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season NDVI of forest sites and tree ring width over 
an observation period of 20  years. This relationship 
was independent of the forest stand size and of the 
landscape’s forest-to-grassland ratio. We conclude 
from the consistent findings of our case study that 
the maximum growing season NDVI can be used for 
retrospective modelling of forest productivity over 
larger areas. The usefulness of grassland NDVI as a 
proxy for forest NDVI to monitor forest productivity 
in semi-arid areas could only partially be confirmed. 
Spatial and temporal inconsistencies between forest 
and grassland NDVI are a consequence of different 
physiological and ecological vegetation properties. 
Due to coarse spatial resolution of available satellite 
data, previous studies were not able to account for 
small-scaled land-cover patches like fragmented forest 
in the forest-steppe. Landsat satellite-time series were 
able to separate those effects and thus may contribute 
to a better understanding of the impact of global cli-
mate change on natural ecosystems.

Keywords  Forest-steppe · NDVI · Tree 
productivity · Tree ring · Remote sensing · 
Dendrochronology

Introduction

Terrestrial carbon of aboveground biomass plays 
a major role in the global carbon cycle. Knowl-
edge about productivity and spatial distribution of 

Abstract  The monitoring of the spatial and tempo-
ral dynamics of vegetation productivity is important in  
the context of carbon sequestration by terrestrial eco-
systems from the atmosphere. The accessibility of the  
full archive of medium-resolution earth observation 
data for multiple decades dramatically improved the 
potential of remote sensing to support global climate 
change and terrestrial carbon cycle studies. We inves-
tigated a dense time series of multi-sensor Landsat 
Normalized Difference Vegetation Index (NDVI) data  
at the southern fringe of the boreal forests in the Mon- 
golian forest-steppe with regard to the ability to cap-
ture the annual variability in radial stemwood incre-
ment and thus forest productivity. Forest productivity  
was assessed from dendrochronological series of Sibe- 
rian larch (Larix sibirica) from 15 plots in forest patches  
of different ages and stand sizes. The results revealed 
a strong correlation between the maximum growing 
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aboveground carbon stocks in forests is essential 
for global biogeochemical scenarios and model-
ling (Goodale et al., 2002; Pan et al., 2011). Assess-
ing the spatial and temporal variability of vegetation 
productivity remains a challenge and is a function 
of numerous environmental factors. Changing cli-
mate is assumed to have a considerable impact on 
vegetation growth and hence, tree productivity, 
especially in areas that are considered as hotspots of 
global climate change, like the eastern part of Cen-
tral Asia (Turco et  al.,  2015). Direct measurements 
of tree productivity on historical scales are available 
from dendrochronological studies that use the annual 
radial stem increment (tree ring width; TRW) as a 
measure of tree growth and thus are able to produce 
time series of ecosystem productivity. Depending 
on the climatic conditions, annual stem increment 
in boreal of forest can either be limited by low tem-
peratures or drought during the growing season (Beck 
et  al.,  2011; Hauck et  al.,  2019; Zhou et  al.,  2020). 
As the result of climate warming, boreal forests are 
increasingly switching from temperature-limited to 
drought-limited ecosystems (D’Arrigo et  al.,  2004; 
Buermann et  al.,  2014). Especially the forest-steppe 
related to the semi-arid regions of Central Asia is 
more and more subjected to forest disturbance by fire 
and windthrow (Nyamjav et al., 2007). These forests 
often show decreases in productivity (Dulamsuren 
et al., 2010, 2013).

Tree ring studies can cover centuries but only 
deliver local information. The uneven and sparse dis-
tribution of available tree ring information cannot rep-
resent larger areas. By contrast, remote sensing data 
are able to monitor and quantify ecological parame-
ters that affect plant productivity over large areas. The 
basic concept relies on the establishment of relations 
between the absorbed and reflected solar radiation in 
the visible and near infrared (VNIR) spectrum and 
the specific index of plant productivity in question, 
such as tree ring increment (Eitel et  al.,  2020). The 
vast majority of such studies use regression analyses 
to parameterize the relationship between the target 
variable and the remote sensing observations (Lu 
et  al.,  2015; Powell et  al.,  2010; Rodríguez-Veiga 
et al., 2019). In most cases, when long time series of 
satellite data are investigated, the Normalized Dif-
ference Vegetation Index (NDVI) serves as a proxy 
variable (Eckert et al., 2015; Fensholt & Proud, 2012; 
Ivanova et  al.,  2021; Testa et  al.,  2018). The NDVI 

is calculated as the ratio between the difference and 
the sum of the spectral reflectance in the red and near-
infrared region (Rouse et al., 1974).

Combining temporal series of ground-measured 
tree-ring and remote-sensing data enables the gen-
eration of a data pool for the assessment of the spa-
tial and temporal variability in forest productivity 
for the last four decades since operational satellite 
earth observations became available. Several stud-
ies exist that have demonstrated the potential of sat-
ellite remote sensing time series for tree productiv-
ity monitoring. Bunn et  al. (2013) used time series 
of bi-weekly NDVI data for the estimation of tree 
growth and revealed best correlations for July NDVI 
data together with the first principal component of 
tree-ring data from different sites of the Siberian 
taiga. Comparable results were reported from juni-
per woodlands of the Tibetan Plateau by He and 
Shao (2006) who also used the first principal com-
ponent of the tree-ring data together with NDVI time 
series. Kaufmann et al. (2004) and Xu et al. (2019) 
underlined the importance of the summer greenness 
of the canopy (June/July) for the prediction of TRW. 
D’Arrigo et  al. (2000) and Wang et  al. (2004) also 
highlighted the potential of satellite-time series for 
the prediction of forest productivity. However, not 
all studies confirmed a general positive relationship 
between dendrochronological sampling and annual 
or seasonal NDVI composites. A recent study by 
Brehaut and Danby pointed out that relations are 
inconsistent and might be a function of forest type 
and also be affected by climatic variables (Brehaut & 
Danby, 2018).

