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Abstract
Habitat models are widely used to explore past and predict future shifts in fish dis-
tribution. Our literature review reveals a widespread practice of using in situ data or 
data with the highest possible resolution to train fish habitat models. Using exam-
ples of six fish species at two life stages in the North Sea, we demonstrate that the 
choice of the data resolution is crucial for a model's performance. We matched fish 
abundance data from a 51-year long scientific survey at three spatial scales with en-
vironmental parameters at seven spatial scales, obtaining a total of 240 data sets. We 
varied the resolution used for model training and for model predictions and evalu-
ated model performance with various metrics on training and cross-validating data. 
Contrary to the common notion, training the model with low-resolution data gener-
ally improved the performance metrics when compared to models built upon in situ 
or high-resolution data. The optimal resolution for fish and environmental data was 
roughly twice the average distance between observations. Training the model with 
data of higher resolutions often yielded unrealistic fish multidecadal distributional 
shifts. In turn, best model predictions were achieved with data of higher resolution 
than the training data. We explain these results with scale-dependent ecological re-
sponses, subscale noise in the raw data, failure of interpolation to create information 
and failure to comply with the Nyquist–Shannon sampling theorem. This study shows 
that the choice of an appropriate spatial scale is crucial to correctly predict shifts in 
fish distribution under climate change.
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1  | INTRODUC TION

One of the core goals in ecology is to understand the spatial dis-
tribution of organisms in their physical environment, as well as 
to link changing habitat conditions and the thriving of popula-
tions. This understanding is crucial to explain currently observed 

and to predict future shifts in species distributions in terrestrial 
and marine ecosystems under a changing climate (e.g. Cheung 
et  al.,  2009; Parmesan & Yohe,  2003; Pecl et  al.,  2017; Pinsky 
et  al.,  2020; Root et  al.,  2003). Habitat or species distribution 
models are a widely used approach to study distributional shifts 
of organisms through analysing statistical relations between 
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species data and environmental parameters describing their 
habitat.

Species and environmental data used in a habitat model are often 
not taken simultaneously at the same geographical positions, and 
their native resolutions may considerably differ both in space and 
time. Matching such data, that is their transformation to a common 
grid, is an unavoidable step prior to the habitat model fitting (Guisan 
et al., 2017). Two matching methods can be used: upsampling (e.g. 
attempt of increasing the resolution of one or both data sets beyond 
their native resolution) and downsampling (e.g. reduction in the res-
olution of the fine data set to the resolution of the coarse data set, 
or of both data sets to an even coarser resolution).

The role of the matching scale for the performance of statisti-
cal habitat models, as well as the choice of the best scale, has been 
topics of debate over the last 20 years. Some authors have argued 
that using coarse data in habitat modelling might obscure the correct 
climate–species relationship (Guisan et al., 2017), reduce model per-
formance or accuracy (Dyer et al., 2013; Ferrier & Watson, 1997) and 
poorly predict the species’ distributional area (Seo et al., 2009). On 
the contrary, other modellers have claimed that coarse data produce 
better test statistics (Guisan et al., 2017; Luoto et al., 2007; Rahbek 
& Graves, 2001; Tobalske, 2002), whereas high-resolution data do 
not necessarily improve the model fit (Becker et  al., 2010; Guisan 
et al., 2007; Johnson et al., 2002; Mitchell et al., 2001; Núñez-Riboni 
et al., 2019; Redfern et al., 2008; Thuiller et al., 2005). A third group 
of authors did not favour one resolution over another but empha-
sized that the scale of the data aggregation in a habitat model should 
reflect the characteristic scale of the environmental and biological 
processes of interest (e.g. Bellier et al., 2010; Kärcher et al., 2019; de 
Knegt et al., 2010; Pearson et al., 2004; Redfern et al., 2006).

Yet, as to date, there have been only few attempts to quantify 
the effect of the data matching scale in a systematic way, although 
such studies could advise in the choice of the best options when 
setting up a habitat model. Furthermore, previously published hab-
itat models have largely ignored (with few exceptions like Thuiller 
et al., 2005) the possibility that the resolution of the data used to 
train or fit a habitat model (further on “training data set”) does not 
necessarily have to be the same as the resolution of the data used for 
habitat predictions (further on “predicting data set”).

To our best knowledge, the role of the scale in statistical habitat 
modelling has been mainly discussed in the terrestrial ecology (e.g. 
Elith & Leathwick, 2009), with fewer examples in the marine envi-
ronment (e.g. Becker et  al., 2010; França & Cabral, 2016; Redfern 
et al., 2008). However, there are several reasons to specifically study 
the effect of scale in marine ecosystems. Statistical habitat mod-
els are widely used in the marine environment (e.g. a review paper 
of Melo-Merino et  al.,  2020) to study a broad range of processes 
including climate-driven changes in species distribution. The field 
observations in marine realm are typically scarce with native data 
resolutions being up to two orders of magnitude coarser (Guisan 
et al., 2017) and data uncertainties being considerably larger (Elith 
& Leathwick, 2009) in comparison with the terrestrial environment. 
Furthermore, it has been claimed that species’ local extinction in 

marine realm due to climate change happens with at least the same 
(Webb & Mindel, 2015) or even higher rates than in terrestrial eco-
systems (Pinsky et al., 2019).

The importance of scale in the marine environment is widely ac-
knowledged and is intrinsically anchored on the geophysical nature 
of the ocean, where different mechanisms drive variability at differ-
ent spatial and temporal scales. For instance, tides and eddies exert 
their effects at scales of days and few tens of kilometres, while inter-
annual modes of variability like the North Atlantic Oscillation act at 
scales of several years and hundreds of kilometres (Stommel, 1963). 
Climate change affect oceanic ecosystems at even larger scales of 
centuries and thousands of kilometres (Dickey, 2003). The response 
of individual organisms and their entire populations to their environ-
ment is scale-dependent as well, and involves biological mechanisms 
(e.g. physiological response, behaviour, acclimatization and coloniza-
tion), which vary across a wide range of spatial and temporal scales 
(Wiens, 1989 and, e.g. figure 2 in Pinsky et al., 2020).

In the particular case of spatial distribution of marine fishes, 
some mechanisms can be important at relatively small spatial and 
temporal scales, like schooling, avoidance of fishing gear, direct 
prey–predator interactions, eddies and tides. Other processes drive 
fish distribution at larger and longer scales, like distribution of water 
masses with physiologically optimal properties, oceanic currents and 
geographical distribution of prey and predators (as opposed to their 
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likelihood of local encounter). This influence of scale could com-
pletely change the outcome of a fish habitat model depending on 
the resolution of the training data.

According to our review of 43 recently published fish habitat 
models, in situ environmental and in situ fish data are a common 
choice for training data sets (42% of the reviewed studies, Table 1). 
When in situ data are lacking, gridded environmental data (e.g. me-
teorological or oceanographic data products, hydrodynamic models 
and satellite data) are usually spatially interpolated over the posi-
tions of fish hauls or both fish and environmental data sets are up-
sampled to a resolution of the finer data set or even finer (44% of all 
studies). Only few reviewed studies (19%) apply downsampling. In 
further 14% of the studies, the data matching method is not clearly 
described and rather treated as an unimportant detail of the analysis.

In total, in situ data and upsampling were used in 86% of the stud-
ies, while addressing processes at a wide range of scale from seasonal 
variability to climate change (see “main focus” in Table 1). Therefore, 
our literature review points out a general practice of using the high-
est possible resolution in fish habitat modelling, independently of the 
scale of the investigated processes. Seemingly, many fishery scientists 
rely on the habitat model to disentangle the interrelation between 
scale and ecological response, independently of the scale of the input 
data. We argue here that this notion is unfounded, since to our knowl-
edge no previous study has systematically examined the role of the 
matching scale in fish habitat modelling or has demonstrated that in 
situ data outperforms gridded data in fish habitat models, particularly 
with a focus on large-scale distributional shifts due to climate change.

