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Summary

� Climate change is increasing insect pressure and forcing plants to adapt. Although chemo-

typic differentiation and phenotypic plasticity in spatially separated tree populations are

known for decades, understanding their importance in herbivory resistance across forests

remains challenging.
� We studied four oak forest stands in Germany using nontarget metabolomics, elemental

analysis, and chemometrics and mapped the leaf metabolome of herbivore-resistant (T-) and

herbivore-susceptible (S-) European oaks (Quercus robur) to Tortrix viridana, an oak pest that

causes severe forest defoliation.
� Among the detected metabolites, we identified reliable metabolic biomarkers to distinguish

S- and T-oak trees. Chemotypic differentiation resulted in metabolic shifts of primary and sec-

ondary leaf metabolism. Across forests, T-oaks allocate resources towards constitutive chemi-

cal defense enriched of polyphenolic compounds, e.g. the flavonoids kaempferol, kaempferol

and quercetin glucosides, while S-oaks towards growth-promoting substances such as carbo-

hydrates and amino-acid derivatives.
� This extensive work across natural forests shows that oaks’ resistance and susceptibility to

herbivory are linked to growth-defense trade-offs of leaf metabolism. The discovery of

biomarkers and the developed predictive model pave the way to understand Quercus robur’s

susceptibility to herbivore attack and to support forest management, contributing to the

preservation of oak forests in Europe.

Introduction

Forest ecosystems are currently exposed to opposing forces of cli-
mate change. For example, global warming positively affects
plant growth (Saxe et al., 2001; Pretzsch et al., 2014) and extends
tree growth periods but also increases herbivory pressure on forest
ecosystems. Milder winters improve survival of overwintering
insects (Pureswaran et al., 2018), and a warmer climate acceler-
ates insects’ development and increases voltinism, the number of
generation cycles per year (Hamann et al., 2021). The formation
of more insects per growing season has negative consequences for
plant fitness and growth (Bebber et al., 2013; Bacon et al., 2014).

Overall, growth and reproductive allocations support plants
improving inter-species competition, while investments in
defense mechanisms help plants to resist, e.g. herbivorous pres-
sure, maximizing plant fitness by reducing damage and improv-
ing survival. However, resistant phenotypes come at a cost:
resource allocation towards chemical defense reduces growth by
diverting energy and metabolic precursors from processes such as

vegetative tissue expansion, biomass yield, and seed production.
This is predicted in the classical growth-differentiation-balance
(GDB) hypothesis developed by Herms & Mattson (1992). It
describes the physiological case for a mutually exclusive allocation
of limited resources to one or the other function – growth vs dif-
ferentiation (including defense) to maximize the plant’s fitness.
Thereby, the plant’s dilemma between growth or defense has
important ecological consequences. At the intraspecific level, it is
expected that both growth and defense increase with resource
availability (van Noordwijk & de Jong, 1986; Agrawal, 2020).
Furthermore, individuals with greater access to limited resources
can allocate larger amounts of resources to growth and defense
than conspecifics who have limited access as a consequence of
phenotypic plasticity (Agrawal, 2020).

In addition to phenotypic plasticity, plants’ adaptation to
changing environmental conditions and herbivore pressure is
based on intraspecific genetic variation at individual and popula-
tion levels. Through the formation of chemotypes, it provides the
potential for adaptation under natural selection. Chemotypic
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differentiation in plant populations is influenced by various envi-
ronmental factors, pathogen and herbivore pressure, and their
interactions (Levin, 1976; Bradshaw, 1984; van Tienderen, 1992;
Linhart & Grant, 1996; Galloway & Fenster, 2000; Montalvo &
Ellstrand, 2000; Etterson, 2004). As a response, spatially dis-
persed populations tend to adapt to specific ecological niches and
evolve genotypic and metabolic patterns, the so-called ‘ecotypes’
(Kollmann & Ba~nuelos, 2004; Kleessen et al., 2012; Nagler
et al., 2018; Salom�e-Abarca et al., 2020). Because phenotypic dif-
ferences among members of a population driven by genetic dif-
ferentiation lead to adaptation through natural selection (Alberto
et al., 2013), plant phenotypes with increased resistance to herbi-
vores may become selected over generations under higher her-
bivory pressure (Geber & Griffen, 2003; Schemske et al., 2009).
However, plants that invest in growth/reproduction are more
competitive, especially during periods in the absence of abiotic or
biotic stresses. To date, there is still scarce evidence on the priori-
tization of defensive vs growth strategies in naturally occurring
tree populations. To study the susceptibility of our forests to the
effects of climate change, we need to better understand the phe-
notypic variation in relation to herbivory pressure and chemodi-
versity within a forest tree population and how they occur among
members of a population and among populations in natural
forests. The ecological consequences of intraspecific chemodiver-
sity and the impacts on the interactions of plants with their biotic
environment remain largely unknown (M€uller et al., 2020). A
valuable tool to understand plant–herbivory interactions is the
identification of biomarkers, metabolites that are characteristic to
the susceptibility or resistance of plants to insects.

Here we analyzed the interactions between phenotype, chemo-
type and herbivore resistance in the European oak (Quercus robur
L.) by the development of metabolic biomarkers. Quercus robur is
a widespread, ecologically, and economically important long-
lived forest tree species (Yela & Lawton, 1997; Ehmcke &
Grosser, 2014; Annigh€ofer et al., 2015). Native to Europe, it is
cultivated in the temperate regions of Asia and North America
(Eaton et al., 2016) and has been described as tolerant to high
temperatures and drought. European oaks are characterized by a
high genetic diversity, which helps species’ adaptation under
changing environmental conditions (M€uller-Starck et al., 1993;
Bresson et al., 2011). In previous works, we investigated grafted
trees from an oak population grown under controlled conditions
and identified two naturally occurring, insect-susceptible (S-) and
insect-resistant (T-) European oak phenotypes (Ghirardo et al.,
2012; Kersten et al., 2013). In the forests, the scions’ mother
plants are differently defoliated by the green oak leaf roller (Tor-
trix viridana L.), an herbivorous pest that can cause severe dam-
age in oak forests during outbreak years (Hunter, 1990;
Hartmann & Blank, 1992). Metabolomic and transcriptomic
analyses of plants grown in a phytochamber let us hypothesize
that S-oaks might prioritize the biosynthesis of metabolites
related to growth processes, while T-oaks to constitutive defense
(Kersten et al., 2013).