All mentioned studies have in common that they 
were based on data from coarse spatial resolution sen-
sors (e.g. AVHRR, MODIS) and cannot account for 
small-scaled land-cover patches and landscape het-
erogeneity. Due to this limitation in resolution and the 
highly fragmented forests in Central Asia, some stud-
ies used NDVI time series over larger grassland areas 
as a proxy for forest productivity (He & Shao, 2006). 
Only few and recent studies made use of the poten-
tial of higher spatial resolution time series available 
from the Landsat missions for mapping spatial and 
temporal variations in forest productivity (Liu, 2016). 
Coops et al. (1999) was the first to evaluate the poten-
tial of annual Landsat data stacks for the estimation of 
the annual increment of forest-stand volume. Powell 
et al. (2010) compared different regression techniques 
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to estimate biomass from time series of Landsat data. 
Main-Knorn et  al. (2013) and Thomas et  al. (2011) 
monitored forest disturbance and regrowth patterns 
from biennial time series stacks. The only study that 
used a multi-year series of Landsat for the estimation 
of tree ring width so far was published by Sangüesa-
Barreda et  al. (2014). They used single Landsat-5 
images for 15 irregularly distributed years within a 
25-year span to monitor the consequences of insect 
outbreaks on the annual increment of the stand basal 
area in Mediterranean pine forests. A major issue 
with such approaches is the proper determination of 
a consistent time of the year when dealing with long 
annual time series. All known studies that are related 
to predicting forest productivity from Landsat time 
series only manually selected the optimal annual 
acquisition based on quality criteria (cloud coverage, 
peak of growing season) and only made use of a sin-
gle sensor.

In the present study, we investigated the applica-
bility of Landsat-based growing season NDVI time 
series as a proxy of TRW of Siberian larch (Larix 
sibirica) at the southern border of the boreal for-
ests in Mongolia. Landsat data covered a range of 
32  years from 1986 to 2017. In addition to exist- 
ing studies, we used data from a full dense Landsat  
time series (LTS) of all available acquisitions from 
the Landsat-sensors Landsat-5/TM, Landsat-7/
ETM+, and Landsat-8/OLI. We computed annual-
monthly metrics of NDVI data for the growing sea-
son over all sensors as a proxy for tree productiv- 
ity. Besides the evaluation of the technical potential 
of the LTS, the central hypothesis of the study was 
that vegetation greenness is a function of tree ring 
width, and hence, NDVI LTS are able to capture  
temporal anomalies and trends in forest productivity  
due to climate variations. Based on the findings of 
Khansaritoreh et  al. (2017) that the forest-steppe 
occurs in a dominantly drought-limited environment, 
our main hypothesis referred to the general assump-
tion that long time series of high-resolution satellite 
data indicate the temporal variations in vegetation 
greenness that are related to climate variations. Fur-
thermore, we postulated that the spatial patterns of 
those trends are related to forest fragmentation, i.e. 
that the reduction of forest areas (i.e. the forest-to-
grassland ratio) has an impact on the vulnerability to 
climate variations and thus tree productivity. Further, 

it was tested, if steppe-grassland areas surrounding 
the forest stands can serve as a proxy for the moni-
toring of tree growth when the resolution of the sat-
ellite data and the size of the forest patches is not 
large enough for the analysis of homogeneous areas.

Material and methods

The study area is located at the northern slope of the 
Khangai Mountains near the city of Tosontsengel in 
central Mongolia (98°16′E/48°46′N) about 600 km to 
the west of Ulan Bator (Fig. 1). The high continental 
climate of the region is reflected by cold and semi-
arid conditions. The monthly mean temperatures 
at Tosontsengel range between −  31.7  °C in Janu-
ary and 14.7 °C in July (National Agency for Mete-
orology and Environment Monitoring of Mongolia, 
Ulan Bator). The main precipitation occurs during 
the summer season and is related to the circulation 
of the westerlies (Batima et al., 2005). Summer pre-
cipitation is subject to high inter-annual variations 
(Fig.  2), making the area vulnerable to droughts. In 
contrast, the Siberian High during the winter season 
produces mostly dry conditions. The area is part of 
the southern boreal forests of Mongolia with altitudes 
ranging from 1600 to 2500 m a.s.l. Forest stands are 
strongly dominated by Siberian larch (Larix sibirica) 
and occur mainly on northern slopes whereas grass-
land steppe is found on the southern slopes (Hilbig, 
1995; Treter, 1996). The major factors limiting tree 
growth are the shortage of precipitation (< 300 mm/a) 
together with high evapotranspiration as a function of 
incoming solar radiation and terrain parameters (Hais 
et al., 2016; Schlütz et al., 2008). Forest stands in the 
study area show considerable impact from industrial 
timber harvest activities in the second half of the 
twentieth century until 1990. After the end of the 
socialistic period in Mongolia, activities changed to 
predominantly unsystematic selective logging by the 
rural population (Nyamjav et  al.,  2007). Today, the 
forest-steppe area is home to mobile pastoralists, who 
keep mixed herds of sheep, goats, cattle, yak, and 
horses on common pastures. Livestock is not much 
herded and animals preferentially graze on grassland, 
but also move into the forests along the edges and fur-
ther into the interior, when the forest islands are small 
(Lkhagvadorj et al., 2013).
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Field data

