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The tropical dry forests of NW Peru are heavily shaped by the El Niño Southern 
Oscillation (ENSO), where especially El Niño brings rain to arid to semi-arid areas. 
However, the resulting effects on biodiversity patterns remain largely unknown as well 
as the effect of environmental variables on the floristic composition under varying 
rainfall patterns. Therefore, we studied the spatio-temporal effects of different ENSO 
episodes on floristic biodiversity along a climatic gradient ranging from the coastal 
desert to the Andean foothills. We sampled 50 vegetation plots in four years represent-
ing different ENSO episodes. To highlight the spatio-temporal changes in floristic 
composition and beta diversity across ENSO episodes, we predicted ordination scores 
with a Generalized Additive Model. We applied variation partitioning to test if topo-
graphic or edaphic variables gained in importance during more humid ENSO epi-
sodes. Additionally, we executed an irrigation–fertilization experiment to quantify the 
beneficial effects of the water–nutrient interaction under different simulated ENSO 
rainfall scenarios. Plant species richness increased under humid conditions during the 
humid La Niña (2012) and the moderate El Niño (2016), and slightly decreased under 
the very humid conditions during the coastal El Niño (2017). The spatial prediction 
revealed that specific vegetation formations became more pronounced with increas-
ing water input, but that a large water surplus led to the disruption of the strict order 
along the climatic gradient. Edaphic and topographic variables gained in importance 
with increased water availability (2012 and 2016), however, this effect was not further 
amplified under very wet conditions (2017). The experiment showed that plant cover 
under Super Niño conditions was three times higher when fertilized. Overall, our spa-
tial predictions concede detailed insights into spatio-temporal ecosystem dynamics in 
response to varying rainfall caused by different ENSO episodes while the results of the 
experiment can support farmers regarding a sustainable agrarian management.
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Introduction

Studying the relationship between environmental gradients 
and species turnover has become a cornerstone of biogeogra-
phy and community ecology since Humbold’s and Bonpland’s 
travels to South America more than 200 years ago (Whittaker 
1967, MacArthur 1984). Naturally, water availability drives 
floristic composition and biomass production in (semi-)arid 
regions such as NW Peru (Muenchow et al. 2013a, c), which 
is the area under study in this manuscript. In fact, water avail-
ability is probably the most important limiting abiotic fac-
tor in NW Peru’s tropical dry forests, where it controls plant 
recruitment, establishment and survival, seedling production, 
vegetation cover as well as species diversity (Balvanera et al. 
2011, Espinosa  et  al. 2011, Salazar  et  al. 2020). However, 
water availability does not only vary in space but also in time, 
especially in regions heavily affected by the El Niño Southern 
Oscillation (ENSO).

ENSO is a recurrent climate phenomenon causing 
anomalies around the globe (Capotondi  et  al. 2015). 
ENSO consists of alternating episodes. El Niño repre-
sents the warm and La Niño the cold episode of this cycle. 
ENSO neutral refers to periods when neither El Niño nor 
La Niña episodes are present. The study area is part of the 
core region where the ENSO phenomenon exerts its great-
est terrestrial influence (Richter and Ise 2005). Generally, 
El Niño episodes bring more rain than usual and La Niña 
episodes enforce the already dry conditions in the study 
area (< 50 mm of annual precipitation along the coast of 
NW Peru; Fig. 1d; Rollenbeck et al. 2015).

Especially El Niño episodes provoke drastic ecologi-
cal responses (Kogan and Guo 2017) but occur irregularly 
(five times over the last 20 years in the study area), and are 
highly variable in terms of intensity. Nevertheless, the eco-
climatic impact of La Niña episodes is comparable in mag-
nitude with that of El Niño episodes. For instance, La Niña 
episodes were most likely the main driver for the hiatus in 
global warming at the beginning of the 21st century (Kosaka 
and Xie 2013). Therefore, one objective of this manuscript is 
to study the effect of different ENSO episodes, including La 
Niña episodes, on the floristic composition, comprised of all 
observed vascular plants, of the same ecosystem. In any case, 
ENSO drives a large amount of the interannual variability 
of woody plant growth across the tropics (Rifai et al. 2018) 
though the specific response to El Niño episodes may vary 
from region to region (Phillips et al. 2009). Overall, the effect 
of extreme events is even more pronounced in (semi)-arid 
ecosystems (Holmgren et al. 2006), and is especially true for 
ENSO’s terrestrial core region in NW Peru and SW Ecuador 
(Muenchow et al. 2013a, Rollenbeck et al. 2015).

NW Peru is also home to the tropical dry forest (TDF) eco-
systems. TDFs are characterized by a high rate of endemism 

and feature an outstanding biodiversity which is almost as 
high as that of humid tropical forests (Espinosa et al. 2011, 
Pennington et al. 2018). At the same time, they are the most 
threatened tropical ecosystem (Miles et al. 2006), and in gen-
eral chronically understudied (Escribano-Avila  et  al. 2017, 
Muenchow  et  al. 2018). Despite their unique biodiversity 
and threatened status, the TDFs of NW Peru are vastly under-
studied, and the spatio-temporal effect of extreme events like 
El Niño or La Niña episodes on the biodiversity patterns in 
this ecosystem remains largely unknown.