Our study aimed at demonstrating that matching of environmen-
tal and fish data is not an unimportant step in the model design but, 
on the contrary, choice of the correct matching scale is fundamen-
tal to unveil the correct relations between fish and environment, 
whereas the wrong scale can mask them. We followed an approach 
put forward by Guisan et al. (2007) and examined the effects of scale 
of both training and predicting data sets on the model performance. 
Our study builds on a few similar analyses (like those quoted above) 
and is, to our knowledge, the most comprehensive study of the ef-
fects of scale in habitat modelling in fishery science. In particular, 
we show how in situ and high-resolution data are, in comparison 
with coarse data, counterproductive as training data sets for studies 
about the influence of climate change on shifts of fish distribution: 
At this “climate scale” (i.e. time periods of several decades and spatial 
scales of several hundreds to thousands of kilometres), the detail 
provided by high-resolution data is not only unnecessary but even 
impairs model performance. We discuss our findings to the light of 
scale-dependent ecological response and signal processing theory.

2  | DATA AND METHODS

2.1 | Fish abundance and environmental data

Data of fish abundance (catch per unit effort; CPUE) were collected 
during the North Sea International Bottom Trawl Survey (NS-IBTS) 

in the first quarter (Q1) of each year over five decades (from 1967 
to 2017). The study area and an example of the data distribution are 
shown in Figure 1 (upper left insert). The data were obtained from 
the Database of Trawl Surveys (DATRAS, 2020) of the International 

TA B L E  1   Number and proportion (%) of 43 reviewed habitat 
modelling studies categorized by four criteria: (i) method used to 
match environmental and fish data; (ii) main focus of the study 
(targeted scales); (iii) environmental covariates included in the 
habitat model; and iv) type of model

Criteria/Categories

Method of matching 
environmental and biotic data Main focus

Number of 
studies (%)

In situ data Climate 7 (16)

Interannual 2 (5)

Seasonal 4 (9)

Other 5 (12)

Total 18 (42)

Downsampling Climate 5 (12)

Interannual 1 (2)

Seasonal 1 (2)

Other 1 (2)

Total 8 (19)

Upsampling Climate 8 (19)

Interannual 2 (5)

Seasonal 2 (5)

Other 7 (16)

Total 19 (44)

Not clearly described Climate 5 (12)

Interannual 0 (0)

Seasonal 0 (0)

Other 1 (2)

Total 6 (14)

Environmental covariates included in the analyses

Temperature 42 (98)

Depth 23 (53)

Salinity 11 (23)

Sediment type 5 (12)

Statistical method

Generalized additive models (GAM) 30 (70)

Generalized linear models (GLM) 13 (30)

Maximal Entropy (MaxEnt) 5 (12)

Random Forest (RF) 5 (12)

Note: The method categories “in situ data,” “upsampling” and 
“downsampling” are described in the text. The focus categories include 
“climate” (records of more than 20 years and/or climate projections), 
“interannual,” “seasonal” and “other” (studies aiming at understanding 
other aspects than the temporal variability like spatial patterns or model 
performance). Criteria and categories in the table are not mutually 
exclusive. See Section S1 in Supplement for further details.
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Council for the Exploration of the Sea (ICES). All roundfish areas, 
ships and gears were included. While we are aware of methodologi-
cal changes of the survey, which have occurred within this time frame 
(Annex 2 in ICES, 2015), we accounted for abundance variations over 
time due to natural or artificial reasons with a year-effect term in 
the habitat model (see Section 2.3 below). Q1 was chosen for being 
the fisheries survey with the longest uninterrupted time series in the 
North Sea and, thus, suitable also for climate studies. In contrast, the 
summer NS-IBTS started only in 1991 and data records shorter than 
four decades are inappropriate to detect the full climate signal in the 
North Sea (see for instance Henson et al., 2017, their Figure 1e). The 
NS-IBTS fisheries data were sampled following a grid of ICES rec-
tangles with a resolution of 0.5° latitude by 1° longitude, equalling 
roughly 30 x 30 nautical miles. In each of these grid cells, typically 
two fisheries hauls per survey season are performed at random posi-
tions. We chose the six most abundant demersal and benthopelagic 
fish species (Table 2) and modelled their abundance separately for 

two life stages, “juvenile” (immature fish) and “adults” (mature fish) 
based on their length (FishMap,  2006; Heessen et  al.,  2015). This 
yielded a total of 12 “Species at Life Stages” (SLS, further on).

We used temperature and depth as the only environmental co-
variates, as they have been previously identified as the most import-
ant environmental factors influencing fish habitats (98% and 53% 
of studies in our literature review, correspondingly; Table 1). In situ 
temperature were measured simultaneously to the NS-IBTS fishery 
hauls by a Conductivity–Temperature–Depth (CTD) profiler. For the 
analysed fish species, bottom temperature was chosen since this 
appears to be the most logical choice for demersal and benthope-
lagic species and has been widely used before (e.g. Perry et al., 2005; 
Punzón et al., 2021). In situ bathymetry observations were recorded 
with the on-board echo sounder. Gridded bathymetry was taken 
from the 1-min ETOPO1 (Amante & Eakins, 2009). Gridded bottom 
temperature for 1967–2017 was obtained from a recent run of the 
Adjusted Hydrography Optimal Interpolation (AHOI; Núñez-Riboni 

F I G U R E  1   Diagram summarizing the matching of fish and environmental data at different spatial scales and the resulting data sets used 
in the present study for Q1 temperature. The case of Q3 temperatures is identical, but excluding the in situ environmental data, because 
these data were not recorded simultaneously with the fish abundance from Q1 (see text). Examples of distribution of in situ data (upper left 
insert) as well as of maps of bathymetry (top inserts) and fish abundance (left inserts) at two scales are shown. “NT” refers to combinations 
of spatial scales “not tested” in this study
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& Akimova, 2015). AHOI temperature has a native resolution of 0.2° 
and is mainly based on field observations, including those taken 
during the NS-IBTS. We used winter (Q1, mean from February to 
March) and summer (Q3, mean from July to September) tempera-
tures in the analysis. The later was included to test for possible 
lagged responses of fish species to the conditions from the previous 
summer, similar to Pinsky et al., (2019).

2.2 | Construction of data sets at various 
levels of resolution

Training data sets for the habitat model were constructed with 
fish abundance and environmental data matched at different spa-
tial scales. Please refer to Figure 1 for a summarizing diagram of 
this procedure. The most obvious choice was to combine in situ 
fish abundance with the simultaneously taken in situ environmen-
tal data, where no change of scale is necessary. As we mentioned 
above, this is one of the most popular approaches in habitat mod-
elling (42% of the reviewed papers; Table 1). This can be regarded 
as data matching at the smallest possible scale (or highest reso-
lution) because environmental and fishery data are taken nearly 
simultaneously and on scales of only few kilometres (the trawling 
distance).

To match in situ fish abundance data with gridded environmen-
tal data at different scales, the AHOI temperatures in Q1 and Q3 
and ETOPO bathymetry were downsampled to regular grids of 
resolution L following these two steps: 1) Low pass filter: Every 
gridded data point Γ has been replaced by the weighted average 
of surrounding data inside radii L = 0.2°, 0.5°, 1.0°, 2.0° and 3.0°. 
The averaging weights were constructed with a Gaussian function 
depending only on the distance to Γ. 2) Decimation: Data within 
radii L were removed to leave only the data point Γ. This measure 
prevents potential data pseudoreplication as discussed in detail in 
Section 4.3 below.

These downsampled environmental data were then spatially 
interpolated over the fish haul positions and sampling times. Such 
interpolations are a popular upsampling approach to match en-
vironmental and fishery data in habitat models. The respective 
training data sets will be herewith denoted as EL  +  FIS where E 

and F refer to “environment” and “fish abundance,” respectively. 
The subscript “IS” represents in situ data, and L indicates the res-
olution of the downsampled environmental data (e.g. E05 + FIS la-
bels the combination of environmental data downsampled to 0.5° 
and matched to in situ fish abundance, see Figure  1). Both tem-
perature and bathymetry data represent the same scale in all data 
sets except E1 M + FIS, where bathymetry and temperature were 
interpolated from data with their native resolutions of 1’ and 0.2°, 
respectively.