In this article, we tested the growth-defense prioritization
hypothesis of resistant and susceptible oaks in natural forests by
developing metabolic biomarkers that can distinguish T-oaks and

S-oaks irrespective of the oak populations in metabolically con-
trasting forests (ecotypes). For this, we analyzed the leaf
metabolome of T- and S-oaks in four geographically separated
forest sites of European oaks in North Rhine-Westphalia, Ger-
many, with respect to geolocation and resistance to the insect T.
viridana. We used a nontargeted metabolomics approach to study
the oak’s strategy in terms of prioritization towards growth or
defense and related to tree-specific oaks’ resistance/susceptibility
inventory data collected over the last 24 yr at the four sites. Non-
targeted metabolomics is a useful tool to understand plant–envi-
ronmental interactions (Kuzina et al., 2009; Pe~nuelas & Sardans,
2009), and its use has recently increased to address
ecometabolomic questions (Sardans et al., 2011; Rivas-Ubach
et al., 2013, 2019; D. M. Allevato et al., 2019).

Here we show that (1) each oak population is metabolically a
different ecotype; (2) each ecotype community has conserved
both resistant and susceptible phenotypes in regards to T. viri-
dana infestation; (3) metabolic biomarkers and chemometrics
can be used to develop a prediction model capable of classifying
S- or T-oak phenotypes independently of their geographical ori-
gins. These results pave the way to study the European oak’s sus-
ceptibility to herbivore attacks and may contribute to the long-
term conservation of European oaks, an ecologically important
tree species grown in temperate latitudes of Europe.

Materials and Methods

Plant material

We investigated the dark-adapted leaf metabolome of 67 Euro-
pean oak trees (Q. robur L.) from four mixed forest stands near
the cities of Borken, Everswinkel, M€unster, and Warendorf (data
set BEMW) in North Rhine-Westphalia, Germany (Fig. 1a;
Table 1) (Schroeder & Degen, 2008). The range of tree ages is
150–185 yr. Oaks were phenotypically classified as insect-
resistant (T-oaks) or as insect-susceptible (S-oaks) by monitoring
from 1994 to 2018 the defoliation rates that occurred as a conse-
quence of outbreaks years of the specialized herbivore T. viridana
L. (Lepidoptera, Tortricidae). The degree of herbivory defolia-
tion has been visually estimated as percentage of defoliation using
standard images (Evers, 2004). In outbreak years, all trees with a
foliage loss of > 90% were classified as S-oaks (41 trees), and
those of < 60% as T-oaks (26 trees). Exceptionally for Waren-
dorf, we classified as potential T-oaks those trees that had the
lowest (< 80%) percentage of defoliation, as the overall insect
defoliations were much more severe.

From 21 to 24 May 2019, we sampled sun-exposed leaves of
the tree crowns (Fig. 1b) by taking down branches of the trees
using an arborist throw-line launcher (Youngentob et al., 2016).
This method was necessary for reaching the small top branches of
the 20–40 m spreading crown of tall oak trees. For each tree, we
collected three leaves from different branches and inserted them
in aluminum foil bags. The three leaves per tree were combined
for analysis to account for metabolic variation within the canopy.
To minimize the influence of developmental-dependent changes
(Riipi et al., 2004), all leaves were of the same growth stage #5
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(Supporting Information Fig. S1). We randomly sampled T- and
S-oaks between 10:00 and 17:00 h. Due to difficulties in per-
forming the flash-freezing of samples collected by the throw-line
launcher method, in the availability of liquid-nitrogen (N2) in
the forests, and sensitivity of some metabolites to changes of light
condition unavoidable in the nature, we dark-adapted the sam-
pled leaves for 60–80 min inside a polystyrene box before deep-
freezing in dry ice. Such procedure helps to reduce
photosynthetic-dependent metabolic variation (Dyson et al.,
2015) and lower bias in the analysis. Laboratory analysis indi-
cated that the metabolome of dark-adapted leaves differs from
those sampled under light, although most of the compounds dif-
ferently expressed in T- and S-oaks are end-products (e.g. tan-
nins, sugars, lipids, amino acids) remain unchanged (see also
validation later).

Complementary and validation analyses were performed on
grafted oaks originating from a different oak population of a
forest c. 300 km away from the forest stands in BEMW near the
village of Asbeck (data set Asbeck) in North Rhine-Westphalia
(Schr€oder, 2010; Kersten et al., 2013). Branches of these oaks
were grafted in 2008 and were previously subjected to metabolic
and molecular studies under controlled environmental conditions
(Ghirardo et al., 2012). Since 2008, the grafted oaks have been
growing in a common garden under similar climate and fertiliza-
tion conditions for the last 12 yr at Th€unen-Institute of Forest
Genetics, Grosshansdorf, Germany. Leaves from 10 ramets each
of five oaks and 50 individuals (20 S- and 30 T-oaks) were col-
lected. Because the Asbeck data-set contains S- and T-oaks
growth independently to climate conditions, oak population,
sampling time, insect feeding, and sampling procedure (dark-

(a)

(c)

(b)

Fig. 1 (a) Map of the four forest sites studied
(Borken, geographic coordinates (latitude,
longitude): (52.021493, 6.938061),
Everswinkel (51.907194, 7.884056),
M€unster (51.906404, 7.751286) and
Warendorf (51.834023, 7.891956)) in North
Rhine-Westphalia, Germany drawn with R
package ‘TMAP’ (Tennekes, 2018). The site
Borken is c. 50 km further from the other
three sites, located in a radius of 20 km. (b) A
representative herbivore-resistant (T-) oak
and typical sampling branch (red circle) at the
top of the canopy directly exposed to the
sunlight. (c) Unsupervised uniform manifold
approximation and projection (UMAP) with
R package ‘UMAP’ (McInnes et al., 2018) of all
mass features measured by nontargeted
metabolomics indicates differences in the
overall leaf metabolic pattern of oaks from
the four forest stands.

Table 1 Environmental factors and forest characteristics of the four forest sites in North Rhine-Westphalia, Germany, during the sampling campaign in
2019.

Borken Everswinkel M€unster Warendorf

Number of trees 26 12 24 18
Coordinates (lat., long.) (52.021493, 6.938061) (51.907194, 7.884056) (51.906404, 7.751286) (51.834023, 7.891956)
T (°C)� r 23.6� 2.2 12.9� 1.6 19.0� 2.1 14.6� 1.9
Relative humidity (%) � r 34.7� 10.2 75.5� 6.7 49.4� 13.2 90.8� 10.1
Weather Sunny Cloudy Sunny Cloudy
Soil Brown earth podsol Alluvial soil Alluvial soil Brown earth from marl

and calcareous gravel
Age 150–180 150–180 156 185
Quercus robur percent
forest composition

NA/mixed forest NA/mixed forest 60/(Fagus sylvatica,
Carpinus betulus,

Faxinus excelsior)

70/(Q. petraea,
Fagus sylvatica)

The temperature and humidity values are shown as the mean value and standard deviation (r). NA, not available.
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adapted vs light conditions and liquid-N2 vs dry-ice), we use this
data to evaluate the prediction model performance of the here
newly developed statistical approach based on dark-adapted
metabolome of BEMW field samples (see later). For this, larvae
have been set on grafted trees at 17:30 h and leaves from these
trees have been sampled 19 h later by flash-freezing with liquid-
N2. Samples were stored at �80°C until metabolomics analysis.

