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ABSTRACT TheGroup on Earth Observations Global AgriculturalMonitoring Initiative (GEOGLAM) con-
siders agricultural fields as one of the essential variables that can be derived from satellite data. We evaluated
the accuracy at which agricultural fields can be delineated from Sentinel-1 (S1) and Sentinel-2 (S2) images
in different agricultural landscapes throughout the growing season. We used supervised segmentation based
on the multiresolution segmentation (MRS) algorithm to first identify the optimal feature set from S1 and
S2 images for field delineation. Based on this optimal feature set, we analyzed the segmentation accuracy
of the fields delineated with increasing data availability between March and October of 2018. From the S1
feature sets, the combination of the two polarizations and two radar indices attained the best segmentation
results. For S2, the best results were achieved using a combination of all bands (coastal aerosol, water
vapor, and cirrus bands were excluded) and six spectral indices. Combining the radar and spectral indices
further improved the results. Compared to the single-period dataset in March, using the dataset covering the
whole season led to a significant increase in the segmentation accuracy. For very small fields (< 0.5 ha),
the segmentation accuracy obtained was 27.02%, for small fields (0.5 – 1.5 ha), the accuracy was 57.65%,
for medium fields (1.5 ha – 15 ha), the accuracy was 75.71%, and for large fields (> 15 ha), the accuracy
stood at 68.31%. As a use case, the segmentation result was used to aggregate and improve a pixel-based
crop type map in Lower Saxony, Germany.

INDEX TERMS Agricultural field delineation, band indices, essential agricultural variables, feature
combination, image segmentation, intersection over union, remote sensing, segmentation optimization.

I. INTRODUCTION
As part of its activities geared towards ensuring the attain-
ment of the United Nation’s Sustainable Development
Goals [1], the Group on Earth Observations Global Agricul-
tural Monitoring Initiative (GEOGLAM1) identifies agricul-
tural fields as one of its essential agricultural variables [2].
Additionally, agricultural fields are valuable inputs to sub-
sequent processes such as crop type mapping [3], analysis
of crop rotations [4], implementation of crop management
activities [5], and the control of subsidy payments to
farmers [6]. Conventionally, agricultural fields have been

The associate editor coordinating the review of this manuscript and

approving it for publication was John Xun Yang .
1https://earthobservations.org/geoglam.php (Accessed: Jul. 9, 2021).

generated through the manual digitization of hardcopy maps
(aerial images, topographic maps, etc.) [7] or direct field
measurements. The obvious problem with those approaches
is that they are costly and inefficient especially as agricultural
maps require continuous updates to capture the real-time
or near real-time events happening on agricultural fields.
The use of remote sensing (RS) is a good alternative for
mapping agricultural fields given that satellite images can
be acquired over wide geographical areas at a high temporal
resolution [8]–[10].

The use of satellite images to delineate agricultural fields
has an extensive history in the RS world. It can largely
be attributed to the use of medium spatial resolution satel-
lites like Landsat. For example, to extract agricultural
fields, numerous studies [7], [11]–[14] used the Landsat
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Thematic Mapper (TM), some [13]–[16] employed the Land-
sat Enhanced Thematic Mapper Plus (ETM+), and oth-
ers [17]–[20] used the Landsat 8 Operational Land Imager
(OLI). The common theme running through all of those stud-
ies is the use of image segmentation as a means of extracting
the boundaries of the agricultural fields.

Image segmentation, which is the process of partition-
ing an image into homogeneous and distinct objects, is the
foundation of the object-based image analysis (OBIA)
paradigm [21]. The growth of the OBIA paradigm was
fueled by the advent of high-resolution images and the avail-
ability of powerful computing environments [22]. It was
observed in [23] that the spatial resolution of an image has a
direct impact on the outcome of image segmentation. In [5],
the authors established that the higher the spatial resolution,
the higher the coverage of agricultural fields eligible for site-
specific services like the monitoring of the Common Agricul-
tural Policy (CAP) [24] and the application of smart farming
technologies. Therefore, high or very high spatial resolution
images are generally preferred for segmenting agricultural
fields. For example, pan-sharpened SPOT-5 images were
used by [4], RapidEye by [25], WorldView-2/3 by [26],
QuickBird by [27], and digital orthophotos by [6]. However,
for mapping large geographical areas, the use of high or very
high spatial resolution images becomes infeasible as they
become extremely expensive to acquire. Therefore, medium
spatial resolution images remain the most viable option for
delineating agricultural fields at regional, national, and global
scales at little to no cost.