Contrary to an in situ observation, a gridded datum reflects 
the oceanic conditions not at a point but within a cell area (in case 
from AHOI, for instance, ca. 200 km2). Therefore, we further con-
structed data sets where both fish abundance and environmental 
data were gridded on the same regular grid of the various spatial res-
olutions L mentioned above. Fish abundance data in individual years 
were gridded using a generalized additive model (GAM; Hastie & 
Tibshirani, 1986) with a Tweedie distribution (Augustin et al., 2013; 
Tweedie, 1984) and log link function:

where ŷ is the gridded abundance, lon is longitude and lat is latitude 
and sM(lon,lat) is a thin plate spline smoother (Wood, 2017), which is 
an optimal two-dimensional smooth representation of the observed 
fish abundance.

The spline smoother sM is the sum of k basis splines, and its com-
plexity (i.e. in the number of knots) increases with k. The larger the 
basis dimension k, the more complex or wiggly sM is and vice versa. 
We varied k to control the smoothness of the maps of fish abun-
dance, obtaining coarser data sets analogous to the downsampled 
environmental data. We chose two smoothness levels: k as low and 
as large as practically possible. The lowest possible k was k = 6. The 
largest k was constrained by the number of fish abundance data M 
in each year and computing time. We chose k = M/5 as a good trade-
off between computation time and smoother complexity. These two 
smoothness or scale levels of the obtained maps of fish abundance 
will be denoted here as Fw (“wiggly,” k»1) and Fs (“smooth,” k  =  6; 
Figure 1).

Gridded fish abundance and environmental data sets were 
matched only in a geographical region with sufficient abundance 

(1)log(ŷ) = sM(lon, lat),

TA B L E  2   Fish species and life stages (“species at life stages” or “SLS”) used in the present study

Fish species Common name Habitat Type

Length

Juvenile Adults

Eutrigla gurnardus Grey gurnard Demersal <20 cm ≥20 cm

Gadus morhua Cod Benthopelagic <40 cm ≥40 cm

Limanda limanda Comon dab Demersal <20 cm ≥20 cm

Melanogrammus aeglefinus Haddock Benthopelagic <30 cm ≥ 30 cm

Merlangius merlangus Whiting Benthopelagic <20 cm ≥20 cm

Trisopterus esmarkii Norway pout Benthopelagic <15 cm ≥15 cm
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estimates defined by a convex hull calculated with a Delaunay tri-
angulation (Swan & Sandilands,  1995). For simplicity, we matched 
fish and environmental data only at roughly similar spatial scales 
(Figure 1). Spectral analysis of the gridded fish abundance data sets 
(no figure shown) indicated that the smooth (coarser) maps FS contain 
large amounts of variability on scales of 1 to 2°. Thus, we excluded 
some of the possible combinations of E and F from our analysis and 
matched smooth abundance data sets FS only to environmental data 
sets with large filter scale L (1.0° to 3.0°), and wiggly data sets FW 
to the E data sets with smaller filter scales L (0.2° and 0.5°). In total, 
we analysed 240 data sets (10 matching scales ×12 SLS ×12 annual 
quarters for temperature).

2.3 | Habitat model

We modelled fish habitat with a generalized regression model, a 
statistical method widely used for habitat modelling (e.g. Guisan 
et al., 2017; Table 1). Specifically, a GAM with Tweedie distribution 
and logarithmic link was fitted to each data set described above 
(Figure 1):

where α0, α1, α2 and β1 are model parameter to be determined, ŷ is 
modelled fish abundance, T is bottom temperature (either from Q1 or 
Q3 but not both simultaneously since they are strongly co-linear) and 
B is bathymetry. The temperature response function was intentionally 
modelled as a second-order polynomial to obtain (in combination with 
the logarithm) a unimodal response curve (a Gaussian bell). A justifica-
tion for this choice over the more popular penalized smoothers is given 
in Section 4.4 below.

The smoother st deals with year-to-year variations of the total 
abundance of a SLS. This smoother is unpenalized and has a basis 
dimension k equal to the length of the time series to reproduce the 
stock's annual variations with maximum flexibility and the smallest 
temporal autocorrelation. The smoother sR is a random effect for the 
geographical position called Gaussian process smooth (Kammann & 
Wand, 2003; Wood, 2017), playing a double role in our model. On 
the one hand, it accounts for “geographical attachment” (Planque 
et al., 2011), that is for the relationship between fish abundance and 
factors other than those explicitly modelled, like salinity, the distri-
bution of prey and predators, etc. On the other hand, sR is used to 
account for the spatial autocorrelation in fish distribution due to in-
trinsic factors like aggregation and dispersal (Beale et al., 2010). A 
good value for the spatial autocorrelation of sR was found by trial and 
error to be 2°. This means that variations of abundance at distances 
smaller than 2°, which are not fully explained by variations of the 
environmental variables, were explained by sR. The basis dimension 
k was equal to the number of data points in each training data set if 
it was less than 150 and limited to k = 150 otherwise.

Some SLS could possibly be modelled better with slightly different 
models and/or covariates. However, the same model configuration 

was intentionally applied to all SLS, that is the same structure of re-
sponse functions and covariates. This choice is similar to Hawkins 
et al., 2007 and is further motivated by de Knegt et al., (2010), who 
show with synthetic data that if a habitat model addresses the wrong 
scale, it behaves similar to a model in which an important covariate is 
omitted (fitting the data poorly). Therefore, if using different amount 
(or combination) of covariates or different degrees of freedom with 
models trained at different scales can potentially mask model mis-
specification due to scale, keeping the model unchanged over all 
scales seems the appropriate way of isolating the effect of scale on 
model performance. Nevertheless, please note that model parame-
ters were fitted for each SLS separately.

2.4 | Assessment of performance and realism of 
habitat model

The model performance at different matching scales was assessed by 
a threefold cross-validation. The FIS + EIS data sets were split by in-
dividual hauls into three subsets, each containing randomly selected 
1/3 of the original data per SLS. Environmental and abundance data 
of two subsets were used to train the model (Equation 2). Values 
of environmental data in the third subset were used to predict fish 
abundances. The training FL + EIS data sets were downsampled and 
matched to gridded environmental data at scale L to construct train-
ing FW + EL and FS + EL data sets as described in Section 2.2. All com-
binations of training and predicting scales L were tested. Modelled 
estimates of fish abundance were compared to the corresponding in 
situ observations of the third data set using the total residual devi-
ance D for Tweedie distribution (appendix 2 of Candy, 2004; equa-
tion 7 of Shono, 2008):

where yi is the abundance observations, ŷi is their model estimates, N is 
the size of the validating subset and p is the “power parameter” of the 
Tweedie distribution (1 < p<2). Note that all validating sets have the 
same amount of data N throughout all scales and SLS (=1/3 of the total 
in situ data). D is a reasonable metric to evaluate model performance 
because it is a generalization of the residual sum of squares for gener-
alized linear and additive models (McCullagh & Nelder, 1989), that is 
it correctly deals with heteroscedasticity and is nearly normal in spite 
of the non-normality of the data. The procedure was repeated with all 
three subsets, and D was averaged over the three realizations.

Although the cross-validation is the most objective method to 
assess model performance because it uses independent data, we 
have additionally calculated metrics on the data sets used to train 
the habitat model. These metrics are described in Section S2 and 
provide additional information about the effect of the data downs-
ampling on some model characteristics like signal-to-noise ratio and 
parameter errors.