Nontargeted metabolomics analysis

All leaf material was homogenized under cryogenic condition
using mortar, pestle, and liquid-N2 to a fine powder and then
freeze-dried at �50°C under the vacuum condition of
0.040 mbar (Alpha 1-4 LDplus, Christ, Osterrode, Germany).
For extraction, 500 µl of cold (5°C) methanol : 2-
propanol : water (1 : 1 : 1, v/v/v) extraction solvent mixture were
added to 25 mg of dried leaf powder containing 50 µl of inter-
nal standard (IS) mixture (0.028 lmol ml�1 of magnolol,
rosmarinic acid, 3,4-dihydromandelic acid, and 30,40-
dihydroxyacetophenone, Table S1). Samples were mixed for
1 min inside a 2 ml polypropylene tube and sonicated in an ultra-
sonic bath for 10 min at 5°C. The solution was centrifuged at
9.3 g for 10 min at 5°C, and 400 µl of supernatant was recovered.
The extraction was repeated with the rest of the precipitate,
resulting in 800 µl of supernatant. The supernatant was dried by
SpeedVac (Univapo 150H, Uniequip, Planegg, Germany), and
the residue was dissolved in 350 µl of 50% (v/v) acetonitrile in
water. The solution was mixed for 1 min and centrifuged at 9.3 g
for 10 min at 5°C, and 300 µl of supernatant was transferred in
350 µl amber glass vials. The chemicals (LCMS hyper grade)
methanol/water were purchased from Merck (Darmstadt, Ger-
many) and 2-propanol/acetonitrile from Honeywell (Puchheim,
Germany).

Nontargeted metabolomics analysis was performed following
Ghirardo et al. (2020) and Hemmler et al. (2018), using an
ultra-performance liquid chromatography (UPLC) ultra-high
resolution (UHR) tandem quadrupole/time-of-flight (QqToF)
mass spectrometry (MS). The instrument is comprised of an
Ultimate 3000RS UPLC (Thermo Fisher, Bremen, Germany),
a Bruker Impact II (QqToF) and an Apollo II electrospray ion-
ization (ESI) source (Bruker Daltonic, Bremen, Germany).
Separation of nonpolar and polar metabolites was achieved
using a reversed-phase liquid chromatography (RPLC) column
(C18, Acquity BEH (Waters, Eschborn, Germany), 150 mm
9 2.1 mm, 1.7 µm) and a hydrophilic interaction liquid chro-
matography (HILIC) column (Acquity BEH Amide, Waters,
100 mm 9 2.1 mm, 1.7 µm), respectively. Each sample was
separately analyzed with RPLC, and HILIC columns with MS
operated in both positive (+) and negative (�) ESI modes. For
details on chromatography and MS parameters see Methods
S1.

Data processing and compound identification

The liquid chromatography-tandem mass spectrometry (LC-MS/
MS) data were analyzed using METABOSCAPE 4.0 (Bruker) to

perform the post-acquisition peak-peaking, alignments, isotope
filtering, and peak-grouping based on peak-area correlation
(Domingo-Almenara et al., 2018). Detailed parameter settings
are listed in Table S2. The software merged automatically the
data obtained from the � measurement modes and returns pro-
cessed data in a result table. Results from RP and HILIC analyses
were merged manually. The table contains the exact mass, chemi-
cal formula and peak area of compounds if the expected adducts
and isotopologues co-occurred at r2 > 0.7. For the most abundant
compounds, we confirmed the annotation by standards and
therefore achieved the annotation level 1 (Sumner et al., 2007;
Reisdorph et al., 2020). For other compounds, the annotation
was putative and achieved using MS/MS spectra, when available,
matched by METABOSCAPE to the libraries HMDB (http://www.
hmdb.ca/) (Wishart et al., 2009), GNPS (Global Natural Pro-
duct Social Molecular Networking) (https://gnps.ucsd.edu/Prote
oSAFe/static/gnps-splash.jsp), MONA (Mass Bank of North
America), Vaniya/Fiehn Natural Products Library; Fiehn HILIC;
RESPECT (http://spectra.psc.riken.jp) (Sawada et al., 2012); LC-
MS/MS Spectra (https://mona.fiehnlab.ucdavis.edu/downloads).
Mass features without MS/MS spectra were tentatively annotated
on MS1 level using 5.0 mDa tolerance for the precursor mass
with an in-house built R code (https://osf.io/s9d2j/?view_only=
733a0c1a9e444f669d44c6eaad44f253). Chemical class classifica-
tion of compounds was achieved by the ‘multidimensional stoi-
chiometric compound classification’ (MSCC) approach
according to the elemental ratio compositions (Rivas-Ubach
et al., 2018).

Data processing included the replacement of missing values
with the average area value from all samples for the corre-
sponding mass feature (Denkert et al., 2006). Data were nor-
malized by IS (Sysi-Aho et al., 2007) mixture, composed of
four plant metabolites that spread through the whole analytical
mass and RT range (Table S1) but not detectable in pure oak
leaf extracts. Finally, peak areas were normalized to dry leaf
weight. The final data table (Table S3) was the input of the
statistical analysis.

Elemental and stable isotope analyses

For the determination of the content of macroelements (Ca, K,
Na, S, P), 90.00 mg of freeze-dried leaf powder was extracted as
described by Schramel et al. (1980) and further analyzed by
inductively coupled plasma optical emission spectrometry (ICP-
OES) (Schramel, 1983).

Carbon (C) and nitrogen (N) contents and stable isotope sig-
nature of d13C and d15N were measured by isotope ratio mass
spectrometry (IRMS, delta-V Advantage, Thermo Fisher, Dreie-
ich, Germany) coupled to an elemental analyzer (Euro EA,
Eurovector, Milan, Italy) as described in Methods S2.

Multivariate data analysis

Before multivariate analyses, data were always logarithmically
(log10) transformed, centered, and Pareto scaled (van den Berg
et al., 2006; Eriksson et al., 2013).
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Descriptive analysis The principal component analysis (PCA)
and orthogonal partial least square regression discriminant analy-
sis (OPLS-DA) were performed using the SIMCA-P v.13.0.3.0
(Umetrics, Ume�a, Sweden). Uniform manifold approximation
and projection (UMAP) and cluster analysis (CA) were made
with R software (R Development Core Team, 2019) using pack-
ages ‘UMAP’ (McInnes et al., 2018) and ‘HEATMAP’ (Gu et al.,
2016) respectively. The unsupervised PCA and UMAP methods
were used to describe the metabolic patterns and detect potential
outliers. Individual trees were scores, and the normalized peak
areas of mass features were the loadings in PCA, UMAP and
OPLS-DA. To visualize metabolic differences between both four
locations and the S- and T-oak phenotypes, respectively, CA
(based on Euclidean distances) was performed on forest-specific
and phenotype-specific discriminant mass features. Hypergeo-
metric tests were performed using the function ‘phyper’ in R
v.3.6.0 (R Development Core Team, 2019).

