/± 2.25 d/°C, R² < 0.01) and in 

DH (0.09 ± 0.17 d/y or 1.3± 2.15 d/°C, R² < 0.01). Generally, the number of significant trends 

identified was higher in DH and UE, i.e. three out of five trends. In contrast, in the OS region 

only one out of five trends was significant (Table 8). This might be attributed to smaller sample 

sizes caused by less observation sites in these areas and a more fragmentary data structure. 

For wheat, phenological development shifted forward several days at all sites. The linear 

trends, however, were not always significant, which, as seen in maize, is probably due to the 

availability and quality of phenological data. For instance, in DH and UE, eight out of the twelve 
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significant trends had three times larger sample sizes than corresponding data sets for the 

eastern sites. Slopes derived for the eastern regions, however, were comparable to those 

obtained for western regions. The period around anthesis, i.e., the most critical growth stage, 

became shorter, as indicated by trends for inflorescence emergence of 0.28 ± 0.99 d/y (OS, 

respectively 3.7 ± 13.4 d/°C) and -0.23 ± 0.20 d/y (FL, respectively -2.3 ± 2.0 d/°C) and for milk 

ripeness of -0.84 ± 1.22 d/y (OS, respectively -11.4± 16.5 d/°C) and -2.01 ± 0.725 d/y (FL, 

respectively -20.1± 7,25 d/°C), respectively (Table 9). 

Shifts in phenology in the projection period 

The shifts in phenology found for the future climate projections are presented in detail for 

region DH (Supplementary material 6, Figure 9, and Figure 10). The response patterns 

quantified for the remaining regions were similar and were strongly correlated to the 

temperature increase of the projections, i.e. growth stages show similar behaviour for the 

temperature levels in the projection period in each region (Supplementary material 6 to 12). 

Phenological development in the DSSAT-CERES model was influenced by temperature. 

Consequently, critical growth stages of maize and wheat occurred earlier, and the duration 

shortened in the projection period. Shifts were consistent with those identified in the baseline 

period. 
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Table 8 linear regression parameters quantifying the changes in maize phenological development for the observed phenological data of the four 
regions during the baseline period. 

 DH 
 

UE  FL   OS 

 
Estimate R² / n p-value 

 
Estimate R² / n p-value 

 
 Estimate R² / n p-value 

 
 Estimate R² / n p-value 

 

 

[d] 

[d/y] 

 

[] 

 

[] 
 

[d] 

[d/y] 

 

[] 

 

[] 
 

 [d] 

[d/y] 

 

[] 

 

[] 
 

 [d] 

[d/y] 

 

[] 

 

[] 
 

Sowing 119 ± 7 0.14  
 

122 ± 7 0.02 
  

 118 ± 7 0.1  
 

 120 ± 7 0.01 
  

 
-0.35 ± 0.05 258 4.3E-10 *** -0.14 ± 0.07 187 5.1E-02 .  -0.46 ± 0.20 55 2.2E-02 *  -0.1 ± 0.21  6.3E-01 

 
Emergence 134 ± 8 0.17  

 
134 ± 8 0.06 

  
 131 ± 7 0.12 

  
 133 ± 6 0 

  

 
-0.4 ± 0.06 255 9.1E-12 *** -0.24 ± 0.08 177 2.0E-03 **  -0.52 ± 0.19 56 9.0E-03 **  0.06 ± 0.18  7.4E-01 

 
Tasselling 192 ± 12 0  

 
194 ± 15 0.02 1.4E-01 

 
 202 ± 23 0.16 

  
 198 ± 15 0.16 

  

 
0.09 ± 0.13 168 4.8E-01 

 
0.27 ± 0.18 125 

  
 -1.21 ± 0.31 81 0.0E+00 ***  -0.84 ± 0.25  1.0E-03 ** 

Flowering 201 ± 10 0.05  
 

206 ± 9 0.06 1.6E-02 *  201 ± 7 0 
  

 199 ± 17 0.01 
  

 
-0.36 ± 0.16 108 2.6E-02 * -0.45 ± 0.18 90 

  
 -0.06 ± 0.22 50 7.9E-01 

 
 -0.28 ± 0.59  6.4E-01 

 
Harvest 280 ± 17 0  

 
271 ± 18 0.01 1.7E-01 

 
 262 ± 15 0.08 

  
 262 ± 11 0.03 

  

 
-0.07 ± 0.13 259 5.8E-01 

 
-0.24 ± 0.17 196 

  
 -0.8 ± 0.39 54 4.4E-02 *  -0.4 ± 0.34  2.5E-01  
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Table 9 Linear regression parameters quantifying the changes in wheat phenological development in the four regions during the baseline period. 

 DH 
 

UE  FL  OS 

 
Estimate 

R² / 

n p-value 
 

Estimate 

R² / 

n p-value 

 

 
Estimate 

R² / 

n p-value 
 

Estimate 

R² / 

n p-value 
 

 

[d] 

[d/y] 

 

[] 

 

[] 
 

[d] 

[d/y] 

 

[] 

 

[] 

 
 

[d] 

[d/y] 

 

[] 

 

[] 
 

[d] 

[d/y] 

 

[] 

 

[] 
 

Stem Elongation 118 ± 13 0.09 
  

123 ± 16 0.01 
 

 
 

126 ± 9 0.07 
  

129 ± 42 0.02 
  

 
-0.48 ± 0.12 162 0.0E+00 *** -0.23 ± 0.14 202 9.3E-02  . -0.52 ± 0.41 25 2.2E-01 

 
-1.26 ± 2.19 18 5.7E-01 

 
Flowering 155 ± 9 0.13 

  
156 ± 11 0.13 

 
 

 
155 ± 12 0.02  

 
157 ± 33 0 

  

 
-0.41 ± 0.08 169 1.3E-06 *** -0.49 ± 0.09 218 4.2E-08  *** -0.23 ± 0.20 56 2.6E-01 

 
0.28 ± 0.99 22 7.8E-01 

 
Milk Ripeness 191 ± 14 0.35 

  
187 ± 13 0.05 

 
 

 
187 ± 14 0.34 

  
172 ± 20 0.05 

  

 
-1.34 ± 0.22 69 9.1E-08 *** -0.52 ± 0.23 104 2.2E-02  * -2.01 ± 0.73 17 1.4E-02 

 
-0.84 ± 1.22 12 5.1E-01 

 
Harvest  224 ± 12 0.2 

  
224 ± 12 0.11 

 
 

 
221 ± 14 0.01 

  
214 ± 11 0 

  

 
-0.66 ± 0.10 180 4.0E-10 *** -0.51 ± 0.10 224 4.2E-07  *** 0.32 ± 0.63 25 6.2E-01 

 
0.07 ± 0.38 30 8.5E-01 

 
Sowing 289 ± 16 0 

  
287 ± 12 0.08 

 
 

 
285 ± 9 0.05 

  
286 ± 18 0 

  

 
0.08 ± 0.16 175 5.8E-01 

 
-0.43 ± 0.10 224 2.8E-05  *** -0.43 ± 0.42 23 3.2E-01 

 
-0.23 ± 0.64 31 7.3E-01 

 
Emergence 299 ± 33 0.01 

  
301 ± 15 0.08 

 
 

 
301 ± 10 0.03 

  
299 ± 19 0 

  

 
-0.44 ± 0.32 164 1.8E-01 

 
-0.54 ± 0.13 210 3.2E-05  *** -0.39 ± 0.46 23 4.1E-01 

 
-0.1 ± 0.68 30 8.8E-01 
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For maize, a forward shift of several days was found for sowing and each consecutive growth 

stage in all projections at all locations (Figure 9). A tendency was found for the acceleration to 

be larger in later growth stages because the temperature effect is cumulative, and the 

maximum projection which was to chosen as to show the highest temperature increases 

generally showed the strongest effects compared to the baseline period. Duration and 

earliness of anthesis were clearly correlated with the mean temperature increase in each of 

the three projections (Supplementary material 6, Figure 9). For maturity, earliness adds up to 

more than 2 weeks for the max projection (Supplementary material 6, Figure 9). The 

determination of maize harvest, respective to maturity stage, was generally accompanied by 

larger uncertainties.  

For wheat, a forward shift of phenological stages was also found for all regions 

(Supplementary material 10, Figure 10). As expected, this response was correlated to the 

increase in mean temperature in the projections. In intermediate and minimum, the shift was 

only a few days in the maximum projection maturity occurred up to two weeks earlier 

compared to the baseline (Supplementary material 10, Figure 10). Like maize, the forward 

shift was most pronounced for maturity. The length of the critical growth stage around 

flowering was reduced by 1 day, with the maximum projection showing the largest effect 

(Supplementary material 10). Only UE deviated from this pattern, where we found an increase 

of 3 days for the projected rather than a decrease (Figure 10). Additionally, the interval of 

stem elongation to inflorescence emergence in wheat increased by approximately 6 days in 

the projection period. An explanation is that photoperiod hampers degree day accumulations 

that propels phenological development. Thus, despite increased mean temperatures, 

phenological growth stages are elongated. 
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Figure 9 Changes in maize phenological development during the projection and baseline 
periods as linear trends in the four regions (dashed/ solid lines and brackets for differentiation 
of overlapping clusters of phenological stages; see also Table 10, and Supplementary material 
6 to 12). 

 

Adverse environmental conditions 

The abundance of adverse environmental conditions increased during critical growth stages 

in the future projections (Table 10, Table 11). All regions showed similar general behaviour in 

the earliness of phenological development and shifts in the abundance of various adverse 

environmental events (Table 10, Table 11). However, some specific features, e.g., soil 

moisture and number of hot days, indicate differences between west and east. 
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Figure 10 Changes in wheat phenological development during the projection and baseline 
periods as linear trends in the four regions (dashed/ solid lines and brackets for differentiation 
of overlapping clusters of phenological stages; see also Table 11, and Supplementary material 
6 to 10). 

 

High temperature 

Generally, climate change projections with larger temperature increases caused a greater 

abundance of high temperature events, whereas the length of critical growth stages for maize 

and wheat decreased (Table 10, Table 11). The occurrence of high temperatures during maize 

anthesis and in the post-anthesis phase, however, was rare. In particular, daily maximum 

temperature exceeding 37°C (Sánchez et al. 2014) did not occur around anthesis, neither in 

the baseline period nor in the projections (Table 10). Only several days into the post-anthesis 

phase did the temperature exceed 36°C (data not shown). Similarly, only very few hot days, 

i.e., days with Tmax > 30°C and Tmin > 20°C were detected around anthesis for the baseline 

period. For the projections, an increase in high temperature events was found, which 
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correlated with the projections’ mean temperatures (Table 11). For instance, the abundance 

of hot days in the post-flowering phase of maize (BBCH 71-99) increased from 0.06% in the 

minimum projection to over 0.14% in the intermediate projection to 0.2% in the maximum 

projection for DH. Additionally, hot days during anthesis were rare in the western regions, DH 

and UE, with only a few days in the baseline and minimum projection in DH, whereas in 

eastern regions, there were 10 hot days recorded in the baseline period. Moreover, this period 

was shortened by approximately one day.  

For wheat, an increase in the exceedance of almost all investigated temperature thresholds 

was found during the critical growth stage between flowering and milk ripeness (Table 11), 

with the risk increasing with mean temperature increase in the projections. The number of 

heat spells in the interval between inflorescence emergence and milk ripeness increased from 

the baseline to the projection period throughout all sites and for all heat spell lengths. 

Additionally, for FL, heat spells > 6 days were detected, which had not yet been 

recorded (Table 11). 

Low temperature 

Temperatures below the base temperature for maize (10°C) occurred with similar or lower 

frequency between sowing and tasselling in the climate projections (Table 10). Temperatures 

below 0°C between sowing and inflorescence emergence were rare in the baseline. For 

instance, we found three underruns in DH in the baseline period and approximately 15 in the 

projections (Table 10). Underruns of the minimum temperature thresholds never occurred in 

the interval between stem elongation and tasselling at any site (Table 10). In the projections, 

some isolated frost days (1 or 2 each) only occurred at the UE site.  
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Similar results were found for frost during the early development of wheat. In the baseline, 

frost was rare or non-existent between stem elongation and inflorescence emergence for all 

regions (Table 11). In the climate projections, frost occurred approximately 5 times more 

frequently for wheat. Two days, for instance, were found in the baseline period compared to 

a range of 7 to 15 days in the projections (Table 11). While a clear difference was found 

between the baseline and projection periods, the extent was arbitrary among the projections, 

where no direct relation between projection temperature and number of frost days was 

detected. Obviously, higher probabilities for extreme temperature are promoted despite 

beneficial shifts in mean temperature. This contrasts with the high temperature threshold 

exceedances and heat days, where mean projection temperature increase was correlated to 

the abundance of high temperature events.
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Table 10 Abundance of adverse environmental conditions (fraction, number of days) during specific development stages of maize denoted by BBCH 
stadium (Meier et al. 2009) in the four regions for the baseline (base, 1981-2010) and projected projections (max, med, min; 2021-2050) and the 
abundance of heat spells with certain lengths (Indicators as given in Table 5). 

Stage   DH UE FL OS 

BBCH   base max med  min base max med  min base max med  min base max med  min 

"01-30 Tmin < 0°C 0.2 1.2 1.3 1.3 0.5 2.5 1.4 1.9 0.2 1.4 1.7 1.3 0.3 0.9 0.9 1.4 

  Tmin 

<10°C 68.0 63.0 60.0 64.0 66.0 64.0 61.0 65.0 60.0 62.0 61.0 60.0 55.0 56.0 54.0 56.0 

  øn [d] 42.7 43.4 41.0 41.6 44.0 42.9 42.5 42.3 40.8 40.8 41.4 40.4 39.7 40.4 40.5 40.7 
31-60 Tmin < 0°C 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

  Tmin 

<10°C 18.0 18.0 20.0 16.0 19.0 22.0 22.0 19.0 16.0 17.0 17.0 16.0 13.0 11.0 12.0 11.0 

  øn [d] 46.1 46.1 46.3 45.2 48.1 46.3 48.3 46.7 44.4 43.1 44.0 44.2 45.0 42.1 43.4 43.6 

61-70 Tmax>37.3 

°C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  Heat 0.3 0 0 0.3 0 0 0 0 1.1 0.3 0.3 0.3 2.6 1.8 1.2 1.5 

 
Drought 5.8 14.7 15.5 9.4 5.9 9.6 9.3 8.2 7.8 3.4 5.6 5.3 2.1 3.4 4.8 6.3 

  øn [d] 12.3 13.1 12.4 13.2 12.6 12.9 12.7 13.9 12.1 11.5 12.1 11.9 11.8 11.4 11.8 11.9 
70-99 Tmax>36°C 0.2 0.6 0.3 0.1 0.1 0.1 0.1 0.0 0.5 1.2 0.5 0.6 0.3 1.1 0.2 0.0 
  Heat 0.1 0.2 0.1 0.1 0.0 0.1 0.0 0.0 0.5 1.2 0.5 0.2 0.8 2.1 1.4 0.7 

  øn [d] 60.5 50.6 49.5 53.6 66.4 53.4 56.4 62.2 52.5 41.5 44.5 47.4 54.9 42.2 45.3 47.1 

61-70 Heat 
spell 1 15 16 15 13 12 13 17 12 20 22 19 14 12 15 17 18 

  
Length 
[d] 2 4 4 11 4 4 5 3 3 5 7 8 12 8 9 12 7 

  3 3 3 1 3 2 3 1 1 3 5 3 3 - 2 1 3 
  4 2 3 - - 1 2 1 1 - 1 1 2 - 2 1 2 
  5 2 1 - - 1 - 1 - - - 1 2 1 - 1 - 
  6 - - - 1 1 - 1 - 1 1 1 - 1 - 1 - 

  7 1 1 - - - - - - - - - 1 1 - - . 
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Table 11 Abundance of adverse environmental conditions (fraction, number of days) during specific development stages of wheat denoted by BBCH 
stadium [31] in the four regions for the baseline (base, 1981-2010) and projected projections (max, med, min; 2021-2050) 

Stage   DH UE PM OS 

BBCH   base max med  min base max med  min base max med  min base max med  min 

31-50 Tmin<0°C 0.3 0.7 1.5 1.1 0.6 1.5 1.5 1.0 0.0 0.3 0.5 0.3 0.2 0.3 0.3 0.9 
 øn [d] 21.9 33.3 33.4 33.5 22.0 33.5 33.9 34.0 17.2 26.7 26.7 26.8 20.8 31.5 27.2 31.6 
51-60 Tmax>25 °C 21.0 28.0 30.0 27.0 16.0 23.0 24.0 20.0 25.0 39.0 35.0 31.0 22.0 36.0 33.0 27.0 
 Tmax>31 °C 1.5 3.1 3.9 3.5 0.6 1.6 2.2 1.6 2.6 3.2 5.7 6.2 1.8 3.5 4.0 4.4 
 øn [d] 18.0 17.5 16.9 16.7 18.1 17.5 17.2 17.3 17.3 16.0 16.2 16.1 17.1 15.9 16.3 16.4 
51-75 Tmax>31 °C 3.9 4.6 4.6 4.0 1.3 3.2 2.6 2.2 5.9 6.3 6.7 5.6 4.2 4.9 5.6 4.3 
 Heat DWD 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.1 0.1 0.7 0.7 0.5 0.1 
 Drought 14.5 24.7 13.1 14.3 14.4 27.9 21.9 13.9 12.2 12.4 14.8 12.5 10.7 11.7 10.1 12.1 
 øn [d] 39.0 37.9 38.2 38.0 34.2 38.1 39.1 39.0 37.4 35.8 36.4 36.6 37.3 35.4 36.2 36.6 
 Heat spell 1 17 24 24 25 5 17 12 12 20 20 26 29 17 24 28 23 
51-75 Length [d] 2 5 3 4 5 2 7 3 2 12 8 10 1 7 5 10 7 
 3 2 5 5 3 1 - 1 2 3 3 6 - 3 2 1 - 
 4 - - 1 - - 1 1 1 1 2 1 1 1 1 1 2 
 5 1 1 - - - - - - - 1 - - - 1 - - 
 6 - - - - - - - - - 1 - - - - - - 
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Soil water 

For the analysis of soil hydrological conditions, the exceedance of modelled soil water content 

(>45% in top soil to a depth of 30 cm) was evaluated for each projection and each site (Table 

12). The analysis was set to a period of ±5 day around sowing date for each year separately 

as well as ± 10 days around harvest, which was provided by the model as maturity date. Soil 

water content never limited trafficability in the FL and OS regions (data not shown). 

