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A B S T R A C T   

The area-wide estimation of aboveground biomass (AGB) and its changes as a proxy for the sequestration and 
emission of carbon are currently associated with high uncertainties. Here we combined interferometric synthetic 
aperture radar (InSAR) height models derived from TanDEM-X with repeated ground-based inventories from the 
years 2012 and 2019 to estimate InSAR height and AGB changes in a structurally diverse and dynamic landscape 
in Sumatra, Indonesia. The results suggested that the InSAR height models were highly accurate and the rela
tionship between InSAR height and AGB change resulted in a coefficient of determination R2 of 0.65 and a cross- 
validated root mean square error (RMSE) of 2.38 Mg ha− 1 year− 1, equivalent to 13.32% of the actual AGB 
difference range. The estimated AGB changes with TanDEM-X were further related to the initial canopy height 
and fire activities in the study area. Initial canopy heights and the occurrences of fires had a significant effect on 
the AGB change. In general, low canopy heights tend to be associated with increasing AGB over time, whereas 
high canopy heights tend to be associated with stable or decreasing AGB. As expected, fires had a negative impact 
on the AGB changes being more pronounced in forest areas compared to oil palm concessions. The results of this 
study are relevant for the utilization of spaceborne InSAR height models and its potential to estimate canopy 
height and AGB change on large spatial scales. It was demonstrated that these changes can be related to their 
sources and ecosystem processes. This AGB change estimation technique can be used to model the impacts of 
fires on AGB change and carbon emissions, which are important for sustainable forest management.   

1. Introduction 

Tropical landscapes are increasingly dominated by humans, even in 
formerly inaccessible tropical wilderness areas (Lewis et al., 2015; 
Venter et al., 2016; Watson et al., 2018). In the lowlands of South-East 
Asia, a highly dynamic mosaic of smallholder agriculture, large agri
business plantations interspersed with patches of remnant forest and 

settlements have replaced the once extensive tropical rainforests (Lewis 
et al., 2015; Curtis et al., 2018; Austin et al., 2019). Management de
cisions are currently shaping the spatial and temporal dynamics of these 
landscapes with still unknown consequences for their ecological func
tioning and feedbacks on resource availability (Lawrence and Vandecar, 
2015; Daskalova et al., 2020). Tropical landscapes are inherently 
considered for their role in fostering a staggering biodiversity and 
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supporting the livelihoods of local communities, but also for their 
contribution to global climate regulation through carbon sequestration 
and hydrological cycles (Chhatre and Agrawal, 2009; Malhi and Grace, 
2000; Beer et al., 2010). 

While deforestation, selective logging and forest degradation are 
major sources of greenhouse gas emissions from these tropical land
scapes (van der Werf et al., 2009), the regrowth of secondary forest, 
agroforestry and tree plantations have the potential to mitigate some of 
the carbon losses through regrowth and carbon sequestration (Pan et al., 
2011). However, the extent of this offset and the overall carbon balance 
of most human-modified tropical landscapes is unknown, as the dy
namics of land use and carbon depend on a complex interplay of man
agement decisions such as plantation conversion, selective logging, 
clear-cutting or slash-and-burn clearance with ecosystem processes 
such drought-induced mortality or pathogen outbreaks (Hudak et al., 
2012). A better understanding of the influence of these drivers on AGB 
change is relevant for land use management and can be included in 
carbon modelling to predict future landscape dynamics and de
velopments. This is particularly important in structurally diverse and 
dynamic landscapes (Brun et al., 2015). 

Spatial estimates of AGB stocks and their changes over time are still 
associated with large uncertainties (Chen et al., 2015; Réjou-Méchain 
et al., 2019). One of the most promising option is to use remote sensing 
data to acquire information over large areas and calibrate and validate it 
with ground-based measurements (Réjou-Méchain et al., 2019). 
Consequently, the use of AGB estimates as proxies for carbon storage has 
been frequently studied in the past with different airborne as well as 
spaceborne sensors (Asner and Mascaro, 2014; Réjou-Méchain et al., 
2015; Réjou-Méchain et al., 2019). However, obtaining precise AGB 
estimates for heterogeneous and dynamic landscapes is inherently 
difficult and most of the studies have to date focused on the estimation of 
the AGB at a single point in time in forest without considering other land 
use types (Cao et al., 2016). 

The canopy height derived from active remote sensing techniques 
such as light detection and ranging (LiDAR) and synthetic aperture radar 
(SAR) are considered promising for the AGB estimation (Solberg et al., 
2013; Asner and Mascaro, 2014; Réjou-Méchain et al., 2015; Schlund 
et al., 2020). It can be assumed that the information on canopy height is 
not only useful in estimating the AGB at a single point in time, but can 
also be used to detect and estimate AGB changes quantitatively. The 
AGB change can be estimated as the difference between two individual 
AGB estimations at different points in time, which represents an indirect 
AGB change estimation (McRoberts et al., 2015; Réjou-Méchain et al., 
2015; Wedeux et al., 2020; Tompalski et al., 2021). Conversely, esti
mated differences in canopy height between different points in time are 
used to model AGB changes in the direct approach (McRoberts et al., 
2015; Dubayah et al., 2010; Knapp et al., 2018; Karila et al., 2019; 
Tompalski et al., 2021). 

Few studies have used airborne LiDAR sensors, which are generally 
able to estimate canopy surface as well as terrain height, to estimate the 
AGB change over time using either one or both approaches (Dubayah 
et al., 2010; Hudak et al., 2012; Meyer et al., 2013; Réjou-Méchain et al., 
2015; Wedeux et al., 2020). However, airborne LiDAR sensors normally 
have a small spatial coverage and the data are relatively expensive for 
the end-user compared to spaceborne data, resulting in limited potential 
for consistent monitoring of AGB and its change. In addition, the settings 
of the flight and the LiDAR sensor often change between the airborne 
surveys, which potentially hinders a comparison and estimation of AGB 
change (Meyer et al., 2013; Wedeux et al., 2020). Spaceborne systems 
such as interferometric synthetic aperture radars (InSAR) are able to 
acquire data over large spatial extents with consistent settings to over
come the drawbacks of airborne LiDAR sensors. Spaceborne LiDAR 
systems such as GEDI and ICESat-2 can accurately estimate terrain 
heights, but are profiling instruments. In contrast, elevation models 
from InSAR data provide complete coverage to potentially detect un
known small-scale changes. However, to date there is no spaceborne 