Discriminant analysis for biomarker discovery and classification
of oak phenotypes OPLS-DA was used to found forest-specific
discriminant mass features on BEMW oaks. The discriminant
model was computed using four Y-variables that corresponded to
the four forests BEMW and assigning a binary discriminating
variable codex to their class (Ghirardo et al., 2005). The dimen-
sions of the data matrix analyzed were 679 10 206 (trees9 nor-
malized peak areas to IS and leaf dry-weight), representing the
individual trees (from the four groups of forest sites) and the mass
features, respectively. Discriminant metabolites were defined as
the loadings of the significant OPLS-DA (cross-validated
ANOVA < 0.05; Eriksson et al., 2008) that passed the following
criteria: (1) VIP values > 2 (Cocchi et al., 2018); (2) adjusted P-
value < 0.05 (t-test and Benjamini–Hochberg correction (Ben-
jamini & Hochberg, 1995)). The adj-P-value was computed for
all six possible forest site comparisons, resulting in six values for
each mass feature.

To build a multivariate prediction model that allows classify-
ing the European oaks in T- and S-oaks on the base of the
metabolic profiles, we deployed OPLS-DA, as MS data with par-
tial least squares regression can be used for biomarker discovery
and classification purposes (Ghirardo et al., 2005; Wiklund et al.,
2008; Boccard & Rutledge, 2013). We computed the prediction
model using 50 trees (training set) randomly selected from the
dataset BEMW and kept the remaining nine trees (internal vali-
dation set, ratio training : validation = 80 : 20) to test the ability
of the model to predict the oak phenotype. Such validation is ter-
med ‘internal’ as the data originate from the same oak popula-
tions. The dimensions of the training set data matrix were
509 10 206 (trees9 normalized peak areas to IS and leaf dry-
weight). The model was computed using two Y-variables repre-
senting the T- and S-oak phenotypes. To identify reliable
biomarkers, we maximized the regression sum of squares (R2Y),
the prediction sum of squares (Q2Y), and minimizing the root
mean square error of estimation (RMSEE) and RMSEcv (root
mean square error of cross-validation) by reducing the number of
X-variables to those that have VIP > 1.0, relative averaged

abundances of T-/S- metabolites with log2 (T/S) ratio of <�0.5
or > 0.5, significant changes of individual metabolite (t-test and
Benjamini–Hochberg correction) and group separation (CV-
ANOVA) between T-/S-oaks at adj-P-value < 0.05. The resulting
compounds were defined as phenotypic biomarker candidates.
Furthermore, we defined borders between S- and T-oak pheno-
types (0–0.4 T-oaks, 0.4–0.6 unclassified, 0.6–1.0 S-oaks) and
introduced the range near the border as ‘unclassified’.

Model validation To evaluate the model’s robustness (Ander-
ssen et al., 2006; Broadhurst & Kell, 2006; Worley & Powers,
2013) in predicting the oak phenotype, the OPLS-DA model
was tested with the independent dataset Asbeck, a procedure ter-
med ‘external validation’.

Results

Eco-metabolomic analysis reveals specific in situmetabolic
signatures of four oak forest sites

We studied the leaf metabolome of Q. robur growing in four geo-
graphically separated forest stands of North Rhine-Westphalia,
Germany (Tables 1, S3; Fig. 1a). An unsupervised UMAP analy-
sis of 10 206 metabolomic-related mass features detected in this
study suggested differences in the overall metabolic pattern of the
forest stands, as indicated by the first two dimensions (Fig. 1c).
We disentangled the discriminant mass features and studied in
details the 100 most location-correlated metabolites that showed
significant differences (OPLS-DA, CV-ANOVA, P< 0.05) in
the metabolic profiles of the oaks at the four forest sites (Fig. 2).
Hierarchical clustering and heatmaps illustrate the changes in the
relative abundance of metabolites related to the metabolisms of
proteins, carbohydrates, lipids, nucleotides, and secondary
metabolites (Fig. 3). Although these 100 metabolites were present
in leaves at all four sites, the metabolic profile of Q. robur leaves
from the four forest sites differed in terms of relative abundance
in the primary metabolisms of protein, lipids, carbohydrates, and
nucleotides or to the secondary metabolisms of condensed tan-
nins (CTs) and flavonoids. We referred to these metabolites here-
after as site-discriminant metabolites. The forest stand Borken,
which is geographically most distinct to the others (Fig. 1a), dis-
played the most different chemical composition in lipids and sec-
ondary metabolites (Fig. 2). All forest stands, located in a
c. 50 km radius, are growing under similar climate conditions.
Complementary analysis on eight oaks (two from each forest,
with two replicates of each tree) indicated that in respect to tree-
to-tree variation, the within-tree variation accounts from 0.52%
to 11.25% (Table S4). Therefore, the analysis indicated the pres-
ence of four Q. robur ecotypes, exhibiting a distinguishable chem-
ical profile.

Because specific patterns in the metabolomes may be
attributable to resource limitations in nutrient availability, we
analyzed the macroelement composition (Ca, K, Na, S, N, P,
and C) and the stable isotope signature of C and N (d13C and
d15N) of the leaves. In general, the contents of all analyzed macro
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elements and isotopic signature poorly correlated with geoloca-
tion, except for the overall C and N content and their stable iso-
tope signature (Fig. 2c–f). The d15N were lowest in S-oak leaves
from Warendorf and d13C highest in leaves from the forest stand
in M€unster (Fig. S2). Taken together, our analysis showed that
the four forest stands are composed of four corresponding Q.
robur populations that possess chemically different leaf metabo-
lite profiles independent from nutrient availability.

Outbreaks of Tortrix viridana unveils the resistant oak
phenotype in all four-forest sites

The periodic outbreaks of the herbivore T. viridana cause infesta-
tions and severe Q. robur defoliation (Schr€oder, 2010; Ghirardo
et al., 2012). However, at all investigated sites, some of the Euro-
pean oak trees become much less defoliated during T. viridana
outbreaks, compared to almost entirely defoliated neighboring
oaks. Analysis of the degree of defoliation showed a clear insect-
resistant phenotype (T-oaks) compared to an almost entirely
defoliated susceptible phenotype (S-oaks) (Fig. 4). Across the
four forest sites, 66 S-oaks and 44 T-oaks have been monitored
for 24 yr, and differences in the canopy defoliation were always
observed consistently different and statistically significant (two-
sample t-test, P < 0.05). The percentage of S-oaks in the sample
set differs from forest to forest and ranges from 40.7% at the
stand near Borken to 88.0% at the stand near Warendorf.