Field data of wood cores were taken in August 2014 
in monospecific L. sibirica forest stands in sub-plots 
of 20 × 20 m size (Khansaritoreh et al., 2017). Wood 
cores from all L. sibirica trees (1755 individuals) 
with a stem diameter of ≥ 3  cm were collected at 
breast height (1.3 m above the ground) using an incre-
ment borer with an inner diameter of 5 mm. From the 
wood cores, the tree ring width was measured to an 
accuracy of 10 µm using a Lintab 5 measuring system 
(Rinntech, Heidelberg, Germany). All sampled trees 
were classified into four age classes including “very 
old trees” (> 160 years), “old trees” (101–160 years), 

“middle-aged trees” (61–100  years) and “young 
trees” (≤ 60  years). The forest stands were selected 
by a stratified random sampling approach in the 
core areas of forests (i.e. avoiding a 30 m forest edge 
buffer). Stratification was based on a supervised clas-
sification between forest and non-forest area (Land-
sat 8 OLT/TIRS of September 19, 2013). All forest 
patches were subsequently classified into four dif-
ferent size classes (1: < 0.1  km2; 2: 0.1–1.0  km2; 3: 
> 1.0–5.0 km2; 4: > 5.0 km2) that serve as a proxy for 
forest fragmentation. Based on the forest-to-grassland 
ratio, we distinguished between grassland-dominated 
(G) and forest-dominated (F) sub-regions. Forest 
patches in the grassland-dominated subregion mostly 

Fig. 1   Study area near Tosontsengel, Mongolia with clusters 
of forest stands of different size (increasing from F1/G1 to F4) 
in subregions with high (F1–F4, south-eastern part of the study 
area) or low (G1, north-western part) forest-to-grassland ratio. 
The red points indicate the plot positions and the first digit 

defines the patch size class, whereas the second digit num-
bers the replica. The small rectangle in the overview map (top 
right) shows the location of the study area (main map). The 
rectangle in the main map shows the position of the detailed 
map (bottom left)
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consisted of the smallest patch size class (G1). For 
each patch class (F1 to F4; G1), three replica were 
sampled. In each forest stand, two independent nearby 
sub-plots of 20 × 20 m were sampled. For this study, 
the data from the sub-plots were aggregated at the 
stand level. This yielded a total of 15 forest plots dis-
tributed over the study area (Fig. 1) that were investi-
gated for the impact of patch size and isolation on the 
forest productivity.

Satellite data

Landsat data were collected from U.S. Geologi-
cal Survey (USGS) Earth Resources Observation 
and Science (EROS) Center from the Landsat sen-
sors Thematic Mapper (TM), Enhanced Thematic 
Mapper + (ETM+), and Operational Land Imager 
(OLI) at a 30-m spatial resolution (U.S. Geological 
Survey, Earth Resources Observation and Science 
Center, 2012a, 2012b; U.S. Geological Survey, Earth 

Resources Observation Science Center,  2014). The 
“Collection 1 Level-2” scenes are processed to surface 
reflectance. Landsat-8 OLI surface reflectance data are 
computed using the Landsat Surface Reflectance Code 
(LaSRC). Landsat 5 TM and Landsat 7 ETM+ surface 
reflectance are generated using the Landsat Ecosystem 
Disturbance Adaptive Processing System (LEDAPS) 
algorithm. Both algorithms make use of the Moderate 
Resolution Imaging Spectroradiometer (MODIS) for 
the estimation of climate and atmospheric parameters 
but build on two different radiative transfer models to 
retrieve surface reflectance. LaSRC in addition uses 
the coastal aerosol spectral band from Landsat-8 OLI 
to perform aerosol inversion as input for the radiative 
transfer modelling. Details about the processing of the 
surface reflectance for the three sensors can be found 
in the respective product guides (U.S. Geological Sur-
vey, 2019a, 2019b). The output from the two process-
ing systems is a compilation of all spectral bands in 
the solar reflectance domain (Bands 1–5 and 7 for 
Landsat 5 TM and Landsat 7 ETM+; Bands 2–7, 9 for 

Fig. 2   Variation of monthly precipitation during the sum-
mertime in the study area from 1986 to 2014 (daily data for 
Tosontsengel, aggregated to monthly sums and cumulated for 

the period May to August). Climate data were obtained from 
the National Agency for Meteorology and Environment Moni-
toring of Mongolia, Ulan Bator
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Landsat 8 OLI) together with a pixel quality assess-
ment layer (“pixel_qa”) that stores a bit index that 
later is used for cloud masking in the LTS process-
ing. It should be noted that, depending on the surface 
reflectance processing algorithm, this bit index stores 
different values for clear pixels. On demand, the pro-
cessor also delivers a collection of ready to use veg-
etation indices like the NDVI and others.

For the purpose of time-series analysis, only 
highest quality data with a root mean square error 
of less than or equal to 12 m in geometric accuracy 
(referred to as “Tier 1” Landsat data) were used in 
the present study according to the recommendations 
of the U.S. Geological Survey (U.S. Geological 
Survey, 2019c). All Landsat scenes (path 137/row 
26) from beginning of April until end of September 
were selected for the 31-year time period 1986 to 
2017, from which at least a subset of 20 years was 

used (see below). This resulted in an overall collec-
tion of 216 scenes from the TM sensor, 123 from 
ETM+, and 55 from OLI. An overview of all Land-
sat data for this study is given in Fig. 3.