InSAR system with the ability to estimate terrain height and thus canopy 
height in a spatially consistent and accurate manner. Consequently, the 
indirect approach is not possible with current spaceborne systems. The 
potential of InSAR X-band systems like SRTM and TanDEM-X to estimate 
the canopy surface height has long been recognized. The InSAR height 
has been frequently combined with terrain information from LiDAR to 
estimate the canopy height and subsequently AGB in different biomes 
(Solberg et al., 2013; Karila et al., 2019; Schlund et al., 2020). The 
canopy height is only available in the LiDAR coverage and thus is again 
spatially limited. Nevertheless, these studies show the potential of esti
mating the canopy surface height with TanDEM-X enabling the direct 
change approach. For instance, the interferometric heights can be used 
to detect forest disturbance (Lei et al., 2018). The direct method has 
been effectively applied in boreal areas to estimate AGB change quan
titatively (Solberg et al., 2014; Karila et al., 2019), but its potential in the 
tropics has so far only been demonstrated conceptually (Solberg et al., 
2015; Solberg et al., 2018). These studies assumed that the penetration 
of the X-band signal into the canopy is small and penetration depth 
differences are negligible, whereas a substantial penetration was 
observed in other studies depending on the acquisition parameters, 
forest structure and dielectric properties (e.g. moisture) (Kugler et al., 
2014; Schlund et al., 2019). Penetration depth differences potentially 
propagate to pseudo-changes in a multi-temporal analysis and thus 
small changes due to growth or degradation might not be detectable 
(Karila et al., 2019). None of the former studies has to our knowledge 
deployed TanDEM-X InSAR height changes supplemented by ground- 
truth to detect large-scale biomass changes over time in the tropics 
linking them to potential drivers in a highly dynamic frontier of rain
forest transformation. 

In this study, we used repeated TanDEM-X digital elevation model 
(DEM) acquisitions and in situ inventory data from 2012 and 2019 to 
estimate the AGB change in this time frame across different land uses 
and forest management systems in a landscape of the Jambi province, 
Sumatra, Indonesia. The objectives of this study were to evaluate the 
potential of TanDEM-X InSAR height changes for estimating AGB 
changes in a tropical environment. A model to compensate for pene
tration depth and its differences over time was applied and its accuracy 
compared to InSAR heights without compensation (Schlund et al., 2019; 
Schlund et al., 2020). We further related the estimated landscape-level 
AGB changes to the initial vegetation height as a proxy of carbon 
stocks and investigated the role of detected fires as a relevant ecosystem 
process in different management systems (van der Werf et al., 2009; 
Ferraz et al., 2018). 

2. Material and methods 

2.1. Study area 

The study was conducted in the tropical lowlands of Jambi Province 
on the Indonesian island of Sumatra, within the framework of the EF
ForTS (Ecological and Socioeconomic Functions of Tropical Lowland 
Rainforest Transformation Systems) project (Drescher et al., 2016). The 
climate is tropical humid with a drier period during July and August and 
with temperatures relatively constant throughout the year (26.7 ◦C, 
2235 mm year− 1). 

Large-scale conversion from the original rainforest vegetation to 
other land uses in Jambi Province started in the early 20th century with 
rubber (Hevea brasiliensis) agroforests and later rubber monocultures 
(Feintrenie and Levang, 2009). Deforestation has intensified since the 
early 1980s due to commercial logging, organized and spontaneous 
immigration, and the establishment of large-scale plantation agriculture 
of rubber, oil palm (Elaeis guineensis) and acacia (Acacia mangium). In the 
2000s, a number of new national parks, protected areas and private 
conservation concessions were established, including the Harapan 
Rainforest as an ecosystem restoration area (PT REKI - PT Restorasi 
Ekosistem Indonesia) (Hein et al., 2016). Today, the study area consists 
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of a highly dynamic mosaic landscape of natural remnant rainforest 
patches, various smallholder plantations and company-owned planta
tion estates and concessions (Laumonier et al., 2010; Clough et al., 
2016) (Fig. 1). For the purpose of this study, the study area was sepa
rated into three land categories with distinct management, namely (1) 
protected area (Hutan Harapan), (2) large-scale oil palm concessions 
and (3) remaining land, mainly managed as smallholder plantations. 

2.2. Material 

2.2.1. Remote sensing data 
In this study, TanDEM-X data were used, which was acquired using 

two SAR satellites with each sensor utilizing a phased-array X-band (i.e. 
3.1 cm wavelength) antenna to transmit and receive the electromagnetic 
waves. The close formation of the TanDEM-X mission enables the 
acquisition of single-pass InSAR data to create global DEMs (Krieger 
et al., 2007). Two single-pass InSAR datasets with a time difference of 
about 6.3 years, October 30, 2012 and February 25, 2019, were used in 
this study, which were spatially and temporally consistent with forest 
plot inventory data. The TanDEM-X data were acquired in horizontal 
polarization (transmit and receive, HH) and in bistatic StripMap mode 
resulting in a resolution of about 3 m (Table 1). The spectrally filtered 
and co-registered CoSSC (co-registered single-look slant range complex) 

data products were used in this study (Fritz, 2012). 
The two acquisitions were part of the global TanDEM-X DEM and 

change DEM acquisition phase (Lachaise et al., 2019). The height of 
ambiguities were comparable with 38.4 m and 46.6 m and thus resulted 
in similar height sensitivity and performance. 

Airborne LiDAR data were available for two sites in the study area 
(Fig. 1). The data were acquired in January, 2020 with a Riegl Q780 full 
waveform scanner with a nominal pulse density of 15 points/m2. Ac
cording to the provider, the data had a fundamental vertical accuracy of 
≤ 10cm. The LiDAR data covered an area of 192 km2, which was about 
20% of the total study area of 985 km2. 

Digital surface (DSM) and digital terrain models (DTM) were derived 

Fig. 1. Overview of the study area with the location of field inventory plots, the LiDAR extent and land categories (a) as well as a Landsat-8 false-color image from 
August 15, 2019 (b) on the island of Sumatra, Indonesia (c) (R = Near-infrared, G = Red, B = Green; Landsat-8 image courtesy of the U.S. Geological Survey). 

Table 1 
Summary of TanDEM-X datasets (incidence angle θ, height of ambiguity (HoA) 
and effective baseline are for scene center).  