Although Landsat images have proven useful for mapping
agricultural fields over large areas, the spatial resolution
of 30 m is often unable to resolve individual agricultural
fields thereby inhibiting field-based applications in many
cropping systems around the world [28]. Building on the
experiences of the Landsat and SPOT missions, Sentinel-2
(S2) was designed within the framework of the European
Copernicus program for land surface and agriculture moni-
toring [28] at a temporal resolution of 5 days and a spatial
resolution of 10 m. As opposed to optical sensors, which are
inhibited by clouds, Sentinel-1 (S1), which is also part of
the Copernicus program enables the continuous monitoring
of the earth’s surface in all weather conditions at a temporal
resolution of 6 days and a spatial resolution of 20 m. Various
researchers have used S1 [29], [30], and predominantly
S2 [31]–[40] for segmenting agricultural fields. In using the
S1 or S2 images, most of those authors used existing segmen-
tation algorithms (e.g., [29], [30], [32]–[34], [36]–[40]), some
proposed new segmentation algorithms (e.g., [31], [35]), and
others proposed new segmentation parameter optimization
approaches (e.g., [36], [37]). One area that is yet to be com-
prehensively explored is the determination of the optimal
feature set from S1 and S2 images for segmenting agricultural
fields given that both sensors come with different bands and
additional features like band indices can be calculated as well.
In an experiment based on a WorldView-2 image, the authors
of [23] showed that the feature set used as the input to

the segmentation algorithm has an impact on the segmenta-
tion result. Therefore, it is worth exploring different S1 and
S2 feature sets to assess their impact on the segmentation of
agricultural fields.

Beyond the feature set, agricultural fields are dynamic
and change throughout the growing season, thereby requiring
continuous updates. Therefore, it is also relevant to analyze
the accuracy at which the agricultural fields can be delineated
from the S1 and S2 feature datasets at different times of the
growing season. Further, it is important to assess the accuracy
at which agricultural fields can be segmented from S1 and
S2 at different agricultural landscapes with different field
sizes. In [2], the authors categorized three different field sizes:
small fields (< 1.5 ha), medium fields (1.5 ha – 15 ha),
and large fields (> 15 ha). They subsequently asserted that
medium spatial resolution images (here S1 and S2) are more
suitable for delineating large fields. Based on their respective
spatial resolutions, S1 and S2 should be capable of spatially
resolving small fields. For example, a 1 ha field should be
spatially resolved by S1 using 25 pixels and S2 using 100
pixels. Therefore, the validity of the assertion in [2] ought to
be tested. Further, it remains to be seen what segmentation
accuracy can be achieved for those three field size categories.

To fill all the aforementioned gaps, we set out in this
study to execute the following objectives: (1) identify the
optimal feature set from S1 and S2 images for segmenting
agricultural fields, (2) analyze the evolution of the accuracy of
agricultural fields segmented from the S1 and S2 feature sets
throughout the growing season, and (3) assess the accuracy
that can be achieved for different field sizes. To achieve our
objectives, we employed the multiresolution segmentation
(MRS) algorithm [41] in eCognition [42] to segment agricul-
tural fields from different feature sets generated from S1 and
S2 images acquired between March and October of 2018 in
Lower Saxony, Germany.

II. STUDY AREA & DATA
A. STUDY AREA
The federal state of Lower Saxony in Germany was selected
as the study area (Figure 1). Its total area of about
4,770,041 ha has a mostly flat terrain and is located in the
temperate climate zone of Europe [36]. The majority of its
landmass is covered by agricultural lands that are mostly
dominated by grasslands, summer cereals, winter cereals,
potatoes, winter rapeseed, and sugar beet [36]. For efficient
segmentation purposes, the study area was divided into 575
tiles. Each tile is 10 km by 10 km.

To enable the smooth merger of the segmentation results
from all the tiles, the geometry extent of each tile was
extended or shrunk to cover the geometry of all poly-
gons contained in the agricultural land-cover (LC) dataset
(see Section II.C for the description of the dataset) whose
centroids intersected that particular tile. Consequently, the
extended or shrunk tiles (symbolized as blue outlines
in Figure 1) have variable sizes with the average size
being 11 km by 11 km. To reduce the computation time
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FIGURE 1. The study area (Lower Saxony) used in this study. A total of 575 tiles (blue outline) were created over Lower Saxony. The test
tiles (TTs) used as the basis to identify the optimal feature sets are symbolized in orange color. All the coordinates in the figure are in UTM
Zone 32N (EPSG:32632).

needed to identify the optimal feature set, we manually
assessed and selected eleven test tiles (TTs) (symbolized as
orange polygons in Figure 1) whose landscape compositions
were representative of the remaining tiles in Lower Sax-
ony. Details on how the selection was done are treated in
Section III.A.

B. SATELLITE DATA
A recent study [43] demonstrated the usability of monthly
composites of S1 and S2 images for large-scale mapping
of agricultural land-use (LU) types. For our study, we used
monthlymean composites (MMCs) of S1 and S2 images from
March to October 2018. For theMMCs of S1, we downloaded
the Sentinel-1 L3 BS (Sentinel-1 Level-3 Backscatter) data
from CODE-DE (Copernicus Data and Exploitation Platform
– Deutschland).2 CODE-DE is a cloud computing platform
that provides access to the datasets of the Copernicus program
covering Germany as well as virtual machines for data pro-
cessing. The Sentinel-1 L3 BS images in VV and VH polar-
izations are created by averaging all the Sentinel-1 L2
CARD-BS (Sentinel-1 Level-2 Copernicus Analysis Ready
Data – Backscatter) images over a month. The Sentinel-1 L2

2 https://code-de.org/en/ (Accessed: Jul. 9, 2021).

