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Treatment effects are traditionally quantified in controlled experiments. However,
experimental control is often achieved at the expense of representativeness. Here,
we present a data-driven reciprocal modelling framework to quantify the individual
effects of environmental treatments under field conditions. The framework requires a
representative survey data set describing the treatment (A or B), its responding target
variable and other environmental properties that cause variability of the target within
the region or population studied. A machine learning model is trained to predict the
target only based on observations in group A. This model is then applied to group B,
with predictions restricted to the model's space of applicability. The resulting residu-
als represent case-specific effect size estimates and thus provide a quantification of
treatment effects. This paper illustrates the new concept of such data-driven recip-
rocal modelling to estimate spatially explicit effects of land-use change on organic
carbon stocks in European agricultural soils. For many environmental treatments, the
proposed concept can provide accurate effect size estimates that are more repre-

sentative than could feasibly ever be achieved with controlled experiments.
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1 | INTRODUCTION

The quantification of cause-and-effect relationships is key to under-
standing and managing the environment in which we live. Traditionally,
such relationships are studied in very small subsets of our environ-
ment, at mesocosm and microcosm scale, or under simplified model
conditions. In controlled experiments, the effect size of a given treat-
ment is evaluated against a corresponding untreated reference. The
setting can be an ecological field trial in which the treatment might
be plant diversity and the studied response is ecosystem functioning

(paired samples). It could also be a pharmaceutical trial, where a test

population is randomly split and one group receives a drug (treatment)
while the other receives a placebo (reference), and these unpaired
groups are compared. Such controlled experimental designs offer
great potential for the accurate quantification of treatment effects. In
fact, the more controlled (simplified) the experiment is, the more ac-
curately cause-and-effect relationships can be determined. However,
as experimental control is best achieved by simplifying environmental
conditions, many cause-and-effect descriptions lack representative-
ness. Carefully and very accurately quantified effects observed in a
single site or population might appear very different at other sites or

in populations with altered environmental conditions.
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Survey programs offer an alternative, data-driven approach for
estimating treatment effects. While controlled experiments focus on
accurately quantifying treatment effects at the expense of represen-
tativeness, the opposite is the case for surveys. Surveys aim to docu-
ment target variables under the complete range of field conditions, but
at the expense of easily being able to unravel causality. With increasing
complexity of the studied environment, it is harder to distinguish cau-
sality from correlation (Huston, 1997). In the past two decades, machine
learning methods have progressively been used to examine associations
between target variables and environmental properties. Machine learn-
ing has allowed the identification and reproduction of complex associa-
tions, which has greatly advanced the ability to predict accurately using
unseen data. However, even advanced machine learning methods are
unable to distinguish between random associations and causal relation-
ships (Wadoux et al., 2020). What machine learning can do, however,
is link target values observed in a treatment group to environmental
properties. This link could then be used to predict potential treatment
effects for environmental observations that have not been treated
(Bastin et al., 2019; Schneider & Don, 2019). The approach of training
a model in one group and then applying this model to another group
with a different treatment is referred to below as data-driven recipro-
cal modelling. In ecology and environmental science, only relatively few
case studies to date have implemented data-driven reciprocal modelling
methods, for example to examine the effect of human activity on the
number of trees (Bastin et al., 2019) and soil compactness (Schneider
& Don, 2019). However, these pioneering studies tend to insufficiently
address two key issues: (i) explanatory variables used for model training
should be unaffected by the examined treatment (otherwise treatment
effects can be underestimated) and (ii) machine learning models should
only be applied within their training space, not beyond it.

In the following, we propose a good practice approach for data-
driven reciprocal modelling to estimate complex treatment effects
under field conditions. We illustrate this powerful method using the
LUCAS soil data set describing the state of European topsoil in the
year 2015 (Orgiazzi et al., 2018; Panagos et al., 2020) and examine the
effect of agricultural land-use change on soil organic carbon (SOC)
stocks. Specifically, we address the question of how much atmo-
spheric carbon (C) European agricultural soils could sequester if to-
day's croplands were converted to grasslands. However, the method
presented can also be applied to answer numerous other questions—
all that is required is a representative data set that relates values of a
chosen target variable (here, SOC stock) to values of the studied treat-
ment (here, land use) along with values of other potential explanatory

variables (here, soil, climate, geology and management variables).