For maize, high soil water contents at sowing rarely occurred in the baseline, whereas in the 

projections, the number of days with soil water content >45% increased up to 29 in DH as well 

as in UE. Furthermore, a clear gradation became apparent among the projections, with the 

maximum projection leading to the smallest number, and the minimum projection leading to 

the largest number of days with high soil water content. This differs from the pattern found 

for maturity, where the baseline and projections were generally equivalent. The abundance 

of the actual date and the time span around that date were similar for sowing and maturity. 

For wheat, days with high soil water content at sowing were similar for both sites, i.e., 

approximately 60% out of the 29 years in the baseline (Table 12), while for maturity only 

approximately 30% of days were above the threshold. The projections revealed generally the 

same pattern as for maize, with the maximum projection having the lowest abundance and 

the minimum projection showing the most days above the threshold. The baseline was similar 

to the minimum and intermediate projections. 

The evaluation of low water content as an indicator of drought at the four regions (Table 10, 

Table 11) shows high variability between baseline and projections for maize and wheat (Table 

5). The western regions showed an increase of percentage of days below the soil water 

threshold during flowering in the med and max projections, in particular at sites DH and FL.  
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The eastern regions revealed an opposite trend. This was partly due to single severe drought 

events as the year 2003 which had strong impact on the abundances identified. The 

comparison of wheat and maize revealed a more pronounced increase of drought conditions 

for wheat, in particular between inflorescence emergence and milk ripe. 

Table 12 Soil water conditions (abundance of days with water content, θ, over 0.45 in the top 
30 cm of soil, n - gives the number of days evaluated for each crop on or around sowing 
respectively maturity for the 30 year period) predicted for sowing and harvest. 

 Crop  Stage   DH UE 

  [BBCH] n base max med  min base max med  min 

Maize 01 30  0 11 27 29 1 18 25 29 

 01 ± 5 d 300  0 107 302 310 12 182 273 309 

 99 30 25 22 22 26 24 24 25 28 

 99 - 9 d 300 247 221 216 265 252 236 233 269 

Wheat 01 29  18 12 17 19 21 13 14 20 

 01 ± 5 d 290  194 139 117 207 218 161 127 232 

 99 29 11 4 11 17 12 4 13 8 

  99 - 9 d 290 57 15 56 164 63 22 70 33 

 

Discussion 

Phenology 

The shift in the phenological development documented for maize and wheat in the baseline 

period is in accordance with various studies conducted for Germany and Europe (Menzel and 

Fabian 1999; Chmielewski et al. 2004; Menzel et al. 2006; Estrella et al. 2007; Vučetić 2011). 

Menzel et al. (2006), for instance, reported a 2.5 days/C° earlier occurrence of phenological 



 

93 
 

stages in the spring, translating to 2.5 days per decade for various crops grown in Europe. 

Similarly, a 2 to 2.9 days per decade earlier phenological development was found when 

analysing statistical data from 1960 to 2000 for Germany (Chmielewski et al. 2004). For wheat, 

e.g., the beginning of inflorescence emergence was found to advance by 2 days per decade in 

Germany, which is considerably less than our finding of 3 to 5 days per decade (Table 9). For 

maize, full flowering on average was found to shift forward by 0.47 days per decade (Estrella 

et al. 2007) in Central Europe, which is in good agreement with our study, where a shift of 2 

to 3 days earlier was documented over 30 years (Table 8). Comparability among studies is 

limited due to differences in the evaluated time spans, phenological data availability and 

regional context. Warming patterns are regarded as the main cause for phenological shifts 

(Menzel et al. 2006). Other factors influencing crop development, however, cannot be 

disregarded, such as management (Chmielewski et al. 2004; Estrella et al. 2007) or shifts in 

cultivars. 

The lack of significance in some of the identified trends, especially during the baseline period 

of the OS and FL regions can be attributed to discontinuous time series and small sample sizes. 

The lack of significance in the trend for the sowing date of wheat in DH probably is due to 

limited machinability in late summer/ early fall caused by water-saturated soils (Gobin 2012). 

Furthermore, labour shortages can lead to rigid schemes for sowing. This is the case especially 

for smaller farm sizes (BMEL 2015). 

The shifts in phenological development identified for the projection periods in the current 

study are comparable to those reported by other studies for European conditions (Schröder 

et al. 2014; Trnka et al. 2014). Schröder et al. (2014), for instance, found an advancement of 

phenological stages in the first half-year of up to 10 days, based on simulations by 10 climate 
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models for the period 2031 – 60 (temperature projection + 3.7°C in 2100) for Hessen, 

Germany. 

Model performance 

Phenological development was reasonably well predicted for all regions of the North German 

Plain. Deviations between simulated and measured values were mostly within the standard 

deviation (Figure 8, Table 6, Table 7). This is in agreement with Palosuo et al. (2011), who 

found DSSAT to be capable of reproducing the anthesis (EC 61) and yellow ripeness (EC 90) 

dates of European wheat production, with comparable RMSE of approximately 6 days for 

anthesis and 8 days for yellow ripeness. For maize, Vučetić (2011) found satisfying results in 

predicting the phenology of maize in Zagreb, Croatia, predicting silking with R² = 0.71 and 

maturity with R² = 0.66, which is within the range documented in the present study (Table 6). 

Somewhat larger discrepancies became evident for the maize harvest, as indicated by high 

standard errors of up to 3 weeks (Table 6, Table 7). Most likely this is due to the underlying 

database, where harvest was not differentiated among different production types, i.e., silage 

maize, corn cob mix and grain maize. The harvest date provided by DSSAT maize is 

physiological maturity, but the phenological data recorded in the North German Plain will 

contain a considerable proportion of maize harvested at silage maturity. In this respect, the 

different maturation behaviour of silage maize with respect to the maturity group and the 

maturation of stover compared to cob may have further contributed to larger deviations 

between the observed and simulated data. Nevertheless, the calibration parameter set can 

be regarded as valid to describe the phenological development of maize and wheat in the 

four regions. This is particularly true since other environmental factors, such as local water 
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and nutrition supply, are generally not considered for phenological development in crop 

models (Hoogenboom et al. 2012).  

Adverse environmental conditions 

Thresholds are commonly used in crop models as indicators of adverse environmental 

conditions. Physiological stress, however, is not a result of threshold exceedances, but a 

complex interaction of the environmental history of a site finally leading to effects on plant 

growth processes. In this respect, interactions of abiotic stress factors (Barnabás et al. 2008) 

or acclimatisation effects (Porter and Semenov 2005) may substantially vary the extent of the 

environmental impact on growth and development processes. It has also been shown that 

abiotic state variables are not necessarily highly correlated with plant response mechanisms 

(Siebert et al. 2014). Thresholds, however, are easily accessible, and the difference between 

abundances in the baseline period and the projections is a suitable indicator for changes in 

environmental patterns (Gobin 2012; Trnka et al. 2014).  

The increased abundance of environmental conditions exceeding thresholds in the current 

work is similar to other studies reporting an increase of heat and drought stress all over 

Europe (Gobin 2012; Trnka et al. 2014). For maize, however, heat stress around anthesis 

seems less relevant in the North German Plain, since the threshold value was not exceeded 

in either the baseline or the projection periods. Although there was an increase in hot day 

events in the projection period, these days were still beneath the anthesis lethal temperature 

threshold of 37°C (Sánchez et al. 2014). It should also be considered that despite increased 

mean temperatures, we found shifts in the distribution of temperatures that would increase 

the probability of low temperature abundance (Figure 11). With respect to low 

temperatures (< 0°C), the current study documented a four-fold higher abundance of frost 



 

96 
 

occurrences in the projections compared to the baseline for the period from sowing until 

stem elongation in maize. The same pattern was found for wheat.

 

Figure 11 Example of normal distributions fitted to de-trended low temperatures at the DH 
site for the baseline 1981-2010 and the projection period at doy 110. 

 

While low temperatures can have a significant impact on the development of maize, the 

impact of low temperature per se should be less pronounced for wheat (Porter and Gawith 

1999; Sánchez et al. 2014). The increased abundance of lower temperatures can be explained 

through the earlier phenological development in both crops. While increased mean 

temperatures promotes an earlier phenological development in the crop model, shifts in 

temperature distributions in the projected climate can increase the abundance of lower 

temperature (Figure 11). Additionally, photoperiod and frost effects in the crop model 

hamper the accumulation of degree days and lengthen specific phenological stages, especially 

in winter wheat production, which is completely exposed to the period with short day length 



 

97 
 

in Northern Germany. This suggests that frost conditions can be a reasonable threat in future 

German cropping systems. Similarly, Trnka et al. (2014) identified an increased abundance of 

late frost for wheat production systems at several investigated sites, and increased winter 

frost abundance at continental sites in Europe. In contrast, Gobin (2012) reported maize and 

wheat to benefit from earlier planting in Belgium. However, late frost abundance was not 

investigated in that study. 

An evaluation of the impact of adverse environmental conditions on crop growth and 

development, whether it be for historical or future periods, is always afflicted by uncertainty, 

since adverse environmental conditions are rare events and thus a general source of error 

(Gömann et al. 2015). Despite the use of 30-year time slices, small case numbers inhibited 

further statistical analysis for significance, and the analysis therefore was only descriptive. 

However, temperature-related effects were consistent. 

Table 13 Mean annual precipitation sums for the baseline and the projection periods at the 
for regions (percentage gives ratio of precipitation for the April to September period). 

Region baseline min med max 
 [mm] [mm] [mm] [mm] 
DH 705 (52%) 739(0.48) 746 (47%) 705 (48%) 
UE 732 (53%) 758 (50%) 742 (48%) 728 (48%) 
FL 542 (56%) 578 (50%) 560 (48%) 545 (47%) 
OS 551 (59%) 576 (51%) 562 (49%) 564 (47%) 

 

Soil trafficability during sowing and harvest can be a limiting factor in crop production, but it 

strongly depends on local soil properties. In the current study, shifts in soil water conditions 

were small and arbitrary. We were not able to identify clear trends between the baseline and 

projection time periods for most sites. If a change occurred, it was an increase; however, 

changes were inconsistent over the three evaluated projections. This is in contrast to Gobin 
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(2012), who found that the number of water-logged days at the time of planting for summer 

crops as well as for the harvesting of maize declined from 1947 to 2008 in Belgium. 

Our analysis of drought abundance during critical development stages of maize - indicated 

here by days with soil water content falling below a threshold - gives only an overview on the 

complexity of precipitation distribution in a climate change context. The abundance of 

drought events was correlated to single severe drought events as in the year 2003 which had 

strong impact on the abundances identified. The utilisation of accumulative methods 

quantifying drought, or other standardised indicators including precipitation and 

evapotranspiration (Vicente-Serrano et al. 2010; Gobin 2012) would clearly improve the 

assessment of drought in itself. The model, however, is not yet validated for 

evapotranspiration. In addition, the impact of carbon dioxide concentration on crop 

transpiration is not included in the model (Nendel et al. 2009). However, some features are 

reasonably explainable. Wheat drought abundance in FL and OS is in accordance to the 

climate change scenarios, where higher annual precipitation together with a shift to more 

winter rainfall resulted in nearly constant summer precipitation (IPCC 2014, Table 13). The 

reduced drought abundance detected in maize can be attributed to typical heavy rain events 

in the summer replenishing soil water (Metzger et al. 2005; Trnka et al. 2011), especially in 

the more continental Eastern regions.  

Temperature shifts can be explained consequently throughout the regions by the mean 

temperature increase given by climate scenarios (IPCC 2007). The STAR scheme has proven 

to be reliable to break down general circulation models (GCM) to regional levels 

(Gerstengarbe et al. 2013). However, precipitation provided in the climate models is regional 

and within each projection highly variable. GCM shows a higher variability in predicting 
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hydrological aspects than in predicting temperature (Wentz et al. 2007; Ljungqvist et al. 

2016). Similarly, Ljungqvist et al. (2016) emphasized that precipitation as provided by GCM is 

highly variable and should be considered as random manifestation rather than to be 

interpreted in a context of expectable shifts. 

Conclusion 

The increased abundance of temperature-related stress in all projections indicates the 

necessity of improving cropping systems to minimise the risk for crop production in the North 

German Plain. This particularly applies to the eastern North German Plain, where a stronger 

impact of climate change may be expected, and requires the development of adaption 

strategies. Apart from breeding for more stress-tolerant genotypes – primarily heat tolerance 

around anthesis in wheat and cold tolerance for germination and early development in maize, 

there is potential for earlier sowing of summer-annual cultivars to avoid high temperatures 

and drought during critical development stages, i.e., flowering in early summer. For maize, 

earlier sowing, however, could result in a trade-off due to the risk of frost damage. For winter-

annuals, such as wheat, earlier maturing genotypes might be an option to ensure that 

reproductive development will occur under more favourable environmental conditions. 

Changes in soil water content affecting trafficability were small but should not be ignored. 

The methodological approach applied in the current study is easily transferable to other 

adverse environmental conditions, e.g., by selecting indicators of moisture-limitation. A 

methodological challenge exists because of small sample sizes, which are a consequence of 

the moderate climate in the region, and, in the case of critical development stages, of the 

fine-tuned and specifically adapted production systems. Another challenge lies in the crop 

models’ capabilities of predicting phenological growth stages. Generally, crop growth models 
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have proven to be suitable for predicting the phenological development of various crops for 

this region. However, predicting phenological development under stress conditions, e.g., 

heat, drought, and multiple stresses, is still a challenge in crop modelling. A refined 

implementation of stress reactions in crop growth models, i.e., water and heat stress, would 

allow for a more reliable assessment. For the input site, the quality of the global circulation 

models is crucial, particularly the aspects related to precipitation. 

The method applied in the current study is easy transferable to other regions - provided an 

adequate set of climatological and phenological data and a suitable crop growth model are 

available- and gives a reasonable overview on local cropping systems and the abundance of 

adverse environmental conditions as an indicator for risk assessment.  
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Drought patterns shape yield variability: An assessment 

for crop production in Lower Saxony, Germany. 

 

 

 

Abstract 

Droughts impact and have impacted agricultural pursuit in Lower Saxony, Germany as well as 

worldwide. Challenges through drought are likely to increase under climate change. Therefore, 

a classification of the typical succession of drought events, i.e. drought patterns, can be a 

valuable tool for shaping future agricultural production systems to provide reliable and high 

yields. We use the potential of drought patterns to find differences between observed and 

simulated yields and in this way, identify starting points for improvements for crop simulation 

models; the main tool for analysing agricultural production systems. 
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First, an inventory of annual correlation patterns of drought impact on yield variability is 

provided between a monthly drought index and observed yields for generalised agricultural 

production systems, i.e. barley, maize, oats, potato, rapeseed, rye, sugar beet, and wheat all 

common in the federal state of Lower Saxony, Germany. 

Second, this inventory is compared to modelled annual correlation patterns finding substantial 

differences between both. Here, maize and wheat time series are modelled with DSSAT-CERES. 

We found distinct specific drought patterns for crops and crop production systems. In regards 

to the mitigation of climate change impacts, these patterns indicate that diversification of 

crops and production systems can level the effect of drought on yield variability. The model 

study was not able to reproduce these drought patterns one to one; the deviations found 

indicate that crop models need targeted improvements to simulate drought impact, more 

adequately. We consider that phenology stage-specific drought response can provide this 

improvement. 

Keywords: drought patterns, yield variability, Lower Saxony, standardised yield residual series 

SYRS, standardised precipitation evapotranspiration index (SPEI), crop simulation models, 

DSSAT 

Introduction 

Doubtless, drought can have an extraordinary impact on yield, especially when occurring 

during critical phenological development stages, e.g. flowering, or tuber initiation. Because 

of recent heat and drought episodes in north-western Germany, drought patterns have to be 

reconsidered and re-evaluated. Classifying their current impact on crop production can be the 

first step to identify perspectives for agricultural production systems in shifting environmental 
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conditions, and to initiate well- targeted improvements for analysis tools and methods, e.g. 

crop simulation models. 

The impact of environmental patterns in the temperate region of Germany is probably most 

evident in clear, predictable, and distinct seasons (Metzger et al. 2005; Gömann et al. 2015; 

van Rüth et al. 2019). Agricultural production is quite successful in minimising risk imposed 

by such patterns in Lower Saxony. It evolved around these patterns to produce high and 

reliable yields. Additionally, there are adverse environmental conditions that underlie higher 

variability and are not as obvious to detect that can jeopardise the agricultural pursuit, 

severely. These complex interactions between adverse environmental conditions and critical 

development stages are a plague for risk assessment (Porter and Semenov 2005; Tao et al. 

2018). Certainly, drought is such a condition that takes place occasionally to regularly and can 

have a substantial impact (BMEL 2019). In recent years, heat and drought episodes were more 

frequent in all of Germany, with memorable events taking place in 2003, 2006, 2015, and 

2018 (Gömann et al. 2015; Russo et al. 2015; Hanel et al. 2018; van Rüth et al. 2019). 

Usually, crop simulation models are the tool to go to for simulating environmental impacts on 

agricultural production systems. They are well suited to simulate mean yields (Palosuo et al. 

2011; Rötter et al. 2012; Kollas et al. 2015; Wallach et al. 2018). However, they are limited 

when simulating yield variability (Porter 2005; Challinor et al. 2005; Rötter et al. 2011). 

Typically, there is a gap between modelled and observed results. This gap is always a concern 

when working with crop simulation models, but it is of most importance when analysing the 

impact of shifting environmental conditions, e.g. drought (Rötter et al. 2011). 

Therefore, a classification of drought patterns and their impact on agricultural production 

systems for a region can be a valuable method for further analysis of various topics around 
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risk assessment, e.g. sensitivity of crop simulation models to simulate drought impact and 

drought patterns, or the development of mitigation strategies for climate change. 

