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INTRODUCTION

Climate change has a severe impact on forest ecosystems (Seidl et al., 2017). Adaptation of trees
to the rapidly changing regional climate is hampered by their longevity and late reproductive
age. Therefore, the increases in frequency, duration and intensity of drought episodes, heat waves
and heavy rainfall events (Spinoni et al., 2018; Hari et al., 2020) threaten many tree species of
European forests. As a result, environmentally stressed trees will become vulnerable to pronounced
damage from herbivorous insects and pathogens. Thus, the damage caused by insects increases the
vulnerability of forests to fungal infections and secondary pests (Meyer et al., 2015), and conversely,
fungal infections can promote the development of herbivores (Eberl et al., 2020). Both together then
contribute to the higher overall vulnerability of forests.

With regional shifts in weather conditions and climate zones in Europe, complex combinations
of abiotic and biotic stresses will likely occur. The quick succession of abiotic and biotic stresses
can further worsen forest damage. A quantification of the vulnerability of European forests to
windthrows (40% of losses), fires (34%), and insect outbreaks (26%) during the period 1979–2018
revealed that about 33.4 billion tons of forest biomass were seriously affected by these disturbances
(Forzieri et al., 2021). There is a clear trend toward higher overall forest vulnerability driven by a
warming-induced reduction in plant defenses against insect outbreaks, especially at high latitudes.

If forests fail to adapt to climate changes, there will be manifold consequences for the ecosystem
function and services, productivity, biodiversity, and negative feedbacks to climate (Ammer, 2019).

IMPORTANCE OF EUROPEAN OAKS AND HISTORY OF OAK
DECLINE

The two predominant oak species in Central Europe, English oak (Quercus robur L.) and sessile
oak (Q. petraeaMatt.) are two of about 50 tree species growing in European forests. Together their
share of about 10% of the stands makes oaks the second most common deciduous tree species in
Europe after beech (Bolte et al., 2007; BMEL., 2014). Among tree species native to Europe, oaks have
the highest species diversity at all trophic levels. More than a thousand animal species (including
insects, birds, small mammals) live on and with oaks (ProQuercus). Economically, oak wood has a
special importance due to its high strength and resistance. It is used as construction timber, as well
as processed into barrels, railroad sleepers, furniture, parquet, and veneers.
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In Central Europe, frequent insect outbreaks are believed to be
one of the causes of the oak decline observed in the last century
(Gasow, 1925; Thomas et al., 2002; Denman and Webber, 2009).
The first important oak dieback was observed already in 1911–
1920 and later in the 1980s; oaks of all age groups died at a rate of
2–5 trees per hectare and per year due to insect defoliation often
co-occurring with drought events (Hartmann and Blank, 1992;
Denman and Webber, 2009).

The decline of European oaks can be explained by changing
climatic conditions and their consequences like heavy rains, local
floods, and pests (Keča et al., 2016). Root pathogens from the
genus Phytophthora DeBary especially benefit from wet soils
following heavy rain events. Phytophthora threats have been
observed in oaks in North America and Europe since the 1990s
with various impact on different species (Sturrock et al., 2011).
For Q. robur, soil acidity was recognized as the main factor for
enhanced susceptibility to Phytophthora infections (Jönsson et al.,
2003).

A decline in growth rate was observed in the second or third
year after drought events when comparing tree-ring series in
Q. robur and Q. petraea stems at three different sites (Perkins
et al., 2018). Being a ring-porous tree species, oaks are most
likely categorized as anisohydric species which strive to regulate
stomatal conductance to keep photosynthetic processes alive,
even during drought periods. However, anisohydric traits may
lead to a longer drought memory due to high investments to
sustain photosynthetic activity, thus leading to a hangover of
drought effects (Perkins et al., 2018).

Even more herbivorous insect species from Southern and
Eastern Europe will likely migrate into central European forests
(Sturrock et al., 2011; Pureswaran et al., 2018), as it has
been observed for the oak processionary moth Thaumetopoea
processionea L. (Bolte et al., 2009). Owing to climate change, also
native species, such as the oak splendor beetle Agrilus biguttatus
Fabr., increase their infestation ability and are predicted to cause
more serious damage (Bolte et al., 2009; Sanders et al., 2013).