2 | METHODS

2.1 | General concept

Data-driven reciprocal modelling can be used to quantify treat-
ment effects in situ, directly in the environment in which the treat-
ment naturally occurs. Instead of controlling the environment, the
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proposed method aims to describe it as a whole. This is achieved
by means of a representative survey that documents values of the
target variable along with the examined treatment, and those envi-
ronmental features that potentially also cause variation in the target
variable within the studied region or population. The target variable
depends on its associated treatment and environment:

Target variable = f (Treatment, Environment),

where Treatment is a dichotomous factor with two classes: each ob-
servation is either of group A or group B. To quantify the response
to a change from group B to A, Responseg_, 5, data-driven reciprocal
modelling requires (i) at least one observation in group B, (ii) sufficient
observations in group A to statistically describe the target variable
as a function of Environment and (iii) the Environment of group B to
match or be a subset of the Environment of group A. If these criteria are
met, data-driven reciprocal modelling can be implemented as follows
(Figure 1):

Step 1. In group A, a data-driven statistical model is trained to

predict the target variable as a function of environmental properties:

Target variable,egicteq = f (Environment).

This model should reproduce associations between the Target
variable and the Environment as accurately as possible (minimal un-
derfitting) while still being generalizable to new observations within
the boundaries of the training space (minimal overfitting). In the
case of large and complex data sets, this task can often be achieved
most efficiently with machine learning, choosing a model or model
ensemble with an associated tuning approach that yields optimal
performance. As a constraint, predictions should only include en-
vironmental variables that, based on expert knowledge, remain un-
affected by the examined Treatment. This constraint is important in
order to avoid underestimation of effect sizes (Step 3).

Step 2. Next, the method requires a comparison of the environmen-
tal properties of groups A and B. The observations of group B that are
not comparable with the environmental properties of group A (training
data) have to be deleted because they are located outside the mod-
el's space of applicability—they would be unknown to the model. The
selection can be automated, for example as described by Meyer and
Pebesma (2021), who judged the ability of any data-driven model to
predict an unseen observation based on the Euclidean distance of this
observation to the nearest training data point in the predictor space.

Step 3. Finally, the model that was trained on group A is applied
to the remaining observations of group B. The resulting residu-
als represent case-specific effect size estimates for a change from
group B to A:

Responseg_, 5 = Target variable, eqicteq — Target variable,peeryed-

Step 4. In an optional post hoc analysis, the variation among in-
dividual effect sizes can be analysed further by relating the effect
sizes from Step 3 to environmental properties. For example, this can
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FIGURE 1 General concept for quantifying treatment effects by data-driven reciprocal modelling. Step 1: In group A (here, squares; in
case study, grassland), train model to predict the target variable as a function of treatment-independent environmental properties (here,
colour); the range of environmental properties used to train the model define its space of applicability. Step 2: In group B (here, circles; in
case study, cropland), drop observations with properties outside the model's space of applicability. Step 3: Apply the model to the remaining
observations of group B and determine residuals to obtain modelled responses to a change from B to A (here, arrow direction +length). Step
4: In an optional post hoc analysis, relate the different responses from Step 3 to environmental properties; in this final step, all potential
predictors can be used, including those that were possibly set aside is Step 1 due to the treatment independency constraint

be done by training a second machine learning model, which pre-
dicts individual effect sizes. This model can then be interpreted, for
example by means of partial dependence plots (Molnar, 2019). The
constraint concerning environmental variable selection defined in
Step 1 can be dropped in this final step, and for model training all
potential predictors (based on expert knowledge) can be used, in-
cluding those that might depend on the Treatment.

2.2 | Casestudy

Minor alterations in global SOC stocks can cause major changes in
the concentration of atmospheric carbon dioxide (Minasny et al.,

2017). In mineral soils, land-use change typically exhibits the strong-
est anthropogenic effect on SOC stocks (Paustian et al., 2016).
However, site-specific effects of land-use change on SOC stocks
may depend on environmental properties such as climate and soil
texture (Don et al., 2011; Poeplau et al., 2011). In the present case
study, we applied the new data-driven reciprocal modelling frame-
work to provide spatially explicit, quantitative estimates for the ef-
fect of agricultural land-use change on SOC stocks in the European
Union (EU-27) and the United Kingdom. The agricultural area of the
EU-27 and the United Kingdom covers 1.73*10% km?, of which about
two thirds are used as cropland and the remaining area is grassland
(Eurostat, 2020). In the LUCAS 2015 Topsoil Survey, soils of these
land-use types were sampled representatively to a depth of 20 cm
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and analysed for SOC content, inorganic C content, nutrient con-
tents (available phosphorus, available potassium, total nitrogen), tex-
ture and pH (Orgiazzi et al., 2018; Panagos et al., 2020). These data
were provided by the European Soil Data Centre (https://esdac.jrc.
ec.europa.eu/). Bulk density values of LUCAS sites were estimated
with a pedotransfer function previously recommended for European
agricultural soils by Hollis et al. (2012). The bulk density values ob-
tained were used to convert SOC contents to stocks (Lugato et al.,
2014):