(2)log(ŷ) = �0 + �1 ⋅ T + �2 ⋅ T
2
+ β1 ⋅ B + sR(lon, lat) + st(year),

(3)

D = 2 ⋅

N∑

i=1

di = 2 ⋅

N∑

i=1

(
y
(2− p)

i
− (2 − p) ⋅ yi ⋅ ŷ

(1− p)

i
+ (1 − p) ⋅ ŷ

(2− p)

i

)

(1 − p) ⋅ (2 − p)
,
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Because not always the most realistic model yields the best 
metrics (Burnham & Anderson, 1998), we further evaluated the re-
alism of the habitat model based on two criteria. The first criterion 
was the behaviour of the modelled temperature response function, 
following notions from Elith and Leathwick (2009). A realistic habi-
tat model should reflect reasonable response of fish abundance to 
temperature variations. The temperature response curve was con-
sidered realistic only if not inverted (growing to infinity), but instead 
with a local maximum within the known temperature range for the 
modelled species (see Section S3 for details). Similar arguments have 
been used by Burnham and Anderson (1998) to select more realistic 
models over the models with optimal values of statistical metrics like 
the Akaike information criterion (AIC). In analogy to Núñez-Riboni 
et al., (2019), we calculated the partial effect of temperature by aver-
aging all model terms of Equation 2, excluding temperature:

where

and the overbars denote averaging over all observed values. ŷT in 
Equation 4 is called herewith the “temperature curve” because it rep-
resents changes of abundance (or habitat) as a function of temperature 
alone.

The second criterion to evaluate model realism was its ability 
to reproduce the observed changes in fish habitat at climate scale. 
Habitat suitability is understood here as the occupancy resulting 
from all factors which influence the local abundance of fish, including 
the two environmental parameters used in the model. We estimated 
changes in the observed habitat suitability HO by first calculating the 
median fish abundances within distances of 500 km centred on grid 
points of the AHOI grid (0.2° × 0.2°). Such large radius was needed 
to isolate large-scale climate-related fish preference while ignoring 
small-scale ecological and environmental processes. The obtained 
abundance maps were then scaled with (1) the median annual abun-
dance to deal with interannual changes of the fish biomass and (2) 
with the overall historical maximum (98th percentile) to scale the 
habitat suitability HO between 0 and 100.

Changes in the modelled fish habitat HM, were estimated with 
a method similar to Núñez-Riboni et  al.,  (2019): relocation of fish 
ŷT(lon, lat, T) due to temperature alone was isolated by averaging the 
population size effect st(year) in Equation 2. This modelled abundance 
was transformed into an estimate of habitat suitability HM by scaling 
ŷT(lon, lat, T) with the historical maximum (also 98th percentile):

We acknowledge that marine fishes change their spatial distribu-
tion due to factors other than temperature. However, in agreement 
with a solid body of literature on climate change and marine ecosys-
tems (IPCC, 2014), we assume that the distributional shifts at climate 

scale are fundamentally related to temperature. Therefore, we ex-
pect to evaluate the model ability to reproduce climate-induced 
shifts by comparing the differences between HM and Ho. We esti-
mated these differences for each data set using two metrics:

(1) The percentage Ω of all grid cells where local differences ΔHM 
and ΔHO matched between the periods 1970–1980 and 2007–2017:

where
�(loni, lati) = sign(HM(loni, lati)) ⋅ sign(HO(loni, lati)), Z the number of 

grid points and only 𝛿(loni, lati) > 0 considered in the sum.
(2) The median absolute deviation (MAD) between the observed 

and modelled habitats:

which is a metric independent of data distribution (Pham-Gia & 
Hung, 2001).

Finally, model output was considered realistic only when Ω > 65% 
and MAD < MAD, where MAD was the average over all SLS.

A summary of our complete analysis is shown as a flow chart 
with cross-references to this section in Figure S1 of the Supplement.

3  | RESULTS

3.1 | Model performance

In the case of Q1 temperature data, the minimum residual devi-
ance D between the observed and modelled fish abundances was 
obtained with the training data set E10 + FS for most of the SLS (8 
out of 12; Figure  2a, left column), suggesting that environmental 
data downsampled to 1.0° and smoothed fish abundance data are 
the best training data sets for Q1 temperature. In situ data yielded 
minimum D only in 2 of the 12 SLS test cases. The results obtained 
with Q3 temperature were similar, with 7 of 12 SLS showing mini-
mum D with E10 + FS (Figure 2b, left column). For both Q1 and Q3, 
D decreased strongly from the scale of 0.5° to 1.0°: data sets with 
resolutions of 0.5° or smaller resulted in an average D of roughly e40, 
while data sets with resolutions of 1.0° and coarser resulted in an 
average D of roughly e9.

In contrast to the training data sets, the best model performance 
was achieved with the predicting data sets at the smallest possible 
scale: EIS for Q1 and E1 M for Q3 yielded minimum D in 11 of 12 SLS 
(Figure 2a,b, right columns). Overall minimum D was obtained when 
training the model with E10 + FS and predicting with EIS for Q1 (e5.32; 
Table 3) and when training with E20 + FS and predicting with E1 M for 
Q3 (e5.19; Table 4). The choice of resolution in the training data set 
had a much stronger effect on model performance than the reso-
lution of the predicting data set: Note that the colour gradients in 
Tables 3 and 4 are stronger between rows than between columns.

(4)log(ŷT) = A0 + �1 ⋅ T + �2 ⋅ T
2,

A0 = �0 + β1 ⋅ −B̂ + −ŝR(lon, lat) + −ŝt(year)

(5)HM(lon, lat, T) =
100 ⋅ ŷT(lon, lat, T)

max(ŷ)
.

(6)Ω
(
loni, lati

)
=

100

Z

i= z∑

i=1

�
(
loni, lati

)
,

(7)MAD = median( |HM(loni, lati) − HO(loni, lati) | ),
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3.2 | Realism of model results

The realism of the habitat model is exemplified here with two SLS, 
juvenile Atlantic cod (Gadus morhua, Gadidae) and adult grey gur-
nard (Eutrigla gurnardus, Triglidae), which showed distinctly differ-
ent results depending on the scale of the training data sets. In the 
northern North Sea, the observed habitat suitability HO (occupancy) 
has increased for both SLS during the past five decades, whereas in 
the southern North Sea, suitability has decreased for cod (Figure 3a) 
and remained almost unchanged for grey gurnard (Figure 3b). These 
changes correspond to a northward displacement of biomass distri-
bution for cod and an increase of biomass in the northern North Sea 
for grey gurnard (possibly also a northward displacement).

Figure 4a,b shows the respective modelled changes of the hab-
itat suitability HM for these two SLS when using in situ (for juvenile 
cod) and small-scale data (for adult grey gurnard). The habitat model 
trained with these data sets suggests an unchanged or increased 
habitat suitability for cod everywhere in the North Sea. For grey gur-
nard, modelled suitability decreased everywhere in the North Sea, 
except the region at the flanks of the Dogger Bank, where suitabil-
ity increased. These results differ considerably from the observed 
changes in the abundance of both fish species (Figure 3). Figure 4c,d 
shows the underlying temperature curves corresponding to the 
model output from Figure 4a,b. Training the model with in situ or 
small-scale data yielded unrealistic temperature curves for both SLS, 
with suitability growing unbounded to infinity as temperature ap-
proaches the edges of the observed temperature range.

In contrast to the model fitted with the small-scale training 
data, training the model with large-scale data (E10  +  FS with Q3 
temperature for both SLS) yielded a modelled habitat suitability 
similar to the observed one (Figure 5): in the northern North Sea 
suitability increases for both SLS and in the southern North Sea 
suitability decreases for cod (Figure  5a) and remains nearly un-
changed for grey gurnard (Figure  5b). These changes indicate an 

increase of biomass in the northern North Sea for both SLS, similar 
to Figure 3. This visual match is supported by a larger percentage of 
overlapping changes Ω (Equation 6) and smaller differences (MAD; 
Equation 7) between the observed and the modelled changes in the 
habitat suitability. Ω increased from 56.7% to 88.6% for cod and 
from 13.5% to 65.5% for grey gurnard when downsampled training 
data sets were used instead of the small-scale ones (Table S5). MAD 
decreased from 4.4 to 3.3 for cod and from 28.0 to 20.8 for grey 
gurnard (Table S6). Furthermore, reasonable, bounded temperature 
curves (Figure 5c,d) were obtained with the downsampled training 
data sets. The maximal abundance was predicted at temperatures 
within the observed range: roughly 11.4°C for cod and 13.1°C for 
grey gurnard (Table S4).