The typical succession of environmental conditions aggregates to environmental patterns at 

a site. Plant development and agricultural production systems have developed around the 

necessity of local environmental patterns and conditions to match specific crop requirements 

(Barnabás et al. 2008; Ober and Rajabi 2010). This development includes the evolution of 

particular organs, ensuring ideal conditions for sensitive processes to succeed, as well as the 

development of strategies in crop management, e.g. sowing dates to omit predictable 

unfavourable conditions like late frost events (Trnka et al. 2011). Climate change-related 

shifts in environmental patterns challenge these well-established agricultural production 

systems (IPCC 2014; van Rüth et al. 2019). 

Continuous water availability is crucial for crop development (Vining 1990). Water limitation 

from light water scarcity to intense drought stress induces constraints on the development of 

various crops (Saini 1997; Ober and Rajabi 2010; Zirgoli and Kahrizi 2015). A wide range of 

physiological responses can be triggered depending on the level, duration, intensity of water 

limitation, and the impacted development stage (Malik et al. 2011; Perata et al. 2011; de San 

Celedonio et al. 2014; Xu 2015). For instance, for cereal yield, severe impacts of drought are 

reported between the onset of meiosis and early seed formation (Porter 2005; Barnabás et 

al. 2008; Mäkinen et al. 2018).  

On the other side, water surplus can be regarded as an adverse environmental condition for 

crop development, too. The oxygen-depleted soil environment hampers crop development 

and management processes by impacting soil machinability (van der Velde et al. 2012; 

Gömann et al. 2015). High water content alters soil heat balance having an impact on the 
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development of subterranean crop parts, e.g. roots and tubers (Pendleton 1950; Hoffmann 

and Jungk 1995; Jacobsen 2006). Water availability is likely to be reduced during the 

vegetation period, and temperature increases might, in turn, increase water use in Germany 

(Barnabás et al. 2008; Ahmadi and Bahrani 2009a; Ober and Rajabi 2010; Malik et al. 2011; 

Perata et al. 2011; van der Velde et al. 2012; Gömann et al. 2015). 

Drought patterns are a way to classify more regularly occurring droughts. Drought patterns 

as introduced by Potopová et al. (2015) use annual correlation patterns between standardised 

yield residual time series (SYRS) and the standardised evapotranspiration index (SPEI) as a 

classification for drought impact on crop production (Vicente-Serrano et al. 2010; Beguería et 

al. 2014; Stagge and Tallaksen 2014; Potopová et al. 2015). SPEI has shown to be sensitive to 

shifts in environmental conditions through climate change (Vicente-Serrano et al. 2010). The 

high degree in the standardisation of these patterns allows high comparability, e.g. of regions, 

of numerous crops, and observed and modelled yields (Stagge and Tallaksen 2014; Potopová 

et al. 2015). 

Crop simulation models are a tool that provides a long-term risk assessment of agricultural 

production systems and the development of mitigation strategies against climate change. 

They analyse the response of crops to changing environmental conditions (Bindi and Olesen 

2011; Trnka et al. 2011; Gobin 2012; IPCC 2014; Gömann et al. 2015). They are flexible enough 

to simulate diverse crops (Palosuo et al. 2011; Kollas et al. 2015), variable in their application 

to different topics (Rötter et al. 2012; Pirttioja et al. 2015; Stratonovitch and Semenov 2015; 

Strer et al. 2018), e.g. including water availability (Barlow et al. 2015; Strer et al. 2018; Rötter 

et al. 2018b), and they show excellent performance in predicting mean yield and mean crop 

development (Palosuo et al. 2011; Rötter et al. 2012; Kollas et al. 2015; Wallach et al. 2018). 
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The DSSAT-CERES simulates various crop simulation tasks. It has proved to predict crop yield 

in the North German Plain, satisfyingly (Rötter et al. 2012; Hussain et al. 2018). 

However, crop simulation models are limited in reproducing yield variability, and their 

predictions are only valid in specific ranges (Palosuo et al. 2011; Rötter et al. 2012; Kollas et 

al. 2015; Wallach et al. 2018). A problem that comes with these limitations is a bias towards 

only a few mitigation strategies of the many discussed being tested with models (Challinor et 

al. 2018; Rötter et al. 2018a). 

There are many challenges of drought patterns’ impact on agricultural production systems 

and for their analysis. 

Shifts in environmental patterns including the abundance, severity, and length of drought 

events jeopardise the well-established agricultural production systems of Lower Saxony. A 

classification of drought patterns on yield variability is needed to identify problems of the 

recent production systems and develop mitigation strategies for drought risks that ensure 

high and stable yields in future. 

In regards to crop simulation models, the questions arise: if they are capable of resolving 

development stage-specific response to environmental patterns adequately or if there is a 

gap between modelled and observed patterns that need to be closed. The implementation of 

development stage-specific processes can be a suitable strategy to close this gap and to 

increase crop simulation model’s accuracy in predicting yield variability by improving them, 

significantly (Porter and Gawith 1999; Siebert et al. 2014; Sánchez et al. 2014; Wang et al. 

2017). Such improvements certainly need a focus. We do believe that the evaluation of annual 

correlation patterns for drought impact can inspire this systematic research to improve crop 
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simulation to more accurately predict yield variability under stress (Asseng et al. 2011; 

Palosuo et al. 2011). 

We set the following objectives: 

To derive an inventory of annual drought patterns’ impact on yield variability for crops 

produced in Lower Saxony, Germany. Such a reference for production crops, i.e. barley, 

maize, oats, potato, rapeseed, rye, sugar beet, and wheat can be a valuable assessed for the 

analysis of local production systems given risks through shifting environmental conditions and 

for the development of mitigation strategies for these systems. 

To compare observed and modelled annual correlation patterns and identify the gap between 

observation and simulation, here by the example of DSSAT for maize and wheat production. 

This comparison evaluates a crop simulation model for its suitability to simulate adverse 

environmental conditions’ impact on critical development stages. 

Material and Methods 

Method 

Annual correlation patterns derived between yield time series and climate time series provide 

a classification for environmental impact on agricultural production systems. We follow 

closely the approach presented by Potopová et al. (2015) to establish such annual correlation 

patterns between standardised yield residual series (SYRS) to describe yield variability, and 

the standardised precipitation evaporation index to describe drought (SPEI). Latter is a 

measure for water balance anomalies in monthly to annual resolution. The method allows for 

comparison between various crops, production systems, years and sites. The high grade of 

standardisation allows high comparability. This standardisation includes de-trending of yield 
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and environmental time series to omit the impact of long-term shifts and developments 

(Potopová et al. 2015). 

Region 

Lower Saxony has a highly productive agriculturally dominated landscape, providing a 

significant fraction of German crop production. A temperate oceanic climate dominates the 

region (Cfb, classification Köppen (Metzger et al. 2005; Peel et al. 2007)). We selected 

Diepholz (centrally located) as a representative site for this region (Metzger et al. 2005). It is 

characterised by mostly fertile soils, mainly cultivated by maize, winter barley, summer 

barley, rye, potato, sugar beet, oats, and rapeseed (Richter et al. 2007). Except for regional 

specialised production systems, e.g. vegetables and some local soil properties, drought was 

generally not regarded as an imminent risk for the local agricultural production systems until, 

recently. Therefore, local agricultural production relies heavily on rain-fed systems. 

Data preparation 

Standardised yield residual series (SYRS) are prepared from observed yield data. 

Supplementary material 15 to Supplementary material 23 give a general overview of the 

available yield time series. The focus of data preparation was on de-trending the time series. 

In regards to this goal, standard functions can quantify yield trends for specific crops (Table 

14). The adjusted coefficient of determination and Akaike information criterion (AIC) selected 

the crop-specific de-trending functions. The resulting residuals acquired from the de-trending 

process are standardised (Interpretation guidance: Table 15 b). 

The focus here was to provide a de-trended time series for each crop. Arguably, functions 

applied here, do not meet requirements to describe physiological crop responses, e.g. growth 

limits. 
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Table 14 Functions applied for describing yield time series (b – intercept; a, c – coefficients; 
d – tipping point; K – capacity; k - exponential growth rate; A - initial value).  

Model Function 

linear 𝑓(𝑡) = 𝑎 ∙ 𝑡 + 𝑏 

linear plateau 𝑓(𝑡) =
𝑎 ∙ 𝑡 + 𝑏,   𝑡 ≤ 𝑑

𝑑,             𝑒𝑙𝑠𝑒
 

bi-linear 
𝑓(𝑡) =

𝑎 ∙ 𝑡 + 𝑏 , 𝑡 < 𝑑
𝑎 ∙ 𝑡 + 𝑏 , 𝑡 ≥ 𝑑

 

exponential 𝑓(𝑡) = 𝐴 ∙ 𝑒 ∗  

logistic 𝑓(𝑡) = 𝐾 ∙ (1 + 𝐴𝑒 )  

 

Additionally, the calculation of the standardised precipitation evapotranspiration index (SPEI) 

uses a time series of monthly mean temperature and monthly precipitation sums (1946-

2015). The Thornthwaite approach derives evapotranspiration needed for the calculation of 

the SPEI (Begueria and Serrano 2015). This study aggregates lags for SPEI of one, two, and 

three months. A linear model was sufficient to de-trend temperature and precipitation time 

series. Table 15 comprises interpretation guidance for SPEI and SYRS. 

Inventory 

Spearman’s rho correlation coefficient determines the strength of the association between 

SYRS and SPEI. These correlation coefficients are calculated for each combination of month 

and crop respectively production system, i.e. maize, winter barley, summer barley, rye, 

potato, sugar beet, oats, and rapeseed. Additionally, using different time lags provides insight 

on longer-term impact (one month, two months, three months). 

Modell study 

A modelling study provides simulated yield time series for maize and wheat. A comparison 

between observed and modelled patterns identifies the potential of the model to reproduce 
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annual correlation patterns at the site. The analysis was restricted to maize and wheat, being 

important production crops and representing summer and winter cropping in Lower Saxony. 

Table 15 categories to interpret moisture [a)] and yield [b)] by accessing SPEI and the SYRS 
according to Potopová et al. (2015). 

a)        b) 

Moisture categories SPEI 
 

 Yield variability SYRS 
 

 
from  to  

 
from  to 

Extremely wet >= 2.0 
 

 High yield increment >= 1.5 
 

Severely wet 1.5 1.99  Moderate yield increment 1 1.49 

Moderately wet 1.49 1  low yield increment 0.5 0.99 

Normal 0.99 -0.99  Normal 0.49 -0.49 

Moderate drought -1 -1.49  Low yield loss -0.5 -0.99 

Severe drought -1.5 -1.99  Moderate Yield loss -1.0 -1.49 

Extreme drought <=-2.00 
 

 High yield loss <=-1.5 
 

 

The model was set up in DSSAT as follows: we used phenological data sets to establish typical 

production schemes from sowing to maturity. Input climate data were daily weather time 

series in the period 1981 to 2010. Soil type was set typical for the study area as a medium 

silty loam accordingly to the German soil survey (Richter et al. 2007, Supplementary material 

24). Model parameters are estimated by the minimisation of root mean square error (RMSE) 

between simulated and observed phenology and yield data (Figure 15, Figure 16). 

Crop simulation models can provide sophisticated methods to determine water balance 

(Jones et al. 2003a; Hoogenboom et al. 2012). Nevertheless, we choose to derive 

evapotranspiration after Thornthwaite for better comparability with the observation 

procedure (Vicente-Serrano et al. 2010; Begueria and Serrano 2015). The parametrisation of 



 

111 
 

crop models for maize and wheat in the period 1981-2010 was successful based on the 

available data (Figure 15, Figure 16). A subset of observed annual correlation patterns 

provides a reference for comparison that matches the model period (1981-2010 instead of 

1948-2015). 

Data 

The present study utilises comprehensive agro and agroclimatic data compiled from the 

Federal Statistical Office of Germany, State Statistic Bureaus and the German Weather Service 

(DWD). 

Yield data comprise yields of different crops from agro-data sets published by statistical 

bureaus in Germany 1948 to 2015. These include yields of various production crops in Lower 

Saxony. Supplementary material 15 to Supplementary material 23 illustrates a general 

overview of the available yield time series. 

The climate data used falls into the following three categories.  

First, climate data utilised for the calculation of SPEI are available from the German weather 

service DWD. It comprises in monthly resolution temperatures, and precipitation means 

respectively sums for the years 1948 to 2015. 

Second, climate data to model yield time series of maize and wheat in a daily resolution is 

available for the time frame 1981 to 2010. Data comprise weather data of the weather station 

in Diepholz operated by DWD. Data include daily mean, max and min temperatures, as well 

as daily precipitation, wind speeds and solar radiation. 

Third, data on phenology comprises dates for numerous phenological stages of wheat and 

maize for the period 1981-2010 obtained from the German weather service. 
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Results 

Data preparation 

Yield development differs strongly between each crop (Supplementary material 15 to 

Supplementary material 23). De-trending was possible based on the trend functions and 

allowed to derive standardised yield residual time series. We found long-term trends in yield 

development. The visualised functions suited our criteria best; having the highest adjusted R² 

(Supplementary material 15 to Supplementary material 23); respectively, the lowest AIC (Data 

not shown). The standardised precipitation evapotranspiration index (SPEI) evaluating 

monthly drought conditions at the site in Diepholz, Germany shows a constant alteration 

between drought and wet periods (Figure 12). While most months play out between 

moderately wet and moderately dry, there are several examples of extreme events of moist 

and dry conditions (Figure 12). For instance, this includes 31 months with less than 20 mm 

precipitation in 70 years. This and the alterations in SPEI indicate the importance of short-

term weather variability in the region. Aggregated to annual lags, the SPEI shows fewer 

changes (Figure 12), with a noticeable, predominantly moister period from 1975 to 

1990 (Figure 12). 
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Figure 12 SPEI for different time lags of one month, three months, six months, and twelve 
months from 1945 to 2015 at DH, Germany. 
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Reference: drought / wet pattern 

We provide a basic characterisation of drought / wet conditions impacting agricultural 

production through annual correlation patterns derived for the reference period (1948-2015) 

in Lower Saxony (Figure 13). Spearman’s rho correlation coefficients aggregate to these 

patterns (correlation coefficient hereafter). Correlations include three different time lags of 

the SPEI (one month, two months before, three months before, Figure 13). Positive 

correlation coefficients indicated a negative effect of drought on yield variability, i.e. dry and 

low yields, or reverse high moisture condition leading to high yields. Generally, negative 

correlation coefficients are more frequent and have larger absolutes, with correlation 

coefficients reaching down to -0.4. The positive correlation coefficient rarely reaches more 

than 0.2. 

Shifts of correlation coefficients over the three lags of a specific month are rare; indicating 

that generally immediate monthly impact of environmental conditions prevails compared to 

longer effects. While each crop shows its specific annual correlation pattern (Figure 13), some 

factors, e.g. crop type, and production scheme, share overarching patterns. 

Maize, oats, and summer barley as typical summer crops in the region - with sowing in spring 

and harvest later in the same year – share features in patterns. There is a cluster of negative 

correlation coefficients in early spring at planting (March, and April in barley and May, and 

June in maize and oats); generally stronger in higher time lags (Figure 13). Months with 

positive correlation coefficients, i.e. drought resulting in reductions of yield - follow this 

negative cluster from approx. May to July. This is typically the time where the shift from 

vegetative development to reproductive development takes place. 



 

115 
 

In regards to production systems, summer barley shows specific patterns comparable to 

summer crops and winter barley shows patterns similar to winter crops. This direct 

comparison emphasises the importance of management of a production system on yield 

variability (Figure 13). 

Wheat, rye, winter barley, and rapeseed are typical winter crops in the region. For these 

sowing takes place in fall, they are dormant through winter and harvest is in second year’s 

summer or fall. We identified the following general annual correlation pattern (Figure 13). 

While the first production year with young crops shows positive correlation coefficients (high 

moisture being rather beneficial for yield development), the second-year shows negative 

correlations, predominantly. Variability found in correlation coefficients is generally higher in 

the second year. Noticeable is rapeseed and winter barley, where we see only small positive 

correlations in the early development in the first year. Rapeseed, and rye show increases in 

correlation coefficients towards the summer month. In contrast, wheat and winter barley 

show arbitrary alterations between positive and negative correlation coefficient in the first 

half of the second year with a cluster of predominantly positive correlation coefficients found 

from February to April. 

Sugar beet’s annual correlation pattern is distinct: It starts with strong negative correlation 

coefficients at sowing and increases monthly until it reaches positive values in summer and 

ends highest on positive values before harvest (Figure 13). The negative correlation shows 

higher absolutes approx. 0.4 then the positive correlation approx. 0.1. There is some 

variability found between positive and negative correlations for the different time lags 

between late spring and early summer (June and July). The general pattern shifts from 

dominantly negative to dominantly positive correlations in this time. 
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In contrast, potato shifts from slightly negative correlation coefficients between June and July 

to positive correlation coefficient for the rest of the vegetation period (Figure 13). Around 

planting, positive correlation coefficients are found, e.g. in March and April. In July to 

September at the harvest time correlation coefficients are positive, too. Negative correlations 

are found only in June. Correlation coefficients’ signs are widely stable throughout the time 

lag range. 

Pattern subset for comparison 

The subsets of annual correlation patterns derived for the comparison period (1981-2010) 

deviates in some features from the reference period (1948-2015, Figure 13, Figure 14). These 

changes can indicate the impact of shifts in management and climate (Van Ittersum et al. 

2013). The ranges of absolute correlation coefficients found are more significant in the 

shorter period of 30 years. Especially, positive correlation coefficients are more accentuated 

(Figure 13, Figure 14) indicating higher drought risks through changes in climate and 

management. Negative correlation coefficients are on similar levels as those in the reference 

period (1948-2015). 

In maize, the general pattern is similar: negative correlation coefficients after sowing, 

predominantly positive correlation coefficients follow for about two months and slightly 

negative ones after that. Noticeable is the shift to earliness of positive correlation coefficients 

from June, July to July, August (Figure 13, Figure 14) that aligns with shifts to earliness found 

in phenology. 

Wheat shows a more complex picture. While, the general course over the year is similar to 

the longer period, i.e. positive correlations after sowing, turning negative over winter 

(November, December, January), followed by positive correlations in spring (February, 
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March) and negative correlations in the month before harvest. In some cases, patterns 

deviate strongly, e.g. negative correlation coefficients found in December and Mai are not 

apparent in the reference pattern (Figure 13, Figure 14). 