SOCstock = SOContent * BD * Depth (1 - <ng'ge)> )

where SOC_, |, is given in Mg ha™, SOC_,tent IN Per cent, BD is bulk
density in g cm’S, Depth equals 20 cm and Coarse represents the per-
centage of coarse fragments. Additionally, predictors were compiled
representing climatic, geological and anthropogenic influences on SOC
at the LUCAS sites. The bioclimatic variables of WorldClim (Fick &
Hijmans, 2017), elevation, slope and aspect, as readily provided in the
LUCAS 2015 Topsoil Database (Jones et al., 2020), were used to char-
acterize climate and geology. The potential anthropogenic influence
on SOC was characterized using variables from the agriculture (agr)
database of the Statistical Office of the European Union (EUROSTAT).
In total, 19 EUROSTAT variables were compiled, providing information
about different farming systems, crop rotations and fertilization prac-
tices at the level of administrative regions (NUTS). Where EUROSTAT
reported values for different years and/or different administrative
levels, for a given variable and LUCAS point, further analyses were re-
stricted to values of the smallest administrative level available and the
mean value of time series. All EUROSTAT variables included were re-
ported at NUTS 2 or NUTS 3 level. Finally, mean annual average values
of the normalized difference vegetation index (NDVI) were extracted
from Landsat images recorded between 2000 and 2019 at 30-m spa-
tial resolution, as pre-processed by Hengl (2021), in order to character-
ize average photosynthetic activities of the LUCAS sites.

Of the initial 21,859 LUCAS sites, the following cases were
omitted:

e land use that is neither cropland (annual or perennial) nor grass-
land (with or without sparse tree/shrub cover): 8136 sites (37% of
total sites)

e organic soil with >8.7% SOC (different SOC dynamics and less
area relevant): 1971 sites (9% of total sites)

e SOC or nitrogen (N) contents below the detection limit: 73 sites

e > 5% CaCO, (analytical uncertainties in SOC measurements):
4514 sites (21% of total sites; see Supplementary Material S1)

e observations where values were missing either for SOC or for at
least one of the chosen predictors after filling missing soil tex-
ture values with data from earlier LUCAS sampling campaigns:
65 sites.

Ultimately this left 9925 LUCAS sites, of which 6155 were used
as cropland and 3770 as grassland. The Supplementary Material S1
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contains maps and background information characterizing this data
set in detail.

Step 1. To estimate how much atmospheric C agricultural soils
could theoretically sequester if today's cropland (group B) were con-
verted to grassland (group A), a Random Forest model was trained
to predict the SOC stocks of grassland. The following predictors
were used for model training: soil texture, pH, C:N ratio, carbonate,
soil groups, elevation, slope, aspect and climate data. These partic-
ular predictors were chosen because, based on expert knowledge,
(i) they represent typical explanatory variables for SOC (Schneider
etal., 2021) and (ii) land use can be assumed to have no causal effect
on them, that is these predictors are independent of the examined
land-use treatment. The resulting model was interpreted by com-
puting permutation importance and illustrating associations of the
five most important variables with SOC in partial dependence plots
(Molnar, 2019).