CARD-BS images, which come at a resampled spatial
resolution of 10 m, are generated by processing the Level-1
(L1) GroundRangeDetected (GRD) images of S1 acquired in
the Interferometric Wide Swath (IW) mode. The processing
is done by CODE-DE with the Sentinel Application Plat-
form (SNAP) using the standard procedure of applying an
orbit file, removing GRD border noise, removing thermal
noise, calibration, and terrain correction [44].

For S2, we used FORCE (Framework for Operational
Radiometric Correction for Environmental monitoring) [45].
FORCE is a processing software for generating higher-level
analysis-ready data (ARD) from S2 and Landsat images.
Based on the top-of-atmosphere L1C images of S2, FORCE
generates bottom-of-atmosphere L2 ARD images by correct-
ing for atmospheric, geometric, and bidirectional reflectance
distribution function (BRDF) effects [46]–[48]. In FORCE,
clouds and cloud shadows are detected and masked using
the Fmask algorithm [49]–[51]. The cloud and cloud shadow
pixels were replaced using an interpolation method based
on an ensemble of radial basis function (RBF) convolution
filters [52]. FORCE outputs all S2 bands except the ones with
a spatial resolution of 60 m, i.e., the coastal aerosol, water
vapor, and cirrus bands. The bands with a spatial resolution
of 20 meters are resampled to 10 m. For each band, all pixel
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values belonging to the same month were averaged to obtain
the MMCs for S2.

C. AGRICULTURAL LAND-COVER
From the digital landscape model of the German Offi-
cial Topographic Cartographic Information System (ATKIS)
of 2018, we extracted the vector layer containing polygons
of the agricultural LC (arable land and grassland) present at
the tiles. This layer was used to create a mask to remove
non-agricultural areas from the MMC images before seg-
menting the agricultural fields. This approach has also been
used in other studies [31], [36], [37].

D. REFERENCE DATA
For segmentation evaluation and optimization, we used the
Geospatial Aid Application (GSAA) data of 2018 covering
the TTs. This data was obtained from the Lower Saxony
Ministry of Food, Agriculture, and Consumer Protection. The
GSAA data contains the boundaries of agricultural parcels
manually digitized from very high-resolution orthoimages
(spatial resolution ≤ 1 m) by farmers intending to access
the subsidies within the CAP framework. The LU type (e.g.,
mowing pasture, meadow, maize, winter wheat, etc.) of each
agricultural parcel is additionally declared by the farmer. The
average size of an agricultural parcel over the TTs is about
3.4 ha, with the minimum size being about 0.2 ha and the
maximum size being about 63 ha. The average number of
agricultural parcels per tile is 2,463. For each test tile, basic
descriptive information of the GSAA parcels can be found
in Table 5 of Appendix A.

III. METHODOLOGY
The workflow we used in this study is depicted in Figure 2.
The components of the workflowwill be explained in the next
subsections.

A. SELECTION OF TEST TILES (TTs)
The selection of the TTs was based on four criteria namely a
high percentage coverage of agricultural LU, a high number
of reference parcels for segmentation evaluation, the pres-
ence of both big and small agricultural fields, and a variable
shape factor (SF) distribution per tile. The selected TTs are
more dominated by agricultural LU as depicted in Figure 14
(Appendix A). Each selected tile contains a mixture of both
big and small fields (see Table 5 of Appendix A). The
authors in [36] and [53] emphasized the importance of hav-
ing a sizeable number of reference objects for supervised
segmentation evaluation to ensure accurate results. In our
study, the minimum number of reference fields was 1,622 at
TT2, which we considered as a sizeable number. The SF
was used to quantify the shape characteristics of the GSAA
parcels within each tile. We adopted the SF method in (1) as
was proposed by [54];

SF =
4 ∗5 ∗ Area (X)

(Perimeter (X))2
(1)

FIGURE 2. The workflow we followed in this study.

where X is a GSAA parcel. For each tile, the SF factor is
calculated for all GSAA polygons. Higher SF values indi-
cate more compact polygons, while lower values represent
more elongated or irregular-shaped polygons. The selected
tiles have variable SF distributions as captured by Figure 15
(Appendix A).

B. BAND INDICES
Eight band indices (two radar and six optical) (Table 1) with
extensive usage in RS for mapping agricultural lands were
used in this study. The radar and optical indices were com-
puted using the MMC images of S1 and S2, respectively. All
the indices required at least two bands for computation. Given
that the S2 MMC images had ten bands, the optical indices
were selected to cover different parts of the electromagnetic
spectrum as was previously done in [3]. The S1MMC images
come with only two bands, hence each radar index used both
bands for computation.

C. CLIPPING AND MASKING
Each MMC and band index of S1 and S2 was clipped to the
boundary of a test tile. After clipping, all non-agricultural
areas were removed. The agricultural vector layer extracted
from ATKIS was used for this purpose. This vector layer con-
tains cadastral polygons of all agricultural lands in Germany.
We applied a negative buffer distance of 5 m to each polygon
to create a separation between two adjacent polygons that
share a common boundary. The reason for the negative buffer
was to ensure the ease of separation between adjacent agricul-
tural fields in the images during the segmentation process. All
pixels outside the buffered polygons were masked out from
each MMC and band index. These masked images were used
for all subsequent processes.