Statistical learning has a long tradition in biodiversity 
research for detecting patterns in ecological data and predict-
ing from these patterns (Guisan and Zimmermann 2000). 
It is especially useful for quantifying species–environment 
relationships and for predicting the occurrence of species 
or species richness (predictive mapping), and therefore is 
an indispensable instrument for biodiversity management 
(Fremout et al. 2020). Furthermore, predictive mapping can 
reveal ecological changes in space and time which otherwise 
might be hard or impossible to detect (Lovelace et al. 2019). 
Therefore, it is a crucial tool for gaining detailed insights into 
ecosystem dynamics, which other more descriptive methods 
such as global biodiversity measures and ordination tech-
niques cannot capture. We aim at spatially predicting, for the 
first time, how different ENSO episodes might change and 
reshape the spatial distribution of the floristic composition 
in the study area.

Species richness is strongly associated with precipitation in 
the tropics (Esquivel-Muelbert et al. 2017a, b). This is espe-
cially true for dry tropical ecosystems where water shortage is 
the main constraint to plant growth. Still, edaphic and topo-
graphic properties are sometimes equally important in struc-
turing vegetation of tropical ecosystems (Soethe et al. 2008,  
Laurance  et  al. 2010, Condit  et  al. 2013). Yet, the cor-
responding effects on the floristic composition of tropical 
(semi-)arid vegetation communities remain scarcely inves-
tigated (Peña-Claros  et  al. 2012, Muenchow  et  al. 2013b, 
Ulrich et  al. 2014). This is especially true in terms of how 
soil properties influence vegetation communities as soon as 
water is no longer the limiting factor. For instance, nitro-
gen may increase primary production even in the presence 
of droughts and grazing pressure (Whitford and Steinberger 
2011, Kinugasa et al. 2012). Hence, this study investigates 
how much the impact of edaphic and topographic variables 
varies in explaining the floristic composition between dry and 
humid ENSO years. Additionally, an irrigation–fertilization 
experiment should help to quantify in more detail the ben-
eficial effects of the water–nutrient interaction on vegetation 
diversity and cover.

In summary, in this manuscript we study the effects of dif-
ferent ENSO episodes on biodiversity patterns and floristic 
composition as well as the effect of environmental variables 
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on the floristic composition under varying rainfall patterns. 
Specifically, we tested the following three hypotheses:

1. We investigated the change in the different levels of bio-
diversity along a pronounced climatic gradient across 
different ENSO episodes. Overall, we expected a boost 
in biodiversity as soon as water was no longer the pre-
dominant limiting factor. We were particularly interested 
in how different ENSO episodes modify the spatial distri-
bution of the floristic composition. Overall, we expected 
a more pronounced development of vegetation forma-
tions along the climatic gradient with wetter conditions 
(Engelbrecht et al. 2007).

2. Water availability limits plant cover and species richness 
along the entire climatic gradient in the (semi-)arid study 
area. Therefore, we were interested in evaluating the prob-
ably changing effects of soil characteristics and topography 
on floristic composition and vegetation cover (biomass 
production) with varying rainfall patterns as caused by 
different ENSO episodes. We expected that the influence 

of topographic and edaphic variables might gain in influ-
ence in wetter years, i.e. as soon as water is no longer the 
limiting factor.

3. To quantify the beneficial effects of the water–nutrient 
interaction on vegetation cover development and species 
richness, we executed an irrigation–fertilization experi-
ment simulating different ENSO rainfall scenarios. We 
expected that the water input of the rainfall scenario rep-
resenting a Super-Niño episode in combination with the 
fertilizer would be most conducive to plant cover and spe-
cies richness development.

Methods

Study area

The study area stretches for 120 km along a pronounced bio-
climatic gradient in NW Peru and features a desert along the 

Figure 1. The study area (Panel A) located in Peru (Panel B) given as a false-color composite representing the change in NDVI across the 
observed years. The 2011 NDVI serves as the basis for the interannual change (Panel C). Green pixels occur where the interannual differ-
ence in NDVI was greatest between 2017 and 2011. Blue color tones indicate that NDVI differences were greatest between 2012 and 2011 
(red: between 2016 and 2011). Panel D: Ratio between annual precipitation and median precipitation (median Paita: 25.9 mm, median 
Piura: 71.4 mm, median Chulucanas: 272.4 mm) measured at the three automated climatic stations (see Environmental variables). In case 
the precipitation was smaller than the median, we computed the ratio as: 1/(precipitation/median (precipitation)) × −1. The years in which 
vegetation sampling took place are printed in bold (x-axis). The ENSO phases are in correspondence with the ONI index of the NOAA 
Climatic Prediction Center (<http://origin.cpc.ncep.noaa.gov/products/analysis/_monitoring/ensostuff/ONI/_v5.php>). We have inten-
tionally left out the 1997/1998 Super-Niño episode since this would have dominated the y-axis. Abbreviations: EN = El Niño episode; 
LN = La Niña episode.
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Pacific coast in the west and TDFs near the Andean foot-
hills in the east (Fig. 1). The climatic gradient is at the same 
time a gradient of increasing human influence especially in 
terms of agricultural activity towards the Andean foothills 
(Muenchow  et  al. 2013a, c). Agricultural activity includes 
cultivation of annual crops and fruit trees and extensive graz-
ing caused by free-ranging livestock.