Acquisition 
date 

θ (◦)  Resolution (m) 
azimuth × range 

HoA 
(m) 

Effective 
baseline (m) 

Orbit 

October 30, 
2012 

34.7 3.3 × 3.1 38.4 141.7 Descending 

February 25, 
2019 

32.3 3.3 × 3.3 46.6 107.5 Ascending  
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from the 3D-point cloud of the LiDAR data. First, the point cloud was 
denoised where isolated points of the point cloud were removed. The 
denoised point-cloud was further classified to ground and non-ground 
points. Finally, the ground points and maximum height of all points 
within a grid cell of 1 m were triangulated to rasters of DTM as well as 
DSM. The rasters were resampled to the TanDEM-X InSAR height pixel 
size of 6 m in order to enable the comparison of these different datasets. 

In addition to the remote sensing data to derive height information 
(i.e. InSAR and LiDAR data), the active fire product from the Visible 
Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National 
Polarorbiting Partnership (S-NPP) satellite was used in this study 
(Schroeder et al., 2014). This product has a spatial resolution of 375 m 
detecting fires with a multi-spectral contextual algorithm. This algo
rithms aims to identify sub-pixel fire activity and other thermal anom
alies and was developed based on the experience with the MODIS Fire 
and Thermal Anomalies product (Giglio et al., 2003; Schroeder et al., 
2014). Only fires detected between October 30, 2012 and February 25, 
2019 were used in this study to assess the role of fires in the monitoring 
period as relevant ecosystem process and potential indicator for carbon 
stock changes. About 66% of the fires occurred in the second half of 
2015, which coincides with the El Niño-Southern Oscillations (ENSO) 
event from 2015 and 2016. 

2.2.2. Field inventory of aboveground biomass and its changes 
To compare in situ AGB inventory data with spaceborne estimates 

from TanDEM-X height models, the AGB change was assessed on 16 
plots with a size of 50 m × 50 m (0.25 ha). The plots were located with a 
multi-band/multi-system GNSS (global navigation satellite system) 
receiver with an estimated accuracy generally below 5 m within the 
three prevalent land use types occurring in this area, namely rubber 
plantations, oil palm monocultures and natural rainforest subjected to 
selective logging in the past. The inventory plots were homogeneous in 
overall environmental conditions like topography (flat) and soil (loam 
Acrisols), but captured the variability of land cover representative for 
the study area (Drescher et al., 2016). The plot locations with the tree 
information were visually compared to the remote sensing data to 
confirm the spatial consistency between the datasets. Plant species 
identity and structural variables - tree height and diameter at breast 
height (dbh) - of all trees with a dbh ⩾10 cm were repeatedly measured 
in 2012 and 2019 following the protocol described in Kotowska et al. 
(2015). Tree height was recorded using a Vertex III height meter 
(Haglöf, Långsele, Sweden) and measuring tapes (Richter Measuring 
Tools, Speichersdorf, Germany) were used for the diameter. Oil palm 
height was defined as the length from the base of the trunk to the base of 
the youngest leaf. The management of the plantation included applica
tion of herbicides, occasional weeding and irregular addition of inor
ganic NPK fertilizer. The AGB of each tree in rainforest and rubber plots 
was estimated using the allometric equation by Chave et al. (2014) 
within the BIOMASS-package (Réjou-Méchain et al., 2017) where wood 
density was estimated from tree species identity using the global wood 
density database as a reference (Chave et al., 2009; Zanne et al., 2009), 
and for oil palms following the allometric equation given by Khasanah 
et al. (2015). The individual tree AGB estimates were summed and areal 
normalized to Mg ha− 1 (Table 2). Annual AGB changes per hectare were 
calculated as the difference in summed AGB data of each site between 

the census dates including recruitment and mortality of trees that 
occurred in-between. 

2.3. Methods 

2.3.1. InSAR height retrieval 
The individual InSAR heights were retrieved on the basis of complex 

interferograms. The complex interferograms of each individual 
TanDEM-X CoSSC data pair were calculated, where a multi-looking was 
applied to result in 6 m pixel spacing. The phase of the flat earth was 
removed and interferometric coherence γ was estimated from the indi
vidual CoSSC data pairs with an estimation window of 11 by 11 pixels 
(Rizzoli et al., 2017). The wrapped phase was unwrapped with the 
minimum cost flow algorithm and further refined to absolute topo
graphic phase (Fritz et al., 2011; Rossi et al., 2012; Lachaise et al., 
2019). The absolute topographic phase was converted to topographic 
(ellipsoidal) InSAR heights hInSAR, which were finally geocoded and 
resampled to 6 m spacing. Each individual CoSSC data pair was pro
cessed in a similar way using the Integrated TanDEM-X Processor (ITP) 
and Mosaicking and Calibration Processor (MCP) from the German 
Aerospace Center (DLR) (Gruber et al., 2012; Rossi et al., 2012). This 
procedure guaranteed an accurate absolute height calibration of the 
InSAR heights (Wessel et al., 2018). However, the absolute accuracy of 
the InSAR height model from February 28, 2019 was also empirically 
assessed in non-vegetation areas with the respective LiDAR height 
model, where non-vegetated areas were defined with a canopy height 
below 1 m. 

The penetration depth of the individual TanDEM-X acquisitions in 
vegetation potentially differed due to different acquisition properties. 
This could result in a pseudo-change in the comparison of the individual 
InSAR heights (Schlund et al., 2019; Schlund et al., 2020). Conse
quently, the penetration depth hDepth was estimated based on the 
respective volume coherence and height of ambiguity of each individual 
acquisition. The volume coherence was derived from the interferometric 
coherence γ 

γVol =
γ

γSNR
(1)  

assuming that the signal-to-noise ratio coherence γSNR and the volume 
coherence γVol were the main contributions to the interferometric 
coherence (Kugler et al., 2014; Schlund et al., 2019). The signal-to-noise 
ratio was calculated for each pixel based on their backscattering coef
ficient and the noise equivalent sigma zero (NESZ), which describes the 
noise from the antenna pattern and the antenna’s thermal noise (Kugler 
et al., 2014; Schlund et al., 2019). The penetration depth estimation was 
based on an assumed link of the phase of the normalized interferometric 
coherence and the penetration depth, where the coherence phase has a 
unique relationship to the coherence magnitude in infinite volumes 
(Dall, 2007). This relationship was finally used to estimate the pene
tration depth of the individual TanDEM-X acquisitions (Schlund et al., 
2019). The estimated penetration depth was calculated pixelwise with 
respect to the individual InSAR heights resulting in a penetration depth 
compensated InSAR height for each acquisition. The absolute accuracy 
of the InSAR height from February 28, 2019 was also assessed in vege
tated areas. The original InSAR height as well as the penetration depth 
compensated InSAR height was compared to the LiDAR surface height, 
where vegetated areas were defined with a canopy height above 5 m. 