Trade-offs of growth and defense-related compounds in
the herbivory-resistance of the two oak phenotypes across
forests

Knowing that the four metabolically different forest stands are
composed of the two different T- and S-oak phenotypes, we
question whether the two phenotypes’ metabolic fingerprint is
consistent across the four forests. CA and UMAP showed that
the chemical differences in S- and T-oaks are consistent across
the four forests (Figs 5, S3; Table S3). Because compound identi-
fication in metabolomics study is still in its infancy (Domingo-
Almenara et al., 2018), we used the Van Krevelen diagram in
combination with MSCC to classify all those detected mass fea-
tures that could be assigned to a chemical formula but not to a
specific chemical compound (Fig. 5b). This comprehensive anal-
ysis showed that in all the forest samples, carbohydrates and
amino acids were overrepresented in S-oak, whereas flavonoids
and their glucosides were overrepresented in T-oaks (adj. P-
value < 0.05, hypergeometric test, Table S5). In turn, this statisti-
cal result suggested a constitutive strategy of S-oaks to invest
plant resources towards growth, and T-oak leaves in defensive
compounds against herbivorous feeding.

Fig. 6 shows the top 10 most abundant metabolites discovered
using our approach for each chemical class (amino acids and
protein-related, sugars, lipids and secondary compounds).
Among them, the defensive compound kaempferol, kaempferol-
3-O-glucoside, quercetin-3-glucuronide, quercetin-3-O-
malonylglucoside, quinic acid and pipecolinic acid showed signif-
icant increased levels in T-oaks together with the levels of some

NSC (nonstructural carbohydrates) such as maltose, glucose and
arabinose and the amino acid tryptophan (Fig. 6, adj-P val-
ues < 0.05). By contrast, S-oaks contained higher levels of the
sugar glucose 1,6-bisphosphate, catechin (component of proan-
thocyanidins), the putatively identified hydrolyzable tannin
1,2,3,6-tetrakis-O-galloyl-b-D-glucose, and the precursor of gal-
lotannins 1-O-galloyl-b-D-glucose (syn. glucogallin) (adj-P val-
ues < 0.05) (Fig. 6). Levels of quercetin was found unchanged.

Therefore, nontargeted metabolomic analysis correlated
metabolites to the resistant phenotype that are involved in plant
defense mechanisms.

Combining metabolomics and chemometrics predicts
Tortrix viridana-resistant oak phenotype

The discovery of herbivory-resistant biomarkers among ecotypes
is a key for developing a prediction model that can classify the T-
and S-phenotypes of European oak. Based on VIP values, log2
(T/S) ratio, and P-values (see the Materials and Methods sec-
tion), we selected 17 metabolites and tested them as biomarkers
to discriminate oaks in T. viridana-resistant trees. We built a
chemometric prediction model based on OPLS-DA, which was
highly robust (R2Y = 0.86, Q2Y = 0.81, P-values = 1.089 10�15,
CV-ANOVA) (Fig. 7a,b; Table 2). Then, we first used the model
to test its ability to classify a subset of nine oaks from the four
forest stands in North Rhine-Westphalia that were not used in
building the model, a procedure termed as internal model valida-
tion. The prediction model’s accuracy was 100% for both S- and
T-oaks (Fig. 7c). This initial analysis demonstrated that the
model could predict the oak phenotype from the same tree com-
munities used to calibrate the model. To validate the robustness
of our model, we performed an external validation (Anderssen
et al., 2006; Broadhurst & Kell, 2006; Worley & Powers, 2013):
we used the 50 oaks from the Asbeck population growing under
different environmental conditions and sampled differently than
those BEMW oaks used in building the model (see the Materials
and Methods section). The prediction model’s accuracy was
100% for both S-oaks and T-oaks (Fig. 7b).

Discussion

Eco-metabolomic analysis of in situ samples reveals the
existence of ecotypes

When exposed to different environments (E), spatially separated
populations of a plant species can adapt and, according to the
gene pool (G; genotype) present in the population, can form a
variety of locally adapted chemotypes often exhibiting a different
phenotype (P) according to the equation G9 E = P (Sultan,
1987; Tack et al., 2012; E. Allevato et al., 2019). In addition,
environmentally induced epigenetic modifications of chromatin
structure influence gene expression, plant phenotype and con-
tribute to plant adaptation (Rasmann et al., 2012; Schmid et al.,
2018; Thiebaut et al., 2019).

In our work, individual sites strongly correlated with several
metabolite-related mass features that could be distinguished from
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their chemical profiles. This agrees with the concept of complex
metabolomic networks driven by adaptation to local environ-
ments (Andrew et al., 2010; Nagler et al., 2018; D. M. Allevato
et al., 2019; Salom�e-Abarca et al., 2020), although it may also

arise from long-distance gene flow and random genetic drift
(Kremer et al., 2012).

Chemotype variations at the sites are due to the interaction
between the environment (including herbivory pressure) and the

(a)

(c)

(d)

(e)

(f)

(b)

Fig. 2 Ecometabolomics and orthogonal
partial least square regression discriminant
analysis (OPLS-DA) of leaf oaks collected
from four geographically separated forest
sites (BEMW) reveal the presence of four
ecotypes and show their correlations to the
main chemical groups. (a) Scores, (b) X-
(small circles) and Y- (large symbols) loadings
of OPLS-DA computed from the metabolic
composition of 27 site-specific metabolites
(that significantly change for at least four
comparisons (adj. P-value < 0.05)). The first
two components describe the data, with
44.5% of explained variance. (c–f) Scaled (to
1) and centered correlation coefficient plots
of OPLS-DA, showing the relationship
between the X- and the Y-variables for the
predictive components. OPLS model fitness:
R2X(cum) = 0.655, R2Y(cum) = 0.714,Q2Y