Data analysis

The collection of Landsat satellite data for the study 
area was processed to a time series layer stack of 
NDVI images. First, the NDVI was computed 
for every single Landsat scene based on the well-
known ratio of high absorption in the Red and high 
reflectance of incoming solar radiation in the NIR 
part of the electromagnetic spectrum as an indicator 
for “green” vegetation and vegetation productivity 
(Tucker, 1979):

Fig. 3   Summary of all available Landsat satellite imagery 
for the study area between 1986 and 2017 (Landsat path 137/
row 26; colour of the bars shows the three Landsat systems, 

red = Landsat-5 TM, green = Landsat 7 ETM+, blue = Landsat 
8 OLI; opacity of the bars indicates amount of cloud coverage)



Environ Monit Assess         (2021) 193:200 	

1 3

Page 7 of 18    200 

Cloud, cloud-shadow, snow, and ice-affected pix-
els were masked for each NDVI layer based on the 
pixel quality assessment layer of the respective Land-
sat acquisition. Differences in reflectance wavelength 
and hence, NDVI, between the OLI and the other two 
sensors have been observed for stable land surface 
targets. These differences are a result of the improved 
calibration, radiometric, and spectral resolution of 
the OLI sensor. In order to produce a consistent LTS, 
we accounted for this issue based on ordinary least 
square (OLS) regression transformations of the NDVI 
from Landsat 8 OLI to Landsat 7 ETM+ and Landsat 
5 TM that are suggested by Roy et al. (2016).

After masking and transformation, the Landsat 
NDVI data were aggregated using a maximum value 
compositing (MVC) approach (Holben, 1986) for all 
data that were acquired within the long-term growing 
season between mid of May and mid of September 
for every single year. The MVC approach selects for 
every pixel the maximum NDVI value from a satellite 
dataset recorded during the growing season of 1 year. 
Therefore, these aggregated annual values are referred 
to as the “maximum growing season NDVI (MGS-
NDVI)” in this study. Data availability within the 
compositing period may produce a bias in the MGS-
NDVI when only few images are available. Further, 
strong rainfall during the summer months around the 
peak of growing season may introduce artefacts in the 
composited seasonal NDVI time series. E.g., during 
1992 and 1994, climate records show extreme precip-
itation sums during the summer months (especially in 
July, see Fig. 2). These issues restricted the process-
ing of the MGS-NDVI to a minimum of three cloud 
free observations (at the pixel level) per season. As 
a consequence, considerable parts of the study area 
were masked out, especially for the first 10 years of 
the Landsat collection where only Landsat-5 images 
are available and at irregular temporal intervals with 
a considerable lack of data at the peak of the grow-
ing season where NDVI is at its maximum (Fig. 3). 
Thus, the final time series included only the years 
from 1995 to 2017. With regard to the availability of 
the tree ring data, only the period from 1995 to 2014 
could be evaluated.

The two-time series of annual data (TRW and MGS-
NDVI) from 1995 to 2014 were finally corrected for 

NDVI =
NIR − Red

NIR + Red

seasonal effects and adjusted to a comparable data 
range by computing the standardized anomalies:

where μMGS-NDVI is the mean value of the MGS-
NDVI observations in the time period 1995 to 2014 
and σMGS-NDVI is its standard deviation. The stand-
ardized anomalies of TRW are calculated as TRW​a, 
respectively.

The analysis concept of the relations between 
MGS-NDVIa and TRW​a built on a correlation analy-
sis at the level of the sub-categories (F1-F4; G1) that 
are defined above. The relationships were investigated 
for every single forest plot (with n = no. of available 
years) and for the mean values of the standardized 
anomalies across the three forest plots within each 
patch size category (F1-F4, G1). Further, the TRW 
data were separated by tree-age class and the MGS-
NDVIa-TRW​a relationship was analyzed at the level 
of age classes. The general idea behind these strati-
fications was that the tree productivity and hence, the 
NDVI, is affected by the forest patch size and shows 
differences even within a patch size depending on the 
age of the trees as has been reported by Khansaritoreh 
et  al. (2017). Further, it is assumed from previous 
work that variations in tree productivity are related to 
variations in climate (Dulamsuren et al., 2010, 2011; 
Khansaritoreh et  al.,  2018). Based on this rationale, 
the hypotheses that are stated in the introduction were 
tested at the plot level. Mean seasonal MVC NDVI 
anomalies were extracted for the plot coordinate and 
the surrounding 3 × 3 pixel neighbourhood in order to 
ensure that all pixels that contribute to the 20 × 20 m 
plots are covered. With regard to the hypothesis that 
grassland NDVI can serve as a proxy for the moni-
toring of tree productivity (He & Shao, 2006), every 
forest plot was assigned a corresponding grassland 
plot. The grassland plots were determined by calcu-
lating the shortest distance from the forest plot to the 
forest border and then measuring a distance of 100 m 
perpendicular to the forest border outside the forest. 
Only unmanaged grassland sites were selected.

Statistical analysis was executed with IBM SPSS 
Statistics 26.0 and R (4.0.3-1). All statistical analy-
sis was carried out at the level of the 15 plots for the 
20-year time period. The statistical results based on 
the calculation of the Pearson correlation coefficient 

MGSNDVI
a
=

MGS NDVI − �
MGSNDVI

�
MGSNDVI
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r in order to be able not only to evaluate the strength 
but also the direction of the relations between NDVI 
and TRW data. The overall significance of the linear 
models was estimated from an F test and the definition 
of critical p values at 99%, 95% and 90% significance 
level. The results of the statistical analysis were used as 
input for spatial modelling of annual standardized TRW 
anomalies for the entire study area. Temporal autocor-
relation in the TRW as well as in the NDVI time series 
observations was tested with the autocorrelation func-
tion as described in Venables and Ripley (2011).

Results

Landsat time series of maximum growing season 
NDVI and climate variability

The MGS-NDVIa followed the variations in climate 
conditions for the studied time period of 1995 to 2014 
(Table  1). Higher precipitation during the summer 

(May–August) was associated to higher NDVI val-
ues of the growing season. This correlation could be 
observed at the plot level for the majority of the 15 
forest plots. The highest number of significant rela-
tions was found for June precipitation of the same 
year and seasonal NDVI. Further, the precipitation of 
the year prior to the NDVI measurement also was cor-
related with vegetation greenness in terms of NDVI. 
Here, the significant relations could be observed for 
the months July and August (Table 1).