The InSAR height changes were estimated via calculating the dif
ference of the individual InSAR height compensated for its penetration 
depth ΔhInSARc 

ΔhInSARc = (hInSARt2 − hDeptht2) − (hInSARt1 − hDeptht1) (2)  

where hInSARti means the topographic height retrieved from TanDEM-X 
InSAR data with respect to the ellipsoid at time step 1 and 2 and 
hDepthti means the estimated penetration depth defined as negative value. 

Table 2 
Summary of field inventory data with the average diameter at breast height 
(DBH), tree height and AGB (standard deviation in brackets).  

Date of 
inventory 

Number of 
repeated plots 

Plot 
size 
(ha) 

DBH 
(cm) 

Tree 
height 

(m) 

AGB 
(Mg ha− 1)  

2012 16 0.25 32.6 
(24.6) 

13.1 (5.6) 149.49 
(121.36) 

2019 16 0.25 32.5 
(21.6) 

16.4 (5.7) 176.57 
(115.09)  
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The InSAR height differences were also calculated without their pene
tration depth estimation to assess the effect of the difference in pene
tration ΔhInSAR 

ΔhInSAR = hInSARt2 − hInSARt1 (3)  

2.3.2. Spaceborne AGB change estimation 
Previous studies have revealed a linear relationship of canopy height 

models hCHM and AGB (Solberg et al., 2013; Schlund et al., 2020), where 
the InSAR height hInSAR can be used together with a terrain model hTerrain 

to estimate a canopy height model, especially after compensating for the 
penetration depth (Schlund et al., 2019; Schlund et al., 2020) 

AGB = a+ b⋅hCHM = a+ b⋅(hInSAR − hTerrain) (4)  

where a and b correspond to the model coefficients of this linear model. 
This allows to calculate the AGB change ΔAGB as the difference of the 
individual AGB estimations (i.e. indirect approach). However, a terrain 
model is not available for the majority of the study area (and in general 
in majority of the Earth) and thus this approach was not used in this 
study. Instead, the annual InSAR height difference ΔhInSAR was related 
with the annual AGB difference ΔAGB as a linear model (i.e. direct 
approach). Differentiating the linear model of canopy height hCHM and 
AGB from Eq. (4) results in a change estimation without intercept 

dAGB
dhCHM

= b (5)  

ΔAGB = b⋅ΔhCHM = b⋅((hInSARt2 − hTerrain) − (hInSARt1 − hTerrain)) = b⋅ΔhInSAR

(6) 

This model was independent of the terrain height information (i.e. 
the terrain information is cancelled out in the difference calculation). 
The model from Eq. (6) was fitted using the mean values of the pene
tration compensated ΔhInSARc, and non-compensated InSAR height 
ΔhInSAR separately within the inventoried plots and their AGB change 
information. The annual differences were retrieved by dividing the AGB 
and InSAR height difference with their temporal separation in years (i.e. 
6.3 years). Note that this model had no intercept, where additionally a 
model with intercept was also established to test the potential effect of 
an intercept. 

The coefficient of determination R2 was calculated where an 
adjustment factor was introduced to account for the regression model 
without intercept (Kvalseth, 1985). The significance of the linear re
gressions were estimated using the F-test and the corresponding p- 
values. The number of repeated inventoried plots was too small to create 
an explicit validation data set. Therefore, a k-fold cross-validation was 
used to assess the goodness of the models, where k was set to the number 
of observations resulting in a leave-one-out cross-validation. The root 
mean square error (RMSE) was calculated and averaged for all sub- 
samples in the cross-validation. Further, the mean error (ME) was 
calculated to indicate a potential bias resulting in an under- or over- 
estimation of the AGB change estimation, where negative values 
would indicate an under- and positive values an over-estimation of the 
prediction. 

2.3.3. Analysis of effects on aboveground biomass dynamics 
The InSAR height difference was aggregated to 0.25 ha pixels similar 

to the inventory plot size and the AGB change was estimated spatially 
using the linear model of Eq. (6). It can be assumed that the initial height 
as well as fire occurrences have a substantial influence on AGB dynamics 
in natural forests (Knapp et al., 2018; Wedeux et al., 2020). The canopy 
height based on the difference between the penetration compensated 
TanDEM-X InSAR height models and the digital terrain model from 
LiDAR was calculated for both dates assuming that the terrain height 
was constant for 2012 and 2019. The InSAR height model of the first 
date was used to assess the effect of the initial canopy height on AGB 
dynamics. This information was also resampled to 0.25 ha to enable a 

pixelwise comparison with the spatial AGB change information. The 
distance from detected fires based on VIIRS was also calculated for each 
0.25 ha pixel. Splines were fitted between the AGB change and the two 
variables, initial canopy height and distance from fires, for a visual 
interpretation of the relationships. 

It can be assumed that fires had a different impact on AGB dynamics 
in different land use systems. Therefore, the effect of fires were assessed 
in the three land categories, (1) protected area (Hutan Harapan), (2) 
large-scale oil palm concessions and (3) remaining land (see Section 
2.1). A two-sample t-test was used to assess the difference of AGB change 
in these three land categories. The effect of initial canopy height could 
only be studied in the LiDAR coverage, which covered mainly the 
smallholder landscape and parts of the rainforest area (Fig. 1). 
Furthermore, linear mixed-effects models were fitted in the LiDAR 
coverage to assess AGB gains and losses with respect to their initial 
canopy height and distance from fires. These models included the initial 
canopy height CHM2012 and distance from fires DFires individually and 
their combination as a (multiple) linear mixed-effects model. In addi
tion, the variables were also scaled to a mean of 0 and a standard de
viation of 1 prior the fit of the linear mixed-effects model. Therefore, the 
coefficients represent the relative strength of the different variables in 
the model with the scaled variables. An exponential correlation struc
ture based on the geo-coordinates of each data point was used in the 
linear mixed-effects models to account for spatial autocorrelation (Mets 
et al., 2017; Wedeux et al., 2020). The coefficient of determination R2 

was calculated for all the mixed-effects models according to Nakagawa 
et al. (2017) to indicate the explained variance of the relationship. 
Furthermore, the proportion of explained variance of initial canopy 
height and fires on AGB change was estimated by calculating the ratio of 
the sum of squares of the individual effects with the cumulative sum of 
squares of the individual effects in an analysis of variance (ANOVA). 
This analysis was implemented in the R environment with the support of 
the nlme and performance package (R Core Team, 2021; Pinheiro et al., 
2021; Lüdecke et al., 2021). 