(cum) = 0.625 using three predictive
components. RMSEE/RMSEcv (location):
0.24/0.27 (Borken), 0.20/0.22 (Everswinkel),
0.28/0.31 (M€unster) and 0.23/0.25
(Warendorf). CV-ANOVA, P = 9.159 10�28.
The mass feature significant for the OPLS-
DA model is noted with an asterisk (*). Data:
X-variables, discriminant metabolite-related
mass features, macroelements, and stable
isotopic signature of nitrogen (N) and carbon
(C). Y-variables: forest sites: Borken,
Everswinkel, M€unster, Warendorf.
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genetic pool (Mitchell-Olds & Schmitt, 2006; Andrew et al.,
2010). Natural regeneration via seeds at each site suggests that
individuals may be closely related, possibly explaining similar
chemical patterns, an assumption that requires future genomic
analyses. Genetic differences are dependent on ecotype distances,
as showed in single nucleotide polymorphism (SNP) genotyping
studies of three Arabidopsis thaliana populations in Austria com-
pared to outside European populations (Nagler et al., 2018).
Although we observed the most different geolocation-correlated
chemo-ecotype in the forest of Borken compared to the other
forest sites, further genetic studies are necessary to prove the
genetic dependence on ecotype. By analyzing the macroelements
and stable isotopes in the leaves, we observed shifts of N and C
content and isotope signatures. These results suggest the influ-
ence of local environmental conditions and soil nutrient supply
on ecotype formation. Variation in foliar d15N reflects the varia-
tion in soil N availability and is affected by local differences in N
fixation and uptake (Craine et al., 2015). Lower N contents
found in oak leaves in M€unster and lower d15N in Warendorf
samples may reflect a somehow lower N availability in the soils.
Nevertheless, it must be noted that higher d13C in M€unster and
the trend of higher d13C in Warendorf might be related to their
higher proportion of S-oaks, compared to the two other forest
sites. Leaves of S-oaks were more consumed by herbivory, result-
ing in a relatively higher proportion of leaf ribs than those of T-
oaks, and leaf ribs are usually characterized by higher d13C signa-
ture compared to intercostal tissue (Schleser, 1990). However,
compared to the relative metabolites’ abundances, correlations
between macroelements and ecotypes were much less remarkable.
Our analysis showed that the four ecotypes could be described by
the relative abundance of 100 metabolites of the primary and

secondary metabolisms, differently expressed in European oaks at
the four forest stands. It should be noted that the top 10 most
abundant metabolites (per chemical class) detected using our ana-
lytical approach in oak leaf extracts, such as the precursors of
hydrolyzable tannins (HTs) are neither discriminant for forest
site nor oak phenotype. Together with comparable elemental
compositions, this is an indication that general nutrient availabil-
ity in the forest was similar among the four ecotypes. One reason
of such typical metabolic patterns might be the plant chemical
diversity, and the outbreak of the insect T. viridana is the driver
of the susceptible vs resistant oak phenotypes.

Changes in concentration and composition of flavonoids in
leaves may reflect genetic drifts or local adaptation to environ-
mental factors, such as spectral composition and intensity of the
solar radiation (Ryan et al., 2001; Azuma et al., 2012), tempera-
ture (Goh et al., 2016), and biotic stress that generally triggers
the formation of polyphenolic compounds (Treutter, 2005;
Miranda et al., 2007; Koskim€aki et al., 2009). The chemical
diversity of secondary compounds is as diverse as their biophysi-
cal and biological functions in plants. They range from photo-
protective pigments such anthocyanins and other flavonoids
(Steyn et al., 2002; Koes et al., 2005; Agati et al., 2013), to
defense substances such as proanthocyanidins and other tannins
(Jaakola & Hohtola, 2010; Marsh et al., 2020), to quenchers of
reactive oxygen species (Winkel-Shirley, 2002; Bailey-Serres &
Mittler, 2006; Agati & Tattini, 2010). The wide functional range
is also reflected in the complex transcriptional regulation of their
biosynthesis. Our analysis at the one-time point in June 2019
represents an aggregated snapshot where the secondary metabo-
lites from the group of flavonoids and flavonoid-like molecules
play an important role in describing the metabolic differences of

Fig. 3 Clustered heatmap of site-specific
mass features of 67 oak trees (BEMW). Data
depicts the different metabolic patterns for
each forest site (Borken, Everswinkel,
M€unster, Warendorf, all in North Rhine-
Westphalia, Germany) and reveals the four
forest ecotypes. All mass features were
discriminant for ecotypes separation in
orthogonal partial least square regression
discriminant analysis (OPLS-DA) (VIP > 2;
CV-ANOVA < 0.05; individual mass feature
adj. P-values < 0.05). Values are relative
abundances, logarithmically transformed,
and Pareto scaled with centering (van den
Berg et al., 2006; Eriksson et al., 2013).
Metabolites with higher values have more
importance for the sample.
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the four forest sites, suggesting different plant responses to site-
specific environmental influences. This can be an explanation.
Additionally, long-distance gene flow and random genetic drift
in the local European oak populations likely contributed to the
observed metabolite patterns (Kremer et al., 2012). To which
extend will be the subject of future genomic studies.

Trade-offs of primary and secondary metabolisms in the
resistance ofQuercus robur to Tortrix viridana and
potential ecological implications

More than 10 yr ago, we started to study the mechanisms of the
susceptibility/tolerance of European oaks under controlled condi-
tions by using grafted plants originating from one single forest
(Ghirardo et al., 2012). Compared to S-oaks, T-oak leaves
showed upon herbivory feeding different induced responses of
volatile organic compounds (VOCs). The major differences were
related to the terpene emission profiles (Ghirardo et al., 2012).
VOCs are key chemical cues for oviposition site choice during
the host–plant recognition between T. viridana and Q. robur.
The enriched sesquiterpene content in the VOC blend of T-oaks
vs more monoterpene content of S-oaks could be used by adult
females of T. viridana as chemical cues to locate S-oaks and avoid
the higher phenolic content of T-oaks (Ghirardo et al., 2012). In
this way, the insects benefit from the better quality of the leaves
of S-oaks, as the larvae forced to feed on leaves from T-oaks need
to consume more leaf material than when feeding on leaves of S-
oaks to reach the same pupal weight (Ghirardo et al., 2012).

Given the long lifespan and slow reproduction rates of European
oaks compared to those of T. viridana, it is likely that some
members of a tree community invest a conspicuous amount of
resources towards defense against fast evolving herbivory to
improve community fitness.

Here, the detected differences in oak leaves’ nonvolatile
metabolomes across the four forest stands enabled us to disentan-
gle the metabolic fingerprint of resistant oaks. Positively corre-
lated to the resistant phenotype were several metabolites of the
secondary metabolism. Some major flavonoids (e.g. kaempferol,
kaempferol and quercetin glucosides) – known for their roles in
plant resistance (Treutter, 2005) – were higher in T-oaks. Feed-
ing assays previously demonstrated the consequences of the
increased defensive molecules of T-oaks’ leaf metabolome on her-
bivory deterrence. Tortrix viridana larvae need to consume more
leaf biomass from T-oaks to achieve the same larval weight as
comparable larvae that fed on S-leaves only (Ghirardo et al.,
2012). We do not know to date whether the larger amounts of
flavonoids or some other unidentified secondary metabolites were
responsible for the limited herbivory fitness on T-oak compared
to S-oak dietaries. For example, the antifeedants polyphenolic
HTs (gallotannins and ellagitannins) and CTs might also be
involved (Feeny, 1970; Anstett et al., 2019). Although HTs and
CTs are abundant in leaves of various Quercus species (Salminen
et al., 2004), not all end-products of HT and CT metabolism
were identified or detected in our nontargeted approach. Detec-
tion of some HTs and CTs is complicated by their larger molecu-
lar weight, as large polymers are not easily separated by high-