The ENSO phenomenon heavily impacts the study area 
(Richter and Ise 2005). In general, El Niño episodes are 
associated with more rain than usual while La Niña episodes 
amplify the already dry conditions. However, even this pat-
tern is highly variable and can occasionally be reversed (see 
e.g. the years 2005, 2008 and 2012 in Fig. 1d). Additionally, 
so-called ‘local’ or ‘coastal El Niño episodes’ can take place 
as observed in 2017. Coastal El Niño episodes refer to the 
regional warming of coastal waters in the Gulf of Guayaquil 
in December as opposed to the Pacific basin-wide El Niño 
episode, which occurs when warm North Australian waters 
reach the South American coast.

Therefore, to put the ecological results into context, it 
is important to keep in mind the varying rainfall patterns 
as produced by different ENSO episodes across the studied 
years. The observed years differed largely in terms of precipi-
tation. 2011 corresponded to a dry La Niña episode and the 
whole study area experienced drier conditions than normal. 
By contrast, 2012 was a humid La Niña episode, and 1.5 
times and 3 times more rain fell in Piura and Chulucanas, 
i.e. in the middle to eastern part of the study area (Fig. 1a). 
2016 was a moderate El Niño episode and rainfall was double 
the median input in Paita and Piura, whereas in Chulucanas 
the median value was almost reached. 2017 coincided with a 
coastal El Niño episode and was the only studied year dur-
ing which the whole study area experienced exceptionally 
wet conditions: Paita received almost 15 times (379 mm), 
Piura almost 11 times (780 mm) and Chulucanas 6 times 
(1706 mm) more rain than on median (Fig. 1d). Moreover, 
it is noteworthy that vegetation development changes drasti-
cally in the study area during wet episodes but remains more 
or less uniform during neutral years (Richter and Ise 2005, 
Holmgren et al. 2006, Muenchow et al. 2013c).

Data compilation

Landscape and small-scale experiment vegetation sampling
We sampled 50 vegetation plots of 30 × 30 m2 size along the 
climatic gradient between Paita and Chulucanas (Fig. 1). To 
ensure that all parts of the study area were equally likely to 
be sampled, we stratified the random sampling by distance 
to the Pacific Ocean in ten classes (Supplementary material 
Appendix 1). Prior to the sampling, we excluded riparian, 
agricultural and urban areas. Each plot was located with a 
handheld Garmin GPS device in the field. Field sampling 
took place towards the end of the vegetation period (March–
May) in 2011, 2012, 2016 and 2017. In each plot, we 
recorded all vascular plant species and determined their cover 
as portion of the plot area in percentage points. Specifically, 
plant cover refers to the relative projected area covered by a 

species (Damgaard 2014), and is a proxy for biomass. Prior to 
the analysis, we transformed the plant cover values in accor-
dance with the decimal scale by Londo (Londo 1976). The 
nomenclature follows the conventions of the Tropicos online 
database (Missouri Botanical Garden 2018).

In addition to the plot survey at the landscape scale, we 
conducted a small-scale irrigation–fertilization experiment to 
quantify the beneficial effects of the water–nutrient interac-
tion on species richness, plant cover and biomass production. 
We established the experiment in the middle of the study area 
on on a protected dryland forest inside the campus of the 
University of Piura (5°10′S, 80°38′W, see Piura in Fig. 1a). 
Hence, the experiment was located in the same ecosystem 
as the landscape study (see previous paragraph) and more 
specifically in the middle of the observed precipitation gra-
dient, ranging from 26 mm (Paita; annual median precipita-
tion) to 272 mm (Chulucanas; Fig. 1a). The environmental 
conditions are typical for the region in terms of climate, 
topography and soil properties (Muenchow et al. 2013a, b). 
Inside a sandy area devoid of woody vegetation, we placed 12 
experimental plots of 3 × 3 m2, which were regularly spaced 
along a rectangular grid of 1 ha. Plots were assigned to one of 
three irrigation treatments: The first treatment represented a 
Super El Niño episode (example of 1997/1998: 1780 mm), 
the second represented a moderate El Niño episode (example 
of 1991/1992: 258 mm). The last treatment represented the 
baseline with no additional water input and corresponded to 
the year in which the irrigation experiment was conducted 
(2013) which was a neutral episode (54 mm; see also Fig. 1d). 
The irrigation water stemmed from rain-collecting tanks. In 
addition to the water treatment, two randomly chosen plots 
of each irrigation treatment received a fertilization treatment 
of 200 kg ha−1 granular nitrogen fertilizer (NH4NO3). The 
experiment was carried out between December 2012 and 
May 2013. Monitoring was executed two times per month 
and included the identification of plant species (Missouri 
Botanical Garden 2018) and corresponding coverage (%). 
Please refer to Supplementary material Appendix 2 for a 
detailed description of the irrigation-fertilization experiment.