The temporal profile of the MGS-NDVIa for the 
studied time period appeared to reflect these varia-
tions quite similarly for the different patch sizes and 
the separation by grassland- and forest-dominated 
landscapes (Fig. 4). The general behaviour was simi-
lar for all classes with negative standardized anoma-
lies for periods that are linked to years of low summer 
precipitation (compare with Fig. 2). For single years 
(e.g. 2012), small forest patches (F1/G1) showed 
higher anomalies compared with the larger patches 
(F2 to F4).

Table 1   Response of 
maximum growing season 
NDVI (MGS-NDVIa) to 
precipitation standardized 
anomalies of the same 
year and the previous year 
(period of analysis: 1995–
2014). F = forest-dominated 
area, G = steppe-dominated 
area. The first digit defines 
the forest-patch size, 
whereas the second digit 
numbers the single replicas. 
Plots without second digits 
represent the summarized 
classes

▲ significant positive 
(p < 0.05)
▼ significant negative 
(p < 0.05)
Δ marginally significant 
positive (p < 0.1)

Precipitation

Current year Previous year

Plot May Jun Jul Aug May Jun Jul Aug

F11 Δ
F12 ▲ ▲
F13 Δ ▲
F21 Δ Δ
F22 ▲
F23 Δ ▲
F31 Δ Δ
F32 ▲
F33 ▲ ▲ ▲
F41 Δ Δ Δ
F42 ▲ Δ
F43 Δ Δ
G11 Δ Δ
G12 ▼ ▲
G13 ▲
F1 Δ Δ
F2 Δ Δ
F3 ▲ Δ
F1-F3 ▲ Δ
F4 Δ ▲
G1



Environ Monit Assess         (2021) 193:200 	

1 3

Page 9 of 18    200 

Landsat time series of maximum growing season 
NDVI and tree ring width

The interannual variability of the MGS-NDVIa 
showed overall significant correlations with TRW​a 
(Table 2). The relation between NDVI and TRW was 
always positive, i.e. positive standardized anomalies 
of NDVI were associated with positive anomalies of 
TRW. Temporal autocorrelation of annual NDVI and 
TRW observations could be neglected based on the 
results from the autocorrelation-function test (Fig. 5). 
Graph (a) in Fig. 5 shows the autocorrelation between 
TRW of the year under investigation and the previ-
ous years (t-1 and t-2). High values indicate a strong 
effect of the past on the current year. It is obvious 
that past year’s (t-1) TRW has an effect on produc-
tivity of trees in the current year. This is in line with 
other studies that revealed a spill-over effect of grow-
ing conditions of the previous year on current produc-
tivity (Babushkina & Belokopytova, 2014; Vaganov 
et  al.,  2009). In contrast to the TRW time series, in 
general, no effect of past NDVI observations on the 
current year could be found. This is mainly a conse-
quence of the annual aggregation of the NDVI data 
that eliminates the seasonal cycle and the inher-
ent correlation structure of seasonal data (Forkel 
et al., 2013) and thus enables a regression analysis on 
the annual level. Only NDVI of large forest patches 

(F4) indicated an effect of the past on the current 
year. This can be due to the stable microclimate of 
large forest patches that is less effected by climate 
variability. Annual NDVI values of grassland showed 
no overall temporal autocorrelation.

Significant correlations (p ≤ 0.05) between MGS-
NDVIa and TRW​a were found for the majority of for-
est plots over all age classes as well as for the mean of 
all trees within a plot and therefore also independent  
of forest-patch size (Table  2). Only two plots (F11, 
F41) did not show any significant relationships, at 
neither of the three investigated levels. The highest 
share of highly significant correlations was found 
for the age class “old trees” (O). Note that the results 
for young trees (Y) are less robust for interpretation 
across plots due to missing data in almost 50% of the 
plots. The introduction of a 1-year lag in the NDVI-
TRW relationship reduced the overall significance 
of the correlations considerably. Then, significant 
relations (p ≤ 0.05) were only found for small forest 
patches in grassland-dominated landscapes (G1).

Based on the significant relations between MGS-
NDVIa and TRW​a, the slope of the linear regression of 
TRW from NDVI was further investigated (Fig. 6). The 
underlying assumption that the forest patch size and 
forest-grassland ratio have an impact on the slope of the 
regression line was not confirmed. The slopes are not 
notably different for the different forest-patch size classes.

Fig. 4   Temporal profile 
of standardized maximum 
growing season NDVI 
anomalies (MGS-NDVIa) 
for the reference period 
1995 to 2014 grouped by 
patch size (F1, F2-F4) and 
forest-to-grassland ratio 
(F, G)
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Grassland NDVI as a proxy for tree productivity

With regard to the hypothesis that steppe-grassland 
NDVI can be used as a proxy for forest NDVI in the 
assessment of anomalies and trends in forest produc-
tivity, significant correlation between MGS-NDVIa 
of the steppe and TRW​a could be found for all patch-
size classes except F4 (Table  3, Fig.  7a). However, 
the significance levels were generally lower compared 
with the use of forest NDVI. In many cases, at patch 
class level and at plot level, no significant relation 
was observed. The largest forest patches (F4) showed 
weak correlations and no significance at all. Accord-
ingly, the correlation analysis between grassland and 
forest MGS-NDVIa revealed highly statistically sig-
nificant relations (p ≤ 0.01) at all forest-patch size 

classes except for F4 (p ≤ 0.05) (Fig. 7b). Here again, 
the slopes of the linear regression functions for the 
patch-size classes (F1-F3, G1) are not statistically dif-
ferent, whereas MGS-NDVIa and TWR​a of the largest 
patch size class F4 are completely uncorrelated.