Fig. 4 Box plots of defoliation levels (percent
of tree canopy defoliation) during the
outbreak years of Tortrix viridana for four
forest sites (BEMW) define the existence of
two oak phenotypes naturally occurring in
nature independently of tree origin and
location. The trees with defoliation levels
above 90% are defined as S-oaks, and trees
with defoliation levels equal to or below 60%
are defined as T-oaks (exception Warendorf,
see main text). Lines in boxes indicate the
median, the bottom and top of each box
denotes the first and third quartile,
respectively, and whiskers denote the 5th and
95th percentiles. Significant differences are
noted as: ***, adj. P-values < 0.001; *, adj.
P-values < 0.05.
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performance liquid chromatography (HPLC) (Schofield et al.,
2001) and the measured mass range is limited (in our analysis,
m/z 20–2000). It is also likely that HTs and CTs were not fully
extracted from leaf materials as they require specific extraction
procedures and the use of enzymatic steps or acid-catalyzed
hydrolysis to breakdown the polymers into analyzable monomers
(Mueller-Harvey, 2001; Schofield et al., 2001). Indeed, among
the most prominent detected metabolites, we mostly found low-
molecular-weight compounds associated with the metabolism of
HTs and CTs, such as the gallotannin precursor glucogallin, the
components of the CTs catechin and epicatechin, and the ellagi-
tannin derivative ellagic acid. Further targeted analyses are there-
fore needed to study HTs and CTs in the sensitive and resistant
oaks.

Another option for herbivory resistance might be based on
other defensive mechanisms, e.g. protein inhibitors (F€urstenberg-
H€agg et al., 2013). However, the crucial molecular mechanisms
that enable resistant oaks to withstand increasing herbivory pres-
sure remain to be fully elucidated and require the incorporation
of further biochemical and genetic methods.

Plants tend to adopt different defense strategies against abiotic
and biotic stresses and to balance between the costs of investing
in defense compound production (secondary metabolites) or to
growth that allows plant competition (Herms & Mattson, 1992;
Lerdau & Coley, 2002). Our field survey of 67 resistant/suscepti-
ble European oaks across four different forests showed that,
regardless of geolocation-dependent differences in the oak
metabolome pattern, there is a general pattern of constitutively
upregulated defense metabolism in T-oak leaves vs constitutively
upregulated growth-related metabolism in S-oak leaves. This
metabolic shift is in line with the GDB theory (Herms &
Mattson, 1992). Independent of nutrient availability, it is
remarkable to note that carbohydrates were overrepresented in S-
oaks (Fig. 6). NSCs are generally important in growth/differenti-
ation (Aspinwall et al., 2011; Woodruff & Meinzer, 2011) and
play a role in osmoregulation, supporting physiological function-
ing in contrasting severe drought episodes (Sevanto et al., 2014;
Hartmann, 2015). Because the frequency and intensity of
drought episodes are projected to increase in the future (Spinoni
et al., 2018; Hari et al., 2020), S-oaks’ strategy to invest in NSCs

(a)

(b)

(c)

Fig. 5 (a) Clustered heatmap of phenotype-
specific mass features. Data depicts the
different metabolic patterns of resistant (T-)
and susceptible (S-) oak phenotypes (two
major clusters) independently of the
ecotypes. (b, c) According to assigned
chemical formulas, the Van Krevelen diagram
combined with multidimensional
stoichiometric compound classification
(MSCC) classifies all nonannotated mass
features. All mass features in (a–c) were
discriminant for phenotype separation in
orthogonal partial least square regression
discriminant analysis (OPLS-DA) (VIP > 1.0;
CV-ANOVA < 0.05; individual mass feature
P-values < 0.05; log2 (T/S) ratio of <�0.5 or
> 0.5). Values are relative abundances,
logarithmically transformed, and Pareto
scaled with centering (van den Berg et al.,
2006; Eriksson et al., 2013).
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might be beneficial under the effects of climate change. Consis-
tent with the GDB theory, the strong correlation of NSCs and
amino acid derivatives to S-oaks was in concert with the negative
correlation of detected defense molecules, suggesting trade-offs of
resource allocations towards growth or defense in plants. Despite
being the most mature of the plant defense hypotheses in evolu-
tionary ecology, direct testing of the GDB is difficult (Stamp,
2004). Fig. 8 summarizes the metabolic differences of two oak
phenotypes that support the GDB theory based on field data.
Remarkably, the overrepresentation of constitutive carbon-based
defense compounds (polyphenols) and the underrepresentation
of NSCs in T-oak leaves (Fig. 8) is not correlated to general
increases of leaf nutrient and resource availability, as it would be
predicted by the carbon-nutrient balance hypothesis (Bryant
et al., 1983; Lerdau & Coley, 2002; Agrawal, 2020).

Despite the potential advantages of S- and T-oaks for the con-
sequences of regional climate change, the co-occurrence of both
susceptible and resistant phenotypes in all different forest eco-
types and the presence of different chemotypes within the same
forest stand is remarkable. These mixtures of trees suggest that
natural European oak communities are formed by oaks that con-
stitutively follow the strategies of ‘growth’ or ‘defense’. Our cur-
rent data support the idea that the European oak population
embraces a strategy to preserve both phenotypes in the same
forest stand. Because species’ survival may be assured if the com-
munity has a high intraspecific genetic variation (Norberg et al.,
2001), prioritizing the allocation of resources to either growth or
defense in members of a plant community, when inherited and
shared within a population, seems a successful strategy to
improve the overall community fitness. Such a ‘community’

(a)

(b)

(c)

(d)

Fig. 6 Comparison of the 10 most abundant detected metabolites in resistant (T-) and susceptible (S-) oak phenotypes for four major chemical classes: (a)
proteins, peptides and amino acid (AA); (b) carbohydrates; (c) lipids; (d) secondary metabolites. Metabolites marked with st are identified with pure
standards. Metabolites levels are shown as logarithmically transformed chromatographic areas. Significant differences are noted as: ***, adj.
P-values < 0.001; **, adj. P-values < 0.01; *, adj. P-values < 0.05; ns, not significant.
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(a)

(c)
(d)

(e)

(b)