ADVANTAGES OF EUROPEAN OAKS
(QUERCUS SPP.)

Temperature increase during the last decades caused changes in
the abundance of broadleaved species in European forests, e.g.,
beech (Fagus sylvatica L.) forests have declined in several regions
of Central Europe (Denmark: Huang et al., 2017; Germany:
Dulamsuren et al., 2017; Austria: Corcobado et al., 2020). This
decline of beech is onlymarginally caused by outbreaks of insects.
This is not unexpected because compared to oaks, beech suffers
only from a low number of insect pests as e.g., the splendor beetle
Agrilus viridis L. (Bolte et al., 2009). A major threat for beeches
are Phytophthora infections which are observed since the 1930s.
In combination with drought periods and heatwaves since 2003,
the beech decline has increased dramatically in comparison with
oak (Corcobado et al., 2020).

A study covering 50 years of phenological data showed
that oak and beech follow different phenological strategies
with oaks having the better adaptation capacity to climate

change due to a higher phenological plasticity (Wenden et al.,
2019). Furthermore, oaks have the possibility to maintain their
hydraulic status during dry summers due to their extensive
root system reaching deep soil layers (Zapater et al., 2011;
Scharnweber et al., 2013). Beech reacts with phenological
maladaptation to changes in temperature and water regime,
slightly compensated by within-population genetic diversity
(Frank et al., 2017). Beech is threatened especially in its warmer
distribution areas with potential reduction of its vitality (Wenden
et al., 2019). Under future climate projection, 10–16% growth rate
decline is predicted for F. sylvatica by 2100, while an increase of
12% growth rate is expected for Q. robur (Huang et al., 2017).
Therefore, in climatically warmer areas, where beech is likely to
reach its limits (Kramer et al., 2010), oak may prevail over beech
because it is already adapted to the warmer climate (Delb, 2012;
Cuervo-Alarcon et al., 2021). In more northern regions, on the
other hand, a successful strategy should be to support oak and
beech to maintain resilient mixed forests that help mitigate the
effects of climate change because an adequate species mix can
even lead to increased productivity (Pretzsch et al., 2013).

Increasing spring temperatures enhance seed production
and dispersal in temperate oaks (Caignard et al., 2017). A
higher reproduction success of temperate oaks is associated with
improved fitness. Furthermore, the extension of the growing
season leads to an increase in vegetative growth of Q. petraea
and Q. robur (Saxe et al., 2001; Caignard et al., 2017). So, both
higher seed production and vegetative growth seem possible in
temperate oaks during climate change. A comparative analysis
of genetic diversity in adult and offspring generations in beech
and oak populations coexisting in a naturally established old-
growth forest stand, revealed that adult generations of both
species exhibited high levels of genetic diversity (He: 0.657 for
beech; 0.821 for oak; depending on the sets of selected genetic
markers) (Sandurska et al., 2017).

The high genetic diversity of oaks and beeches will facilitate
adaptation to climate change. In addition, there is the adaptive
potential in oaks resulting from introgression (hybridization of
e.g., Q. petraea and Q. robur in overlapping habitats; Kremer
and Hipp, 2020). It is increasingly recognized that hybrids play
an important role in evolutionary processes. Thus, natural or
man-made oak hybrids together with successful oak breeding
programs and grafting of superior individuals may lead to novel
traits that give oak decisive advantages in evolutionary processes,
facilitating gene flow.

Due to massive anthropogenic activities in the past, natural
regeneration of European tree species is mostly developed from
remaining local stocks (Bradshaw, 2004). In our opinion, this
may result in lower genetic diversity for naturally regenerating
tree species as beech compared to bred and out-planted tree
species as temperate oaks.