D. GENERATE FEATURE SETS
A feature set is a combination of two or more features (bands,
indices). In all, nine feature sets were created (Table 2). The
table shows each feature set alongside the input features that
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TABLE 1. The utilized radar and optical indices, abbreviations, formulas,
and sources in the literature.

TABLE 2. The nine feature sets used for optimization: data sources,
names, and lists of input features.

were used to create it. Three feature sets were based on S1 and
five were based on S2. Those S1 and S2 feature sets were
created after conducting some pretests to assess the separate
impact of the bands and band indices on the segmentation
accuracy. During the conduction of the pretests, we realized
that a combination of the radar and optical indices led to
an increase in the segmentation accuracy, hence the creation
of the combined feature set named S2S1I. Based on each
feature set, a feature dataset was generated for each month
in the growing season using the masked images created in
section III.C.

E. IDENTIFY OPTIMAL FEATURE SET
For each feature set in Table 2, all feature datasets from
March to October were stacked together to create a seasonal

feature dataset. Nine seasonal feature datasets were created
per tile. To optimize the segmentation of those nine seasonal
feature datasets per tile, we used the supervised segmentation
optimization (SSO) approach of [36]. That SSO approach
utilizes the MRS algorithm. Given that the MRS algorithm
requires three main parameters (scale, shape, and compact-
ness), all of which take a varied range of input values, that
SSO approach uses Bayesian optimization to identify the sin-
gle parameter combination that yields the optimal segmenta-
tion output. The accuracy of the segmentation output of each
parameter combination is measured through the overall seg-
mentation quality (OSQ) metric, which is an area-weighted
average of the Jaccard index [63]. The Jaccard index, which is
widely known as Intersection over Union (IoU), is frequently
used in computer vision tasks to measure the geometric simi-
larity between a reference object and a target object extracted
from an image or a video. The formula for IoU and OSQ as
culled from [36] is given in (2) and (3), respectively;

IoU (Y ) =
Area (X ∩ Y )

Area (X ∪ Y )
(2)

OSQ =

∑n
i=1 Area(Yi) ∗ IoU (Yi)∑n

i=1 Area(Yi)
(3)

where X is a reference object, Y is its target object (segment),
X ∩Y is the spatial intersection between them, X ∪Y repre-
sents their spatial union, and n is the total number of segments
in a segmentation output. Given an input image and a refer-
ence dataset (GSAA in our case), the SSO approach uses 150
parameter combinations and then returns the segmentation
output that best matches the reference data. It also returns
the corresponding OSQ value as well as the IoU value of
each segment in the optimal segmentation output. Both IoU
and OSQ range from zero (lowest segmentation quality) to
one (highest segmentation quality). The feature set with the
highest average OSQ over the eleven tiles was adjudged as
the best.

F. EVALUATE THE EVOLUTION OF SEGMENTATION
ACCURACY OVER TIME
To assess the evolution of the segmentation accuracy of
agricultural fields over time, we created incremental feature
datasets covering different months of the growing season
based on the optimal feature set identified in section III.E.
Table 3 shows how the incremental feature datasets were
created. The first incremental feature dataset (DID-1) was
created using the feature dataset of March only. The one in
April (DID-2) contains the feature datasets of March and
April. This incremental process continued up to October
(DID-8). DID-8 is the same as a seasonal feature dataset
described in section III.E. The number of bands in each incre-
mental feature dataset varied. Assuming S2B4 was estab-
lished as the optimal feature set, DID-1 will have four bands,
DID-2 will contain eight bands, and DID-8 will have 32
bands. For each of the eleven tiles, eight incremental fea-
ture datasets were created. Each incremental feature dataset
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TABLE 3. The incremental feature datasets (DID-1 to DID-8) that were
created in this study. The ‘‘x’’ symbol means that the feature dataset of
that month was used in creating the incremental feature dataset.

served as an input to the SSO approach and the corresponding
results were recorded.

IV. RESULTS
A. OPTIMAL FEATURE SET FOR SEGMENTATION
Figure 3 shows the variability of OSQs obtained at the eleven
TTs for each feature set as well as the average OSQ (cyan
boxes) obtained by each feature set over the test tiles. The
S1 feature set based on only the radar indices (S1I) out-
performed the one based on only the radar bands (S1B).
The combination of the radar bands and indices (S1BI) led
to an increase in OSQ. The feature set purely based on
the S2 indices (S2I) outperformed those purely based on
the spectral bands (S2B4, S2B10). The combination of the
S2 bands and S2I to respectively create S2B4I and S2B10I
improved the segmentation results as compared to separately
using either S2B4 or S2B10. Among the feature sets based on
only the S2 bands, S2B4 yielded better results than S2B10.
The combination of the S2 and S1 indices (S2S1I) obtained
the highest averageOSQ. The numerical values of the average
OSQs obtained by the feature sets over all the test tiles are
reported in Table 6 of Appendix A.