Modelled time series 

The parametrisation of the crop simulation model was successful for maize and wheat for the 

entire 30-year-span (1981-2010). The models reproduce crop yields, sufficiently (Figure 15, 

Figure 16). Mean yields and general yield variability predicted for maize is in good agreement 

with the observations (Figure 15). The wheat model overrates mean yield by approx. 0.6 t/ha. 

Phenological development stages as far as implemented in the model are reproduced 

sufficiently for both crops (Figure 15). 

The maize model performs well in predicting the first half of the time series (Figure 15). It 

repeatedly matches single years accurately and reproduces some features in the further 

course of the time series, e.g. heat year in 2003 (Figure 15). Wheat model performance is 

weaker besides predicting several years accurately and reproducing the general trend; we 

find outliers and higher variability in the simulated yields (Figure 16). These outliers, predicted 

in 1983, 1989, 1990, and 2005, increase the mean yield onto the elevated level and contribute 

to the more substantial variability (Figure 16). 

Based on these modelled yield time series, we derived annual correlation patterns between 

SPEI and SYRS for modelled yield, accordingly to the observed ones (Figure 14). The annual 

correlation patterns given by both production systems show amplification of correlation 

coefficients: modelled yield time series show higher ranges. Notably, negative correlation 

coefficients are more pronounced in the modelled time series (Figure 14). 
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Figure 13 Spearmen's rho correlation coefficient annual pattern between SPEI (DH-Weather data) in 1 to 3 months lag and SYRS for selected 
regional annual production crops (maize, oats, potato, rapeseed, rye, summer barley, sugar beet, wheat, winter barley; yellow line general sowing 
time; blue line general harvest time). 
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Figure 14 modelled and comparison period annual patterns of Spearman’s correlation 
coefficient between SYRS and SPEI for maize and wheat in 1981-2010. 

The annual correlation pattern derived for maize deviates from the observed annual 

correlation pattern (shorter subset) in some crucial points. In June maize correlation 

coefficients were negative. Observed annual correlation patterns do not show this behaviour 

(Figure 14). Vice versa modelled patterns do not show the predominantly negative correlation 

coefficients in the observed patterns from August to October. These differences show that the 

model is not able to reproduce the drought pattern entirely and that the drought impact along 

critical stages of approx. flower initiation to ripening is not met by the model, yet. 

Modelled and observed annual correlation patterns (shorter subset) for wheat show 

similarities (Figure 14). Both, annual correlations patterns follow the same course in the first 

year: neutral to negative coefficients in September, positives in October and negative in 

November, showing the model’s capabilities to simulate this early development. There are 

deviations in the further course of development. These show the model’s difficulties in 
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predicting specific drought impacts. Most prominent is the positive correlation coefficient in 

May, indicating the negative drought impact around the critical development stage of 

flowering that is not reproduced by the model. The shift from positive to neutral correlations 

in January and February in the simulation appears not until February March in the observed 

annual correlation pattern. The prominent negative correlation coefficient for observed April 

is stronger than those found in the simulation data (Figure 14). 

 

Figure 15 maize comparison of modelled and observed time series for Lower Saxony, 
Germany (1982-2010). 

In regards to identifying differences between model and observation, we found substantial 

discrepancies and similarities comparing modelled and observed annual correlation patterns 

indicating issues that can be targeted by improvements and potential of models to reproduce 

specific responses that should be kept. 
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Figure 16 wheat comparison of modelled and observed time series for Lower Saxony, 
Germany (1982-2010). 

Similarities speak for the quality of the model to reproduce the monthly impact of on 

production system. Both show a positive correlation after sowing (Figure 14). Notably, the 

annual correlation patterns provided for the first year of wheat production aligns well in the 

first production year after planting (Figure 14). In terms of model improvement, these features 

need conservation. 

Some outstanding features of the annual correlation patterns in our model example were not 

matched, reproducing these, however, is a necessity in assessing agricultural production 

systems in regards to challenges from climate change. We found various deviations, inversions 

in annual correlations patterns for some month in the model. These can be interpreted as 

insufficiencies of the model to capture specific temporal features, e.g. specific development 



 

122 
 

stage related stress reactions of a production system—for instance, the positive correlation 

coefficient not reproduced by the model for wheat around anthesis (Figure 14). 

Discussion 

Data transformation and data preparation 

SYRS 

Providing the standardised yield residuals series was successful. While aspects of the 

identified trend functions might describe developments reasonably, they are limited in their 

significance through the focus on accurate description for trend adjustment. Consequently, 

trends are not necessarily derivable from these functions (Lobell et al. 2009; Van Ittersum et 

al. 2013). 

SPEI 

The standardised precipitation evapotranspiration index provides a relative assessment of 

drought and wet conditions. The variability in monthly precipitation sums is small over the 

year (Metzger et al. 2005); drought spells are rare (Trnka et al. 2011; Gömann et al. 2015). 

Occasional months with less than 20 mm precipitation have been reported (31 in 70 years). 

This finding is in agreement with droughts being rather rare in the general temperate oceanic 

climates of western central European (Peel et al. 2007; Trnka et al. 2011). Drought conditions 

found here will match moist conditions in regions were drought indices are typically applied 

(Vicente-Serrano et al. 2010). However, probabilities for some adverse environmental 

conditions, i.e. water scarcity during vegetation growth through shifts of precipitation into 

winter seem to increase drought risks in North-Western Germany and parts of Europe (Gobin 

2012; Trnka et al. 2014; Gömann et al. 2015). 
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Inventory of drought patterns 

Generally, the impact of adverse environmental conditions on yield variability is highly 

complex (Estrella et al. 2007; Gobin 2012; Trnka et al. 2014; Gömann et al. 2015). The 

correlation coefficients do not indicate drought impact absolutely (Potopová et al. 2015). A 

positive correlation coefficient shows the drought condition’s negative impact on yield. 

However, the reverse is valid as well, moist conditions contributing positively to yield. Eco-

physiological context is needed to identify the processes behind key traits of major annual 

correlation patterns. 

Grain crops, including cereals, maize, and rapeseed, share some traits. Germination to 

emergence and the transition between vegetative and reproductive development until fruit 

set are typically considered critical development stages. The success of germination requires 

specific environmental conditions, and the young crop is vulnerable and limited by its reduced 

access to resources (Barnabás et al. 2008; Gobin 2012). 

Reproductive processes require optimal environmental conditions to succeed, and success 

typically determines the development of the harvested yield components (Barnabás et al. 

2008). Drought can have a severe impact on fertilisation, e.g. maize needs ideal conditions of 

temperature and water supply to produce viable pollen (Barnabás et al. 2008). Further 

drought can shift the development of female and male reproductive organs; jeopardising 

cross-fertilisation success (Barnabás et al. 2008). The positive correlation coefficient found in 

spring/ summer aligns with the transition from vegetative to reproductive development in 

most of the grain crops produced in Lower Saxony (Figure 13). 

The specific annual correlation patterns found for spring and winter barley shows the 

importance of specific production systems on yield variability. Spring and winter barley 
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pattern align in a way that they balance each other. In a scenario with both systems in place, 

a severe single drought event at any given time would only impact one system, negatively. 

Diversification is a classic and relatively easy mitigation strategy; it works well, especially for 

highly unpredictable environments (Olesen et al. 2011; Kollas et al. 2015; Challinor et al. 2018). 

Whether this is a viable strategy depends on the socio-economic context. For instance, spring 

barley is used widely for brewing only, and might not be substituted easily in the necessary 

quality. 

Potato tuber formation is regarded as the most sensitive stage to adverse environmental 

conditions. Potato production needs relatively high and reliable water supply to be successful 

(MacKerron and Jefferies 1986; Walworth and Carling 2002; Gobin 2012). Drought impacts 

quantity and quality parameters of tuber development, negatively. It can have an impact on 

the number of tubers and their size (Haverkort et al. 1990; Ojala et al. 1990). Tuber initiation 

of potato has a beneficial response to dryer conditions (Haverkort et al. 1990; Ojala et al. 

1990). We found negative correlation coefficients up to three months after planting. Water 

surplus might negatively impact tuber development in this stage, possibly through altered 

heat balances in the soil. Correlation coefficients are positive in later year (July, August) 

aligning with the lower sensitivity to dryer conditions expected during bulking and late 

development (Struik et al. 1989c; Walworth and Carling 2002). 

Root development determines the yield of sugar beet. While sugar beet is not regarded as 

overly sensitive to some water deficit (Kirda et al. 1999), more severe drought can be an issue 

hampering yield development (Ober and Rajabi 2010). Kirda et al. (1999) report droughts have 

the most substantial impact during emergence and early growth periods under arid climate 

conditions of Anatolia, Turkey. Generally, the consistently small positive correlation 

coefficients show sugar beet’s requirements are well covered under the recent climate of 
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Lower Saxony. On the other side, moist soil conditions can hamper the development of sugar 

beet by, e.g. postponement of sowing, lack of aeration, and altered soil heat balance 

(Pendleton 1950; Hoffmann and Jungk 1995; Jacobsen 2006). The high soil moisture found 

after the typical restock of water storage after winter can explain the strong negative annual 

correlation patterns found in early development. Small correlation coefficients in the later 

development of sugar beet (June) indicate some negative impacts of dryer conditions. 

We were able to compare these patterns with those of a study applying the approach to 

statistical yield data in the Czech Republic, e.g. maize shows positive correlation coefficients 

in the summer month, too (Potopová et al. 2015). However, correlation coefficients found in 

Lower Saxony, have generally smaller ranges and various crops show less pronounced and in 

parts deviating patterns. These deviations are especially the case for rapeseed (Potopová et 

al. 2015). These differences can be a result of data used. While Potopová et al. 

(2015)s’ evaluations rely on a range of sites, i.e. 304 weather stations and several sites 

providing yield, here regionally aggregated data is evaluated against a selected representative 

weather station. Additionally, the Czech Republic is characterised by a more continental 

climate with more pronounced heat and drought episodes that might lead to stronger 

accentuated patterns (Metzger et al. 2005). 

Modelled time series 

We were able to derive a reasonable calibration for maize and wheat production systems with 

DSSAT-CERES. They emphasise phenology before yield. Further, we assume that differences 

between observed and modelled yields are alone due to the different responses. We are 

aware that various factors account for variability between model and observation. While crops 

respond to a plethora of environmental conditions, crop models work only on a subset of 
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certain climate elements. The selection and composition of these boundary conditions have 

an impact on the model results. For instance, canopy temperature improved model results 

compared to mean temperatures (Siebert et al. 2014). Arguably, the setup and 

parametrisations of the model used in this study are rather general and simple. We used rigid 

production schemes to model yield, not utilising available knowledge about changes in 

production, e.g. cultivars, machinery, or shifts in climates, e.g. earliness and extension of 

vegetation period, or shifts of land use (Estrella et al. 2007). The differences found here 

between reference, and the shorter comparison subset of annual correlation certainly 

indicates some shifts. 

Additionally, regionalisation is very coarse. The model is set up around one representative site 

with specific environmental conditions certainly not recapturing all features found in Lower 

Saxony. Tapping more data sources can provide a more detailed picture and improve the 

overview (Potopová et al. 2015). We find stronger absolute ranges in the modelled 

correlations. This stronger variability can be a result of higher variability of a specific site 

compared to the more balanced spatial means in observed statistical yields (Zhao et al. 2015). 

Also, the monthly resolution is too coarse to represent individual phenological development 

stages (Meier et al. 2009; Strer et al. 2018). These stages are frequently only several days in 

length (Meier et al. 2009). A higher resolution can provide an evaluation of actual 

development stages. However, this requires crop models, phenology and weather data that 

can resolve the problem on this level (Rötter et al. 2011, 2018a). 

Despite, steady progress in improving crop simulation models, they show already a bias 

towards modelling only few mitigation strategies because they can be modelled and 

preferring some crops before others (Challinor et al. 2018; Rötter et al. 2018a). Therefore, 

tools like crop simulation models that are essential in long-term risk assessment for 
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agricultural production have to improve further to simulate specific challenges, e.g. shifting 

environmental patterns in a climate change setting (Gömann et al. 2015; Strer et al. 2018; van 

Rüth et al. 2019). 

We see two applications for the method to improve crop simulation models: for parameter 

estimation aiming at providing abiotic stress processes, more adequately (Rötter et al. 2018b), 

and for the identification abiotic stress processes that cannot be modelled with crop 

simulation models. Solving the optimisation problem not or not only for the goodness of fit 

parameters and mean yields, but for pattern might improve the model towards modelling 

more accurately the response to drought (Rötter et al. 2011, 2018a; Martre et al. 2015). This 

certainly needs some more work on details. An advantage is that no additional data were 

required to calculate annual correlation patterns compared with those anyway needed for 

setting up the crop simulation model. An extension of the approach on other adverse 

environmental conditions that are index-able is a possibility to account for many more 

environmental factors that impact yield development. Many improvements for crop 

simulation models are available: new approaches that include phenology specific responses 

of the crop simulation model to stress have improved yield response, significantly (Challinor 

et al. 2005; Lizaso et al. 2017). These improvements are typically highly specific. Any 

systematic identification, e.g. through pattern analysis, can help to focus resources on specific 

improvement. For example, a point we identified to be improved is drought specific response 

around flowering of grain crops (Figure 14). 
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Conclusion 

The annual correlation patterns found for lower Saxony show that relative droughts have 

already impacted the agricultural production systems in the recent past. Despite some 

similarities, these patterns are specific for each crop and even for each production system. 

The inventory provided here allows developing specific mitigation strategies that reduce the 

impact of the patterns on yield variability. A path that came up is spreading the risk by 

implementing a diverse range of crops and production schemes with balanced annual 

correlation patterns; stabilising the yield variability on a high level. 

Models should improve to reproduce drought response more, adequately. In terms of analysis 

of model results by annual correlation patterns, we see the identification of starting points as 

a way for well-targeted instead of arbitrary improvements. Additional refinement is needed 

to analyse phenology-stage-specific response for drought. Nevertheless, we are hopeful that 

this can help to resolve certain common biases in crop simulation model application, 

e.g. mitigation strategies that are accessible with recent models being over-represented. 

The stage-specific impact of adverse environmental conditions on agricultural is a complex 

and intriguing problem. Better understanding together with the improvement in analysis 

tools, can be a part in developing suitable mitigation strategies for agricultural production 

systems in Lower Saxony as well as worldwide. Especially, given that agricultural production is 

challenged by an ever-growing demand of higher and stable yields to ensure world nutrition, 

and by shifting environmental conditions through climate change. 
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General discussion 

 

Synthesis 

The understanding of the impact of adverse environmental conditions on critical development 

stages of crop production is still limited (Mäkinen et al. 2018). By answering the initially stated 

research questions, this thesis contributes to deepening this understanding by identifying 

critical development stages, analysing recent environmental patterns and assessing risk for 

the North German Plain under climate change. 

Chapter 1 analysed literature to identify relevant development stages in crop development 

and contrasts this with an overview of the implementation of phenology and development 

stage-specific stress impact in common crop simulation models, answering: 

1. Which critical development stages are relevant in the context of adverse environmental 

conditions for the North German Plain? 

Chapter 2 identified the abundance of adverse environmental conditions during critical 

development stages of maize and wheat, for four sites in the North German Plain and projects 

them into the future (2021-2050); answering:  

2. How will the abundance of critical development stages shift in the future of the North 

German Plain? 

Chapter 3 identified the gap between observed and modelled yield response to annual 

drought patterns in Lower Saxony; answering: 
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3. In which regard are models capable of depicting the specific impact of adverse 

environmental conditions on crop development? 

Which critical development stages are relevant in the context of adverse 

environmental conditions for the North German Plain? 

Critical development stages pose a remarkable problem. The impact of adverse environmental 

conditions and critical development stages can have very specific and hardly predictable 

outcomes for crop production. The literature study provides some insight into this complexity 

and variability. Chapter 1 shows an overview of the perception of critical development stages 

in the scientific community. It evaluates research articles for critical development stages of 

production crops common in the North German Plain. However, it falls short in providing a 

general systematic definition of the problem. 

Critical growth stages have been considered in agronomy for a long time. There is a consensus 

to define critical development stages by the potential loss of the harvestable crop component 

or by the loss of total crop vitality. For instance, in cereals, flowering determines grain 

development, with flowering requiring a narrow corridor of environmental conditions to 

succeed, or in sugar beet unfavourable conditions can induce unwanted developments, e.g. 

early sprouting redistributing resources away from storage in the root. Systematic research 

on specific stress process is needed to provide a better understanding of fundamental 

processes and to navigate the complexity that critical development stages provide (Hlaváčová 

et al. 2018). 

In contrast to the highly diverse perceptions in experimental and basic research on the topic, 

the response to adverse environmental conditions is implemented rather simple in crop 

simulation models (Rötter et al. 2011, 2018a; Hlaváčová et al. 2018). Crop simulation models 



 

131 
 

are limited to a small range of phenological development. Some distinguish only between 

vegetative and reproductive development (Chapter 1). Development-stage-specific processes 

are even rarer. Solutions for such specific stress impacts are considered frequently, but it lacks 

in their systematic implementation. Such model adaption improving prediction of crop 

development processes significantly include a wide range from new structural attempts for 

models to the implementation of new stress-sensitive processes, e.g. heat-specific responses 

by temperature ranges for pollen fertility, or sophisticated temperature response functions 

(McMaster et al. 2005a; Challinor et al. 2005; Wang et al. 2017; Lizaso et al. 2018). 

Despite these limitations, process-based dynamic crop models can be a valuable tool for 

analysing the response of complex systems to environmental conditions. This requires 

adequate application concepts, calibration and validation based on systematic research for 

specific environmental stress impact on crop development. 

For instance, Chapter 2 and Chapter 3 show approaches that use models to identify and assess 

adverse environmental conditions and critical development stages. Chapter 2 relies on the 

overview provided in Chapter 1. It focusses on the abundances of various adverse 

environmental conditions during selected critical development stages, with phenological 

stages being predicted well. It finds that these abundances are likely to increase in the 

North German Plain. Chapter 3 aims to identify critical development stages for drought by an 

analysis of environmental patterns. The patterns certainly provide hints where drought might 

impact development strongest. 
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How will the abundance of critical development stages shift in the future of the 

North German Plain? 

Shifts in environmental patterns due to climate change are likely to lead to an increase of the 

abundance of adverse environmental conditions along critical growth stages in the North 

German Plain. 