GENOMICS AND MOLECULAR MARKERS
OF CLIMATE-CHANGE RELEVANT TRAITS

In oaks, phenotypic traits of particular importance include
among others drought tolerance, resistance to insects and
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FIGURE 1 | Selection of resistant oak genotypes for regional seed orchards. Resistance of individual oak trees to pathogens and herbivores and their tolerance to

abiotic factors are assessed based on a long-term monitoring in e.g., natural populations or common gardens. Genetic markers (e.g., SNPs: single nucleotide

polymorphisms) associated with oak resistance to pathogens and herbivores and/or their tolerance to drought, heat, and flooding are identified based on

genome-wide or targeted resequencing of selected oak trees in genotype-phenotype or genotype-environment association studies. The developed genetic markers

enable a rapid genotyping of trees from genetically diverse oak populations and the subsequent selection of (at least partially) resistant/tolerant genotypes as a stock

for establishing regional seed orchards (by grafting).

pathogens, and growth-related traits. These traits are expected
to be influenced multi-factorially and inherited poly-genetically.
The increasing availability of reference genomes for different
oak species is the prerequisite to identify the underlying
genes/genomic loci and develop diagnostic genetic markers
for breeding programs (Badenes et al., 2016). First success is
shown, for example, in the quantitative trait loci (QTL) study
which identified two regions associated with Erysiphe alphitoides
infection in the Q. robur genome (Bartholomé et al., 2020).

In addition to QTL studies, genome-wide association studies
(GWAS) in natural populations, common gardens, or other
experimental settings (e.g., McKown et al., 2018) provide new
insights (Figure 1). Challenging in these studies is the lack
of efficient methods for tree phenotyping (Dungey et al.,
2018) and the modeling of complex genomic traits. Multi-
trait GWAS approaches, as applied to Populus trichocarpa
(Chhetri et al., 2019), may help to uncover potentially pleiotropic
effects of individual genes in Quercus, especially when analyzing
climate-relevant traits.

Analyzing genome-wide associations between single
nucleotide polymorphisms and environmental/climate variables
may be the key to identify adaptive genetic markers in Quercus
(Figure 1). Alternatively, genomic selection approaches may
help identifying genotypes with the climate change-relevant

traits and their genotypic plasticity. Using a large-scale common
garden experiment in combination with genome sequencing
and calculation of genomic estimated breeding values, Browne
et al. (2019) identified several Q. lobata genotypes that grow
relatively fast under higher temperatures. These genotypes,
which are presumably pre-adapted to future climates, were
proposed by the authors to serve as seed sources for assisted gene
flow programs.

An alternative approach is developing molecular markers for
important traits in the genus Quercus based on transcriptome,
proteome, andmetabolome data. Examples include omics studies
on signaling pathways induced in Q. robur by herbivory
(e.g., Ghirardo et al., 2012; Kersten et al., 2013), which
play a central role in plant defense against herbivorous
insects (summarized in Erb and Reymond, 2019). Another
example is cross-species comparative transcriptomics analysis
of Q. robur, Q. pubescens, and the evergreen Q. ilex L. to
reveal drought-related molecular patterns (Madritsch et al.,
2019).

Once developed, molecular markers can be used to
identify and select (at least partially) resistant/tolerant oak
ecotypes/genotypes using marker-assisted selection (Figure 1).
Among several modern strategies (Cortés et al., 2020), the
use of molecular markers is one of the most promising

Frontiers in Forests and Global Change | www.frontiersin.org 3 July 2021 | Volume 4 | Article 670797

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Schroeder et al. Oaks as Beacons of Hope

strategies to evaluate and breed oak adaptation to changing
climatic conditions.

CONCLUSIONS

We need to prepare our forests for the impending climate
change consequences through silvicultural and breeding
measures to mitigate forest vulnerability. Ecosystems should
increment genotypes that are characterized by an increased
tolerance to various biotic and abiotic stresses. Overall, complex
consideration of tree tolerance to different stressors is crucial for
assessing their adaptive capacity to climate change.

Particularly in the more northern European forests,
supporting oaks and beeches will help maintain resilient
mixed forests to mitigate climate change effects on forest
ecosystems. The asynchrony of drought responses between
these tree species could stabilize productivity in forests where
both species occur (Rubio-Cuadrado et al., 2018). Q. robur, Q.
petraea, and related hybrids may play a crucial role in helping
forests adapting to climate change. Therefore, silvicultural
approaches for the climate-smart forestry should take advantage
of these climate-stable properties of oaks by establishing the
required light regime for this species to increase its proportion
in European forests (Perkins et al., 2018). Future development
and application of genetic markers will aid in assessing the

adaptability and resilience of planted oak material in the face of

the proposed shifts of the climate zones and in selecting material
that can withstand the multiple challenges of climate change for
the forest of the future.
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