The breakdown of the performance of each feature set per
tile is shown in Figure 4. S2S1I yielded the best results at
three tiles (TT3, TT4, TT10), S2B10I at three tiles (TT2, TT8,
TT11), S1BI at two tiles (TT1, TT5), S1I at two tiles (TT6,
TT7), and then S2B4I at one tile (TT9).

The optimal parameter combinations associated with S1BI
(optimal among the S1 feature sets), S2B10I (optimal among
the S2 feature sets), and S2S1I (overall optimal feature set)
per tile are shown in Table 7 of Appendix A.

To understand the differences in OSQ between the fea-
ture sets, we further investigated S1BI, S2B10I, and S2S1I.
We generated the area-weighted histogram in Figure 5 with
ten bins using the IoU computed for each segment in the
optimal segmentation results that were respectively obtained
by S1BI, S2B10I, and S2S1I at all test tiles. We created
an area-weighted histogram because the OSQ is also area-
weighted. To create the histogram, each IoU contributed its
segment area to the bin count (frequency) instead of one.
As the histogram shows, the S2S1I feature set generated more

segments with better geometric matches to the GSAA parcels
than the other feature sets, which resulted in it obtaining the
highest average OSQ. Compared with S2B10I and S2S1I,
the higher values for low-IoU bins obtained by S1BI as shown
in Figure 5 explain its low accuracies in Figure 3 and Figure 4.

Based on the best feature set (S2S1I), we visually inspected
the optimal segmentation results at TT1 (highest OSQ
of 73.7%) and TT10 (lowest OSQ of 59.9%) to understand
the reasons behind the difference in OSQ between them.
Figure 6 shows the segmentation results achieved at TT1 and
TT10. The false-color image of S2S1I at TT1 and TT10 are
depicted in Figure 6a and Figure 6b, respectively. The GSAA
parcels (black outlines) have been overlaid on the false-color
images in Figure 6c and Figure 6d, respectively. The optimal
segments symbolized by their respective IoU values have
been overlaid on the false-color images in Figure 6e and
Figure 6f, respectively. The segments that touch the bound-
aries of each tile are excluded in the SSO approach because
they are artifacts, hence they are not displayed in Figure 6e
and Figure 6f. The reason for the difference in OSQ between
those two tiles is attributable to the difference in the size
and shape of agricultural fields at each tile. At TT1, the tiles
are bigger and more compact. The opposite can be seen at
TT10, where most of the agricultural fields are smaller and
less compact (more elongated).

B. EVOLUTION OF SEGMENTATION ACCURACY OVER
TIME
The average OSQ attained by each S2S1I-based incremental
feature dataset over all tiles is depicted in Figure 7. The lowest
OSQs were mostly obtained at the beginning of the growing
season in March with DID-1. As the season progressed and
more datasets were acquired and used, the segmentation accu-
racy increased accordingly. The highest OSQs were mostly
achieved at the end of the growing season in October (DID-8).
As Figure 8 shows, the optimal OSQ at eight tiles (TT1, TT4,
TT5, TT6, TT7, TT8, TT9, TT11) was attained with DID-8,
two tiles (TT2, TT3) with DID-7, and one tile (TT10) with
DID-4. The difference in average OSQ of 5.31 percentage
points between DID-1 (62.2%) and DID-8 (67.51%) was
observed to be statistically significant (p-value = 0.006)
based on a two-tailed t-test. In the incremental segmentation
set-up, the highest improvement in OSQ of almost 2% was
achieved by adding the May dataset to the incremental stack
to create DID-3. This was followed by the addition of the June
dataset to create DID-4, which led to an increase of about
1.2%. After June, the increase became more gradual.

We used the IoU values of the segments in the optimal
segmentation results generated with the incremental feature
datasets to create the area-weighted histogram shown in
Figure 9, which focuses onDID-1 (start of the season), DID-3
(after the farmers submit their GSAA), and DID-8 (end of
the season). The optimal segmentation results respectively
obtainedwithDID-3 andDID-8 producedmore segments that
geometrically matched the GSAA parcels than DID-1 did.
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FIGURE 3. Boxplots showing the variability of OSQs obtained at the eleven tiles per feature set. The cyan boxes
represent the average OSQs achieved by each feature set over the tiles. The within-box horizontal lines are the
median OSQs. The black dots are the OSQs that are outliers.

FIGURE 4. The OSQ obtained by each feature set per tile.

C. PLAUSIBILITY ANALYSIS: COMPARISON OF THE
SEGMENTATION RESULTS WITH THE GSAA PARCELS
In [36], over-segmentation was identified as the main rea-
son for the disparity between the GSAA parcels and the
segmentation results. In addition to the instances of over-
segmentation established in [36], we identified a new instance
of over-segmentation, which was caused by the masking
approach we used in this study as shown in Figure 10.

In Figure 10a, the GSAA parcel indicates the presence of a
single LU (mowing pasture) but due to the inward buffer
applied at the masking stage, an artificial boundary was cre-
ated in the satellite image leading to the incorrect generation
of two separate segments (B1, B2) as shown in Figure 10b.
B1 and B2 had moderate IoU values of 51% and 35.9%,
respectively. A higher IoU value could have been achieved
with a single segment without any separation between them.
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FIGURE 5. Area-weighted histogram of the Intersection over Union (IoU) values computed for the segments in the optimal
segmentation results achieved respectively by S1BI, S2B10I, and S2S1I at all test tiles.