Environmental variables
We randomly took and mixed three soil samples from 15 
cm and 30 cm depth in each plot in 2011. Soil composition 
should not vary too much between the years in which vegeta-
tion sampling took place since the study area largely features 
arenosols, i.e. a very weekly developed soil type. On the other 
hand, soil chemistry can vary largely between two years. For 
instance, El Niño episodes can increase soil respiration, i.e. 
soil CO2 emissions, by a factor of 100, especially in the vicin-
ity of trees (Salazar et al. 2020). Subsequently, we measured 
in the laboratory variables known to be important for vegeta-
tion development: pH, electrical conductivity (µS), carbon-
to-nitrogen ratio, soil texture (%), the concentrations of the 
cations Ca, Mg, K and Na (cmol kg−1), and skeletal content 
(%; measured as gravimetric proportion of stones > 2 mm; 
see Muenchow et al. (2013a) for a more detailed description).
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We computed the topographic variables aspect, altitude, 
catchment slope, catchment area, soil wetness index, plan 
and vertical curvature from a digital elevation model with a 
30 × 30 m2 resolution (LP DAAC 2018). We downloaded 
the normalized difference vegetation index (NDVI) raster 
imagery from the moderate resolution imaging spectrom-
eter (MODIS; LP DAAC 2018) available for the vegetation 
period (March, April) for each studied year (2011, 2012, 
2016, 2017) at a 250 × 250 m2 resolution for our study area. 
Since three NDVI scenes were available for each vegetation 
period, we computed the mean NDVI for each vegetation 
period.

Local precipitation values were collected from automated 
climate stations (Fig. 1d) operated by the Univ. of Piura near 
Paita (1997–2018), in Piura (1991–2018) and in Chulucanas 
(1997–2018).

Data analysis

Biodiversity and plant cover analysis
We calculated three measures of biodiversity for each observed 
year, namely alpha, beta and gamma diversity (Whittaker 
1967). Alpha diversity refers to the mean number of species 
per plot. Gamma diversity is the total number of observed 
species across all plots. Beta diversity, in the sense of species 
turnover, is expressed as the range of the first detrended cor-
respondence analysis (DCA) axis.

The unit of a DCA axis is given in units of standard devia-
tion (SD). 4 SDs correspond to a complete species turnover 
while a difference between 1 and 1.4 SD units already cor-
respond to half a change in species composition (Legendre 
and Legendre 2012). Moreover, the floristic composition 
was assessed with the help of a DCA (Hill and Gauch 1980) 
to which the decimal scale transformed cover values of the 
species–plot matrix were subjected (Londo 1976). Floristic 
composition implicitly represents the named biodiversity 
measures, and additionally considers plant cover. DCA tries 
to condense as much as possible the observed variance of the 
input matrix in a low-dimensional space (usually 2–3 axes), 
thereby extracting the main apparent gradients. To test if beta 
diversity and floristic composition, respectively, varied signif-
icantly between years, we analyzed the multivariate homoge-
neity of group dispersions (Anderson et al. 2006).

Modeling and predictive mapping
One objective of this study was the spatio-temporal mapping 
of floristic composition represented by the scores of the first 
DCA axis along the climatic gradient in the study area. Please 
note that the resulting prediction map not only shows species 
composition but also differences in beta diversity on the pre-
dicted pixel level. This is because the units of a DCA axis are 
given in SDs (see also previous section).

Muenchow et al. (2013c) have already shown that NDVI 
is an excellent predictor for vegetation formations in the study 
area. Therefore, we modeled the scores of the first DCA axis 
representing the main observed floristic gradient in the study 

area with the help of a generalized additive model (GAM) as 
a function of the interaction between NDVI and year:
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where i refers to the ith observation, α is the intercept, β1 is 
the estimated coefficient for year and f is a spline smoother 
for the NDVI:year interaction. Please refer to Supplementary 
material Appendix 3 for a visualization of the non-linear rela-
tionship between the response variable (ordination scores) 
and NDVI by year.

The sole purpose of the model is the spatial prediction of 
the ordination scores, not statistical inference or the interpre-
tation of the models’ coefficients. We will use variation parti-
tioning later on to assess how the influence of environmental 
predictors has changed over the studied years (see Impact of 
environmental variables). Consequently, here we are only 
interested in a good predictive performance of the model to 
make sure that it is able to generalize, i.e. that it is able to 
predict reasonably well unseen data (James et al. 2013, Kuhn 
and Johnson 2013). To make sure this is the case, we used 
spatial cross-validation. Overall, cross-validation accounts 
for over-optimistic predictions on the training set by ran-
domly splitting a data set into partitions used for training 
and testing (Brenning 2012, Lovelace  et  al. 2019). Spatial 
cross-validation is an extension that measures a model’s 
ability to spatially predict the response variable in the pres-
ence of spatial autocorrelation (Schratz et al. 2019). We ran 
a 100-repeated 5-fold spatial cross-validation in which the 
partitioning is based on k-means clustering (k = 5; Ruß and 
Brenning 2010). We also made sure that all annual observa-
tions of one plot were jointly placed in either the test or the 
training data set (Meyer et al. 2018). We used the normalized 
root mean-square error (NRMSE) in percent as performance 
measure for the spatial cross-validation.
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where n is the number of observations, e corresponds to the 
residuals and y refers to the observed values.