The abundance of adverse environmental conditions is assessed through the evaluation of 

threshold exceedances of, e.g. climate elements for maize and wheat production at four 

representative model regions Diepholz, Uelzen, Fläming, and Oder-Spree in the North German 

Plain, Germany (Figure 17). A model (DSSAT-CERES) was set up to simulate general maize and 

wheat production, including phenology. The models’ drawbacks in simulating specific impacts 

during critical development stages were bypassed by focusing on the abundance of adverse 

environmental conditions and neglecting yield (Figure 17).  

The general procedure is straightforward. Figure 17 depicts it for the example of inflorescence 

emergence of wheat. Figure 17 (A) shows the initial situation: threshold exceedances during 

this phenological development stage in the reference period (red dots: daily mean 

temperatures above threshold). Agrometeorological data for the reference period were used 

to demark the length of mean phenological stages. Overlaying the scenario temperatures 

illustrates the increase in abundance of adverse environmental conditions during 

inflorescence emergence (Figure 17 B). To refine the approach, DSSAT is used to determine 

phenological stages dynamically for each year (Chapter 1). Three specific general circulation 

model projections were evaluated representing a minimal, medium and maximal temperature 

increase within climate change RCP 8.5 continuum for the period 2021-2050 (Figure 17). 
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Generally, the abundance of adverse environmental conditions is likely to increase in future. 

Despite some earliness in phenology, threshold exceedances of high-temperature are more 

frequent in 2021 to 2050 than in 1981 to 2010. On the opposite frost will still occur in future 

and potentially impact early development stages, negatively. This counterintuitive 

contradiction is due to shifts of variability. These shifts follow general expectations of 

temperature shifts through climate change (Figure 11, Houghton et al. 1990; Porter and 

Semenov 2005; Barker 2007; IPCC 2014). 

 

 

Figure 17 procedure applied to identify adverse environmental conditions, e.g., temperature by 
exceedance of thresholds. Plots are based on Diepholz weather stations data (DWD), mean phenology 
(DWD), and medium climate scenario (Supplementary material 1, Table 2). Phenology specific 
thresholds for wheat, according to Porter et al. 1999 (blue – minimal temperature thresholds, 
red - maximum temperature thresholds). (A) Reference period from 1981 – 2010 (grey – daily mean 
temperature, solid black line – seasonal temperature curve of mean temperature). (B) Scenario period 
2021-2050 (orange – daily mean temperature, solid orange line – seasonal temperature curve of mean 
temperature). 

 

A 

B 
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Water balance - here indicated as water content - shows that both droughts, as well as water 

surplus, have to be considered in future for some development stages. However, water 

balance is challenging to evaluate, since its strongly depends on local soil properties. 

Chapter 3 supports these findings. Where drought patterns were analysed for a more recent 

period (1981-2010), this subset showed shifts in environmental patterns’ impact on yield 

variability compared to the general, longer evaluation period (Chapter 3). However, the high 

level of aggregation does not allow to distinguish between pure environmental and other 

shifts, e.g. management. 

In which regard are models capable of depicting the specific impact of adverse 

environmental conditions on crop development? 

The comparison of drought pattern impact between observed and modelled yield variability 

has shown that this yield response cannot be reproduced sufficiently by crop simulation 

models, yet. Amongst, others this has a major implication for the analysis and development 

of climate change mitigation strategies for cropping systems using crop simulation models. 

In many regards, e.g. by using only one model and by limitation to an exemplary site, this 

research study has rather the character of a case study that tests a novel application for annual 

correlation patterns. Nevertheless, an inventory of annual correlation patterns between 

standardised evapotranspiration index and yield residuals was compiled for major production 

systems of Lower Saxony. These annual correlation patterns provide a systematic overview of 

drought impact on yield variability. 

Most patterns found were explained reasonably by eco-physiological processes, e.g. 

sensitivity to drought of cereals after sowing. The method can be a valuable technique to 

categorise different regions and production systems and to identify suitable adaption to 
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climate change. Therefore, a broader inventory for different cultivars, regions, environments, 

and production systems seems to be a desirable goal. Possibly, allowing the identification of 

suitable agricultural production systems and management strategies used elsewhere. 

Adequate yield response is a prerequisite for many model applications. The comparison 

between observed and modelled responses showed that DSSAT was not able to reproduce 

these patterns for wheat and maize, sufficiently.  

Chapter 1 supports this finding. The literature review showed that despite the consideration 

of some process describing critical development stages, their handling in crop simulation 

models is somewhat neglected or arbitrary in selection. An improved sensitivity analysis using 

patterns might provide better ranges in which crop models can be used for the assessment of 

adverse environmental conditions and critical development stages. 

Despite, the claim for systematic improvements in models, this thesis lacks in providing actual 

improvements. It omits yield response in Chapter 2 and only approaches improvement by 

identifying mismatches in drought patterns in Chapter 3. It leaves the implementation of novel 

processes that describe the stage-specific stress response found in the context of modelling 

to future studies. 
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Reflection 

The thesis answered the initial research questions by identifying critical development stages, 

providing a partial risk assessment for crop production under climate change for regions in the 

North German Plain, and identifying deficiencies in crop simulation models to simulate the 

stage-specific impact of adverse environmental conditions. Certainly, each answer generates 

new perspectives and new questions. There is a demand for more systematic concepts to 

identify critical development stages, an examination of climate change expectations, and ideas 

for improvements and optimised applications of crop simulation models to assess the impact 

of adverse environmental conditions on critical development stages on agriculture. 

Determining what adverse environmental conditions and critical development stages are is 

crucial to their understanding and for systematic research of the topic. The many definitions 

presented, analysed, and applied in various research studies show that there is a need for 

clarity and comparability. The thesis uses two very different pathways to approach the 

problem: one top-down approach partitioning the problem in manageable bits and one 

bottom-up identifying regional adverse environmental conditions’ impact on agricultural 

production. 

There are many expectations for climate change. These expectations and their implication 

need a thorough consideration not only because they add an additional layer of uncertainty. 

They have consequences for the development of climate change mitigation strategies, too. 

There is no doubt about the potential of crop simulation models to analyse challenges and 

risks for agricultural production through shifts in environmental conditions. The thesis showed 

with two approaches that a thoughtful application of models could identify adverse 

environmental conditions and predict some of their impact on crop development. However, 
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it also showed that model capabilities are limited in providing an adequate stage-specific 

response. It is necessary to discuss how to improve models to resolve the problem more 

adequately—well knowing that some limitation will remain due to basic concepts in crop 

simulation models that are contrary to simulating rare and specific events. 

A prerequisite for research on critical development stages and potential improvements of crop 

models is the availability of validation and calibration data. Large amounts of suitable data of 

adverse environmental events are needed to analyse phenology-specific stress response, 

improve crop simulations, and provide general understanding through systematic research 

(McMaster et al. 2008; Rötter et al. 2011, 2018a). Therefore, long consistent meteorological, 

and crop physiological time series are needed. However, these time series are challenging to 

acquire in a sufficient extent that allows for statistical evaluation of extreme events. 

Systematic research can help to acquire data on various scales where it is not available yet. Of 

interest are especially the analysis of basic processes in controlled laboratory experiments 

focussing on individual plants or even specific plant organs. In terms of the development of a 

risk assessment for an entire region like the North German Plain, upscaling of basic processes 

is necessary. This upscaling can include on an intermediate level field experiments with 

controlled environmental factors, e.g. rain-out shelters bridging the gap from basic processes 

to the field level. Furthermore, methods are needed, like remote sensing, that are well-suited 

to make the step to describing larger spatial scales. 
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Identification of critical development stages 

The problem around critical development stages and adverse environmental conditions is 

intuitive. It is widely accepted that environmental stressors impact crop development and that 

some stressors can have an extraordinary impact during specific development stages (Gobin 

2012; Trnka et al. 2014; Gömann et al. 2015; van Rüth et al. 2019). It is a complex problem 

that depends on numerous, interacting factors, e.g. crop properties (Fowler et al. 1996), 

management of production systems (Gobin 2012); duration of environmental conditions 

(Barnabás et al. 2008; Lizaso et al. 2018); local environmental properties, or daily timing of 

environmental conditions (García et al. 2016). Doubtless, more profound knowledge and a 

systematic classification of adverse environmental conditions and critical development stages 

can provide valuable insight in yield variability and crop risks of agricultural production 

systems: starting from suitable approaches to identify critical development stages over basic 

research tools to evaluate and analyse the problem’s different aspects to a precise definition 

describing the complex duality between adverse environmental conditions and critical 

development stages. 

The literature study in this thesis showed that the topic had been considered in various forms 

for various crops and numerous environmental conditions (Chapter 1). All assessed critical 

development stages differently; however, all based on reasonable considerations. Typically, 

development stages were critical, if requiring general or specific environmental conditions 

(Barnabás et al. 2008); environmental conditions were adverse if they triggered unwanted 

crop development (Ober and Rajabi 2010), or production steps were hampered substantially 

(Gobin 2012). The definitions, applied in these studies, are very specific and sometimes only 

sufficient enough to resolve the actual research question. More systematic approaches are 

rare (Wollenweber 2003). 
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On a level, the problem is a philosophical one that cannot be resolved in its entirety. The 

duality between environmental conditions and development stages defines if they are adverse 

environmental conditions and critical development stages or something else. Therefore, 

nearly all development or production stages contain the potential to be critical development 

stages, and all environmental conditions bear the potential to be adverse environmental 

conditions, with possibly only small difference qualifying between beneficial and harmful. For 

example, high humidity is beneficial for water efficiency through lower vapour pressure 

deficit, but ideal for the development of pests (Vining 1990). 

Three elements on different levels appear to be relevant in assessing critical development 

stages: 

Potential critical development stages are: (1) all stages of crop development that determine 

the development of the harvestable product, (2) all stages of crop development that 

substantially jeopardise the general crop development, and (3) all stages of the production 

process that are crucial to the success of the agricultural pursuit. 

Additionally, for adverse environmental conditions applies that they have the potential to 

substantially hamper the crop development or the production process through setting 

inadequate boundary conditions for agriculture, e.g. by suboptimal resources availability. 

A point not considered in depth in this thesis, but important for the assessment is: what 

perspective is taken; how are adverse and critical defined? In this thesis, the assessment of 

adverse and critical comes from a limited human viewpoint: it focuses on yield alone. Other 

perspectives are imaginable. For instance, general survival and reproduction are of higher 

importance for crops than yield per se. Stress responses are diverse, e.g. adjusting the number 
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of kernels, or shifting development processes (Hoffmann 2010a; Ober and Rajabi 2010). Such 

strategies guarantee the reproduction sometimes on the coast of overall yield. 

Approaching critical development stages 

Based on these general assumptions and the findings of the literature study, this thesis follows 

two approaches analysing adverse environmental conditions’ impact on critical development 

stages. 

One top-down approach that uses crop modelling to partition the problem into manageable 

and analysable bits (Chapter 2). Many risk assessment studies involving crop simulation 

models follow such top-down approaches that start with an environmental scenario and use 

the model to derive a local impact by comparison to a reference (Beveridge et al. 2018). 

Indeed, crop simulation models harbour the potential to analyse the response of complex 

agricultural production systems to adverse environmental conditions by breaking down the 

complex interactions and focusing on essential processes (Rötter et al. 2011). It was possible 

to derive reasonable and consistent likelihoods for adverse environmental condition 

throughout three different scenarios. While the single processes and the derived results are 

rational, the approach is highly arbitrary because of its usage of preselected critical 

development stages. The findings in Chapter 3 and the evaluation of the implemented 

phenological process in Chapter 1 suggest that crop models – here for the example DSSAT 

CERES - have difficulties in simulating core aspects of critical development stages, e.g. 

reproduction of yield response to drought, yet. They can be improved; supplemented 

processes and alternative application methods have shown to be very useful to simulate and 

analyse phenology-specific stress (Chapter 2, McMaster et al. 2005b; Gobin 2012; Trnka et al. 

2014; Challinor et al. 2018). 



 

141 
 

The other approach uses environmental patterns (Chapter 3). It is a more regional-based 

bottom-up approach to analyse the impact of adverse environmental conditions on critical 

development stages. It is based on the actual systematic analysis of local, or regional 

conditions that can be upscaled or aggregated to an overall picture. It allows linking regional 

conditions and knowledge to a broader perspective (Beveridge et al. 2018). 

Annual correlation patterns provide a reasonable inventory of adverse environmental 

conditions impact on yield development (Chapter 3). The approach is limited. The temporal 

resolution is too coarse to resolve phenology. A contextualisation of patterns is necessary to 

interpret the results. However, the approach was able to successfully identify a mismatch 

between observed and modelled responses to drought patterns. Improvements are needed 

to close the gap between the understanding of abiotic stress physiology of crops and its 

incorporation into eco-physiological models to more accurately quantify the impacts of 

extreme events (Rötter et al. 2018b). 

In their own right, both approaches achieve their objectives well. Nevertheless, the contrast 

between these two pathways - the top-down and bottom-up - seems irreconcilable (Beveridge 

et al. 2018). Certainly, an integration of both philosophies, like the iterative and 

interdisciplinary workflow described by Beveridge et al. (2018) might provide a more holistic 

perspective for the problem. 

Multiple stresses 

This thesis does not consider multiple stresses. Simultaneous or sequential impact of multiple 

stressors without the systems chances to regenerate can be even more critical for the 

agricultural pursuit than single events (Wollenweber 2003). Exactly these interactions are yet 

not well understood and therefore not yet fully implemented in models (Hlaváčová et al. 
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2018). Trade-off effects, on the site of physiological processes, can hamper or amplify the 

impact of adverse environmental conditions (Vining 1990; Barnabás et al. 2008). 

Additionally, pests, diseases, or intraspecific and interspecific competition can exceed 

additional stress. Their impact increases even further under limited resources. Handling 

several interacting development models, e.g. for the crop-soil-systems, competitors, or pests 

comes with an increase in complexity and needs thorough considerations (Pandey et al. 2015, 

2017; Strer et al. 2016). It is an intriguing problem in general and for the simulation with 

models. 

It is reassuring that the hurdles for a substantial impact by adverse environmental conditions 

usually are quite high. Only if prolonged stress, multiple stressors or extraordinary stresses co-

occur with susceptible development stages, a terminal effect on crop health will be imminent 

(Wollenweber 2003). But, a significant impact on the quality and quantity of the harvestable 

product can take place much earlier under less unfavourable conditions (Barnabás et al. 2008). 
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Climate change projections and expectations 

Climate change expectations 

There are certain expectations for climate change in the North German Plain. The Background 

chapter has already established these major environmental shifts due to human-made climate 

change. These shifts come in a broad range of manifestation and will impact crop production 

of the North German Plain (Trnka et al. 2011; IPCC 2014; Gömann et al. 2015; van Rüth et al. 

2019). Generally, adverse environmental conditions are likely to increase in Europe (Trnka et 

al. 2011; Gömann et al. 2015). This includes the increase of exceptional events in abundance 

and intensity in the North German Plain, e.g. severe environmental episodes like droughts or 

heatwaves as seen in 2003 or 2018 in Germany (IPCC 2014; Gömann et al. 2015; Russo et al. 

2015; Hanel et al. 2018; van Rüth et al. 2019).  

This thesis findings support the general expectations projected for the North German Plain. 

Chapter 2 identified an increase in the abundance of adverse environmental conditions by 

evaluating threshold exceedances, and Chapter 3 found shifts in annual correlation patterns 

when evaluating more recent data subsets. There are parallels between findings in this thesis, 

and other studies for future conditions in the North German Plain (Trnka et al. 2014; Gömann 

et al. 2015; van Rüth et al. 2019). Admittedly, it has to be considered if these agreements are 

genuine or if they are because they are based on the same sources using the same framework 

and the same GCMs (Chapter 2, IPCC 2014; Spellmann et al. 2017). Nevertheless, the findings 

were consistent throughout all three projections, analysed here (Chapter 2). While the results 

for recent developments in Chapter 3 are based on observation, its high degree of aggregation 

and generalisation allows not to differentiate between climate change and management 

change impact on the production systems. 
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Given these expectations and challenges through climate change and adverse environmental 

conditions for the North German Plain, mitigation and adaption strategies are necessary to 

secure reliably high yields. 

Mitigation strategies 

Developing climate change mitigation strategies that consider adverse environmental 

conditions are necessary to adapt to the expected challenges through climate change in the 

North German Plain and world-wide. A plethora of mitigation strategies and adaption 

mechanisms for agricultural production to climate change is imaginable, available and 

frequently discussed, e.g. irrigation against drought, breeding of stress-resistant cultivars 

possibly by genetical engineering, companion planting of resilient cultivars or epigenetic traits, 

insurances against weather caprices, altering crop rotations, nanoparticle soil additives 

tweaking soil properties to improve soil nutrient and water supply, autonomous robots caring 

for individual crops, or diversification to compartmentalize risks. However, all beneficial 

techniques and strategies can come with trade-offs (Vining 1990). These trade-offs can be 

unforeseen, reaching from higher costs to long-term devastations, e.g. by soil salinization. 

Additionally, to climate change, the agricultural pursuit is under pressure from socio-economic 

processes, e.g. fluctuating market prices. A reliable socio-economic framework that provides 

sufficient planning security might be as important as climate change mitigation strategies and 

will shape the future of production systems maybe even more than recommendations based 

on research (BMEL 2019). This pressure might lead to investments in infrastructure not yet 

common: For instance, today, irrigation is rare in the North German Plain. It can be found 

where vegetable production is common, e.g. Uelzen. Recent history shows that irrigation was 

of higher importance in the eastern parts of the North German Plain before the collapse of 
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the German Democratic Republic. It was widely applied because it was politically wanted to 

secure high yields (Wechsung 2008; Spellmann et al. 2017). 

Certainly, the agricultural sector is innovative and industrious in finding methods to increase 

efficiency and to secure high yields. Doubtless, mitigation strategies and adaptions will be 

found that secure, reliable yields on high levels in the long-term, if the right focus is set. 

Problems of environmental variability and extreme weather have – certainly in parts due to 

their complexity - not been in the line of light, yet. A focus is needed to avoid consequences 

that already occur. Ill-focused breeding might have led to a significant depletion of genetic 

traits for resilience to environmental variability and extremes throughout Europe. For 

instance, Kahiluoto et al. (2019) identified only a few genetic hotspots of wheat remain away 

from main agricultural production areas. 