Although not all tested SLS presented such strong effect of scale 
of the training data on the model realism, the habitat models trained 
with large-scale data generally yielded more realistic changes in 
the modelled habitat suitability at climate scale. This is indicated by 
the number of model outputs complying our three realism criteria 
(Table 5): E10 + FS (see Figure 1) yielded realistic model output for 
nine SLS (seven with Q3 and 2 with Q1), whereas small-scale data 
sets only for four SLS (two with Q1 EIS + FIS, two with Q3 E1 M + FIS).

4  | DISCUSSION

4.1 | Effect of scale on the performance of the fish 
habitat model

In situ data have often been regarded as the first choice for fitting a 
habitat model, even for climate studies (e.g. Kirkman et al., 2013; Pinsky 
et al., 2013), whereas aggregated or gridded data appear to be regarded 
as deficient. In the absence of in situ data, the majority of modellers 
favour the use of high-resolution (or small-scale) gridded environmental 
data and often upsample (interpolate) them over the positions of fish 

F I G U R E  2   Results of the threefold cross-validation for the case of Q1 temperature (panel a; including in situ temperature) and Q3 
temperature (panel b). Numbers in the ellipses indicate the number of SLS showing minimum residual deviance D (Equation 3) when training 
and predicting the model with the data sets connected by the arrows. For a description of the data set names, see Section 2.2
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abundance observations (Table 1), probably following the intuitive idea 
of working with highest possible resolution and detail.

However, most of the evidence in our study pointed to the oppo-
site direction, that is neither in situ nor the most finely resolved gridded 

data used to train the model yielded the best performance (Figure 2; 
Tables 3 and 4). For most of our SLS, best predictions were made when 
both environmental and abundance training data were downsampled 
to roughly 1.0° (E10 + FS). Five out of 12 SLS suggest that downsam-
pling to even coarser resolutions might improve model performance: 
One SLS for Q1 (Figure 2a) and four SLS for Q3 (Figure 2b) yielded 
minimum D for coarser resolutions. The overall minimum D for Q3 was 
obtained with E20, while E10 had the second smallest D.

Predictions of the large-scale shifts of thermal suitability of fish 
habitats obtained in our study were considerably different depend-
ing on the scale of the training data set and led to contradictory pic-
tures (Figures 4 and 5). The suitability changes predicted with the 
low-resolution model clearly indicated northward displacements of 
fish biomass, which is in agreement with the observed distributional 
shifts reported here (Figure  3) and in previous studies on North 
Sea cod (Engelhard et al., 2014; Hedger et al., 2004; Núñez-Riboni 
et al., 2019) and grey gurnard (Perry et al., 2005). In contrast to cases 
with downsampled training data sets, the habitat model trained with 
high-resolution data failed to reproduce the observed changes in the 
habitat suitability (occupancy) for both species and produced unreal-
istic results (Table 5) and poor statistics (Tables S1 and S2).

One reason for the large differences in the habitat model predic-
tions obtained with the training data sets matched at different spatial 
scales is the shape of the temperature curve. In the particular cases 
of cod and grey gurnard, the temperature curves obtained with in situ 
or high-resolution data, respectively, were unbounded (Figure 4c and 
d) and, thus, unrealistic in comparison with the curves obtained with 
E10 + FS data sets (Figure 5c and d). We deepen the discussion on the 
temperature response function in Section 4.4. In view of these findings, 
the adequate choice of the matching scale seems fundamental for the 
predictive skill of fish habitat models, particularly at climate scale.

4.2 | Reasons behind the improved performance 
with downsampled data

Although the importance of scale is widely acknowledged by ma-
rine ecologists (e.g. Hale et al., 2019; Pinsky et al., 2020; Redfern 

TA B L E  3   Logarithm of total residual deviance D (Equation 
3) averaged over all 12 SLS for habitat models trained with Q1 
temperature

EIS E1M E02 E05 E10 E20
EIS+FIS 15.10 16.20 16.01 15.95 16.01 15.82
E1M+FIS 50.87 34.41 69.47 65.12 37.10 96.58
E02+FIS 51.60 30.96 37.98 51.51 15.89 16.03
E02+FW 20.96 20.73 20.76 20.71 20.71 37.41
E05+FIS 39.60 39.62 15.91 15.94 16.01 16.03
E05+FW 27.94 20.48 20.35 20.36 20.35 19.99
E05+FS 87.65 124.69 85.25 124.92 87.02 85.13
E10+FS 5.32 9.38 9.13 10.00 9.45 9.53
E20+FS 5.33 10.63 11.19 10.36 11.15 11.34
E30+FS 5.80 9.75 9.74 10.23 9.73 10.01

log(average D)
Predicting data set
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t

Note: Infinity values of D have been ignored in the averages. The cell 
colour coding is proportional to the numerical values (green, small; 
yellow, intermediate; and red, large). The overall minimum is printed in 
bold font.

TA B L E  4   Like Table 3 but for Q3 data sets

E1M E02 E05 E10 E20 E30

E1M+FIS 69.90 59.35 69.81 114.19 79.05 15.40

E02+FIS 30.96 73.38 97.03 15.50 15.87 15.30

E02+FW 23.57 20.59 20.64 22.81 25.69 20.12

E05+FIS 44.89 16.26 42.76 16.32 15.96 15.56

E05+FW 20.52 20.30 20.46 25.56 20.53 31.20

E05+FS 31.51 57.90 55.78 34.70 59.11 21.68

E10+FS 5.33 11.12 12.27 11.58 10.69 10.78

E20+FS 5.19 10.45 10.33 10.16 10.00 9.77

E30+FS 5.54 14.71 14.22 13.19 13.62 13.79

log(average D)
Predicting data set
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F I G U R E  3   Differences of the observed fish abundance HO between decades 1970–1980 and 2007–2017 for (a) juvenile cod and (b) adult 
grey gurnard. The black curve represents no change
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et  al.,  2006), studies specifically aiming at unveiling the relation 
between scale and performance of fish habitat models are scarce. 
Within comparable studies, we were only aware of França and 
Cabral (2016), who observed, contrary to us, a decrease of the 
model performance at their large scale. However, a direct com-
parison regarding the disagreement is difficult since these authors 
changed their model by using different predictors for each tested 
scale, whereas we intentionally kept the model unchanged (see 
Section  2.3). Hale et  al.,  (2019) find strongest relation between 
environment and coral reef fish at an intermediate scale from four 
scales tested, in perfect agreement with our findings. Nonetheless, 
this is not a modelling but rather an observational study based on 
similarity matrices. While our study is specific to marine fish, the 
scarcity of similar modelling studies in fisheries science leads us to 
involve examples from other ecological disciplines in the discus-
sion as well.

Some of the previous studies have also claimed that coarse data 
reduces model accuracy (Dyer et al., 2013; Ferrier & Watson, 1997; 
Guisan et  al.,  2007; Ross et  al.,  2015; Seo et  al.,  2009). However, 
many other studies have found similar results to ours, with use 
of high-resolution data not improving (Becker et  al.,  2010; Lowen 
et  al.,  2016; Mitchell et  al.,  2001; Redfern et  al.,  2008; Thomas 
et  al.,  2002) or even decreasing predictive power of their habitat 

models (Guisan et al., 2007; Johnson et al., 2002; Luoto et al., 2007; 
Rahbek & Graves, 2001; Tobalske, 2002).

In an attempt to elucidate why the scale issue seems so evasive, 
we propose herewith the following conceptual model: Let us assume 
that changes of environment ET and fish abundance AT can be de-
composed in large and small-scale variations as follows:

and

The sub-indices T, L and S stand for “total,” “large” and “small,” 
respectively. ES can represent short-scale, high-frequency oceanic 
variations like eddies or current meanders, while AS is the small-scale 
deterministic response of fish to those variations. Anoise is the noise 
in fish abundance data that is unrelated to the environmental con-
ditions (more details in Section  4.2.2 below). Environmental noise 
(variations with no impact on the fish abundance field, like obser-
vational error) are also possible but omitted from this discussion for 
simplicity. Based on this conceptual model, we attempt to explain our 
findings in terms of four (closely related) concepts in the following 
subsections: scale-dependent ecological response (Section  4.2.1), 

(8)ET = EL + ES

(9)AT = AL + AS + Anoise.