Impact of environmental variables
Variation partitioning quantifies the variation explained of 
the response, in our case the first two DCA axes, by one pre-
dictor group, in our case edaphic variables, while controlling 
for the effect of another predictor group (Peres-Neto  et  al. 
2006, Borcard et al. 2018), in our case topographic variables. 
Internally, variation partitioning computes a redundancy 
analysis (RDA) separately for each predictor group and for all 
predictor groups together, and subsequently quantifies how 
much each predictor group explains alone and jointly with 
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the other predictor group of the variation of the response. 
This is frequently displayed with the help of a Venn dia-
gramm. We ran the variation partitioning for each studied 
year (2011, 2012, 2016, 2017) to assess how edaphic and 
topographic variables influence vegetation composition 
under increasingly humid conditions. Prior to the variation 
partitioning, we log-transformed electrical conductivity, the 
CN ratio and the catchment area. Subsequently, we excluded 
all collinear variables which exceeded a variance inflation fac-
tor > 3 leaving us with seven edaphic and eight topographic 
variables. We refrained from a forward selection of explana-
tory variables (Blanchet et al. 2008) because (i) we only used 
a reasonable number of meaningful, non-collinear variables 
that (ii) were available for all four years thus guaranteeing 
inter-annual comparability.

Irrigation–fertilization experiment
For presenting the results of our irrigation–fertilization exper-
iment we used descriptive statistics and plotted the increase 
in the number of species, plant cover as well as water input 
against time.

All statistical analyses were conducted in the open source 
software R (R Core Team) using its packages ‘mgcv’ (Wood 
2017), ‘RQGIS’ (Muenchow  et  al. 2017), ‘sperrorest’ 
(Brenning 2012) and ‘vegan’ (Oksanen et al. 2019).

Results

Biodiversity and plant cover

Mean alpha diversity was lowest during the dry La Niña 
(2011) and highest during the moderate El Niño episode 
(2016; Table 1). Compared to the humid La Niña (2012) 
and the moderate El Niño (2016) episodes, species rich-
ness was lower in the east of the study area during the very 
humid neutral year (2017), however, higher within a dis-
tance of 20–25 km to the coast (left panel of Fig. 2). Species 
turnover (beta diversity), expressed as the range of the first 
DCA axis (see also Fig. 3), was also lowest during the dry 
La Niña episode (2011), slightly increased in 2012 (humid 
La Niña episode) and 2016 (moderate El Niño episode) 
and reached its highest value in 2017 (very humid neutral 
year). Still, there were no significant interannual differences 
in beta diversity in accordance with the test for multivari-
ate homogeneity of groups dispersions (ANOVA F-test: 
0.05069). Gamma diversity increased from 2011 (dry La 

Niña episode) to 2012 (humid La Niña episode), remained 
almost the same in 2016 (moderate El Niño episode), and 
decreased in 2017 (very humid neutral year; Table 1). By 
contrast, the latter showed by far the highest plant cover-
age along the entire gradient (right panel of Fig. 2 and see 
Spatio-temporal mapping).

The first two DCA axes explained 68% of the observed 
variance with the first axis alone contributing 48%. The first 
axis was mainly associated with precipitation while the sec-
ond axis was related to topographic variables such as verti-
cal curvature and catchment area. Overall, the DCA scatter 
cloud became more compressed over the years, and the plots 
became increasingly positioned along the first axis (Fig. 3). 
Put differently, the importance of the second axis steadily 
decreased from 3.22 during the dry La Niña episode (2011) 
to 1.35 units of standard deviation during the very humid 
neutral year (2017). By contrast, the first axis was more 
important during all episodes which were wetter than the dry 
La Niña episode (Table 1).

Spatio-temporal mapping

Our model explained 76% of the observed variance with a 
spline smoother absorbing 3 df (equation 1 and see Modeling 
and predictive mapping). The spatially cross-validated 
NRMSE also indicated a satisfying fit of 27% (SD 8.53% 
over 100 repetitions).

Since the predicted DCA scores represent the floristic 
composition of a pixel, clusters of pixels sharing similar val-
ues (visible as similar color tones in Fig. 4) can be understood 
as belonging to the same vegetation formation. A clear trend 
towards more pronounced differences in vegetation forma-
tions became apparent between the studied years (Fig. 4). 
The dry La Niña episode (2011) showed a floristic composi-
tion that was almost uniform across great parts of the study 
area (Panel 2011 of Fig. 4). This changed during the wet 
La Niña episode (2012) where three distinct vegetation for-
mations developed (Panel 2012 of Fig. 4). In the west, we 
observed a desert-like formation with a sparse herb and grass 
cover, which at times was accompanied by isolated trees and 
bushes (blue pixels in Panel 2012 of Fig. 4). This formation 
developed into an open xeric shrubland (green/yellow pixels 
in Fig. 4) where Acacia macracantha and Encelia canescens 
were the dominating species. Further east, the shrubland 
turned into a TDF formation (orange/red pixels in Fig. 4) 
with Cordia lutea, Prosopis pallida, Cenchrus echinatus and 
Antephora hermaphrodita being the most common species. 
The differentiation of these three vegetation formations was 
even more pronounced during the moderate El Niño epi-
sode (Panel 2016 of Fig. 4). This trend was both amplified 
and disrupted during the very humid neutral year (2017) 
during which a dominant grass-herb formation stretched 
from the coast until far behind the city of Piura (dark blue 
pixels in Panel 2017 of Fig. 4). TDF formations were also 
less dominant (orange to red pixels). Though species com-
position remained roughly the same during the very humid 
neutral year (2017) compared to previous years, plant cover 

Table 1. Different biodiversity measures across the studied years. 
min = minimum observed number of species over all plots. 
max = maximum observed number of species over all plots.