TABLE 4. Overall segmentation quality (OSQ) computed for the different
field size categories.

D. SEGMENTATION ACCURACY FOR DIFFERENT FIELD
SIZES
The segmentation optimization process was subsequently
extended to the other tiles in Lower Saxony based on the
DID-8 generated for S2S1I. The optimal segmentation results
of the 575 tiles were then merged. The merged result can
be viewed as the ‘‘original_segmentation_ni’’ layer on this
web map.3 Based on this merged result, we analyzed the
impact of the area of the agricultural fields on the OSQ.
In [5], the authors stated that a minimum of 50 pixels per
field is the critical number required for site-specific smart
farming. Therefore, we separated the small field size category
of [2] into two sub-groups: very small fields (< 0.5 ha) and
small fields (0.5 ha – 1.5 ha). The medium and large field
categories were kept. Table 4 shows the OSQ computed for
each category.

From Table 4, the accuracy of large fields was lower than
the medium fields. A visual assessment of the results revealed
some of the instances that contributed to that phenomenon

3https://tisdex.thuenen.de/maps/34/view#/ (Accessed: Jul. 9, 2021).

as shown in Figure 11 and Figure 12, where the size of
the GSAA parcels are 19.6 ha and 15.7 ha, respectively.
To receive the greening payments within CAP, farmers with
arable land exceeding 15 ha have to use at least 5% of their
land as an Ecological Focus Area (EFA), e.g., hedges. Due
to the presence of hedges in Figure 11a, the SSO correctly
created one segment containing the hedges (B1) and a second
segment without hedges (B2) as captured in Figure 11b.
Unfortunately, B1 had a low accuracy of 6.4%. B2 was 86.4%
accurate. In Figure 12, although the image (Figure 12a) looks
relatively homogenous, two separate segments (B1 and B2)
with respective accuracies of 21.3% and 73.9 % were created
by the SSO as shown in Figure 12b. This is an error caused
by the MRS parameters not being optimal for that particular
agricultural field, even though the identified parameters were
optimal for the tile that contains that field.

E. USE CASE: POST-FILTERING OF PIXEL-BASED CROP
MAPS
In [64], the authors showed that the post-filtering of pixel-
based crop type maps using image segments throughmajority
voting can improve image classification results. Therefore,
as a use case, we tested if the crop type map of [65] as
visualized on this webpage4 could be improved using the
merged segmentation result of Lower Saxony. Before pro-
ceeding with this test, we first post-processed the merged
segments in GRASS GIS. 5 We applied ‘‘v.clean’’ to first

4https://ows.geo.hu-berlin.de/webviewer/croptypes/ (Accessed: Jul. 9,
2021).

5https://grass.osgeo.org/ (Accessed: Jul. 9, 2021).
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FIGURE 6. Optimal segmentation results obtained at TT1 (left column) and TT10 (right column) based on S2S1I. (a) and (b) show the false-color
composites of the NDVI MMCs of March, June, and October. The GSAA parcels (black outlines) have been overlaid on the respective images at
(c) and (d). The optimal segments have been symbolized with their corresponding IoU values and subsequently draped over each image at
(e) and (f), respectively. The geographical extent of TT1 is roughly 12.3 km by 10.3 km and that of TT10 is roughly 11.3 km by 10.7 km.
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FIGURE 7. Boxplots showing the variability of OSQs obtained at the eleven tiles by the S2S1I-based
incremental feature datasets. The cyan boxes are the average OSQs over all tiles as obtained by the
incremental feature datasets. The within-box horizontal lines are the median OSQs.

FIGURE 8. The OSQ obtained by each S2S1I-based incremental feature dataset per tile.

remove duplicate segments created due to overlapping tiles
and then applied ‘‘v.generalize’’ to simplify the segments.
The simplified segments can be viewed as the ‘‘simpli-
fied_segmentation_ni’’ layer in this web map.6 We subse-
quently applied a majority vote filter to determine the crop
type of each segment. As an example, the pixel-based crop
type map and the crop type map after the majority vote at TT7
(balanced share of arable lands and grasslands) are captured
by Figure 13a and Figure 13b, respectively. The outcome of

6https://tisdex.thuenen.de/maps/34/view#/ (Accessed: Jul. 9, 2021).

the majority vote was a smoothed map, where most of the
noise in the pixel-based map had been removed. An accuracy
assessment performed using all the GSAA parcels of Lower
Saxony indicated an improvement in the overall accuracy
after filtering from 78% to 81.4% and theKappa statistic from
0.705 to 0.747.

V. DISCUSSION
This current study builds on the previous work of [36].
In [36], the authors only focused on the development of
the optimization approach. No attention was given to the
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FIGURE 9. Area-weighted histogram of the Intersection over Union (IoU) values computed for the segments in the optimal
segmentation results achieved respectively by DID-1, DID-3, and DID-8 at all test tiles.