Step 2. Second, the predictor space of the grassland model
was examined. This space can be thought of as a point cloud with
n-dimensions, where each dimension represents one predictor
variable and each point in the cloud represents one grassland obser-
vation. The location of each point in this training space is defined by
its respective value in each of the n predictor variables (here n = 13
continuous variables + one dummy coded soil group variable). After
adding the cropland data to this space, (i) each predictor variable
was standardized, that is mean-centred values were divided by their
respective standard deviation, and (ii) the standardized values were
multiplied by their respective variable importance in the grassland
SOC model, as suggested by Meyer and Pebesma (2021). This was
done to (i) make the predictor variables comparable and (ii) weight the
predictors according to their importance in the SOC model. For each
cropland observation, the Euclidean distance to its nearest grass-
land neighbour was calculated, and the result was divided by the
average of all pairwise distances in the grassland data. This yielded a
standardized index to characterize the dissimilarity of cropland and
grassland observations. In the present study, the CAST::aoa function
(Meyer, 2020) in R was used to calculate dissimilarity indices and de-
fine the associated space of applicability for the grassland model by
applying the function's default threshold value of 0.95 (Meyer, 2020;
Meyer & Pebesma, 2021). Cropland observations beyond the space
of applicability of the grassland model were omitted.

Step 3. Finally, the SOC model, which was trained on grassland
(group A), was used to predict SOC in the remaining cropland sites
(group B). The resulting residuals represented the required estimates
for the site-specific SOC response to converting today's cropland to
grassland.

Step 4. In order to explain site-specific differences between these
estimated effect sizes (residuals), a new Random Forest model was
trained using all the available predictors for SOC, including those
predictors that depended on the examined land-use treatment: vari-
ables characterizing agricultural activity and NDVI. After calculating
permutation importance, selected key variables explaining SOC re-
sponses to land-use change were illustrated in partial dependence
plots (Molnar, 2019).
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Data analysis was performed using R v4.0.2 (R Core Team, 2020)
in Rstudio v1.3.959 (RStudio Team, 2020) and built on tidyverse pack-
ages (Wickham et al., 2019). Random Forests were implemented using
the ranger package (Wright & Ziegler, 2017), with mtry values cho-
sen according to the square root of the number of predictor variables
(Hastie et al., 2009). Model performance was evaluated using fivefold
random cross-validation. When calculating permutation importance,
collinearity was considered unproblematic since none of the contin-
uous predictor pairs showed Spearman rank coefficients |r| > 0.8.
Average values presented in the text are accompanied by their 95%
bias-corrected and accelerated (BCa) confidence intervals based on
10* bootstrapped resamples. A commented version of the code used
to implement data-driven reciprocal modelling for this case study is
publicly accessible at https://doi.org/10.5281/zenodo.5171793. The
same repository contains detailed instructions for compiling all nec-

essary raw data and reproducing the presented findings from scratch.

3 | RESULTS AND DISCUSSION

The main result of the study was the new method of data-driven re-
ciprocal modelling, as outlined in the Methods section. This method
can be applied to a wide range of research questions for which large
survey-based data are available. It helps to estimate treatment effects
without being restricted to controlled experiments that include a con-
trol treatment and keeping all other environmental parameters the
same, the ceteris paribus principle. In environmental research, this prin-
ciple is often not achievable or comes at the expense of representative-
ness when being restricted to a few controlled field experiments. Here,
we used the example of a soil survey and how land-use affects soil C

stocks as a case study to illustrate the data-driven reciprocal modelling.

3.1 | Step 1. Train model on group A (here,
grassland)

Random Forest predicted SOC stocks of grassland with moderate
accuracy (R? = 0.59; RMSE = 17.4 Mg ha™%; bias = -0.5 Mg ha™).

/\

The five most influential predictors described climatic conditions,
soil texture and the C:N ratio of soils (Figure 2). Specifically, the
model described SOC stocks increasing with precipitation in the dri-
est month, attributing to grassland with more than 40 mm of such
precipitation about 10 Mg ha™! more SOC than grassland in a drier
climate. Modelled SOC stocks decreased with increasing maximum
temperatures and/or increasing coarse fragment fraction, while they
increased with higher C:N ratios and/or higher clay content. Overall,
the Random Forest model reflected data patterns that were in good
agreement with previous studies explaining the variability of SOC
stocks in European agricultural soils (Rial et al., 2017).

3.2 | Step 2. Stick to the model's space of
applicability

In total, 276 (4%) of cropland sites were located outside the model's
space of applicability, and were therefore excluded from further
analyses (Figure 3; Figure 4 crosses). Affected sites were located
in regions with strong cropland dominance, and were mostly char-
acterized by a Mediterranean climate with maximum temperatures
above 25°Cin the hottest month and/or alkaline, clay-rich soil. These
conditions were largely unknown to the model, because in Europe,
grassland use is rare under such conditions.