A mixture of various strategies should be expected and applied - one individual all resolving 

technique is not realistic (Beveridge et al. 2018). However, a framework for future 

development can be useful. It is somewhat likely that production systems will be adapted by 

many slight changes based on various individual mitigation strategies applied using local 

knowledge for local adaption pathways (Beveridge et al. 2018). 

If there are mitigation strategies that arise from the results of this thesis, they are 

diversification of crops and flexible response to adverse environmental conditions. 

Diversification compartmentalises specific risks and is a well-established and a widely applied 

risk mitigation strategy; from agriculture to stock markets. For instance, this diversity could 

include especially resilient cultivars or especially resilient epigenetic traits (Gallusci et al. 

2017). Given the challenges identified in the diversity of critical development stages (Chapter 

1), abundances and diversity of adverse environmental conditions (Chapter 2), and the 
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variations in crop-specific annual correlation patterns (Chapter 3), makes relying on one or 

few crops and production schemes a gamble that can jeopardise the total agricultural pursuit. 

Consequently, a diverse mix of crops and production systems might be the first simple step to 

reduce this risk. Trade-offs have to be expected, e.g. a decrease of mean yields, a production 

of larger portion crops that are potentially less economically valuable, a more complex logistic 

and more required resources (Vining 1990; Trnka et al. 2011). 

Further, patterns can identify knowledge and techniques to improve local production systems. 

This includes adapting production schemes, e.g. modifying crop calendars and using cultivars 

with a phenological development that omits adverse environmental conditions under the 

expected climate regime. This valuable insight is potentially driveable by a pattern analysis 

(Chapter 3). For instance, summer and winter cropping systems of barley have shown 

significantly different responses to drought. An overlay of both barley production systems 

levels the risks. The periods with increased drought risk for one production system are 

beneficial conditions for the other and vice versa in terms of drought (Chapter 3). Production 

schemes identified by the annual correlation pattern can be applied elsewhere. This includes 

crop rotations and crop calendars elaborated for other regions where the expected 

environmental conditions can already be found. A transfer like this requires an inventory of 

sufficient patterns for various environmental conditions, e.g. precipitation distributions, 

heatwaves and for different production schemes. 

Climate change models 

General circulation models (GCM) are frequently used to analyse future developments 

through climate change (Chapter 2). They are mathematical models that simulate the earth’s 

atmosphere and oceans. Different frameworks and scenarios provide boundary conditions for 
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modelling the future development, e.g. the RCP of the IPCC. While climate projection models, 

as well as the framework behind them, are steadily improved, they are far from being 

impeccable. 

Combined with crop simulation models in applications for climate change impacts, they 

certainly add an additional layer of uncertainty to the calculation. Many uncertainties and 

general processes are quite universal in modelling. Critical examination and discussion are 

needed when working with models. This holds true for climate models as well as crop 

simulation models and especially for their combination.  

Although Tao et al. 2018 found that uncertainty by GCMs is smaller than that of adjacent crop 

models, it is necessary to consider this uncertainty. Corbeels et al., (2018) investigated the 

feasibility of crop simulation models to provide adaption strategies using 17 individual GCM 

runs with one crop simulation model (APSIM), finding high seasonal precipitation variability 

that led to arbitrary yield in the crop simulation model. Similar observations led in this thesis 

to neglect yield and its variability, and focus on the abundance of environmental events during 

specific development stages in Chapter 2. 

The reliability of GCMs depends on the considered climate elements. While temperature, 

especially mean temperature, is generally well understood and confidently projected in 

scenarios, hydrological components are not. Ljungqvist et al. (2016) analysed long-term 

hydrological data and compared it to climate model results. They found that they performed 

poorly in replicating hydrological patterns. Another challenge is regionalisation. Global 

circulation models work on grids of 50 km x 50 km to 200 km x 200 km and have to be 

regionalised to finer grids or extrapolated for a specific site. Regionalisation is difficult; it has 

to consider site-related properties, e.g. soil, types vegetation, altitude, or topography to 
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calculate local manifestation of climate. This regionalisation issue adds to those for crop 

models in this thesis, where individual sites have to represent entire landscapes (Chapter 2 

and Chapter 3).  

Ranges for the model are needed, in which the model can provide validated results for a 

specific question. A way is the use of model ensembles in climate as well as in crop modelling. 

Using ensembles developed into a standard in handling climate change scenarios and in crop 

modelling (Rosenzweig et al. 2013; Makowski et al. 2015; Ljungqvist et al. 2016; Corbeels et 

al. 2018). Research in the climate modelling community showed that the performance of 

model ensembles was better not only because of error compensation but also because of 

greater consistency and robustness of results (Hagedorn et al. 2005; Knutti and Sedlacek 

2013). Various runs of distinct models capture a wide range of outcomes. For example, the 

study presented in Chapter  uses an ensemble of three climate projections all being set in the 

RCP 8.5 climate pathway continuum in the IPCC framework provided by three independent 

institutions. The ranges given through the three distinct GCMs show a consistent image for 

crop production in the North German Plain (Chapter 2). The issues around modelling do not 

miraculously disappear by using ensembles; in the best case, they get a bit more assessable 

(Challinor et al. 2018). 
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Analysing risk through adverse environmental conditions with crop models  

The nature of models is to simplify and generalise complex processes. Therefore, all models 

rely on three conceptual paradigms: 

(1) They are a simplified representation of a natural or artificial original. 

(2) Models are reduced in the number of attributes with a focus on those that seem relevant. 

In consequence, they are limited and provide only a selection of simplified processes to 

describe the complex reality. 

(3) Models are set in a particular context: designed for a specific use, e.g. decision support, to 

resolve a specific problem, e.g. nutrient flux simulation, and valid only within certain limits, 

e.g. specific periods or parameter sets. 

It is advisable when working with crop simulation models to remind one that they only shed 

light on some aspects in a narrow range, defined by calibration and validation. Consequently, 

the application of crop simulation models in risk assessment studies needs a thorough 

consideration of the model’s sensitivity to resolve the research question. 

In regards to the abundance of development stages and environmental conditions, crop 

simulation models seem limited. Depending on their purpose, CSMs can differ significantly in 

their treatment of key processes and in predicting response to environmental conditions 

(Challinor et al. 2018). For instance, they rarely distinguish more than two to five phenological 

development stages and rarely provide stage-specific stress responses (Chapter 1, McMaster 

et al. 2008; Rötter et al. 2011; Lizaso et al. 2017). Certainly, model responses are complex, but 

the complexity, diversity and abundance of development stages considered being critical and 

environmental conditions considered being adverse exceed the implementation of phenology 
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and phenology-specific stress response by far (Chapter 1). Especially, the stage-specific stress 

response is evaluated not as satisfyingly (Wallach et al. 2018). This per se does not mean that 

crop simulation models are not capable of assessing stress-specific responses. But they 

certainly require an analysis of their sensitivity. This is supported by the model validation 

performed Chapter 3 that identifies: yield response to drought conditions of maize and wheat 

is simulated inadequately by the example model DSSAT. The model as parametrised for mean 

yields is not able to reproduce significant elements found in the observed drought patterns. 

A consequence that can result out of these issues and limitations is a bias when using crop 

simulation models. Challinor et al. (2018) report that only a few (4) of the many adaption 

strategies discussed are examined regularly with models and Rötter et al., (2018a) found that 

maize and wheat while certainly important production crops are overrepresented in scientific 

crop modelling studies. These examples show that evaluation is skewed towards a few 

strategies that can be simulated with crop simulation models, rather than covering what is 

relevant in the broader socio-economic, or environmental contexts (Beveridge et al. 2018; 

Challinor et al. 2018; Rötter et al. 2018a). This problem also applies to this thesis; e.g. it is 

modelling only maize and wheat. 

Given these issues, crop simulation models need improvement and new ways of application 

to provide an adequate risk assessment that includes adverse environmental conditions and 

critical development stages for a region under climate change like the North German Plain. An 

advantage of models is that they can be improved. This requires as a first step finding 

insufficiencies in simulating yield response. 
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Possible improvement 

Rötter et al. (2018b) aggregated recent challenges and developments in crop modelling. These 

challenges include modelling of adaptations and mitigations, modelling the response to stress, 

e.g. heat stress, closing gaps in understanding by linking experimentation and modelling, 

integrating crop and economic modelling for more practical relevance, and assessing 

agricultural impacts using ensemble modelling. In terms of adverse environmental conditions 

and critical development stages, mid-to long term developments need to include adequate 

modelling of multiple stresses and yield quality. For some crops, yield quality response to 

specific stressors can be valuable information. Stress impacts yield quality, e.g. baking 

capability of flour which shifts under heat stress especially during ripening stage (Castro et al. 

2007; Ober and Rajabi 2010), or the sugar content of sugar beet (Barnabás et al. 2008; Ober 

and Rajabi 2010).  

One path to improve crop simulation models is a general overhaul of crop simulation models 

to improve on risk assessment by providing amongst others more adequate stage-specific 

responses (Challinor et al. 2007; Rötter et al. 2011; Ferrise 2017; Lizaso et al. 2017). Many 

approaches are possible for the implementation of phenology and phenology specific 

processes. McMaster et al. (2008) proposed a theoretical framework for a new variable model 

structure implementing phenological development and development specific processes. The 

crop simulation model IXIM is an example of a development in this direction for maize. 

Integration of phenological development and stage-specific processes results in significant 

improvements of predictions. Therefore, the model includes new thermal time calculation, a 

heat stress index, the impact of pollen-sterilizing temperatures, and the explicit simulation of 

male and female flowering as affected by the daily heat conditions (Lizaso et al. 2018). 
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Given the general complexity, implementation of all possible growth and development 

processes in a single crop simulation model is improbable. More frequent and more likely in 

crop modelling are improvements of single specific stress response for a specific problem 

(Challinor et al. 2005; Hlaváčová et al. 2018). Many of these arbitrary improvements for crop 

simulation models can be found, e.g. more refined temperature response functions (Wang et 

al. 2017), temperature response during critical development stages (Challinor et al. 2005), or 

a complete paradigm shift by using other environmental factors as drivers for the simulation, 

e.g. canopy temperature (Siebert and Ewert 2012). 

The general overhaul based on systematic research is preferable; arbitrary improvements are 

more probable due to, e.g. limited data availability. All these approaches require processes to 

be identified. In this context, approaches identifying environmental patterns for production 

systems as in Chapter 3 can provide a focus and starting point for well-targeted improvement, 

including more systematic approaches in the long-term (Rötter et al. 2011). 

Furthermore, other thoughtfully applied strategies for crop simulation models can 

compensate for the lack of capabilities. For instance, Chapter 2 omits disadvantages in stress 

response by focusing on the prediction of phenological development. It focused on the 

evaluation of shifts in the abundance of adverse environmental conditions neglecting yield 

impact and was able to provide valuable insight into a part of the problem. 

Certainly, this thesis lacks in providing proof for all this in the form of an actual implementation 

of an improved response process to crop simulation models. It deliberately omits yield 

response in Chapter 2 and the identification of mismatches in drought patterns between 

observation and model might be a starting point but is nowhere near an improvement of any 

type (Chapter 3). It leaves the implementation of new specific processes to future studies. 
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Some aspects are universal in crop modelling, e.g. simplification, and generalisation and have 

to be considered in some way for all models alike. Therefore, it is a reasonable assumption 

that working with one model as an example to resolve aspects around adverse environmental 

conditions can provide some general insight into some crop simulation models handling the 

topic, well-knowing that each model will provide its very own results. Chapter 1 showed 

various approaches could be found in common models to simulate the impact of adverse 

environmental conditions on crop development. Only a crop model comparison study can 

provide clarity about how DSSAT performs in relation to other models on this topic. Certainly, 

these comparison studies are more resource-intensive than applying a single mode, but they 

are an excellent method to assess different models’ capabilities. They are typically finding 

many similarities in the response of various models suggesting that there is a decent 

transferability between them (Rosenzweig et al. 2013; Ruane et al. 2016; Rötter et al. 2018a). 

Additionally, ensemble studies show the potential to set findings on a broader foundation 

providing ranges for uncertainties. This is based on the realisation that means of many models 

predicts more accurate than one (Martre et al. 2015; Challinor et al. 2018; Wallach et al. 2018). 

However, while there are some ensemble studies on the impact of adverse environmental 

conditions (Trnka et al. 2014), such studies must be seen as critical. The problem evolves not 

around means ‘the showpiece’ of crop simulation models, but the complex specific response 

to adverse environmental conditions. Specific crop growth processes and stress reactions 

have a much higher weight when simulating extremes in crop production (Martre et al. 2015). 
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Conclusion and outlook 

This thesis provides some insight into the challenges that the impact of adverse environmental 

conditions on critical development stages brings to the agricultural production of the North 

German Plain. Besides giving some general overview, it analyses the complex issue using two 

very different approaches: One approach is a top-down approach that examines the 

abundance of adverse environmental conditions during specific development stages showing 

implications for the future. The other is a bottom-up approach that identifies patterns of 

drought impact for agricultural production systems describing the recent state. It is evident 

that adverse environmental conditions, especially during critical production stages, can 

impact the agricultural pursuit negatively and jeopardise the usually reliable crop production 

on high levels found in the North German Plain. It is quite conciliatory that at least the hurdles 

for the terminal impact of adverse environmental conditions usually are quite high. However, 

the significant impact on the quality and quantity of yield takes place much earlier under less 

unfavourable conditions. 

Indeed, these impacts are of most concern, in a world where challenging boundary conditions 

exert high pressure on agricultural production, e.g. by the necessity to guarantee stable 

nutrition for an ever-growing world population or by environmental shifts through climate 

change. The well-established production systems of the North German Plain are no exception 

to this. 
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Therefore, it is necessary to develop feasible mitigation strategies for the problem. Many 

adaptations and technologies are imaginable, e.g. breeding new resilient cultivars, 

nanoparticle soil additives improving soil properties, or autonomous robots caring for 

individual crops. 

The first step of finding a strategy is to assess and to quantify the problem. This requires 

systematic research on the complex issue of adverse environmental conditions and critical 

development stages. The approaches used in this thesis can provide some focus that will help 

to navigate the complex problem of adverse environmental conditions and critical 

development stages. They can help to inspire the development of new methods like improved 

crop simulation models that can assess this specific problem adequately. 

If the right focus and novel methods are provided, the innovative and industrious agricultural 

sector has undoubtedly the resources to develop the right mitigation strategies. These, in turn, 

will help secure reliable agricultural production in the North German Plain and world-wide. 
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Supplementary Material 

Background 

 

Supplementary material 1 mean temperature development in the model regions (NaLaMa-nT). 
Note: 1990-2010 values from the local weather stations of the Deutscher Wetterdienst (DWD, 
homogenised according to Caussinus and Mestre, (2004), while temperature data after 2010 is 
from three different climate scenarios, i.e. the max, med, and min temperature path of the 
climate models.  
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Chapter 1 

Disclosure of methods 

Methodology 

Identification of critical crop growth stages 

To identify critical crop growth stages, we conducted a keyword search using scientific 

databases (Web of Knowledge, Science Direct, Google Scholar). The analysis was restricted to 

crop species important for Central Europe, i.e. wheat (Triticum aestivum ssp aestivum L.), 

maize (Zea mays ssp mays L.), rapeseed (Brassica napus ssp napus L.), potato (Solanum 

tuberosum ssp vulgaris L.), and sugar beet (Beta vulgaris ssp vulgaris L.). Review and research 

articles were considered for evaluation. The search was restricted to articles investigating 

yield response to adverse environmental conditions during specific phenological stages. In this 

respect, the definition for adverse environmental conditions provided by Trnka et al. (2014) 

was applied. In detail, the authors considered winter frost without snow cover, late frost, 

waterlogging from sowing to anthesis, severely dry growing season (sowing–maturity), severe 

drought events between sowing and anthesis or between anthesis and maturity, heat stress 

at anthesis or during grain filling. Environmental conditions with a small spatial or temporal 

resolution, e.g. storms or hail events, were excluded from our study; although they are of 

importance at a local scale, they have a lower impact at a regional scale (Olesen et al., 2011). 

Likewise, articles focusing on the effect of salinity were not considered since this is not a key 

factor limiting crop production in the focus area. Further, articles analysing the impact of biotic 

factors such as competition, pests or diseases were also excluded. 
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Phenological growth stages were considered as critical growth stages if they were regarded to 

be especially susceptible to adverse environmental conditions or to be more susceptible than 

other stages investigated in the same article. Multiple entries per article are possible if, for 

example, an article addressed several crops or compared the impact of environmental stress 

in different development stages. For analysis, principal growth stages were assigned according 

to Meier (2001). Articles were discarded from the evaluation if growth stages could not be 

identified appropriately. 

Implementation of critical stages in crop models 

The second part of the current study focuses on the implementation of critical crop growth 

stages in dynamic crop growth models. We evaluated the APSIM, APES, CROPSYST, DAISY, 

DSSAT, FASSET, HERMES, MONICA, STICS and WOFOST models (Table 3), These are all well 

established and validated (Rosenzweig et al. 2013) but differ with respect to origin and 

philosophy. The evaluation was mainly restricted to wheat growth modules, which are 

provided by all the above-mentioned models. Two main aspects were addressed: (i) the types 

of phenological growth stage scales applied in the different models were identified, i.e. the 

algorithms and key drivers of phenological development, and (ii) the implementation of 

adverse environmental conditions was analysed. That is, specific response patterns to 

environmental stress impacts, such as drought or heat, in specific phenological growth stages. 

Particular attention was paid to crop growth stages, which had been identified as critical 

phases by the literature analysis. 
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Chapter 2 

Supplementary material 2 DSSAT model parameters controlling the phenological development 
of wheat and maize. 