A closer look at the temporal signatures of grass-
land and forest NDVI anomalies (Fig.  8) confirms 
the generally uniform behaviour of the two time 
series for small forest patches (F1, G1). However, 
it can also be seen that the general response of for-
est NDVI in some years is different from grassland 
NDVI, especially in large forest patches and their 
surroundings (F4). The large discrepancies between 
forest and steppe NDVI anomalies become obvious, 
especially in drought years, which is exemplarily 
shown in Fig. 9.

Table 2   Results of the correlation analysis between standardized maximum growing season NDVI anomalies (MGS-NDVIa) and 
standardized anomalies of the tree-ring width (TRW​a) for different forest-patch size classes and tree age classes

 +  +  + Correlation highly significant (p ≤ 0.01), positive
 +  + Correlation significant (p ≤ 0.05), positive
+ Correlation marginally significant (p ≤ 0.1), positive
n.s no significant correlation
“-” no tree ring data

Tree age class

Patch size class/
plot

Y (≤ 60 years) M (61–100 years) O (101–160 years) vO (> 160 years) Mean

F11 - - 0.33n.s 0.40 +  0.37n.s
F12 - 0.66 +  +  +  0.49 +  +  0.64 +  +  +  0.60 +  +  + 
F13 - 0.69 +  +  +  0.78 +  +  +  0.82 +  +  +  0.76 +  +  + 
F1 - 0.58 +  +  +  0.56 +  +  0.65 +  +  +  0.61 +  +  + 
F21 0.41 +  0.48 +  +  0.61 +  +  +  0.63 +  +  +  0.58 +  + 
F22 - 0.40 +  0.70 +  +  +  0.71 +  +  +  0.69 +  +  + 
F23 - 0.77 +  +  +  0.85 +  +  +  0.86 +  +  +  0.84 +  +  + 
F2 0.53 +  +  0.74 +  +  +  0.82 +  +  +  0.82 +  +  +  0.81 +  +  + 
F31 0.67 +  +  +  0.68 +  +  +  0.64 +  +  +  0.73 +  +  +  0.74 +  +  + 
F32 - 0.27n.s 0.75 +  +  +  0.59 +  +  +  0.58 +  + 
F33 0.52 +  +  0.65 +  +  +  0.53 +  +  0.61 +  +  +  0.60 +  +  + 
F3 0.69 +  +  +  0.68 +  +  +  0.77 +  +  +  0.76 +  +  +  0.75 +  +  + 
F41 − 0.03n.s − 0.23n.s − 0.11n.s 0.03n.s − 0.08n.s
F42 0.73 +  +  +  0.73 +  +  +  0.76 +  +  +  0.72 +  +  +  0.75 +  +  + 
F43 0.50 +  +  0.55 +  +  0.57 +  +  0.62 +  +  +  0.57 +  + 
F4 0.58 +  +  0.70 +  +  +  0.64 +  +  +  0.69 +  +  +  0.66 +  +  + 
G11 0.64 +  +  +  0.61 +  +  +  0.68 +  +  +  0.60 +  +  +  0.70 +  +  + 
G12 0.66 +  +  +  0.67 +  +  +  0.64 +  +  +  0.47 +  +  0.66 +  +  + 
G13 - − 0.20n.s 0.54 +  +  0.55 +  +  0.42 + 
G1 0.67 +  +  +  0.54 +  +  0.69 +  +  +  0.63 +  +  +  0.66 +  +  + 
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Discussion

We used a compilation of dendrochronological 
records from 15 plots of Siberian larch in the south-
ern boreal forests of Mongolia together with a dense 
time series of Landsat satellite images for 20 years to 
investigate the relations between annual radial stem 

increment and maximum NDVI composites of the 
growing season. The study concept followed the evi-
dence from previous literature about the general simi-
larity of temporal patterns from NDVI as an indicator 
of vegetation greenness and tree-ring width (TRW) as 
a proxy of biomass accumulation. Hence, both signals 
represent the vegetation vitality and can indicate vari-
ations in forest productivity (Kaufmann et al., 2004; 
D’Arrigo et al., 2000). Our results confirmed the cor-
relations of NDVI to annual variations in climate dur-
ing the growing season and thus TRW for the moun-
tainous forests in the study area.

The seasonal maximum of vegetation greening in 
terms of NDVI is closely linked to the precipitation 
in the summertime (most frequently in June) of the 
corresponding year of observation. Late summer and 
spring rainfall did not affect the maximum growing 
season NDVI. This is in accordance with other stud-
ies (Bumann, 2017; Kaufmann et al., 2004) that also 
reported a close relation of growing-season precipi-
tation to the maximum of NDVI. On the other hand, 
He and Shao (2006) did not reveal any significant 
relations for Qilian juniper stands in central China. 
In comparison with the NDVI-precipitation relation-
ship, Khansaritoreh et al. (2017) pointed out that the 
TRW-precipitation relationship is more correlated by 
applying a 1-year time lag between summer precipita-
tion and TRW. Nevertheless, like other authors, they 
found significant precipitation-TRW relationships for 
both the current and previous year summer months 

Fig. 5   Results of the temporal autocorrelation test. Autocorre-
lation of annual TRW anomalies a, autocorrelation of annual 
NDVI anomalies over forest b, and autocorrelation of annual 
NDVI anomalies over associated grassland plots c. The X-axis 

displays the time lag in years between two observations; the 
Y-axis shows the value of the autocorrelation function. Values 
below 0.50 indicate no autocorrelation between the observa-
tions

Fig. 6   Relationship between standardized maximum-growing 
season NDVI anomalies (MGS-NDVIa) and standardized tree-
ring width anomalies (TRW​a) for different forest-patch size 
classes (grey lines) and overall correlation for all plot types 
(black dashed line). Reference period is 1995 to 2014
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(Bumann, 2017; Khansaritoreh et  al.,  2017). In 
accordance with these findings, we could show both a 
relation between NDVI and precipitation of the same 
year as well as a weaker but still significant relation 
for NDVI and previous year July precipitation.