F I G U R E  4   Upper panels (a, b): As in Figure 3, but for modelled habitat suitability HM (Equation 5) trained with small-scale data: data set 
EIS + FIS (see Figure 1) for cod (Q1 temperature) and data set E1 M + FIS (Q3 temperature) for grey gurnard. Lower panels (c, d): Corresponding 
temperature curves (Equation 4)
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noise (Section 4.2.2), effects of spatial interpolation (Section 4.2.3) 
and Nyquist–Shanon sampling theorem (Section 4.2.4).

4.2.1 | Scale-dependent ecological response

Several studies on habitat modelling favoured the use of neither fine 
nor coarse data, but pointed out profound effects of scale of train-
ing data on model performance and suggested that the choice of 
the proper data scale should match the research question addressed 
by a study (e.g. Austin & Van Niel, 2011; Bellier et al., 2010; García-
Callejas & Araújo, 2016; Pearson et al., 2004). This agrees with the 
concept of a scale-dependent response of organisms (including 
fish) to their changing environment that is broadly recognized as an 
important issue in ecology (see Wiens, 1989; Mitchell et al., 2001; 
Luoto et al., 2007; Hale et al., 2019). Organisms respond differently 
to the environmental changes depending on their spatial and tem-
poral scales via physiological adjustment, behaviour, acclimatization 
and colonization (de Knegt et  al.,  2010; Nyström Sandman et al., 
2013; Levin, 1992; Pinsky et al., 2020).

The notion of a scale-dependent ecological response implies that 
AT in Equation 8 should depend on ET in Equation 9 through two 
(probably non-linear) response functions GL and GS:

Our results indicate that, for most of the adult and juvenile fishes 
tested here, GL is more important than GS or, alternatively, GS is not 
properly resolved in the data (see Sections 4.2.2. and 4.2.4 below). 
However, GS might be more important that GL for some fish species, (10)AT = GL

(
EL
)
+ GS

(
ES
)
+ Anoise.

F I G U R E  5   As Figure 4 but for model trained with large-scale data (E10 + FS with Q3 temperatures from previous year for both SLS)

TA B L E  5   Model realism assessed by three criteria based on 
the metrics described in Section 2.4. “RTC” stands for “realistic 
temperature curve”

Realism 
Criteria

juv ad juv ad juv ad juv ad juv ad juv ad
MAD<

Ω<65%
RTC

MAD<
Ω<65%

RTC
MAD<

Ω<65%
RTC
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Norway 
Pout Haddock Cod Grey 

gurnard

Note: The habitat models for each SLS (“juv”: juveniles and “ad”: adults) 
were trained with two small-scale (Q1 EIS + FIS and Q3 E1 M + FIS) and 
two large-scale data sets (Q1 E10 + FS and Q3 E10 + FS). Colours indicate 
whether the model fulfils the criteria (green: yes and red: no). Thick 
contours highlight realistic models complying all three criteria. For 
Norway pout (Trisopterus esmarkii, Gadidae, marked with NA, i.e. “not 
available”), the number of observations at the beginning of the record 
was too small for this analysis.
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explaining why in situ data yields best results for two SLS in our 
study (Figure 2). These notions agree with Becker et al., (2010), who 
found improvement of habitat model performance for the majority 
(but not all) of their species of marine mammals with coarse reso-
lution. On the other hand, our improved model performance with 
high-resolution predicting data indicates that both response func-
tions GL and GS are probably similar. For instance, both response 
curves should reach maximum at the same optimum value but could 
differ in their amplitude or width, indicating a different tolerance to 
environmental changes at different scales.

Another aspect of the scale-dependent ecological response is that 
the importance of environmental variables can vary with scale. While one 
variable can be important at a particular scale, another one could be the 
important one at another scale. Our results relating the Q1 and Q3 tem-
peratures agree with this notion: While the concurrently occurring Q1 
temperature seems more important at the small scale, the Q3 tempera-
ture seems more important at large scales for most SLS used in this study 
(Table 5). This issue has been discussed previously by Pinsky et al., (2019), 
who argued that fish living at the southern edge of their suitable hab-
itat are mainly driven by summer temperatures at climate scale. Note, 
however, that while the choice of Q3 temperature may improve the 
model performance over Q1 temperature for several SLS, the choice of 
the adequate scale (downsampling) improves it considerably more (for 
both quarters). This can be seen in the range of D within Tables 3 and 
4 (average of e80) in comparison with the differences of D between the 
two tables (average of e13). Moreover, grey gurnard, the only investigated 
species yielding realistic results with Q1 in situ (Table 5), shows a total 
residual deviance D considerably smaller with the downsampled data set 
Q1 E10 + FS (e5) than with Q1 in situ (e10; no table shown).

4.2.2 | Noise

Tobalske (2002) and Redfern et al., (2008) explicitly suggested that 
data aggregation could eliminate data “noise” obscuring patterns 
between environment and species variables. Tobalske (2002) used 
this explanation to justify a better predictive accuracy of her habi-
tat model (for birds) with the coarse resolution data in comparison 
with the fine resolution. In our study, both fish abundance and 
characteristics of the marine environment are indeed subject to 
high-frequency and small-scale variations. For temperature, these 
variations arise from tides, internal waves, eddies, atmospheric low- 
and high-pressure regimes (Meyers et al., 1991) and might (or might 
not) drive similar short-scale variations in fish abundance. Short-scale 
variations in fish abundance, probably unrelated to the environmen-
tal variations, could arise from schooling, non-deterministic changes 
of swimming direction and avoidance of the fishing gear, as argued 
by Wood (2017, his Section 7.5). Therefore, while data matched at 
scales of, say, 10 km might be good to study the effect of tides and 
eddies on the spatial distribution of fish, the same data set could 
have too much superfluous information, that is noise, making it dif-
ficult for a statistical habitat model to correctly isolate signal at the 
interannual or climate scales from the higher-frequency variations.

One important result of our study is that the best model pre-
dictions of fish habitat were mainly obtained when the model was 
trained with low-resolution and the prediction was performed with 
high-resolution data (Figure 2, Tables 3 and 4). Thuiller et al., (2005) 
obtained similar results with a model of plant habitats. The compet-
ing effects of data detail and noise might be a one possible explana-
tion. We have explored this notion with frequency diagrams of in situ 
and gridded AHOI bottom temperature (Figure 6). The in situ data 
(dashed curve) are more scattered than the gridded data (continu-
ous curve), showing more frequent extreme values, like tempera-
tures cooler than 3°C and warmer than 9°C. Additionally, in situ data 
have a higher peak indicating a larger amount of the most frequent 
observations near 7°C. These small-scale temperature variations in 
the in situ data (denoted as ES in Equation 8) occur at scales smaller 
than AHOI’s resolution and are, thus, absent in the gridded data 
(more about this “subscale” noise in Sections 4.2.3 and 4.2.4 below). 
Therefore, the diagram of the gridded data is a “blurred” version of 
the in situ diagram, with summit and extreme values reduced in fre-
quency, while intermediate temperatures (near 5°C and 8°C) being 
more frequent. The sharper summit of the in situ diagram indicates a 
higher level of detail but more frequent extreme temperatures indi-
cate more subscale noise as well. According to our results, the higher 
level of noise seems to be adverse for the model training. But at the 
same time, more details have a positive effect when using the model 
for a prediction. Therefore, we advocate here model training with 
low-resolution data but model prediction with fine-resolution data.