Name Definition Value 

Maize   

P1 Degree days (base 8°C) from emergence to end of juvenile phase 220 

P2 Photoperiod sensitivity coefficient (0 -1) 0.3 

P5 Degree days (base 8°C) from silking to physiological maturity 730 

G2 Potential kernel number 670 

G5 Potential kernel growth rate (mg/(kernel d)) 8.5 

PHINT Thermal time between the appearance of leaf tips (8Cd) 38.9 

Wheat   

P1D Photoperiod sensitivity coefficient (% reduction/h near 

threshold) 50 

P1V  Vernalisation sensitivity coefficient (%/d of unfulfilled 

vernalisation) 100 

P5 Thermal time from the onset of linear fill to maturity (8Cd) 520 

G1 Kernel number per unit stem + spike weight at anthesis (#/g) 40 

G2 Potential kernel growth rate (mg/(kernel d)) 40 

G3 Tiller death coefficient. Standard stem + spike weight when 

elongation ceases (g) 2.1 

PHINT Thermal time between the appearance of leaf tips (8Cd) 95 
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Supplementary material 3 Generic medium silty clay properties chosen as soil for calibration 
(θs – saturated soil water content). 

depth clay  silt θs 

[cm] [ - ]  [ - ] [ - ] 

5 0.23  0.39 0.46 

15 0.23  0.39 0.46 

30 0.23  0.39 0.46 

45 0.25  0.41 0.46 

60 0.25  0.41 0.46 

90 0.31  0.45 0.46 

120 0.21  0.34 0.46 

150 0.26  0.37 0.46 

 

Supplementary material 4 Soil type used for validation and phenological modelling at DH, and 
UE model regions; derived from BUEK 1000n [26] (θs – saturated soil water content; θa available 
water content; ks- saturated permeability; CEC- cation exchange capacity). 

depth horizon clay silt θs θa ks CEC 

[cm]   [ ] [ ] [ ] [ ] [m/s] [cmol/kg]

30 Ap 0.22 0.49 0.59
36

0.38 10

40 Al 0.11 0.28 0.50 32 0.39 5

80 Bv 0.11 0.28 0.50 24 0.2 5

100 Bv 0.07 0.26 0.48 24 0.39 3

200 C 0.15 0.30 0.48 0.24 0.25 8
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Supplementary material 5 soil type used for validation and phenological modelling at FL, and 
OS model region; derived from BUEK 1000n [26] (θs – saturated soil water content; θa available 
water content; ks- saturated permeability; CEC- cation exchange capacity). 

depth horizon clay silt θs θa ks CEC 

[cm]   [ ] [ ] [ ] [ ] [m/s] [cmol/kg] 

30 Ap 0.12 0.26 0.48 
      24 

2.55 4 

40 Al 0.07 0.15 0.41       25 1.8 2 

50 Al 0.07 0.15 0.41 
24 

1.8 2 

60 Bt 0.11 0.23 0.43 
18 

1.32 2 

80 Bv 0.07 0.15 0.41 18 1.8 8 

200 C 0.15 0.28 0.43 18 0.26 7 
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Supplementary material 6 maize phenological trends identified for the baseline (BASE 1981- 2010) and the 3 projections (MAX, MED, MIN) of the 
projection period (2021-2050) for region DH. 

  
BASE MIN MED MAX 

BBCH  Estimates R² / df p-value 
 

Estimates R² / df p-value 
 

Estimates R² / df p-value 
 

Estimates R² / df p-value 
 

 

 
[doy] 

[doy/y] 

 

[] 

 

[] 
 

[doy] 

[doy/y] 

 

[] 

 

[] 
 

[doy] 

[doy/y] 

 

[] 

 

[] 
 

[doy] 

[doy/y] 

 

[] 

 

[] 
 

1 Intercept 124 ± 1 0.41 5.7E-39 *** 121 ± 3 0.45 2.7E-27 *** 119 ± 4 0.01 1.7E-23 *** 115 ± 4 0.00 3.9E-22 *** 

 
Slope -0.27 ± 0.06 28 1.4E-04 *** -0.74 ± 0.16 28 5.1E-05 *** -0.08 ± 0.21 28 7.0E-01   0.05 ± 0.23 28 8.4E-01   

11 Intercept 136 ± 2 0.39 1.9E-35 *** 131 ± 3 0.37 1.4E-28 *** 130 ± 4 0.01 3.7E-25 *** 128 ± 3 0.00 3.7E-25 *** 

 
Slope -0.38 ± 0.09 28 2.3E-04 *** -0.61 ± 0.15 28 3.8E-04 *** -0.08 ± 0.20 28 7.0E-01   -0.03 ± 0.20 28 8.6E-01   

31 Intercept 163 ± 2 0.07 1.9E-33 *** 160 ± 2 0.46 1.4E-33 *** 160 ± 3 0.03 1.1E-28 *** 157 ± 3 0.00 9.2E-29 *** 

 
Slope -0.18 ± 0.13 28 1.7E-01   -0.60 ± 0.12 28 3.5E-05 *** -0.17 ± 0.18 28 3.6E-01   -0.06 ± 0.18 28 7.4E-01   

61 Intercept 210 ± 2 0.20 1.6E-36 *** 207 ± 2 0.51 3.0E-35 *** 206 ± 3 0.07 1.5E-31 *** 201 ± 3 0.00 7.0E-32 *** 

 
Slope -0.33 ± 0.13 28 1.4E-02 * -0.75 ± 0.14 28 8.9E-06 *** -0.26 ± 0.19 28 1.7E-01   -0.07 ± 0.18 28 7.1E-01   

70 Intercept 223 ± 2 0.20 1.6E-36 *** 221 ± 3 0.53 2.8E-35 *** 218 ± 3 0.08 2.6E-32 *** 213 ± 3 0.00 7.3E-32 *** 

 
Slope -0.36 ± 0.13 28 1.3E-02 * -0.82 ± 0.15 28 5.9E-06 *** -0.28 ± 0.19 28 1.4E-01   -0.01 ± 0.19 28 9.5E-01   

99 Intercept 288 ± 6 0.17 3.4E-28 *** 280 ± 5 0.54 3.3E-31 *** 272 ± 5 0.17 1.6E-29 *** 263 ± 6 0.00 1.3E-26 *** 
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Supplementary material 7 maize phenological trends identified for the baseline (BASE 1981- 2010) and the 3 projections (MAX, MED, MIN) of the 
scenario period (2021-2050) for model region Uelzen (UE). 

    BASE MIN MED MAX 

BBCH   Estimates R²/df p-value   Estimates R²/df p-value   Estimates R²/df p-value   Estimates R²/df p-value   

  
  

[doy] 

[doy/y] 

 

[] 

 

[] 
 

[doy] 

[doy/y] 

 

[] 

 

[] 
 

[doy] 

[doy/y] 

 

[] 

 

[] 
 

[doy] 

[doy/y] 

 

[] 

 

[] 
 

1 Intercept 124 ± 1 0.20 1.7E-36 *** 124 ± 3 0.49 8.9E-28 *** 122 ± 4 0.03 3.7E-23 *** 119 ± 4 0.00 4.0E-24 *** 

 
Slope -0.20 ± 0.07 28 1.4E-02 * -0.79 ± 0.15 28 1.9E-05 *** -0.21 ± 0.22 28 3.6E-01   -0.04 ± 0.20 28 8.5E-01   

11 Intercept 136 ± 2 0.21 6.7E-35 *** 134 ± 3 0.34 3.3E-28 *** 135 ± 4 0.05 1.4E-24 *** 130 ± 3 0.00 1.1E-26 *** 

 
Slope -0.26 ± 0.09 28 1.1E-02 * -0.61 ± 0.16 28 7.3E-04 *** -0.26 ± 0.22 28 2.5E-01   -0.05 ± 0.18 28 7.8E-01   

31 Intercept 166 ± 2 0.07 4.4E-34 *** 163 ± 2 0.51 4.1E-34 *** 165 ± 4 0.08 1.9E-27 *** 161 ± 3 0.01 1.0E-29 *** 

 
Slope -0.17 ± 0.12 28 1.7E-01   -0.64 ± 0.12 28 1.1E-05 *** -0.34 ± 0.21 28 1.2E-01   -0.08 ± 0.17 28 6.3E-01   

61 Intercept 214 ± 2 0.14 5.4E-36 *** 210 ± 2 0.57 1.0E-36 *** 212 ± 4 0.09 1.7E-30 *** 207 ± 3 0.03 2.8E-32 *** 

 
Slope -0.29 ± 0.13 28 4.1E-02 * -0.75 ± 0.12 28 1.6E-06 *** -0.36 ± 0.21 28 9.9E-02 . -0.17 ± 0.18 28 3.6E-01   

70 Intercept 227 ± 3 0.15 2.5E-35 *** 223 ± 2 0.58 7.5E-37 *** 225 ± 4 0.11 3.6E-31 *** 219 ± 3 0.00 9.8E-32 *** 

 
Slope -0.33 ± 0.15 28 3.7E-02 * -0.81 ± 0.13 28 1.0E-06 *** -0.39 ± 0.21 28 7.3E-02 . -0.07 ± 0.20 28 7.2E-01   

99 Intercept 298 ± 7 0.12 9.1E-28 *** 288 ± 5 0.53 5.4E-30 *** 287 ± 6 0.20 6.5E-28 *** 278 ± 8 0.00 1.6E-24 *** 

  Slope -0.73 ± 0.37 28 5.7E-02 . -1.67 ± 0.30 28 5.1E-06 *** -0.92 ± 0.35 28 1.4E-02 * 0.00 ± 0.45 28 1.0E+00   
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Supplementary material 8 Maize phenological trends identified for the baseline (BASE 1981- 2010) and the 3 projections (MAX, MED, MIN) of the 
scenario period (2021-2050) for model region Fläming (FL). 

    BASE MIN MED MAX 

BBCH 
  

Estimates R²/df 

p-

value   Estimates R²/df p-value   Estimates R²/df p-value   Estimates R²/df p-value   

  
  

[doy] 

[doy/y] 

 

[] 

 

[] 
 

[doy] 

[doy/y] 

 

[] 

 

[] 
 

[doy] 

[doy/y] 

 

[] 

 

[] 
 

[doy] 

[doy/y] 

 

[] 

 

[] 
 

1 Intercept 126 ± 1 0.51 1.2E-35 *** 117 ± 2 0.52 4.7E-30 *** 116 ± 3 0.08 1.2E-24 *** 117 ± 4 0.03 3.1E-23 *** 

 Slope -0.44 ± 0.08 28 1.0E-05 *** -0.66 ± 0.12 28 6.1E-06 *** -0.29 ± 0.19 28 1.3E-01   -0.21 ± 0.21 28 3.3E-01   

11 Intercept 136 ± 2 0.30 4.7E-33 *** 127 ± 2 0.43 5.9E-30 *** 126 ± 3 0.04 4.3E-27 *** 130 ± 3 0.10 1.9E-26 *** 

 Slope -0.37 ± 0.11 28 1.9E-03 ** -0.61 ± 0.13 28 7.8E-05 *** -0.18 ± 0.16 28 2.8E-01   -0.31 ± 0.18 28 9.2E-02 . 

31 Intercept 161 ± 3 0.06 6.9E-32 *** 154 ± 2 0.41 4.7E-33 *** 155 ± 3 0.08 1.3E-29 *** 155 ± 3 0.04 6.0E-29 *** 

 
Slope -0.18 ± 0.14 28 2.1E-01   -0.55 ± 0.12 28 1.3E-04 *** -0.26 ± 0.16 28 1.3E-01   -0.19 ± 0.17 28 3.0E-01   

61 Intercept 206 ± 3 0.15 7.0E-35 *** 197 ± 2 0.51 7.3E-37 *** 197 ± 3 0.07 5.1E-32 *** 197 ± 3 0.02 1.6E-30 *** 

 
Slope -0.32 ± 0.14 28 3.2E-02 * -0.62 ± 0.12 28 1.1E-05 *** -0.24 ± 0.17 28 1.7E-01   -0.14 ± 0.19 28 4.8E-01   

70 Intercept 219 ± 3 0.17 6.2E-35 *** 209 ± 2 0.53 5.6E-37 *** 210 ± 3 0.09 8.6E-33 *** 208 ± 4 0.01 9.2E-31 *** 

 
Slope -0.35 ± 0.15 28 2.6E-02 * -0.68 ± 0.12 28 4.8E-06 *** -0.28 ± 0.17 28 1.1E-01   -0.11 ± 0.20 28 6.0E-01   

99 Intercept 276 ± 5 0.19 2.4E-29 *** 253 ± 3 0.59 5.8E-37 *** 258 ± 5 0.17 5.3E-30 *** 253 ± 5 0.00 2.9E-28 *** 

  Slope -0.77 ± 0.30 28 1.6E-02 * -0.94 ± 0.15 28 6.5E-07 *** -0.64 ± 0.27 28 2.3E-02 * -0.05 ± 0.30 28 8.7E-01   
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Supplementary material 9 Maize phenological trends identified for the baseline (BASE 1981- 2010) and the 3 projections (MAX, MED, MIN) of the 
scenario period (2021-2050) for model region Oder-Spree (OS). 

    BASE MIN MED MAX 

BBCH   Estimates R²/df p-value   Estimates R² / df p-value   Estimates R² / df p-value   Estimates R² / df P-value   

  
  

[doy] 

[doy/y] 

 

[] 

 

[] 
 

[doy] 

[doy/y] 

 

[] 

 

[] 
 

[doy] 

[doy/y] 

 

[] 

 

[] 
 

[doy] 

[doy/y] 

 

[] 

 

[] 
 

1 Intercept 124 ± 2 0,11 1.1E-31 *** 121 ± 2 0.62 2.4E-30 *** 121 ± 4 0.12 2.7E-23 *** 115 ± 4 0.01 2.0E-23 *** 

 
Slope -0.21 ± 0.11 28 6.9E-02 . -0.81 ± 0.12 28 2.7E-07 *** -0.43 ± 0.22 28 5.8E-02 . -0.11 ± 0.21 28 6.1E-01   

11 Intercept 136 ± 2 0.26 2.3E-33 *** 130 ± 2 0.53 7.6E-31 *** 133 ± 4 0.11 3.6E-24 *** 127 ± 3 0.03 7.5E-28 *** 

 
Slope -0.33 ± 0.11 28 4.2E-03 ** -0.70 ± 0.13 28 5.3E-06 *** -0.41 ± 0.22 28 7.6E-02 . -0.15 ± 0.16 28 3.6E-01   

31 Intercept 162 ± 2 0.04 1.7E-32 *** 158 ± 2 0.56 1.4E-34 *** 160 ± 4 0.14 6.3E-27 *** 156 ± 3 0.05 6.6E-31 *** 

 
Slope -0.16 ± 0.14 28 2.6E-01   -0.66 ± 0.11 28 2.0E-06 *** -0.45 ± 0.21 28 4.4E-02 * -0.18 ± 0.15 28 2.5E-01   

61 Intercept 206 ± 3 0.07 1.2E-33 *** 199 ± 2 0.61 4.5E-38 *** 201 ± 4 0.12 4.0E-30 *** 198 ± 3 0.06 9.2E-34 *** 

 
Slope -0.23 ± 0.16 28 1.5E-01   -0.70 ± 0.11 28 3.1E-07 *** -0.39 ± 0.21 28 6.6E-02 . -0.20 ± 0.15 28 1.9E-01   

70 Intercept 219 ± 3 0.11 1.2E-34 *** 211 ± 2 0.59 1.4E-37 *** 213 ± 4 0.14 4.2E-31 *** 210 ± 3 0.06 4.4E-34 *** 

 
Slope -0.29 ± 0.15 28 6.7E-02 . -0.74 ± 0.12 28 6.1E-07 *** -0.43 ± 0.20 28 4.0E-02 * -0.20 ± 0.15 28 2.1E-01   

99 Intercept 277 ± 7 0.09 9.7E-27 *** 257 ± 2 0.73 5.7E-39 *** 263 ± 5 0.22 2.5E-29 *** 254 ± 5 0.01 4.4E-30 *** 

 
Slope -0.64 ± 0.37 28 1.0E-01   -1.09 ± 0.13 28 2.3E-09 *** -0.81 ± 0.29 28 8.5E-03 ** -0.13 ± 0.26 28 6.2E-01   
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Supplementary material 10 Wheat phenological trends identified for the baseline (BASE 1981- 2010) and the 3 projections (MAX, MED, MIN) of the 
projection period (2021-2050) for model DH. 

  BASE MIN MED MAX 

BBCH  Estimate R² / df p-value  Estimate R² / df p-value  Estimate R² / df p-value  Estimate R² / df p-value  

 
 

[doy] 

[doy/y] 

 

[] 

 

[]  

[doy] 

[doy/y] 

 

[] 

 

[]  

[doy] 

[doy/y] 

 

[] 

 

[]  

[doy] 

[doy/y] 

 

[] 

 

[]  

31 Intercept 122 ± 40 0.21 4.7E-03 ** 120 ± 26 0.38 8.1E-05 *** 118 ± 2 0.05 2.6E-30 *** 117 ± 2 0.01 3.7E-29 *** 

 Slope -0.90 ± 0.33 27 1.2E-02 * -0.92 ± 0.23 27 3.8E-04 *** -0.14 ± 0.11 27 2.4E-01   -0.08 ± 0.13 27 5.3E-01   

51 Intercept 86 ± 40 0.10 4.1E-02 * 161 ± 31 0.45 2.1E-05 *** 152 ± 2 0.05 2.8E-31 *** 151 ± 2 0.01 4.2E-31 *** 

 Slope -0.47 ± 0.26 27 8.8E-02 . -1.00 ± 0.21 27 7.4E-05 *** -0.17 ± 0.14 27 2.2E-01   -0.06 ± 0.14 27 6.5E-01   

61 Intercept 100 ± 39 0.15 1.6E-02 * 187 ± 36 0.45 2.1E-05 *** 170 ± 2 0.09 1.0E-32 *** 167 ± 2 0.01 3.8E-32 *** 

 Slope -0.50 ± 0.23 27 3.7E-02 * -1.05 ± 0.22 27 6.3E-05 *** -0.22 ± 0.13 27 1.1E-01   -0.07 ± 0.14 27 6.3E-01   

74 Intercept 118 ± 43 0.18 1.0E-02 * 203 ± 35 0.52 3.0E-06 *** 191 ± 2 0.08 1.9E-33 *** 189 ± 2 0.01 4.0E-33 *** 

 Slope -0.54 ± 0.23 27 2.3E-02 * -1.02 ± 0.19 27 9.5E-06 *** -0.21 ± 0.14 27 1.5E-01   -0.07 ± 0.14 27 6.5E-01   

99 Intercept 222 ± 2 0.22 3.0E-35 *** 203 ± 33 0.54 1.8E-06 *** 217 ± 3 0.08 1.5E-34 *** 214 ± 3 0.00 1.5E-33 *** 

 Slope -0.39 ± 0.14 27 1.0E-02 * -0.88 ± 0.16 27 5.9E-06 *** -0.23 ± 0.15 27 1.3E-01   0.03 ± 0.16 27 8.3E-01   
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Supplementary material 11 Wheat phenological trends identified for the baseline (BASE 1981- 2010) and the 3 projections (MAX, MED, MIN) of the 
scenario period (2021-2050) for model region Uelzen (UE). 