In opposite to our finding of significant correla-
tion of data from the same year, Wang et  al. (2004) 
reported a 1-year lag in the correlation between NDVI 
and TRW for oak forests in North America. The maxi-
mum growing season NDVI was found to be a valu-
able indicator of tree productivity, whereas the sizes of 
the forest patches and the landscape type (grassland vs. 
forest dominated landscapes) did not have an impact 
on the NDVI-TRW relationship. The general relation-
ship between NDVI and TRW was reported by other 
authors, too (Bumann, 2017; Coops et  al.,  1999; He 
& Shao, 2006). Further, Khansaritoreh et  al. (2017) 
found that TRW in small forests compared to larger 
forests correlated more with climatic variability, sug-
gesting that small stands show a higher variability also 
in NDVI. Indeed, small stands showed higher ampli-
tudes of NDVI over the observed time period in both 

forest-dominated and grassland-dominated forest-
steppe areas (Fig. 4). Dulamsuren et al. (2019) reported 
that the humus content of the organic layer, which 
improves the moisture availability, increased simulta-
neously with forest stand size. In addition, Klinge et al. 
(2021) have shown that permafrost is promoted by 
a thick organic layer and permafrost is mostly absent 
in small forest stands. The authors stated that perma-
frost supports soil-moisture conditions, which influ-
ences tree growth in the forest-steppe. This geoeco-
logical factor decreases drought stress in large forest 
stands, whereas small fragmented forest patches are 
subjected more to climate variability. Nevertheless, 
this increased climate sensitivity of TRW and NDVI in 
small forest stands did not obliterate the general cor-
relation between the two variables across all studied 
forest stands.

Due to data quality issues and availability in the 
early years of Landsat 5 TM, the time series in our 
study had to be reduced from 31 to 20 years of over-
lapping dendrochronological records and annual 
NDVI composites. This is in line with the majority 

Table 3   Results of the 
correlation analysis 
between standardized 
maximum growing season 
NDVI anomalies (MGS-
NDVIa) and standardized 
anomalies of the tree-ring 
width (TRWa) for different 
forest-patch size classes 
and tree age classes. NDVI 
anomalies refer to the 
corresponding grassland 
plot at the forest border of 
the respective patch

+++ Correlation highly 
significant (p ≤ 0.01), 
positive
++ Correlation significant 
(p ≤ 0.05), positive
+ Correlation marginally 
significant (p ≤ 0.1), 
positive
n.s no significant 
correlation
“-” no tree ring data

Tree age class

Patch size 
class/plot

Y (≤ 60 years) M (61–
100 years)

O (101–
160 years)

vO (> 60 years) Mean

F11 - - 0.41+ 0.47++ 0.45++
F12 - 0.48++ 0.31n.s 0.49++ 0.44+
F13 - 0.44+ 0.51++ 0.58++ 0.51++
F1 - 0.48++ 0.47++ 0.57+++ 0.52++
F21 0.06n.s 0.04n.s 0.16n.s 0.22n.s 0.15n.s
F22 - 0.18n.s 0.48++ 0.49++ 0.45+
F23 - 0.46++ 0.58++ 0.59++ 0.55++
F2 0.23n.s 0.39n.s 0.53++ 0.56++ 0.51++
F31 0.61+++ 0.66++ 0.46++ 0.46++ 0.58++
F32 - 0.37n.s 0.55++ 0.43+ 0.43+
F33 0.19n.s 0.39n.s 0.30n.s 0.20n.s 0.28n.s
F3 0.46+ 0.43+ 0.51++ 0.46+ 0.48++
F41 − 0.23n.s − 0.02n.s − 0.24n.s − 0.29n.s − 0.23n.s
F42 0.12n.s 0.09n.s 0.13n.s 0.18n.s 0.12n.s
F43 − 0.15n.s − 0.16n.s − 0.01n.s − 0.13n.s − 0.13n.s
F4 − 0.15n.s − 0.08n.s − 0.13n.s − 0.18n.s − 0.14n.s
G11 0.43+ 0.42+ 0.53++ 0.45++ 0.50++
G12 0.69+++ 0.64+++ 0.55++ 0.41+ 0.61+++
G13 - − 0.35n.s 0.31n.s 0.37n.s 0.19n.s
G1 0.59+++ 0.43+ 0.54++ 0.47++ 0.53 ++
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of comparable studies that investigated the sensitiv-
ity of NDVI time series to tree productivity based 
on dendrochronology (D’Arrigo et  al.,  2000; Bunn 
et  al.,  2013; Wang et  al.,  2004; Vicente-Serrano 
et  al.,  2016; Kaufmann et  al.,  2004; Brehaut &  
Danby, 2018). The major drawback of the Landsat- 
based studies is that they were solely based on 

single acquisitions that represent a full growing sea-
son (Coops et  al.,  1999) or on data from a single 
sensor, e.g. Landsat 5 TM (Bumann, 2017). This 
constraint and also the usage of pre-composited 
products limited the proper delineation of the maxi-
mum of growing season NDVI in the earlier stud-
ies. Kaufmann et al. (2004) underlined that only the 

Fig. 7   Relationship between standardized maximum-growing 
season NDVI anomalies (MGS-NDVIa) of grassland plots 
and standardized tree-ring width anomalies (TRW​a) for cor-
responding forest-patches a  and relationship between MGS-