A bias of 0.3°C in the gridded temperature data has been inten-
tionally removed in Figure 6 by aligning the diagram of gridded data 
with the diagram of in situ data. This systematic bias in AHOI has been 
thoroughly discussed in Núñez-Riboni and Akimova (2015). Such a 
bias equally affects all temperature values in all modelled years and, 
therefore, has no influence on the model training. However, this bias 
would manifest when predicting fish distribution using in situ tem-
peratures. This and other potential negative impacts of the gridded 
data seem to be overcome by the increase of model performance 
from training the model with coarse data, as reflected by the total re-
sidual deviance D from the cross-validation: variations of D with the 
training scale are several orders of magnitude larger than variations 
with the predicting scale (roughly e30 against e8; Tables  3 and 4). 
Therefore, the key factor improving model performance in our study 
is the scale of the training and not of the predicting data.

4.2.3 | Failure of interpolation to create information

Statistical methods to grid environmental data are specifically 
designed to reduce high-frequency, short-range subscale noise, 
underscoring the resolvable scales of available measurements 
(Clancy,  1983; Hiller & Kaese,  1983; Meyers et  al.,  1991; Núñez-
Riboni & Akimova, 2015). Therefore, while in situ fishery abundance 
represents conditions on scales of only few kilometres (the trawl dis-
tance), the gridded environmental data often represent conditions 
on scales at least one order of magnitude larger (in our particular 
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case ca. 20 km × 20 km for AHOI temperature). This implies that the 
small-scale variations ES are normally absent in environmental grid-
ded data, and, thus, the small-scale variations AS present in fishery in 
situ data have no environmental counterpart. If small-scale changes 
in fish and environment do not correspond, training a habitat model 
with such data would “mislead” the model, reducing its performance.

While this scale mismatch might be intuitive and known, many 
modellers try to overcome it by interpolating the gridded environ-
mental data on the positions of fish abundance data (12 out of 19 
studies in the “upsampling” category in Table 1). However, we must 
bear in mind that interpolation cannot restore the missing informa-
tion ES: Non-recorded (or removed) eddies or fine-scale bathymetric 
features cannot be generated by a simple spatial interpolation of 
temperature or water depth. Therefore, the problem of matching in 
situ fish abundance and gridded environmental data can only be cor-
rectly solved by removing the high-frequency, short-scale variations 
AS and Anoise from the fishery data as well.

Similarly to the noise reduction in environmental data mentioned 
above, a smoother such as the one used in Equation 1 would elimi-
nate the small-scale variations in the fish data, allowing to focus on 
the resolvable scales. This measure reduces Equation 10 to a simpler 
equation AL  =  GL(EL) and helps the statistical model to isolate this 
signal from the data. Our study underpins this idea by showing how 
the smoother sM (Equation 1) reduces noise in fish abundance con-
siderably, as seen in Tables S1 and S2 (compare column E02 + FIS with 
E02 + FW or column E05 + FIS with E05 + FW). In agreement with this 
notion, Redfern et al.,  (2008) point out how different data resolu-
tions changed the signal-to-noise ratio of their dolphin sights due to 
a reduction in zero observations.

4.2.4 | Sampling resolution and Nyquist–
Shannon theorem

Once it has been accepted that fishery data should be gridded 
to correctly match them to the gridded environmental data, the 

corresponding gridding scale must be chosen. The native resolution 
of the available data (in our case a scientific bottom trawl survey) 
constrains the choice of the gridding scale due to a fundamental 
principle of data sampling, that is the Nyquist–Shannon sampling 
theorem (Nyquist, 1928; Shannon, 1948). This theorem postulates 
that a signal of length B can only be completely resolved if recorded 
with sampling interval B/2 or smaller (i.e. both, crests and valleys 
of a signal wave, must be sampled to resolve it completely). When 
this does not happen, “aliases” of signals at scales smaller than B/2 
are recorded (Oppenheim et al., 1999). These aliases are large-scale 
phantom signals arising from sampling short-scale signals with a long 
sampling distance.

As a consequence of the Nyquist–Shannon theorem, data sets 
with two different sampling resolutions should not be matched at 
the fine resolution because the coarsely sampled data does not 
completely resolve fine-scale signals contained in the fine data. 
Thus, the average distance between observations sets a lower limit 
to the gridding resolution of fishery in situ data. The fish abun-
dance data used in this study has an average sampling distance be-
tween neighbouring observations of 0.4° or approximately 35 km 
(as given by the average length of the Delaunay triangles used to 
define the mapping region; Section 2.2). Therefore, the fish abun-
dance data can only correctly resolve signals at scales equal to or 
longer than 2 × 0.4° (i.e. 0.8°) or 70 km, namely the “Nyquist dis-
tance” or effective scale of the NS-IBTS survey. This agrees well 
with our results showing the best resolution of the training data 
set of 1.0° for most of the SLS. Variations in abundance at smaller 
scales than the Nyquist distance (like those potentially related to 
eddies or fish schooling) would be perceived as a (long) stochastic 
signal (i.e. aliased noise).

Downsampling data to resolutions coarser than the Nyquist 
distance seem to reduce the aliased noise. In agreement with this 
notion, Tables 3 and 4 show a strong improvement of model per-
formance as soon as the filter scale exceeds the Nyquist distance 
(i.e. from 0.5° to 1.0°). It is, however, important to stress that data 
resolution should not be reduced indefinitely. Our results indicate 

F I G U R E  6   Frequency diagrams 
of in situ and gridded (AHOI) bottom 
temperatures. Note the different scales 
in the vertical, with the bottom subplot 
being logarithmic. A positive bias of 
roughly 0.3°C in the AHOI temperatures 
(discussed in Núñez-Riboni & 
Akimova, 2015) was intentionally removed 
to align both diagrams and compare them 
better
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that habitat model performance does not increase unlimited when 
reducing data resolution. Both a too coarse and too high resolu-
tions of training data impair the model performance (Tables 3, 4, 
S1 and S2). When the resolution is too coarse, the environment-
species relation AL  =  G(EL) can be essentially “eroded,” that is 
extreme or seldom observed combinations of observations po-
tentially playing an important ecological role are eliminated. 
Therefore, the model cannot be trained correctly and will poorly 
represent the relation between environment and fish abundance. 
Thus, more than data downsampling improving the fit of a habitat 
model, matching data at too fine scales (i.e. scales smaller than the 
Nyquist distance) worsens it.

A quantitative, graphical example encompassing all concepts 
discussed in this section is given in Section S5 of the Supplement. 
There, we exemplify how downsampled data can improve model 
performance over in situ and high-resolution data. While all these 
concepts seem to explain our results well, a complete understanding 
of our results demands further research about the scales and mech-
anisms of the unresolved small-scale variations in environmental and 
fish data.

4.3 | Spatial autocorrelation and pseudoreplication

In addition to the Nyquist–Shannon theorem, pseudoreplication is 
another important reason to avoid gridding in situ environmental 
and fish abundance data at small spatial scales. Pseudoreplicated 
data are data which partially depend on each other, either because 
they were sampled with a rate higher than the natural autocorrela-
tion scale or because the data user has intentionally tried to increase 
the sampling rate or data resolution (e.g. by interpolating observa-
tions; see for instance Millar & Anderson, 2004). Such pseudorepli-
cation inflates the significance of the model terms, leading to invalid 
statistical measures and wrong decisions when designing the model 
based on such significance (Beale et  al.,  2010; Lennon,  2000). As 
described in Section 2.3, we did not design the habitat model in this 
study, but choose one de facto. However, for clarity, it is important 
to discuss the role that autocorrelation and pseudoreplication play 
in our study.

Because a data filter used to downsample the data (Section 2.2) 
removes short-scale variations, it also changes the autocorrelation 
function, making it smoother, flatter and increasing the decor-
relation scale Δ (e.g. the first zero-crossing of the autocorrelation 
function). Therefore, filtering environmental and abundance data 
increases the number nΔ of the auto-correlated data within Δ, po-
tentially pseudoreplicating the data. To deal with this issue, data 
downsampling includes not only filtering but also decimation, that 
is removing data points as to leave only one datum inside the filter 
scale L (Section 2.2). To verify this notion, we calculated nΔ using the 
example of ETOPO1 bathymetry, showing that such downsampling 
did not increase nΔ (Figure 7).