3. Results 

3.1. Accuracy of TanDEM-X InSAR height models 

The TanDEM-X InSAR height achieved an RMSE of 3.46 m in com
parison with the LiDAR height in non-vegetated areas. The ME was 
about − 0.53 m, which suggested a small underestimation in non- 
vegetated areas. The two different heights resulted in a significant 
linear relationship with a coefficient of determination of 0.96 and a p- 
value below 0.001 (Fig. 2). 

The comparison in vegetated areas revealed also a significant (p- 
value< 0.001) linear relationship between the InSAR height and LiDAR 
height, where the R2 was 0.93 for both InSAR heights, original and 
penetration depth compensated. A systematic bias was observed in the 
original InSAR height resulting in an ME of − 6.7 m and an RMSE of 7.8 
m. The accuracy improved to an ME of − 1.1 m and an RMSE of 4.3 m 
after the compensation for the penetration depth (Fig. 2). 

3.2. Aboveground biomass change in the study area 

The AGB of the repeated inventoried plots ranged from 46.53 
Mg ha− 1 to 393.32 Mg ha− 1 in 2012 across all land use systems. The AGB 
increased during the monitoring period in most of the plots. The gain in 
the inventoried plots ranged between 2.04 Mg ha− 1year− 1 to 11.07 
Mg ha− 1year− 1, where two rubber plots had a loss of − 3.80 
Mg ha− 1year− 1 and − 1.30 Mg ha− 1year− 1 respectively. One forest plot 
was also subject to a substantial AGB loss of about − 6.79 Mg ha− 1year− 1 

(Fig. 3). 
The gain and loss of AGB was also reflected in the gain and loss of 

TanDEM-X InSAR height between 2012 and 2019. The oil palm 
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Fig. 2. Colored density representation of scatterplots with TanDEM-X InSAR heights in not-vegetated areas (left), InSAR height in vegetated areas (center) and InSAR 
height with penetration depth compensation in vegetated areas (right) in comparison to LiDAR DSM. 

Fig. 3. Aboveground biomass difference between 2012 and 2019 in relation to the initial aboveground biomass in 2012 (left) and comparison of aboveground 
biomass and TanDEM-X based canopy height models with penetration depth compensation in 2012 and 2019 (right). 

Fig. 4. Linear relationship between AGB differences and original TanDEM-X InSAR height differences (left) and penetration depth compensated TanDEM-X InSAR 
height differences (right). 
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plantations resulted in the largest gain of AGB, while the analysis 
revealed also a gain of 2.73 m to 4.30 m InSAR height in these plots. The 
rubber and rainforest plots indicated generally a small gain when 
comparing the InSAR based canopy height values of 2012 and 2019, 
whereas one forest plot showed a substantial loss of 8.29 m InSAR height 
(Fig. 3). 

The yearly differences of TanDEM-X height with and without pene
tration compensation and AGB revealed a significant linear relationship 
(p < 0.001) (Fig. 4). The coefficients of determination were 0.53 for the 
InSAR without penetration depth compensation and 0.65 with the 
compensation for penetration depths. The penetration compensated 
InSAR heights resulted not only in a higher R2, but also in a smaller 
prediction interval (Fig. 4). The slope coefficients of these linear re
lationships without intercept were 10.27 (p < 0.001) without compen
sation and 12.15 (p < 0.001) with compensation. Note that the 
additional model with intercept resulted in a insignificant intercept 
(p > 0.1) and similar R2 and slope values. The estimation of AGB change 
with the original InSAR heights (without compensation) resulted in a 
cross-validated ME of − 1.03 Mg ha− 1year− 1 and an RMSE of 2.69 
Mg ha− 1year− 1, whereas the compensated InSAR heights resulted in an 
ME of − 0.77 Mg ha− 1year− 1 and an RMSE of 2.38 Mg ha− 1year− 1. These 
RMSE values were equivalent to 15.09% and 13.32% of the actual AGB 
difference range. Largest discrepancies were observed in the extremes of 
the gains, whereas the in situ plots with losses and small gains were 
generally aligned on the regression line. 

The AGB differences up-scaled to the study area were generally 
normally distributed with a mean of − 2.70 Mg ha− 1year− 1 and a stan
dard deviation of 11.88 Mg ha− 1year− 1. However, a kurtosis around − 25 
Mg ha− 1year− 1 was observed (Fig. 5). The separation in the different 
land categories (i.e. rainforest, oil palm concession and smallholder 
plantations) revealed that this kurtosis was based on a substantial AGB 
loss in oil palm concessions (Fig. 5). In general, the t-test revealed that 
the land categories were significantly different in their AGB change. The 
protected forest areas generally had more negative AGB changes than 
the other two land categories and it had on average a loss of − 5.79 
Mg ha− 1year− 1 with a standard deviation of 13.91 Mg ha− 1year− 1. In 
contrast, the peak of the density in the other two land categories was 
around 0 Mg ha− 1year− 1, which resulted in a mean of − 2.53 
Mg ha− 1year− 1 for oil palm concessions and − 0.70 Mg ha− 1year− 1 for 
smallholder plantations. The standard deviation for both land categories 
(i.e. oil palm concession and smallholder plantations) was 11 
Mg ha− 1year− 1. 

3.3. Effect of initial canopy height and fires on aboveground biomass 
difference 

The average AGB loss of − 2.17 Mg ha− 1year− 1 and the kurtosis of the 
density plot at − 25 Mg ha− 1year− 1 in oil palm concessions was mainly 
based on a large oil palm concession area in the center of the study area, 
where after the end of the production cycle, the palms were cleared for 
re-planting (Fig. 6). Overall, the AGB did not change substantially in the 
oil palm concession areas with a low number of detected fires in these 
areas. In contrast, a large number of fires were detected in the north- 
west of the Hutan Harapan and in north-west of the study area. This 
area belongs to the third land category besides protected area and oil 
palm concessions and consists mainly of smallholder plantations. The 
highest negative differences were spatially consistent with the detected 
active fires from VIIRS (Fig. 6). The smallholder land category included 
also areas with stable AGB and even substantial AGB increase in the west 
of the study area. In contrast, negative AGB changes were generally 
visible in the Hutan Harapan area, which were highest at the northern 
border of the protected area consistent with the detected fires (Fig. 6). 