Year Min Max Alpha Beta Gamma

2011 0 17 6.04 3.28 48
2012 1 32 14.92 3.64 79
2016 2 37 16.26 3.61 78
2017 0 28 15.12 4.51 73
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increased drastically, and particularly in the western part of 
the study area where highest coverage values were observed 
for the grasses Aristida adscensionis and Eragrostis cilianen-
sis and the seedlings of the shrub Encelia canescens. Among 
herbal species, Crotalaria incana, Exodeconus maritimus and 
Tiquilia paronychioides showed the highest cover values.

Influence of environmental variables

The influence of edaphic and topographic variables on floris-
tic composition was relatively small in the driest year (2011) 
with 25 and 28% of explained variance, respectively (Fig. 5). 
The explained variance roughly doubled in all other years, 

Figure 2. Species richness (left panel) and plant cover (right panel, in %) along the spatio-temporal gradient. To aid visual interpretation, 
loess smoothers were added.

Figure 3. Plotting the scores of the second DCA axis against the scores of the first DCA axis. To better visualize the cross-annual changes, 
the scores of all years were added in light gray to the background of each panel. The black dots refer to the scores of the year given in the 
strip of each panel. Numbers above the dots are the plot IDs which were ordered in accordance with the distance to the sea, i.e. plot number 
1 is closest and plot number 50 farthest away from the sea. To avoid cluttering the figure with too many numbers, we have only added a 
few selected plot numbers.



8

Figure 4. Spatial prediction of the floristic composition along the cross-section for different ENSO episodes The urban boundaries of the 
cities Paita, Piura and Chulucanas are displayed in black. The Piura River and its tributaries are represented by light blue lines with a  
black contour.

Figure 5. Fractions explaining the floristic composition represented by the first two DCA axes in accordance with a RDA variation partition-
ing. Numbers within the circles represent the adjusted R2. Significance levels of the pure fractions are given in the soil and topography circles 
as . (<0.1), * (< 0.05), ** (< 0.01) and *** (< 0.001).
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however, did not further increase with an excessive supply of 
water in the most humid year (2017; Fig. 5).

Irrigation–fertilization experiment

The experiment revealed that edaphic variables are conducive 
to vegetation development. The fertilized plots representing 
moderate El Niño episodes exhibited a slightly greater plant 
coverage than in their unfertilized counterparts (middle panel 
of Fig. 6). Adding even more water revealed the true benefi-
cial effects of fertilizing. The fertilized plots simulating Super 
El Niño episodes showed a threefold increase in plant cover 
compared to their unfertilized counterparts (right panel of 
Fig. 6). Nevertheless, there was an upper limit regarding the 
beneficial effects of nutrient addition. Plant cover, and thus 
biomass production, stopped increasing or even decreased 
in the fertilized Super-El Niño plots after 8 March 2013, 
which corresponded to 1487 mm of irrigation and 200 kg 
ha−1 of NH4NO3. Species richness followed a similar pattern 
– highest numbers in species were recorded in the fertilized 

Super-El Niño plots, though with just seven observed species 
the overall number remained low (Fig. 7).

Discussion

Biodiversity and biomass

Beta diversity (expressed as the range of the first DCA axis), 
increased with wetter conditions (Fig. 3, Table 1). However, 
another measure of beta diversity, the multivariate dispersion, 
did not change significantly between years (see Biodiversity 
and plant cover) though the spatial prediction yielded drastic 
changes in the spatial distribution of the floristic composi-
tion and beta diversity (see next section). Concordantly, the 
change of the shape of the DCA point scatter between the 
relatively humid years (panels 2012 and 2016 of Fig. 3) and 
the very humid neutral year (panel 2017 of Fig. 3) can be 
most likely attributed to the increase of plant cover (see also 
next paragraph). Overall, higher species turnover was mainly 

Figure 6. Results of the irrigation-ferilization experiment. The blue line refers to the water input, note that the left y-axis was log-trans-
formed. The solid salmon and the gray dashed lines represent the observed plant coverage in % (right y-axis).

Figure 7. Mean number of species per treatment level plotted for the duration of the experiment. Each dot represents a sampling visit during 
which the number of species was recorded.
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driven by short-lived, less abundant species. Cleland  et  al. 
(2013) reports similar findings from temperate grasslands.