An additional and more important measure to deal with pseu-
doreplication was the explicit modelling of the spatial and temporal 

autocorrelation with the random effect sR and the temporal smoother 
st, respectively (Equation 2). Dealing with pseudoreplication with 
random effects is one of the approaches suggested by Millar and 
Anderson (2004). The model term errors reaching a minimum for E05 
(Tables S1 and S2) instead of continuously decreasing with the scale 
L also indicates that our measures to avoid pseudoreplication were 
effective.

4.4 | Temperature response function

In this study, the temperature response function was intention-
ally modelled as a second-order polynomial to obtain, in combi-
nation with the logarithmic link, a curve with a single maximum 
(Equation 4), that is a Gaussian bell (GB further on). Such unimodal 
response functions are motivated by the concept of ecological niche 
(Hutchinson, 1957), where there is a range of suitable temperature 
values, including a single optimum, beyond which the habitat suit-
ability decreases to zero. In various previous studies of fish habitat 
(e.g. Beare & Reid, 2002; Borchers et al., 1997; Bruge et al., 2016; 
Brunel et al., 2017; Lindegren et al., 2013; Rutterford et al., 2015) 
and marine mammals (Becker et al., 2010; Redfern et al., 2008), uni-
modal response curves have been achieved with penalized spline 
smoothers with a low basis dimension k (between 3 and 7). Modelling 
the temperature response with a GB is rather unconventional in fish 
habitat modelling (with only Núñez-Riboni et al., 2019 known to us). 
Therefore, it is valid to ask whether the results of this study would be 
different if a penalized smoother is used instead of the GB.

To answer this question and justify our choice for the GB, we have 
repeated our analysis using penalized smoothers for temperature. We 
tested two values for the basis dimension k: one with low degrees of 
freedom (k = 4) and one with large (k = 50) to inspect the behaviour of 
smooth and wiggly responses. In what follows, these smoothers will be 

F I G U R E  7   Average number of data points nΔ of ETOPO1 
bathymetry within the decorrelation length Δ against filter scale L 
(as example of how data downsampling does not pseudoreplicate 
our data). Δ was calculated with the first zero-crossing of the 
isotropic autocorrelation function
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called sW and sS, respectively. For both smoothers, the relative values 
of total deviance D from the cross-validation and of the metrics on the 
training data sets were similar to those obtained with the GB, support-
ing downsampling of data to E10 + FS for Q1 and E20 + FS for Q3 (no 
tables shown for brevity). This indicates that our major conclusions are 
independent from the choice of temperature response function.

Whether a smoother would generally perform better in compar-
ison with the GB is not easy to answer: Some of the metrics favour 
the use of sW, while some other favour the use of the GB. This topic is 
beyond the scope of this study, but we consider important to advocate 

the use of the GB, which seems rather unknown in the modelling of 
fish habitat. We show here three examples from our SLS where the 
GB clearly resulted in more ecologically meaningful response than the 
smoothers (Figure  8). Because the maximum of the response curve 
should represent a preferred temperature, the unimodal GB (Figure 8, 
panels c, f, i) seems a more realistic representation of habitat than sW, 
which often has two or more local maxima (panels a, d, g).

With its unimodal response, sS is a better representation of hab-
itat niche than sW. However, even sS can yield unrealistic estimates 
when predicting with values beyond the range of the training data 

F I G U R E  8   Examples of three temperature response curves (grey curves) for juvenile (top panels) and adult (middle panels) Norway pout, 
as well as for adult grey gurnard (bottom panels). The left panels show the wiggly smoother sW, the middle panels the smooth smoother sS 
and the right panels the Gaussian bell. DG stands for “degrees of freedom”. The model has been trained with the data set E10 + FS, which is 
shown with black dots
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(Figure 8, panels b and h) or decrease extremely slow to zero (panel 
e). Projections of future fish distribution under climate change are 
highly sensitive to such behaviour of the response function (Thuiller 
et  al.,  2004). To counteract this behaviour, some authors have in-
serted an arbitrary amount of artificial zeroes beyond the data range 
(for instance, Beare & Reid, 2002). In our habitat model, the GB de-
creased to zero beyond the data range (Figure 8, panels c,f,i) without 
this questionable insertion of zeroes. Therefore, we see advantages 
of using the GB response in studies projecting future habitat under 
climate change, since the model must be able to predict fish distribu-
tion at temperatures higher than those observed in the past and used 
to train the model (Núñez-Riboni et al., 2019; Thuiller et al., 2004).

4.5 | Precautionary remark for scientific 
survey design

Some words are needed to prevent misinterpretation of our findings 
relating to the required sampling intensity of the fishery-independent 
scientific surveys. Although we claim here that downsampling, that 
is resolution reduction, of training data sets improves the perfor-
mance of the fish habitat model, this should not be interpreted as 
an argument to reduce the sampling intensity within scientific fish 
surveys. A technical reason is that downsampling as applied in this 
study relies on all measured values, and integrates them over larger 
grid cells, where a greater number of samples per cell improves 
the quality of the estimate for the respective grid cell. A second, 
ecological reason is that surveys like the North Sea International 
Bottom Trawl Survey, in particular, have multiple objectives and are 
important sources of information for fisheries management and for 
numerous studies about ecological processes taking place at differ-
ent spatial scales, for example predator–prey interactions, species 
productivity and biodiversity. Hence, any consideration of options to 
reduce the survey effort would need to take technical, statistical and 
ecological aspects into account and weight them against the priori-
ties of the respective survey.

5  | CONCLUSIONS

In situ, high-resolution and interpolated data are often regarded as the 
best input for fish habitat modelling, while aggregated data appear to 
be regarded as deficient (Table 1). Contrary to these notions, we dem-
onstrated here that training a fish habitat model with environmental 
and abundance data downsampled to a resolution of 1.0° consider-
ably increased model performance. The best predictions of fish habi-
tat were in our study achieved with environmental data of the highest 
available resolution (Figure 2). Still, the key factor affecting model per-
formance was the scale at which the training data were matched, and 
not the scale of the predicting data (Tables 3 and 4).

These results appear to arise from four (intrinsically related) rea-
sons: (1) Scale-dependent ecological response of fishes to changes 
in their environment is dominated by large-scale processes; (2) 

small-scale variations like fish schooling, eddies, tides and frontal 
meanders are either mechanistically unrelated (i.e. are noise) or only 
partially resolved at the scale of the sampling length (i.e. are subscale 
noise); (3) the interpolation of data sampled at a coarser resolution 
cannot create the information missing at finer scales; (4) the Nyquist–
Shannon theorem sets a lower limit to the scale at which fishery data 
should be matched to gridded environmental data. Because in our 
case the average distance between IBTS hauls is 0.4°, the data can 
only resolve signals with lengths of 0.8° or longer. Downsampling of 
both fish and environmental data prior to model fitting deals with 
all four issues: it eliminates noise, focuses only on the large-scale 
ecological response, avoids interpolation and complies with the 
Nyquist–Shannon theorem.

Our study underpins the importance of bearing in mind the 
characteristic temporal and spatial scales of ecological and environ-
mental processes in focus, as well as the native resolution of the 
available observations. Only by considering these issues, it seems 
possible to correctly model fish habitat. Instead of analysing spatial 
observations neglecting their complex interplay with scale, fishery 
scientists should consciously target a particular scale of interest in 
all modelling efforts. If the topic of interest is the effect of small-
scale environmental changes, both in situ fishery and in situ envi-
ronmental data should be used, if available. For research questions 
regarding interannual to climate scales, or if non-observed or lagged 
variables are used (e.g. previous season or year), gridded environ-
mental data are needed. In such cases, both environmental and fish 
abundance data should be downsampled to the relevant effective 
scale under the consideration of the Nyquist–Shannon sampling the-
orem. Failure to do so can have serious consequences on model pre-
dictions, as demonstrated with the ability of our model to reproduce 
displacements of fish distribution at climate scale (Figures 3–5).
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