The dependence of the annual AGB change on the proximity to fires 
was confirmed in the visualization of the trends between AGB change 
and distance from fires. As expected, pixels closest to fires tended to 
have negative AGB change, whereas the trend of the fitted spline was 
positive with increasing distance from fires (Fig. 7). In addition, the 
initial canopy height was also relevant for the AGB change, where on the 
one hand pixels with lower initial canopy heights tended to have a 
positive AGB change. On the other hand, the AGB tended to decrease in 
pixels with higher canopy heights (Fig. 7). 

The trend identified from the visual interpretation was confirmed in 
the individual models of the relationship between AGB change ΔAGB 
and initial canopy height CHM2012 and distance from fires DFires showing 
the influence of initial canopy height and distance to fires on AGB 
change. The coefficient of determination was 0.14 and the slope coef
ficient was − 0.45 for the model with AGB change and initial canopy 
height (Table 3). The slope coefficient was positive in the relationship of 
AGB change and distance from fires. However, the coefficient of deter
mination for this model indicated a weaker relationship compared to the 
model with the canopy height from 2012. The stronger effect of the 
initial canopy height was confirmed in the multiple linear mixed-effects 
model with scaled variables, where the coefficient of the distance from 
fires was closer to zero than the coefficient of the canopy height 
(Table 3). The R2 of this model was 0.16, where the proportion of 
explained variance indicated by the sum of squares of the individual 
effects in the ANOVA revealed that the initial height explained about 
90.9% and fires 9.1% of the explained variance. All models and 

Fig. 5. Density plots of estimated aboveground biomass difference estimated with penetration depth compensated TanDEM-X InSAR height differences in study area 
(left) and in different land categories of the study area (right). 
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coefficients were considered significant with a p-value < 0.001. 
The spatial representation of AGB change and active fires indicated 

differences in the spatial distribution of fires and AGB changes. This was 
also visible in the visualization of the trends between AGB change and 
distance from fires in the individual land categories. In general, the 
majority of the pixels had a distance from 0 m to 500 m from fires in the 
Hutan Harapan area, where most of them indicated a negative change 
(Fig. 8). Consequently, there was a trend with negative changes close to 
fires to no change with increasing distance from fires. A similar but less 
obvious trend indicated by the fitted spline was observed in the other 
land category including mainly smallholder plantations. The majority of 
pixels had a distance from fires of 0 m to 1500 m in this land category. 
The trend indicated by the spline was horizontal, indicating indepen
dence of AGB changes on the distance from fires after a distance of about 
500 m (Fig. 8). The distance from fires in the oil palm concessions was 
generally higher compared to the rainforest and the other land category. 
The majority of the pixels had a distance of 500 m to 3500 m. Conse
quently, the fitted spline indicated no trend between AGB change and 
distance from fires (Fig. 8). 

4. Discussion 

4.1. Estimation of aboveground biomass change with TanDEM-X 

Our study illustrates the high potential of TanDEM-X height models 
and their change to estimate AGB change, which was confirmed by a 
significant relationship between the TanDEM-X InSAR height and AGB 
changes with an R2 of 0.65. This relationship resulted in a cross- 
validated RMSE of 2.38 Mg ha− 1 year− 1, which was equivalent to 
13.32% of the actual AGB difference range. It is worth noting that the 
approach used here does not depend on a classification of changes in e.g. 
deforestation and forest degradation, since it estimates the stocks 
directly (Solberg et al., 2015). The quantitative demonstration in trop
ical areas was to date limited to a TanDEM-X coherence based height 
inversion with the support of LiDAR data in a mature forest with small 
changes resulting in high uncertainties (Knapp et al., 2018). Note that 
the height in Knapp et al. (2018) was based on the inversion of inter
ferometric coherence to canopy height and thus it is a substantially 
different approach to the interferometric height differences used in our 
study. In addition, sufficient variation in the observed changes of canopy 
height and AGB were considered highly relevant for an accurate 

Fig. 6. Spatial representation of annual aboveground biomass change estimated with penetration compensated TanDEM-X InSAR height models with VIIRS active 
fire detections between October 30, 2012 and February 25, 2019 (a) and overview of land categories in the study area to support the visual interpretation (b). 
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estimation of AGB change (Dubayah et al., 2010). Our study had a large 
variation in terms of initial canopy height and AGB as well as their 
change covering also different forest and land use systems, where the 
high potential of TanDEM-X InSAR height changes for the estimation of 
AGB changes was confirmed. The estimation of absolute AGB with 
TanDEM-X based canopy heights and linear models suggested also a 

linear model for the change estimation as demonstrated in Eq. (6) 
(Solberg et al., 2013; Karila et al., 2019; Schlund et al., 2020). This was 
not in contrast to individual tree based allometries, where a power-law 
relationship is normally used to estimate AGB, because the InSAR 
heights were an areal metric aggregated to the plot level (Asner and 
Mascaro, 2014). Consequently, the InSAR heights were determined by 
the canopy density and height, which can be assumed linearly propor
tional to the AGB (Treuhaft and Siqueira, 2004; Solberg et al., 2013). 

It is worth noting that the model without intercept was confirmed 
empirically by the fact that an intercept in Eq. (6) was insignificant 
(p > 0.1). A model without intercept implies the adequate assumption 
that zero height change results in zero AGB change. This was also sug
gested in other studies where the intercept was considered insignificant 
(Knapp et al., 2018; Karila et al., 2019). The slope as well as the accuracy 
of the linear model to estimate AGB change differed between penetra
tion depth compensated and not-compensated InSAR height models. 
This confirmed the relevance of penetration depth compensation to 
make the individual InSAR heights comparable. The slope of the linear 
models varied also compared to other studies conducted in a boreal 

Fig. 7. Colored density plots of annual aboveground biomass change estimated with penetration compensated TanDEM-X InSAR height models and the initial 
TanDEM-X canopy height (left) as well as the distance from active fires (right) with fitted splines. 