FIGURE 10. Over-segmentation caused by the masking approach used in
this study. The background displays in (a) and (b) are based on the
false-color image created for DID-8 using the NDVIs of March, June, and
October. The image in (a) has been overlaid with the GSAA parcel (black
outline). The corresponding segments generated are symbolized in (b) by
their IoU values. Two separate segments labeled B1 and B2 were created.

identification of the optimal feature set for segmenting the
agricultural fields. In [36], cloud-free S2 images were man-
ually selected and used. In this study, an automated pro-
cess based on FORCE was used to identify and replace
clouds. This study also evaluated pre-processed S1 datasets
as obtained from CODE-DE. For our current study, we used
monthly composites of S1 and S2 unlike [36], where single-
date S2 images were used. In [36], the segmentation accuracy
that could be achieved for different agricultural field size

FIGURE 11. Over-segmentation caused by hedges. The background
displays in (a) and (b) are based on the false-color image created for
DID-8 using the NDVIs of March, June, and October. The image in (a) has
been overlaid with the GSAA parcel (black outline). The LU of this GSAA
parcel is potato. The corresponding segments generated are symbolized
in (b) by their IoU values. Two separate segments labeled B1 and B2 were
created.

categories was not assessed. Finally, in this study, the use of
image segmentation to aggregate and improve a pixel-based
crop type map was evaluated.
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FIGURE 12. Over-segmentation caused by the non-optimal MRS
parameters. The background displays in (a) and (b) are based on the
false-color image created for DID-8 using the NDVIs of March, June, and
October. The image in (a) has been overlaid with the GSAA parcel (black
outline). The LU of this GSAA parcel is mowing pasture. The
corresponding segments generated are symbolized in (b) by their IoU
values. Two separate segments labeled B1 and B2 were created.

For segmenting agricultural fields, using only the visible
and near-infrared bands (S2B4) of S2 was superior to using
all ten bands (S2B10) as depicted in Figure 3. A similar
outcome was reported by [23], who received more accurate
results using only the visible (RGB) bands of a Worldview-
2 image as compared to using all the eight bands for image
segmentation based on the MRS algorithm. They attributed
this phenomenon to the high correlation existing between the
eight bands. To deal with this problem, they applied principal
component analysis (PCA) to the eight bands and used the
first three components for segmentation. The result was better
than using all eight bands but underperformed in comparison
with the RGB bands. In using S2, most authors [33]–[40]
directly used S2B4 to segment agricultural fields without
testing other feature combinations. The superiority of S2B4 to
S2B10 as established in this study validates the choice of
S2B4 by those authors for segmenting agricultural fields.

Due to the inherently speckled nature of radar images,
some researchers [66]–[68] have asserted that the segmen-
tation of optical images is easier and more accurate. Their
assertion can largely be backed by Figure 3, where most of
the feature sets based on only S2 outperformed those based on
only S1. However, the S1 feature sets (S1I, S1BI) containing
the radar indices proved capable of segmenting agricultural
fields even to the extent that they outperformed S2B10. The
speckle noise in radar images often makes it difficult to visu-
ally identify the boundaries of features. Monthly compositing
was particularly beneficial to S1 as it helped in reducing

the speckle noise, thereby revealing the boundaries of agri-
cultural fields. The masking approach used in this study
was potentially more beneficial to S1 in creating boundaries
between adjacent fields. In situations where S2 images are
not available due to clouds, monthly composites of S1 images
could be used for segmenting agricultural fields. Overall,
the combination of S1 and S2 resulted in the highest segmen-
tation accuracy (Figure 3). Within the context of mapping
agricultural LU types, other authors [43], [69], [70] also
observed that combining S1 and S2 leads to better results than
separately using each sensor.

Based on the seasonal feature dataset (DID-8) created from
the combined S1 and S2 feature set, the highest OSQ occurred
at TT1 (Figure 6e) and the lowest at TT10 (Figure 6f).
The main driving forces behind the obtained OSQs were
the area and shape of agricultural fields at the tiles. Due
to the presence of big and compact agricultural fields at
TT1, the segmentation process was more successful there.
At TT10, most of the agricultural fields are small and elon-
gated, and additionally, they are highly dominated by one LU
(mowing pasture). Such conditions coupled with the spatial
resolution of S1 and S2 make it difficult to appropriately
segment agricultural fields from S1 and S2 images because
clear-cut boundaries between agricultural fields cannot be
distinguished in the S1 and S2 images. This observation was
also made by [36] in their research as they encountered a
similar problem. The use of an image with a higher spatial
resolution than S2 was proposed by [36] as a likely solution.