    BASE MAX MED Min 

BBCH  Estimate R²/df p-value   Estimate R²/df p-value   Estimate R² / df p-value   Estimate R² / df P-value   

 

 

[doy] 

[doy/y] 

 

[] 

 

[]   

[doy] 

[doy/y] 

 

[] 

 

[] 
  

[doy] 

[doy/y] 

 

[] 

 

[]   

[doy] 

[doy/y] 

 

[] 

 

[]   

31 Intercept 125 ± 2 0.26 8.8E-34 *** 124 ± 27 0.37 1.1E-04 *** 120 ± 2 0.03 3.6E-30 *** 120 ± 2 0.03 1.8E-29 *** 

 
Slope -0.28 ± 0.09 27 4.8E-03 ** -0.95 ± 0.24 27 4.7E-04 *** -0.11 ± 0.12 27 3.6E-01   -0.12 ± 0.13 27 3.4E-01   

51 Intercept 160 ± 2 0.19 2.5E-34 *** 162 ± 31 0.46 1.5E-05 *** 155 ± 2 0.05 1.2E-30 *** 154 ± 2 0.01 1.1E-30 *** 

 
Slope -0.27 ± 0.11 27 1.9E-02 * -1.00 ± 0.21 27 5.4E-05 *** -0.17 ± 0.15 27 2.4E-01   -0.09 ± 0.14 27 5.3E-01   

61 Intercept 179 ± 2 0.22 1.2E-34 *** 182 ± 34 0.48 1.1E-05 *** 173 ± 2 0.07 5.9E-32 *** 172 ± 2 0.03 2.8E-32 *** 

 
Slope -0.33 ± 0.12 27 1.0E-02 * -1.01 ± 0.20 27 3.4E-05 *** -0.21 ± 0.14 27 1.6E-01   -0.13 ± 0.14 27 3.8E-01   

74 Intercept 195 ± 2 0.25 3.3E-36 *** 205 ± 34 0.53 2.3E-06 *** 194 ± 3 0.05 3.4E-33 *** 193 ± 3 0.02 9.8E-33 *** 

 
Slope -0.34 ± 0.11 27 5.3E-03 ** -1.05 ± 0.19 27 7.2E-06 *** -0.18 ± 0.15 27 2.2E-01   -0.10 ± 0.15 27 5.0E-01   

99 Intercept 233 ± 2 0.30 2.7E-37 *** 211 ± 34 0.55 1.5E-06 *** 221 ± 3 0.06 1.8E-34 *** 219 ± 3 0.00 1.0E-33 *** 

  Slope -0.42 ± 0.12 27 2.1E-03 ** -0.91 ± 0.16 27 4.6E-06 *** -0.20 ± 0.15 27 2.0E-01   -0.02 ± 0.16 27 9.0E-01   
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Supplementary material 12 Wheat phenological trends identified for the baseline (BASE 1981- 2010) and the 3 projections (MAX, MED, MIN) of the 
scenario period (2021-2050) for model region Fläming (FL). 

    BASE MAX MED Min 

BBCH 
 

Estimate 
R² / 
df p-value   Estimate R² / df p-value   Estimate R² / df p-value   Estimate R² / df 

P-
value   

 

 [doy] 
[doy/y] 

 
[] 

 
[]  

[doy] 
[doy/y] 

 
[] 

 
[] 

 [doy] 
[doy/y] 

 
[] 

 
[]  

[doy] 
[doy/y] 

 
[] 

 
[]  

31 Intercept 129 ± 2 0.28 4.8E-34 *** 123 ± 2 0.42 1.1E-32 *** 124 ± 2 0.07 8.3E-31 *** 123 ± 2 0.02 1.8E-30 *** 

 Slope -0.29 ± 0.09 27 3.1E-03 ** -0.43 ± 0.10 27 1.6E-04 *** -0.16 ± 0.11 27 1.7E-01   -0.09 ± 0.12 27 4.4E-01   

51 Intercept 156 ± 2 0.10 2.2E-32 *** 150 ± 2 0.47 3.1E-35 *** 151 ± 2 0.07 1.5E-31 *** 150 ± 2 0.02 2.0E-31 *** 

 Slope -0.22 ± 0.13 27 8.8E-02 . -0.47 ± 0.10 27 3.6E-05 *** -0.19 ± 0.13 27 1.6E-01   -0.10 ± 0.13 27 4.6E-01   

61 Intercept 174 ± 2 0.15 1.0E-32 *** 167 ± 2 0.49 2.4E-36 *** 168 ± 2 0.09 3.1E-32 *** 166 ± 2 0.01 1.0E-32 *** 

 Slope -0.30 ± 0.14 27 3.7E-02 * -0.49 ± 0.10 27 2.4E-05 *** -0.22 ± 0.14 27 1.2E-01   -0.08 ± 0.13 27 5.6E-01   

74 Intercept 195 ± 2 0.18 3.6E-34 *** 187 ± 1 0.60 2.8E-39 *** 188 ± 2 0.08 3.1E-33 *** 187 ± 2 0.02 1.3E-33 *** 

 Slope -0.33 ± 0.14 27 2.3E-02 * -0.54 ± 0.08 27 6.9E-07 *** -0.22 ± 0.14 27 1.4E-01   -0.11 ± 0.14 27 4.3E-01   

99 Intercept 222 ± 2 0.22 3.0E-35 *** 213 ± 2 0.61 1.1E-39 *** 214 ± 2 0.11 1.3E-34 *** 211 ± 2 0.00 1.3E-34 *** 

  Slope -0.39 ± 0.14 27 1.0E-02 * -0.60 ± 0.09 27 5.7E-07 *** -0.26 ± 0.14 27 8.2E-02 . -0.01 ± 0.14 27 9.6E-01   
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Supplementary material 13 Wheat phenological trends identified for the baseline (BASE 1981- 2010) and the 3 projections (MAX, MED, MIN) of the 
scenario period (2021-2050) for model region Oder-Spree (OS). 

    BASE MAX MED Min 

BBCH   Estimate R²/n p-value   Estimate R² / n p-value   Estimate R² / n p-value   Estimate R²/n p-value   

  
  [doy] 

[doy/y] 
 

[] 
 

[]  

[doy] 
[doy/y] 

 
[] 

 
[]  

[doy] 
[doy/y] 

 
[] 

 
[]   

[doy] 
[doy/y] 

 
[] 

 
[]   

31 Intercept 123 ± 1 0.21 6.0E-34 *** 136 ± 23 0.50 3.2E-06 *** 123 ± 2 0.07 4.6E-31 *** 118 ± 2 0.01 1.1E-29 *** 

 Slope -0.24 ± 0.09 27 1.1E-02 * -1.08 ± 0.21 27 1.8E-05 *** -0.16 ± 0.11 27 1.7E-01   -0.05 ± 0.12 27 6.7E-01   

51 Intercept 156 ± 2 0.09 8.3E-33 *** 174 ± 28 0.54 1.5E-06 *** 152 ± 2 0.09 2.3E-31 *** 150 ± 2 0.03 7.3E-32 *** 

 Slope -0.20 ± 0.12 27 1.1E-01   -1.10 ± 0.20 27 6.1E-06 *** -0.22 ± 0.13 27 1.1E-01   -0.11 ± 0.13 27 4.1E-01   

61 Intercept 174 ± 2 0.18 7.1E-34 *** 189 ± 31 0.53 2.1E-06 *** 168 ± 2 0.09 4.6E-32 *** 166 ± 2 0.01 2.9E-33 *** 

 Slope -0.31 ± 0.12 27 2.0E-02 * -1.09 ± 0.20 27 7.3E-06 *** -0.23 ± 0.14 27 1.2E-01   -0.08 ± 0.12 27 5.5E-01   

74 Intercept 195 ± 2 0.22 6.0E-35 *** 231 ± 30 0.66 2.5E-08 *** 188 ± 2 0.08 3.5E-33 *** 187 ± 2 0.03 1.0E-33 *** 

 Slope -0.35 ± 0.13 27 1.1E-02 * -1.21 ± 0.17 27 8.6E-08 *** -0.22 ± 0.14 27 1.3E-01   -0.12 ± 0.14 27 3.6E-01   

99 Intercept 223 ± 2 0.26 1.1E-35 *** 243 ± 31 0.67 2.2E-08 *** 214 ± 2 0.10 7.0E-35 *** 212 ± 2 0.00 1.2E-34 *** 

  Slope -0.42 ± 0.14 27 4.3E-03 ** -1.11 ± 0.15 27 7.0E-08 *** -0.24 ± 0.14 27 9.4E-02 . -0.04 ± 0.14 27 7.7E-01   
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Chapter 3 

Disclosure of methods 

Material and Methods 

Method 

Annual correlation patterns derived between yield time series and climate time series provide 

a classification for environmental impact on agricultural production systems. We follow 

closely the approach presented by Potopová et al. (2015) to establish such annual correlation 

patterns between standardised yield residual series (SYRS) to describe yield variability, and 

the standardised precipitation evaporation index to describe drought (SPEI). Latter is a 

measure for water balance anomalies in monthly to annual resolution. The method allows for 

comparison between various crops, production systems, years and sites. The high grade of 

standardisation allows high comparability. This standardisation includes de-trending of yield 

and environmental time series to omit the impact of long-term shifts and developments 

(Potopová et al. 2015). 

Region 

Lower Saxony has a highly productive agriculturally dominated landscape, providing a 

significant fraction of German crop production. A temperate oceanic climate dominates the 

region (Cfb, classification Köppen (Metzger et al. 2005; Peel et al. 2007)). We selected Diepholz 

(centrally located) as a representative site for this region (Metzger et al. 2005). It is 

characterised by mostly fertile soils, mainly cultivated by maize, winter barley, summer barley, 

rye, potato, sugar beet, oats, and rapeseed (Richter et al. 2007). Except for regional specialised 

production systems, e.g. vegetables and some local soil properties, drought was generally not 
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regarded as an imminent risk for the local agricultural production systems until, recently. 

Therefore, local agricultural production relies heavily on rain-fed systems. 

Data preparation 

Standardised yield residual series (SYRS) are prepared from observed yield data. 

Supplementary material 15 to Supplementary material 23 give a general overview of the 

available yield time series. The focus of data preparation was on de-trending the time series. 

In regards to this goal, standard functions can quantify yield trends for specific crops (Table 

14). The adjusted coefficient of determination and Akaike information criterion (AIC) selected 

the crop-specific de-trending functions. The resulting residuals acquired from the de-trending 

process are standardised (Interpretation guidance: Table 15 b). 

The focus here was to provide a de-trended time series for each crop. Arguably, functions 

applied here, do not meet requirements to describe physiological crop responses, e.g. growth 

limits.  

Additionally, the calculation of the standardised precipitation evapotranspiration index (SPEI) 

uses a time series of monthly mean temperature and monthly precipitation sums (1946-2015). 

The Thornthwaite approach derives evapotranspiration needed for the calculation of the SPEI 

(Begueria and Serrano 2015). This study aggregates lags for SPEI of one, two, and three 

months. A linear model was sufficient to de-trend temperature and precipitation time series. 

Table 15 comprises interpretation guidance for SPEI and SYRS. 

Inventory 

Spearman’s rho correlation coefficient determines the strength of the association between 

SYRS and SPEI. These correlation coefficients are calculated for each combination of month 
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and crop respectively production system, i.e. maize, winter barley, summer barley, rye, 

potato, sugar beet, oats, and rapeseed. Additionally, using different time lags provides insight 

on longer-term impact (one month, two months, three months). 

Model study 

A modelling study provides simulated yield time series for maize and wheat. A comparison 

between observed and modelled patterns identifies the potential of the model to reproduce 

annual correlation patterns at the site. The analysis was restricted to maize and wheat, being 

important production crops and representing summer and winter cropping in Lower Saxony. 

The model was set up in DSSAT as follows: we used phenological data sets to establish typical 

production schemes from sowing to maturity. Input climate data were daily weather time 

series in the period 1981 to 2010. Soil type was set typical for the study area as a medium silty 

loam accordingly to the German soil survey (Richter et al. 2007, Supplementary material 24). 

Model parameters are estimated by the minimisation of root mean square error (RMSE) 

between simulated and observed phenology and yield data (Figure 15, Figure 16). 

Crop simulation models can provide sophisticated methods to determine water balance 

(Jones et al. 2003a; Hoogenboom et al. 2012). Nevertheless, we choose to derive 

evapotranspiration after Thornthwaite for better comparability with the observation 

procedure (Vicente-Serrano et al. 2010; Begueria and Serrano 2015). The parametrisation of 

crop models for maize and wheat in the period 1981-2010 was successful based on the 

available data (Figure 15, Figure 16). A subset of observed annual correlation patterns 

provides a reference for comparison that matches the model period (1981-2010 instead of 

1948-2015). 
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Data 

The present study utilises comprehensive agro and agro-climatic data compiled from the 

Federal Statistical Office of Germany, State Statistic Bureaus and the German Weather Service 

(DWD). 

Yield data comprise yields of different crops from agro-data sets published by statistical 

bureaus in Germany 1948 to 2015. These include yields of various production crops in Lower 

Saxony. Supplementary material 15 to Supplementary material 23 illustrates a general overview 

of the available yield time series. 

The climate data used falls into the following three categories.  

First, climate data utilised for the calculation of SPEI are available from the German weather 

service DWD. It comprises in monthly resolution temperatures, and precipitation means 

respectively sums for the years 1948 to 2015. 

Second, climate data to model yield time series of maize and wheat in a daily resolution is 

available for the time frame 1981 to 2010. Data comprise weather data of the weather station 

in Diepholz operated by DWD. Data include daily mean, max and min temperatures, as well as 

daily precipitation, wind speeds and solar radiation. 

Third, data on phenology comprises dates for numerous phenological stages of wheat and 

maize for the period 1981-2010 obtained from the German weather service. 
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Tables and figures 

Supplementary material 14 DSSAT model parameters for the development of maize and wheat. 

Name Definition Value 

Maize   

P1 Degree days (base 8°C) from emergence to end of the juvenile phase 220 

P2 Photoperiod sensitivity coefficient (0 -1) 0.363 

P5 Degree days (base 8°C) from silking to physiological maturity 745.0 

G2 Potential kernel number 267.5 

G5 Potential kernel growth rate (mg/(kernel d)) 17.56 

PHINT Thermal time between the appearance of leaf tips (8Cd) 38.90 

Wheat   

P1D Photoperiod sensitivity coefficient (% reduction/h near-threshold) 48.57 

P1V  Vernalisation sensitivity coefficient (%/d of unfulfilled vernalisation) 50 

P5 Thermal time from the onset of linear fill to maturity (8Cd) 715.4 

G1 Kernel number per unit stem + spike weight at anthesis (#/g) 50.00 

G2 Potential kernel growth rate (mg/(kernel d)) 75.22 

G3 Tiller death coefficient. Standard stem + spike weight when elongation 

ceases (g) 2.1 

PHINT Thermal time between the appearance of leaf tips (8Cd) 95 
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Supplementary material 15 yield time series of wheat, including best-fit trend function and resulting standardised yield residuals time series (SYRS) 
for Lower Saxony, Germany (functions according to Table 14). 
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Supplementary material 16 yield time series of potato, including best-fit trend function and resulting standardised yield residuals time series (SYRS) 
for Lower Saxony, Germany (functions according to Table 14). 



 

 
 

19
8  

Supplementary material 17 yield time series of maize, including best-fit trend function and resulting standardised yield residuals time series (SYRS) 
for Lower Saxony, Germany (functions according to Table 14). 
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Supplementary material 18 yield time series of rye, including best-fit trend function and resulting standardised yield residuals time series (SYRS) for 
Lower Saxony, Germany (functions according to Table 14). 
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Supplementary material 19 yield time series of spring barley, including best-fit trend function and resulting standardised yield residuals time series 
(SYRS) for Lower Saxony, Germany (functions according to Table 14) 
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Supplementary material 20 yield time series of winter barley, including best-fit trend function and resulting standardised yield residuals time series 
(SYRS) for Lower Saxony, Germany (functions according to Table 14). 
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Supplementary material 21 yield time series of sugarbeet, including best-fit trend function and resulting standardised yield residuals time series for 
Lower Saxony, Germany (functions according to Table 14). 
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Supplementary material 22 yield time series of oats, including best-fit trend function and resulting standardised yield residuals time series for Lower 
Saxony, Germany (functions according to Table 14). 
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Supplementary material 23 yield time series of rapeseed, including best-fit trend function and resulting standardised yield residuals time series for 
Lower Saxony, Germany (functions according to Table 14). 
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Supplementary material 24 properties chosen as soil for calibration issues (θs – saturated soil 
water content, generic medium silty clay). 

depth clay  silt θs 

[cm] [ - ]  [ - ] [ - ] 

5 0.23  0.39 0.46 

15 0.23  0.39 0.46 

30 0.23  0.39 0.46 

45 0.25  0.41 0.46 

60 0.25  0.41 0.46 

90 0.31  0.45 0.46 

120 0.21  0.34 0.46 

150 0.26  0.37 0.46 

 

Supplementary material 25 soil type used for validation and phenological modelling at DH; 
derived from BUEK 1000n [26] (θs – saturated soil water content; θa available water content; ks- 
saturated permeability; CEC- cation exchange capacity). 

depth horizon clay silt θs θa ks CEC 

[cm] 

 

[ ] [ ] [ ] [] [m/s] [cmol/kg] 

30 Ap 0.22 0.49 0.59 
36 

0.38 10 

40 Al 0.11 0.28 0.50 32 0.39 5 

80 Bv 0.11 0.28 0.50 24 0.2 5 

100 Bv 0.07 0.26 0.48 24 0.39 3 

200 C 0.15 0.30 0.48 024 0.25 8 
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