Table 3 
Estimates of coefficients of determination and coefficients in linear mixed-effects 
models of AGB change in relation to canopy height and distance from fires 
including a geo-coordinate based exponential correlation structure to account 
for spatial autocorrelation (all terms were significant with p < 0.001).  

Model R2  a b c 

ΔAGB = a + b⋅CHM2012  0.14 3.30 − 0.45  
ΔAGB = a + b⋅DFires  0.03 − 4.02 0.002  

ΔAGB = a + b⋅CHM2012 + c⋅DFires  0.16 0.65 − 0.46 0.003 
ΔAGB = a + b⋅CHM2012Scale + c⋅DFiresScale  0.16 − 1.80 − 3.71 1.72  

Fig. 8. Colored density plots of annual aboveground biomass change estimated with penetration compensated TanDEM-X InSAR height models and the distance from 
active fires with fitted splines in Hutan Harapan (left), oil palm concessions (center) and other land categories (right). 
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forest, where a slope of 6.39 and 6.90 were reported depending on the 
reference area (Karila et al., 2019). Steeper slopes were found in the 
tropical area of our study, in simulations of tropical forests depending on 
the time interval and in another boreal area (Knapp et al., 2018; Solberg 
et al., 2014). This suggests that the linear model of InSAR height change 
and AGB change is generally site dependent, which was also found in the 
estimation of absolute AGB (Schlund et al., 2020). However, the pene
tration depth compensation enabled the comparison to LiDAR data, 
where the linear model can be trained locally with sampled in situ or 
LiDAR data (e.g. GEDI) and then transferred to large scale with TanDEM- 
X (Schlund et al., 2020). This sampling approach is generally suggested 
in order to bridge the gap in up-scaling from local to large and even 
global scale (Réjou-Méchain et al., 2019). 

Besides the variation of AGB and its change, other sources of un
certainty are potentially integrated in the field estimations of AGB and 
its spatial and temporal consistency with the remote sensing data 
(Réjou-Méchain et al., 2019; Wedeux et al., 2020). The TanDEM-X data 
was acquired in the same time period of the in situ data to maximize 
temporal consistency. The plots were located in larger areas of homo
geneous vegetation, where the forest or plantation structure does not 
change substantially within the distance of several meters. Conse
quently, we assume that potential geolocation errors are small. Esti
mating biomass with labour-intensive plot inventories on the ground is a 
challenge in itself. The AGB estimates are obtained from allometric 
equations based on tree height, diameter and wood densities, each one 
by itself prone to measurement uncertainties depending on the meth
odology and equipment used and the accuracy in species identification. 
The AGB uncertainty is in particular not negligible for single trees, but it 
can be assumed that the errors average out and thus decrease substan
tially at the plot level where a large number of trees are surveyed (Chave 
et al., 2014). In addition, the uncertainty and error are at least compa
rable among studies from similar ecosystems using unified fieldwork 
protocols and similar calculation approaches such as given in the 
biomass package (Réjou-Méchain et al., 2017). Even though all observed 
models were significant and resulted in high accuracies, the number of 
sample plots was relatively low and the significance and reliability could 
be further improved by using a larger number of samples in future 
studies. 

4.2. Aboveground biomass change in relation to fires and initial canopy 
height 

Land use and land cover change are not the only causes of biomass 
loss in tropical regions. Natural and human-caused fires are becoming 
another key element increasingly shaping vegetation, also in the wet 
tropics (Cochrane, 2003). Fire is one of the main factors affecting carbon 
dioxide emissions as well as forest biomass and dynamics in the Amazon 
basin and other tropical landscapes (van der Werf et al., 2009; Sato et al., 
2016; Numata et al., 2017), but few studies are available from South- 
East Asia. Impacts of fire associated with tree mortality were detected 
using LiDAR data up to ten years after the fire event, indicating that fire 
disturbance can cause persistent AGB loss (Sato et al., 2016). Our results 
confirmed the role of nearby fires for AGB loss, particularly along the 
borders of old-growth forest and in smallholder plantation landscapes 
(Langner et al., 2007). This is in line with an increased probability of 
deforestation closer to fires in the preceding year based on spatially 
explicit modelling (Armenteras et al., 2017). Therefore, the negative 
impact of fire occurrence will not yet be outbalanced by potential re
covery. This results in the fact that the observed patterns did not change 
when considering different time intervals of fire occurrence in the ca. 6 
year monitoring period (October 30, 2012 to February 25, 2019). 

Predominantly during the drier season or after droughts, fires are 
either naturally ignited or purposefully lit to remove vegetation cover 
and to make space for new plantations. Dry spells due to extreme El 
Niño-Southern Oscillations (ENSO) events like the one of 2015–2016 are 
projected to occur more frequently (Cai et al., 2015; Meijide et al., 

2018). Note that about 66% of the observed fires occured in this period. 
The increase in number and decrease in size of forest fragments may 
even exacerbate the impacts of drought and consequently fires in the 
area, as forest remnants are drier and more fire-prone due to higher 
edge-interior ratios (Cochrane and Laurance, 2002; Laurance, 2004; 
Numata et al., 2017). Also, compared to primary rainforest, plantations 
and secondary forests have higher temperatures and vapour pressure 
deficits and overall lower buffer capacities resulting in higher fire risk 
(Meijide et al., 2018). In the long term, changing regimes of fire 
occurrence are expected to alter species composition, favouring herba
ceous species and grasses over trees and thus creating fire-mediated 
positive feedbacks as documented in the Guineo-Congolian rainforest 
(Cardoso et al., 2018). 

Our study confirmed the effects of fires on AGB dynamics in a 
human-modified tropical landscape known from previous research 
(Ferraz et al., 2018; Wedeux et al., 2020), demonstrating the potential to 
quantify their impact on AGB change in different land use systems. 
Simple models, like the ones used in this study, could be enhanced in the 
future to model and predict the impact of fires on AGB change and 
carbon emissions. Interestingly, proximity of fires was associated with 
AGB loss near the edges of the protected area but not in oil palm con
cessions where hardly any fires were detected in the time-frame of this 
study. Oil palm plantations are typically largely devoid of deadwood 
that could serve as fuel load; only the cropped and stacked palm fronds 
could be suitable for burning. Furthermore, we consider it likely that 
these plantations are actively protected from fire ignition and spreading 
of fire by preventative measures as fires may cause high economic losses. 