3.3 | Step 3. Apply model to group B (here,
cropland) to estimate effect sizes

In the remaining croplands, the model predicted SOC stocks to
be 12.1 Mg C ha! (95% CI, 11.8 to 12.5) higher on average than
measured values (Figure 4). This number illustrates the average
SOC accrual if cropland were converted to grassland. Individual ef-
fect sizes differed drastically, but their spatial distribution revealed
pronounced regional trends. On a country level, the potential SOC
accrual from converting cropland to grassland was predicted to be
highest in Belgium (mean 27.2 Mg C ha™; 95% Cl, 24.7 to 29.3) and
lowest in Estonia (mean 5.2 Mg C ha™!; 95% Cl, 0.8 to 8.3). Overall,

N
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FIGURE 2 Partial dependence plots illustrating the modelled response of soil organic carbon (SOC) under grassland to important
predictors. Density plots above show the distribution of these predictor variables in the training data (n = 3770)
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FIGURE 3 Density plots characterizing croplands within the model's space of applicability (green; n = 5879) and croplands outside of this
space (grey; n = 276). All continuous predictors used for model training are shown, sorted by decreasing importance (from top left to bottom
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FIGURE 4 Estimated change in soil organic carbon (SOC) stocks
by converting European cropland to grassland. Positive values
denote SOC accrual (green colours), negative values denote SOC
losses (brown colours). Crosses represent cropland sites with
environmental properties for which no reliable estimate could

be made since they were located outside the model's space of
applicability

the average effect sizes of land-use change on SOC were within the
range of values that have previously been observed in long-term
field experiments (Poeplau & Don, 2013).

3.4 | Step 4: Explain effect sizes

The effects of land-use change on SOC stock were strongly related
to climate, mineral N fertilization, C:N ratios of soils and mean an-
nual NDVI values of the land surface (Figure 5). Cropland with
mean annual precipitation below 40 mm in the driest month was

predicted to sequester about 6 Mg C ha™ less by grassland conver-
sion than cropland with precipitation above this threshold value.
This can largely be explained by the relatively low SOC stocks of
grassland in dry areas (Figure 2). Additionally, in the dry areas of the
Mediterranean, the widespread occurrence of silvoarable systems,
such as olive trees paired with ley or cereals, might make croplands
particularly SOC rich relative to adjacent grassland (Eichhorn et al.,
2006). Converting such relatively productive silvoarable systems
in the Mediterranean to grassland might even result in SOC losses
(Figure 2, brown colours). This interpretation is underlined by the
partial dependence of ASOC on the NDVI values of cropland: ASOC
decreased with increasing mean annual NDVI values of cropland
(Figure 5). Some Mediterranean croplands showed even higher mean
annual NDVI values than neighbouring grasslands, that is cropland
was ‘greener’ than grassland (Figure 6, green colours). However, on
average this differed across Europe, with cropland showing lower
mean annual average NDVI values than neighbouring grassland, par-
ticularly in the agricultural area between the Paris basin in France
and Belgium (Figure 6). The same region was characterized by high
mineral N fertilization, which was related to larger values of ASOC.
Associations between soil properties and ASOC were minor, with
the exception of the C:N ratio of cropland soil, underlining the close
linkage between C and N cycles.

3.5 | Prosand cons of data-driven
reciprocal modelling

Data-driven reciprocal modelling offers a new tool for case-specific
estimates of effect sizes that take local environmental conditions
into account. In our case study, the spatial patterns of predicted
land-use change effects could be explained with comprehensible
driver variables, confirming that most effect size estimates were
plausible. However, it is important to note that the case-specific
effect size estimates obtained via reciprocal modelling tend to be
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less accurate than what can theoretically be achieved with separate
controlled experiments for each new case (Table 1). Results from
reciprocal modelling are subject to both random and systematic er-
rors. Most data-driven algorithms, including the most popular imple-
mentations of Random Forest, are designed to perform well on the
majority of observations, which typically results in predictions being
pulled towards the mean of the target variable. High values tend to
be underestimated and low values overestimated. Such behaviour
induces large errors among effect sizes for extreme observations.
For example, in this study, this was the case for soils with extremely
high SOC contents close to the defined boundary to organic soils.
As these soils represented only a minor portion of the training data,
Random Forest models significantly underestimated their SOC
stocks, resulting in systematically underestimated SOC accrual for
converting relatively SOC-rich cropland to grassland. If a given re-
search question requires the adequate prediction of extreme effect
sizes, then quantile prediction methods could be tested. However,
this would compromise the prediction accuracy of the majority of