Alpha and gamma diversity increased with higher sea-
sonal precipitation amounts. The relationship, however, 
was non-linear, i.e. the increase in diversity reached a pla-
teau with the rainfall values recorded during the humid La 
Niña (2012) and moderate El Niño (2016) episodes. Then 
even more water input as observed during the very humid 
neutral year (2017) resulted in a slightly decreased diversity 
but also in a massive and sudden increase of overall plant 
cover due to higher biomass production. Interestingly, only a 
few grass (e.g. Aristida adscensionis, Eragrostis cilianensis) and 
forb species (e.g. Tiquilia paronychioides) were in large parts 
responsible for this increase (see Spatio-temporal mapping). 
Our irrigation–fertilization experiment confirms the find-
ings of the landscape scale, i.e. the increase in plant cover 
was much more pronounced than the increase in species rich-
ness (Fig. 6, 7). One explanation might be that under favor-
able environmental conditions a limited amount of species 
become the dominant actors of an ecosystem, whereas under 
intermediate levels of stress and disturbance higher species 
richness is supported (Brown 2014). A few dominant species 
outcompeted other species in 2017 by following a ruderal 
strategy, i.e. by growing as fast and producing as much off-
spring as possible in the short period of favorable conditions 
(Schmidtlein  et  al. 2012). This is in contrast to other dry-
land studies which showed that dormant and annual spe-
cies increased biodiversity under more humid conditions 
(Gutiérrez et al. 2000, Holmgren et al. 2006). Finally, free-
ranging livestock might also have an impact on vegetation 
dynamics in the study area, especially in its eastern parts with 
more than 100 mm of annual precipitation. Livestock might 
alter floristic composition and diversity while supporting 
especially plants adapted to grazing.

Aside from the spectacular germination of annuals, peren-
nial woody plants also largely benefit from wetter periods, e.g. 
through increased flower and fruit production (Holmgren 
and Scheffer 2001). However, we only recorded plant cover, 
where the corresponding interannual difference is only mar-
ginal compared to previous years. Still, rainy periods are very 
conducive to the regeneration of woody vegetation in (semi-)
arid areas (Bowers 1997, Brown  et  al. 1997, Sitters  et  al. 
2012). For example, the growth and recruitment rate of 
Prosopis pallida is almost twice as high during wet El Niño 
episodes than during neutral or dry episodes in northern Peru 
(Lopez et al. 2006).

Overall, water surplus converts the (semi-)arid land-
scape interspersed with shrubs and trees temporarily into a 
tree savannah. Shallow underground water near the Pacific 
coast is largely responsible for the occurrence of peren-
nial species in the study area. In fact, dendrochronological 
studies have shown that the growth of the most frequent 
tree species in the study area, Prosopis pallida, is nearly 
independent of the interannual climatic variability because 
frequently the water input of the low annual precipitation 
and nearby rivers suffices to replenish the groundwater 

(Brown and Archer 1990, Throop  et  al. 2012, Salazar   
et al. 2018b).

The ordination and modeling results of our study provide 
ample evidence how current-year precipitation affects biodi-
versity dynamics. Still, it might be possible that to a much 
lesser extent previous year rainfall might also have an effect 
in the study area (Tenhumberg  et  al. 2018). For instance, 
Dudney  et  al. (2017) observed an increase in grass and a 
decrease in forb abundance when rainfall was high one year 
earlier. Similarly, Walter  et  al. (2011) suggest that grasses 
might have a ‘drought-memory’.

Floristic gradient mapping across ENSO episodes

The spatial prediction maps highlight that specific vegeta-
tion formations become more pronounced with increasing 
water input. In the driest year (2011), a rather uniform dis-
tribution of the same floristic composition (green pixels in 
Fig. 4) developed along large parts of the study area. The cor-
responding DCA scores close to 0 indicates that plant com-
munity composition was primarily made up of species that 
are largely independent of the climatic gradient (Hill and 
Gauch 1980, von Wehrden et al. 2009). This is because in 
2011 rainfall barely occurred along large parts of the study 
area, and therefore especially perennial species were recorded 
which can and must endure drought years (Salazar  et  al. 
2018b). By contrast, during the humid La Niña (2012) and 
the moderate El Niño episodes (2016) the same three distinct 
vegetation formations developed along the gradient. This can 
be explained by similar rainfall patterns though 2012 was a 
humid La Niña and 2016 a moderate El Niño episode. A 
large water surplus during the very humid neutral episode 
(2017) led to the disruption of the strictly ordered forma-
tions along the humidity gradient. Dense grass and herb 
cover dominated large parts of the study area. The increased 
cover dominance of annual species is visible in larger negative 
DCA score values. Interestingly, vegetation patches (yellow, 
green and orange pixels) can be found near the coast which 
are otherwise more typical of the eastern part of the gradient 
(see Spatio-temporal mapping and Fig. 4). TDF formations 
(orange and red pixels) are less visible in 2017 because the 
dense grass/herb cover temporarily converted the landscape 
into a savannah-like vegetation formation (Espinosa  et  al. 
2011, Salazar et al. 2018b). Another interpretation could be 
also that the NDVI values, our main predictor for the floristic 
composition, is similar for the dense cover of annual plants 
and perennial woody plants in 2017 (Salazar  et  al. 2018a, 
Peña and Brenning 2015).