The initial canopy height in 2012 had an even stronger impact on 
AGB changes than fires. In general, we found that AGB increases are 
strongest where initial canopy height is low, whereas areas with tall 
canopies have mostly lost biomass. Younger trees and pioneer species 
such as those occurring more frequently in over-logged or secondary 
forests are known to initially gain biomass quickly before reaching a 
saturation point at maturity after 80 or even up to 200 years (Wang 
et al., 2017; Feldpausch et al., 2007). Similar trends can be observed for 
tree plantations such as rubber, Acacia spp. or Eucalyptus spp. (Zhang 
et al., 2012). 

The ecosystem restoration concession Hutan Harapan, for which our 
analyses suggests significant AGB changes, was a timber concession 
managed by the company PT Asialog until the early 2000s. The company 
mainly practiced selective logging, and in some areas clear-cutting. 
Other areas were also reforested by the company using non-native 
acacia trees. Before the concession was transferred to the conservation 
company PT REKI in 2010, an establishment of settlements and small
holder plantations started in the north and west of the Hutan Harapan 
area (Hein, 2018). The expansion of these settlements and associated 
smallholder farms can explain, to some degree, the negative and positive 
AGB changes in the Harapan Rainforest area. Smallholder farmers 
mainly use fire (as they lack financial resources to invest in heavy ma
chinery) to clear forests and shrubs for the establishment of plantations 
or staple crop cultivation. Positive AGB changes in the Hutan Harapan 
can be mainly attributed to growing of smallholder oil palm and rubber 
plantations, recently established agroforestry systems, replanting by PT 
REKI and natural regrowth of forests in parts of the concession. 

The substantial negative AGB changes in oil palm concession areas 
are mainly caused by the need to replace oil palms approximately 25 
years after planting (Luskin and Potts, 2011; Guillaume et al., 2018). 
This indicates that carbon sequestration effects of oil palm plantations 
were largely lost in the course of replanting. As our study only extends 
over the period from 2012 to 2019, we were not able to cover the vast 
AGB losses that occurred as a result of of logging and the development of 
large-scale oil palm estates since the 1970s (Laumonier et al., 2010). 

5. Conclusions 

Our study indicated that AGB changes in a human-modified tropical 
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landscape can be estimated accurately in terms of RMSE of 2.38 
Mg ha− 1year− 1 with TanDEM-X InSAR height changes. This was 13.32% 
compared to the actual AGB difference range. The compensation of the 
penetration of the SAR signal into the forest volume improved the 
relationship in terms of R2 from 0.53 to 0.65 compared to not- 
compensated InSAR heights. This suggests that penetration depth and 
its differences should not be neglected, especially for detecting growth 
and degradation resulting in small AGB changes. The multiple global 
coverage of TanDEM-X indicates that this data source has a large po
tential to estimate AGB changes on large to even global scale. The AGB 
change estimation could be potentially further improved in the future by 
using additional information from the TanDEM-X data such as the 
interferometric coherence and texture information (Schlund et al., 2015; 
Knapp et al., 2018). The results are also of relevance for future missions 
like the High Resolution Wide Swath (HRWS) mission with potentially 
new bistatic InSAR acquisitions (Janoth et al., 2019). 

The spatially consistent AGB change information was further used to 
assess these changes in relation to their initial canopy height and 
proximity to fires. Our results show that low initial canopy heights tend 
to be associated with AGB gains while tall initial canopies and proximity 
to fires tend to be associated with biomass losses. This highlights the 
importance of spatio-temporal context for AGB dynamics in complex 
tropical landscapes. Our AGB change estimation technique could be 
expanded to include other ecosystem processes and thus improve the 
understanding of drivers of AGB changes. Moreover, the AGB change 
estimations can be combined in the future with qualitative research to 
explain the root causes of landscape transformations. Predictive models 
of fire impacts and carbon emissions based on the AGB change infor
mation provided by InSAR height models can be considered high po
tential data sources in order to support sustainable forest management 
systems. 
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Arain, M.A., Baldocchi, D., Bonan, G.B., 2010. Terrestrial gross carbon dioxide 
uptake: global distribution and covariation with climate. Science 329 (5993), 
834–838. 

Brun, C., Cook, A.R., Lee, J.S.H., Wich, S.A., Koh, L.P., Carrasco, L.R., 2015. Analysis of 
deforestation and protected area effectiveness in Indonesia: A comparison of 
Bayesian spatial models. Global Environ. Change 31, 285–295. 

Cai, W., Santoso, A., Wang, G., Yeh, S.-W., An, S.-I., Cobb, K.M., Collins, M., 
Guilyardi, E., Jin, F.-F., Kug, J.-S., Lengaigne, M., McPhaden, M.J., Takahashi, K., 
Timmermann, A., Vecchi, G., Watanabe, M., Wu, L., 2015. ENSO and greenhouse 
warming. Nature Climate Change 5 (9), 849–859 number: 9 Publisher: Nature 
Publishing Group. URL: https://www.nature.com/articles/nclimate2743.  

Cao, L., Coops, N.C., Innes, J.L., Sheppard, S.R., Fu, L., Ruan, H., She, G., 2016. 
Estimation of forest biomass dynamics in subtropical forests using multi-temporal 
airborne LiDAR data. Remote Sens. Environ. 178, 158–171. URL: http://www.scienc 
edirect.com/science/article/pii/S0034425716301067.  

Cardoso, A.W., Oliveras, I., Abernethy, K.A., Jeffery, K.J., Lehmann, D., Edzang 
Ndong, J., McGregor, I., Belcher, C.M., Bond, W.J., Malhi, Y.S., 2018. Grass species 
flammability, not biomass, drives changes in fire behavior at tropical forest-savanna 
transitions. Front. Forests Global Change 1, 6. 

Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., 2009. Towards 
a worldwide wood economics spectrum. Ecol. Lett. 12 (4), 351–366. 
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Réjou-Méchain, M., Barbier, N., Couteron, P., Ploton, P., Vincent, G., Herold, M., 
Mermoz, S., Saatchi, S., Chave, J., de Boissieu, F., Féret, J.-B., Takoudjou, S.M., 
Pélissier, R., 2019. Upscaling Forest Biomass from Field to Satellite Measurements: 
Sources of Errors and Ways to Reduce Them. Surv. Geophys. 40, 881–911. 
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