N
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w6 6‘0’\'\63;3\‘“6“

FIGURE 6 Difference in mean annual
NDVI between each cropland and its five
nearest grassland neighbours (ANDVI).
Brown colours illustrate cropland being
‘browner’ than grassland (negative
ANDVI), green illustrates the opposite.
The lower the ANDVI, the higher the
predicted SOC accrual in cropland
(ASOC)

ASOC (Mg ha)

observations. Therefore, a decision has to be made as to whether
it is more important to optimize model accuracy for the majority or
for extremes. The interpretation of individual effect sizes should be
adapted accordingly: if the model is optimized to perform well on
the majority, as in this study, then outliers and tails of the effect size
distribution are prone to large errors and should therefore not be
interpreted. Other sources of error in effect size estimates obtained
via data-driven reciprocal modelling relate to poor data quality. In
particular, undiscovered confounding factors due to missing training
data can be another source of systematic error. For example, in the
present study, SOC of European agricultural soils was assumed to
be at steady state, that is SOC was assumed to neither decline nor
increase under current management. This was a simplification that
was certainly not true at all sites. For example, in Germany, about
10% of agricultural land showed changing land use within the past
20 years (German Agricultural Soil Inventory, unpublished data). In
regions with widespread land-use changes within this period, it is
likely that the present framework will have locally underestimated
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TABLE 1 Prosand cons of determining effect sizes with controlled experiments, conventional mechanistic modelling and novel data-

driven reciprocal modelling

Accuracy

Minimum limit of detection

Response in space and time

Scalability

Controlled experiments
- bottom-up approach -

High

Low

None (constant value)

Low

Mechanistic modelling
- extended bottom-up approach -

High under the typically quite narrow
range of conditions for which it was
calibrated. Low elsewhere

Medium. Can be improved by better
mathematical models

As implemented (restricted to
known processes, which can be
mathematically described)

Medium. Every process influencing
the target must be described
mathematically (requires detailed
process understanding and time).
Numerous assumptions

Data-driven reciprocal modelling
- top-down approach -

Medium

High. Can be improved by more and
better data, to a small extent also
by model tuning

Based on associations in the training
data (not restricted to known
processes)

High. Can be implemented at any
spatio-temporal scale on an
endless number of different
treatments. No process
understanding required to build

Confounding factors Addressed by

randomization
(if possible),
or simplifying
environmental
conditions

Quantifying effects of Possible

previously unseen, novel
treatments

Ethical concerns Treatments may

inflict harm on the
environment (e.g.
toxicology studies in
the field)

potential SOC accrual if such sites are not filtered out for model
training. The remaining sources of error in data-driven reciprocal
modelling tend to be random rather than systematic. Random er-
rors typically evolve around non-matching temporal and/or spatial
resolutions in training data sets. For example, in this study, the target
variable (SOC) was recorded at single geographical points, while the
associated agricultural activity data were only available as average
values at the level of administrative regions. Random errors also fre-
quently occur in the gathering and processing of data—these errors
can be an additional reason for individual outliers.

A major bottleneck in the accurate prediction of treatment ef-
fects with reciprocal modelling is data availability. In the future,
the quantity and quality of data, as well as computational power to
train data-driven models, will continue to increase, which will allow
further improvements to the accuracy of data-driven effect size
estimates. Controlled experiments will always be indispensable as
they contribute to process understanding and build the foundation
for mechanistic models. Good mechanistic models that correctly

Addressed by manual model extensions
(requires in-depth process
understanding)

Possible if underlying processes can be
described mathematically

Less of an issue

the model—algorithm does it
within seconds to minutes. No or
few assumptions

Addressed by data collection

Not possible

Problematic historic treatments,
for example oil spills, do not
have to be repeated to estimate
their effects elsewhere—we can
learn from the past. But in social
contexts, the method should
be handled with extra care as it
tends to neglect minorities

describe all relevant processes will always provide better effect size
estimates than data-driven reciprocal modelling. In practice, how-
ever, many phenomena are too complex to be accurately described
with mechanistic models. Data-driven reciprocal modelling allows
effect size to be estimated merely by analysing associations, without
understanding causation. They provide the best possible quantita-
tive estimate of effects without understanding every detail of their

cause while achieving a maximum of representativeness.
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