Because agricultural fields are dynamic and change over
time, to accurately map different agricultural LU types,
the use of multitemporal images is considered a requirement
by [71]. With multitemporal images, the different phenolog-
ical behaviors of different agricultural LU types throughout
the growing season can be characterized and effectively used
to differentiate them [72]. Although that suggestionwasmade
within the context of image classification, it also applies to
the segmentation of agricultural fields as was highlighted by
these authors [39], [73]. As Figure 7 shows, using a single-
period dataset (DID-1) resulted in segments with signifi-
cantly lower accuracies than those created using the dataset
covering the whole growing season (DID-8). This demon-
strates the importance of using multitemporal images for the
effective segmentation of agricultural fields. Consecutively
increasing the number of images (S2S1I in our case) led
to a corresponding increase in the segmentation accuracy
(Figure 7). Although these studies [74], [75] were exclu-
sively focused on object classification, they also observed a
similar phenomenon, in that, increasing the number of input
images yielded an increase in the accuracy of the classified
segments.

Some sources of error identified in this study included
the masking approach, which led to the over-segmentation
captured in Figure 10. This problem could be resolved by
using an improved agricultural LC dataset. Another source of
error was the presence of hedges in the images, which led to
low segmentation accuracies as was highlighted in Figure 11.
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FIGURE 13. Usage of a majority vote to generate an object-based crop type map (b) from the
pixel-based crop type map (a).

Although the presence of the hedge led to a low segmentation
accuracy, such segmentation errors are acceptable especially
for subsequent processes like crop type mapping meant to
determine the actual LU within a field. The last source of
error as highlighted in Figure 12 was caused by the non-
optimal MRS parameters. The segmentation optimization in
this study was applied to roughly 11 km by 11 km tiles.
In tiles with predominantly smaller fields, such instances of
over-segmentation as displayed in Figure 12 are unavoidable.

One solution will be to apply the segmentation optimization
based on eachGSAAparcel instead of using all parcels within
a tile for the optimization. However, such an approach will be
computationally expensive. A more efficient solution will be
to merge neighboring segments with the same LU type after
object classification as was proposed by [36]. After applying
the majority vote filter, both segments in Figure 12b were
classified as grasslands, hence they could be merged as one
segment.
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FIGURE 14. Distribution of land-use (LU) per tile.

FIGURE 15. The boxplots showing the distribution of shape factors (SFs) per tile. The cyan boxes represent the average SFs. The within-box
horizontal lines are the median SFs.
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TABLE 5. Basic descriptive information of the GSAA parcels used in this
study per test tile.

TABLE 6. The average OSQs obtained by each feature set over the eleven
test tiles.

The general trend discernable from Table 4 is that
bigger fields lead to higher segmentation accuracies as
was also established in [36]. Contrary to the suggestion
of [2] that S1 and S2 are more suitable for large fields,
Table 4 rather showed that the S1 and S2 images are
more suitable for medium fields. The larger the fields,
the higher the probability of over-segmentation as was
depicted in Figure 11 and Figure 12, both of which led to
lower segmentation accuracies.

The usefulness of image segmentation for post-filtering
pixel-based crop type maps was briefly demonstrated in
this study. The derived object-based map was more visually
appealing and also increased the classification accuracy.

VI. CONCLUSION
In this study, we applied supervised segmentation optimiza-
tion to different feature datasets generated from S1 and
S2 images at eleven test tiles in Lower Saxony, Germany
to identify the optimal feature set for segmenting agricul-
tural fields. Additionally, the accuracy of agricultural fields
segmented from the S1 and S2 feature datasets between
March and October of 2018 was analyzed. Based on the

TABLE 7. The optimal parameter combinations obtained by S1BI (optimal
among the S1 feature sets), S2B10I (optimal among the S2 feature sets),
and S2S1I (overall optimal feature set) per tile.

results from the eleven test tiles, the segmentation optimiza-
tion process was extended to every part of Lower Saxony.

The results obtained in this study allow for the following
conclusions to be drawn: (1) S2 generally yields better seg-
mentation results than S1, (2) the synergistic use of S1 and
S2 can lead to an improvement in segmentation accuracy,
(3) multitemporal S1 and S2 images are key to the optimal
segmentation of agricultural fields, (4) S1 and S2 images are
more suitable for segmenting medium-sized (1.5 – 15 ha)
agricultural fields, and (5) post-filtering of pixel-based crop
type maps with agricultural fields extracted via image seg-
mentation improves classification accuracies.
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The main outcome (agricultural fields) of this study can
be used to produce object-based crop type maps. An object-
based crop type map is useful for subsequent processes like
the correct estimation of the area per crop type, crop yield
modeling, crop rotation analysis, greenhouse gas (GHG)
modeling, etc.

Looking ahead, we intend to extend this study to every
state in Germany. The derived segmentation results will then
be used as direct inputs to land-cover/land-use classification
and land-use intensity mapping (mowing detection). To test
the robustness of our current approach to the determination
of the optimal feature set, we intend to test other segmen-
tation algorithms particularly deep neural networks (DNN),
and then compare the results to our current study. Smaller
fields are more sensitive to the IoU metric than bigger fields.
A small spatial misalignment between a segmented field and
its corresponding reference object will have a more negative
impact on the IoU value of a smaller field than a bigger
field. Therefore, future studies should test other segmenta-
tion evaluation metrics that combine the percentages of the
overlapped (correctly segmented) area, over-segmented area,
and under-segmented area for each segmented field.

APPENDIX A
See Figures 14 and 15, and Tables 5–7.
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