NDVIa of forest patch and corresponding grassland plots b for 
different patch size classes (grey lines) and the overall correla-
tion (black dashed line). Reference period is 1995 to 2014

Fig. 8   Standardized maxi-
mum-growing season NDVI 
anomalies (MGS-NDVIa) 
for forest-patch size classes 
(F1, F4, G1) compared with 
corresponding steppe plots 
(F1_S, F4_S, G1_S) (refer-
ence period 1995 to 2014)
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summer peak in NDVI represents the physiological 
status of the forest stand. Thus, the approach in the 
present study used the full archive of Landsat data 
for the delineation of the seasonal maximum NDVI 
as a proxy for tree productivity. The highly signifi-
cant results of the correlation analysis confirmed the 
adequacy of this approach. However, the mentioned 
issues in the MVC processing for the first 10  years 
of the time series also reveal the still existing chal-
lenges for long time series of satellite data. Bunn 
et al. (2013) pointed to the fact that despite the major 

progress in satellite-time series availability and pro-
cessing, the major restriction of satellite-time series 
for monitoring tree physiology parameters still is the 
relatively short record compared with the variation 
of tree growth at decadal or even multi-decadal time 
scales. Despite this fact, the present study underlines 
the indisputable value of high-resolution dense time 
series for monitoring and retrospective modelling of 
tree productivity.

A major issue in the NDVI-TRW analysis in highly 
fragmented forest landscapes is that the forest patch 

Fig. 9   Spatial patterns of standardized anomalies of maximum growing season NDVI (MGS-NDVIa) for the year 2002. Outline 
shows the extend of forest patches, dots illustrate the location of the sample plots for the different forest patch classes
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size cannot always be covered and depicted accurately 
by the spatial resolution of the available satellite-time 
series. This is why in previous studies, grassland 
NDVI time series have been used as a proxy to moni-
tor temporal variations in tree productivity (Bumann, 
2017; He & Shao, 2006; Wang et  al.,  2004). This 
principle builds on the assumption that forests and 
grasslands grow under similar climatic conditions and  
presumes a similar response of different vegetation-
cover types on variations in those climate conditions 
(He & Shao, 2006). In this case, forest NDVI can be  
replaced by grassland NDVI in modelling productiv-
ity. In our study, we generally confirmed the over-
all significant relation between grassland and forest 
NDVI over the investigated time period. However, 
in some years, the overall spatial patterns of NDVI 
and thus TRW standardized anomalies show opposed 
responses of grassland and forest patches to climate  
conditions. For example, for the year 2002, we observed  
strong negative anomalies for steppe-grassland areas 
whereas the forest areas showed no deviation to the 
long-term mean (Fig. 9). This year was at the end of  
a long, severe drought with very low summer rainfall 
in the Khangai Mountains (compare Fig. 2). This dif-
ference is the result of the different life strategies of 
late-successional forests and grasslands in terms of 
stomatal regulation. Moreover, large forest patches 
show a higher resilience to climate extremes com-
pared to small, highly fragmented forest sites. For 
the specific site conditions in our study area, this can 
be linked to various environmental factors where the 
most obvious one is the strong association of for-
est occurrence with topography. Forest patches are 
mainly present on north-facing slopes where evapo-
transpiration is reduced compared to south-facing 
slopes, resulting in higher soil water availability and 
relative humidity that support tree growth (Klinge 
et al., 2018). During drought periods, soils in the for-
ested areas are favoured by canopy shading and are 
able to maintain necessary hydrological conditions 
over longer periods. The higher resilience of large 
forest patches compared to small patches in the study 
area is also associated to the permafrost distribution 
that modifies the soil hydrological regime in larger, 
closed forest stands (Klinge et al., 2018, 2021). Here, 
seasonal ice above the permafrost layer can compen-
sate the deficiency in drought years by accumulat-
ing soil water in moist years and releasing water to 
the tree roots in dry and warm periods (Sugimoto 

et al., 2002). Summarizing, the analysis of the grass-
land NDVI-TRW relationship shows a potential for 
monitoring tree productivity in highly fragmented 
grassland-steppe-forest landscapes. It also reveals 
that this relationship is not uniform but shows spa-
tial and temporal inconsistencies that are a function 
of complex, site-specific ecological parameters and 
processes. Thereby, the availability of higher spatial 
resolution satellite time series as exemplified in this 
study is a prerequisite to separate those effects.

Conclusions

Seasonal composites of NDVI data from a 20-year 
multi-sensor Landsat time series were tested for cor-
relations with dendrochronological tree ring growth 
of Siberian larch in the southern boreal forests of 
northern Mongolia. The analysis concept was based 
on the hypothesis that the general vegetation green-
ness is correlated with ecosystem productivity and 
thus productivity can be captured by satellite-based 
vegetation indices like the NDVI. Our results con-
firmed the general ability of NDVI time series to cap-
ture anomalies in forest productivity. We could also 
demonstrate that the nature of the relation between 
the NDVI signal and tree ring width is comparable 
for different forest types (e.g. age, patch size, forest-
steppe ratio). However, our analysis revealed that 
the NDVI of grasslands is less suitable as a proxy 
to monitor forest productivity due to the different 
response patterns of grasslands and forests to climate 
conditions. Our study should therefore contribute 
to a better understanding of long-term dynamics in 
forest-steppe ecosystems and their relation to climate 
change. Overall, the observed patterns and relations 
between satellite data time series and dendrochro-
nological records form the basis for a retrospective 
modelling of tree ring growth over larger areas and 
thus may provide a key parameter for global climate 
change and terrestrial carbon cycle studies as well as 
for the calibration of global carbon models.
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