Overall, our spatial mapping approach concedes detailed 
insights into how floristic composition and beta diversity 
distribution patterns change in response to varying rain-
fall patterns caused by different ENSO episodes. Similarly, 
Lovelace et al. (2019) (chapter 13) predicted floristic compo-
sition on a Peruvian fog oasis which revealed that the vegeta-
tion belts along the mountain slope are partly interrupted. 
Consequently, predictive mapping can contribute to a more 
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nuanced understanding of ecosystem dynamics. Naturally, 
such insights cannot be captured by global beta diversity 
measures such as the analysis of multivariate homogeneity of 
groups dispersions which in our case did not yield significant 
results (see Biodiversity and plant cover and Biodiversity and 
biomass).

Finally, the spatial prediction of species richness 
(Supplementary material Appendix 4) supports the findings 
of the floristic gradient mapping since it revealed similar spa-
tial diversity patterns and dynamics.

Changing impact of environmental variables with 
wetter conditions

Variation partitioning clearly reveals that environmental pre-
dictors (topography, soil) gain in importance for explaining 
plant diversity and productivity dynamics as soon as water 
is no longer restricting plant growth (see Influence of envi-
ronmental variables and Fig. 5). Interestingly, the shared 
explained variance in the floristic dataset is roughly the same 
for the years experiencing wetter conditions (humid La Niña 
episode (2012), moderate El Niño epidose (2016) and the 
very humid neutral episode (2017; coastal El Niño) though 
2017 was the most humid by far. This indicates that there is 
an upper limit to the beneficial effects of the water–soil and 
water–topography interaction. Topographic variables such as 
curvature and catchment area play some role in structuring 
the vegetation composition in the study area especially in 
dry years (Muenchow et al. 2013a, c). Similar findings were 
observed in Mexico where topography also partly explained 
the composition of dry forests (Mendez-Toribio et al. 2016). 
However, the most important topographic variable in the 
study area was altitude since it is highly correlated with mean 
annual precipitation. Of course, edaphic variables such as 
pH are also related to precipitation. The influence of edaphic 
variables on vegetation composition could even increase with 
more developed soils. However, large parts of the study area 
consist of sandy soils (arenosols). Only in the east of the study 
area, soils show more signs of humification and a brownish 
color due to iron oxide release from primary minerals.

Nutrients can play a major role for vegetation develop-
ment in drylands (Ronnenberg and Wesche 2011, Whitford 
and Steinberger 2011) as confirmed by our irrigation–fertil-
ization experiment. In fact, the water–nitrogen interaction 
can result in a plant coverage three times as high as achieved 
when adding the same amount of water but without addi-
tional nutrients (Fig. 6). This is of utmost importance for 
sustainable yet productive agricultural management in the 
study area, where farming activity increases along the gradi-
ent. Hence, instead of making disappear the last remnants 
of TDF in the study area, it would be desirable to increase 
the productivity of already existing farmland. The decision 
on which crops (annual herbal and grass species) to grow 
and how much fertilizer to use could be further improved 
by reliable climate predictions on the occurrence of ENSO 
episodes. Other studies have also confirmed the importance 
of soil for the composition of the vegetation in drylands. For 

example, Ulrich et al. (2014) found that soil fertility and vari-
ability in rainfall and temperature are the most important 
predictors for beta diversity. Similarly, soil plays an impor-
tant role in Colombian dry forests (Gonzalez-M et al. 2018) 
Finally, Espinosa et al. (2011) found out that soil moisture, 
soil temperature and nitrogen explained in large parts the flo-
ristic composition of Tumbesian dry forests, which is quite 
close to our study area.

Conclusions

Alpha and gamma diversity increased with wetter conditions 
during the humid La Niña (2012) and moderate El Niño 
(2016) episodes, though, a few dominant species largely pre-
vailed under the very humid conditions of the coastal coastal 
El Niño episode (2017), which even resulted in a slightly 
decreased alpha diversity. Still, plant cover was by far great-
est during the most humid conditions. Beta diversity also 
increased with wetter conditions but did not change signifi-
cantly between years in accordance with the test for multi-
variate homogeneity of groups dispersions. As useful as such 
global measures are in general, they are in essence a single 
descriptive figure which naturally lack the capability of cap-
turing spatial diversity patterns. By contrast, our spatial pre-
dictions revealed drastic changes in the distribution of species 
composition, beta diversity and plant cover. In effect, a large 
water surplus disrupted the strictly ordered vegetation for-
mations which at first became apparent along the climatic 
gradient with wetter conditions. Hence, spatial predictions 
might provide more detailed insights into ecosystem dynam-
ics, especially in semi-arid ecosystems where changes in plant 
cover and distribution patterns are more pronounced than 
changes in alpha and gamma diversity.

The influence of topographic and edaphic variables on 
plant diversity and productivity also gained in importance 
with wetter conditions but this effect was not further ampli-
fied with very humid conditions. Our irrigation–fertilization 
experiment partly confirms these findings but also revealed 
the true beneficial effect of fertilizing under wet Super Niño 
conditions when plant cover was three times as high as in the 
unfertilized plots.

In conclusion, our predictive mapping approach can iden-
tify locations suitable for restoration and conservation, and 
thus could form the basis for an informed conservation man-
agement (forest management plans). At the same time, the 
results of our experiment can equip farmers with informa-
tion regarding sustainable agrarian management which might 
increase the productivity on already existing farmland which 
in turn might help to prevent the destruction of the last rem-
nants of TDF in the study area.
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