Fig. 7 Orthogonal partial least square regression discriminant analysis (OPLS-DA) of discriminant mass features for resistant (T-) and susceptible (S-) oak
phenotypes. (a) Scores, (b) X- and Y-loadings of OPLS-DA computed from the metabolic composition of 17 phenotypic biomarker candidates shows (a) the
separation of two oak phenotypes, and (b) different relation of main chemical groups to a specific phenotype. The data is described by the first two
components with 56.0% of explained variance. (c) Scaled and centered correlation coefficient plot of 17 biomarker candidates shows that T-oaks are
positively correlated to secondary compounds and negatively correlated to primary metabolism compounds (carbohydrates and proteins). OPLS model
fitness: R2X(cum) = 0.560, R2Y(cum) = 0.858,Q2Y(cum) = 0.810 using two predictive components. RMSEE (root mean square error of estimation) = 0.19
and RMSEcv (root mean square error of cross-validation) of 0.21; CV-ANOVA, P = 1.089 10�15. OPLS-DA model showing the linear relationship between
observed Y-variables (known phenotypes) and model-predicted Y-variables for the (d) internal (BEMW data set) and (e) external (Asbesk data set)
validation analysis. (d) Predictions of the oak phenotype for a (d) randomly selected subset of nine oaks from BEMW (accuracy of 100% for both S- and T-
oaks) and (e) model-independent subset of 50 oaks from a different oak population (Asbeck) (accuracy of 100% for both S-oaks and T- oak). Oaks with
Ypred < 0.4 and > 0.6 are classified by the model as T-oaks, and S-oaks, respectively. The gray zone (Ypred values between 0.4–0.6) denotes the unclassified
region (see Material and Methods section). Yvar = 1, S-oak; Yvar = 0, T-oak. The mass feature significant for the OPLS-DA model is noted with an asterisk (*).
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strategy would allow plant species adaptation and ensure long-
term survival. Future genomic studies will be essential to assess
the composition of susceptible and resistant phenotypes in oak
forests.

Biomarker development to assist tree nurseries with early
oak seedlings phenotype selection for building stronger
forests

To counteract increasing herbivory pressure, phenotype selection
has been employed in tree breeding nurseries with great success
(Naidoo et al., 2019). Forest restoration aims to increase the
number of resistant trees to the point where the population will
be self-sustain with preserved genetic diversity (Sniezko & Koch,
2017). We aimed to create a reliable and robust model for the
phenotype selection of young herbivory-resistant trees in tree
nurseries. Remarkably, the analysis of those few defensive-related
compounds in European oak leaves is fully sufficient to differen-
tiate the T-oaks from the S-oaks. When assessing OPLS-DA pre-
diction model parameters, Q2Y and R2Y values together with
CV-ANOVA P-value are the best indicators of model perfor-
mances (Eriksson et al., 2008; Westerhuis et al., 2008). The
model could predict an independent external test set of a differ-
ent European oak population growing under completely different
environmental conditions (see details in Methods section). Also,
validation samples were flash-frozen under light, compared to
dark-adapted leaves in the field, indicating that the chosen
biomarkers are not quickly degraded neither sensitive to quick
change of light conditions. The here developed prediction model
may be implemented to help tree nurseries to select T-oaks
among young trees.

European oak is widely distributed all across Europe (Eaton
et al., 2016), and it is the second most common deciduous tree

species in Germany after beech (Polley et al., 2014). It has the
highest biodiversity of the native tree species on all trophic levels
(Yela & Lawton, 1997). The European oak situation in Germany
has been critical for decades, caused by clearcutting, pathogen
infestation, and insect outbreaks (F€uhrer, 1998) without notice-
able improvement (Hartmann & Blank, 1992). Another substan-
tial threat is the predicted insect range expansion and invasion of
new insect pest species, with unknown consequences (Sturrock
et al., 2011; Pureswaran et al., 2018). In addition, impending cli-
mate change in global warming and prolonged drought episodes
may act as a primary stressor for European oak. It has been noted
that deciduous oak forests were the least persistent to the pro-
jected global change (Merlin et al., 2015; Ac�acio et al., 2017;
Madrigal-Gonz�alez et al., 2017). This can lead to indirect conse-
quences such as new herbivorous insects that will most likely
migrate from Southern and Eastern Europe and become potential

Table 2 Orthogonal partial least square regression discriminant analysis
(OPLS-DA) model fitness.

OPLS-DA prediction model parameters

PCs 2
R2X (cum) 0.560
R2Y(cum) 0.858
Q2Y(cum) 0.810
CV – ANOVA
P-value 1.089 10�15

RMSEE 0.19
RMSEcv 0.21

Misclassification table

S-oaks T-oaks Correctly classified

S-oaks 20 0 100%
T-oaks 0 30 100%
Fisher’s probability 2.19 10�14

PCs, number of predictive components; R2X(cum), R2Y(cum), cumulative
regression sum of squares;Q2Y(cum), prediction sum of squares; RMSEE,
root mean square error of estimation; RMSEcv, root mean square error of
cross-validation; S-oak; susceptible (S-) oak; T-oak, resistant (T-) oak.

Fig. 8 Schematic overview of the leaf metabolome characteristic of
resistant (T-) and susceptible (S-) oaks in combination with the proposed
plant strategy for the allocation of available resources. The S-oak leaves
are enriched in nutritive compounds of the primary metabolism
(carbohydrates, amino acids) that sustain growth (left, in blue). The T-oak
leaves are enriched in secondary compounds that help plants in chemical
defense (right, in red). Tortrix viridana prefers feeding on S-oaks, causing
higher defoliation rates (symbolized by the number of larvae and leaf
damage). The growth-defense trade-offs of leaf metabolism in S- and T-
oaks allowed the determination of herbivory-resistant oak phenotype
using orthogonal partial least square regression discriminant analysis
(OPLS-DA) and metabolomics.
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feeding pests for European oak stands in Germany (Delb, 2012).
Concerns are increasing that the genetic adaptation of long-living
species to rapid ongoing global change may not be quick enough
(Burrows et al., 2011; Dawson et al., 2011; Hoffmann & Sgr�o,
2011; Duputi�e et al., 2015) as the genetic adaptations of long-
lived species are slow (Savolainen et al., 2004). Therefore, Euro-
pean oak as a long-living tree species deploys more phenotypic
plasticity than through microevolution as a response to the rapid
environmental changes (Chevin et al., 2013; Franks et al., 2014).

Moreover, the adaptation through phenotypic plasticity is not
fully efficient, requiring further evolutionary changes to avoid
maladaptation (Gienapp et al., 2013). One way to tackle forest
survival under global change is through forest management
(Noss, 2001; Bolte et al., 2009; D’Amato et al., 2011), and the
selection of appropriate herbivory-resistant phenotypes might be
crucial to improve forest fitness under severe herbivory outbreaks
in Europe (Saxe et al., 2001). Using the cost-effective, highly reli-
able metabolic-based phenotypic biomarkers developed herein, it
might be possible to identify oak phenotypes during early
seedling and plant cultivations. In particular, this strategy may
support nurseries in the early selection of an appropriate propor-
tion of two oak phenotypes from different proveniences that can
be used in managing the forest composition during afforestation
activities of threatened forests under climate-driven, enhanced
herbivory pressure. Additionally, the further development of
biomarkers, including robust diagnostic genetic markers com-
bined with an extensive screening of oak forest, will pave the way
to study Central European forest’s susceptibility to future insect
outbreaks and support forest management. Thereby, it will con-
tribute to the long-term conservation of European oaks, an eco-
logically important tree species grown in temperate latitudes of
Europe.
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