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1.  INTRODUCTION

Although there are still challenges ahead, machine
learning (ML) is entering marine science on a broad
scale (Malde et al. 2020). Automated fish identifica-
tion from images (Allken et al. 2019), age-reading
from otoliths (Moen et al. 2018), identification of
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ABSTRACT: Marine organisms are subject to envi-
ronmental variability on various temporal and spa-
tial scales, which affect processes related to growth
and mortality of different life stages. Marine scien-
tists are often faced with the challenge of identify-
ing environmental variables that best explain these
processes, which, given the complexity of the inter-
actions, can be like searching for a needle in the
proverbial haystack. Even after initial hypothesis-
based variable selection, a large number of potential
candidate variables can remain if different lagged
and seasonal influences are considered. To tackle
this problem, we propose a machine learning frame-
work that incorporates important steps in model
building, ranging from environmental signal extrac-
tion to automated variable selection and model val-
idation. Its modular structure allows for the inclu-
sion of both parametric and machine learning
models, like random forest. Unsupervised feature
extractions via empirical orthogonal functions (EOFs)
or self-organising maps (SOMs) are demonstrated
as a way to summarize spatiotemporal fields for
inclusion in predictive models. The proposed frame-
work offers a robust way to reduce model complexity
through a multi-objective genetic algorithm (NSGA-
II) combined with rigorous cross-validation. We ap -
plied the framework to recruitment of the North
Sea cod stock and investigated the effects of sea
surface temperature (SST), salinity and currents on
the stock via a modified version of random forest.
The best model (5-fold CV r2 = 0.69) incorporated
spawning stock biomass and EOF-derived time
series of SST and salinity anomalies acting through
different seasons, likely relating to differing envi-
ronmental effects on specific life-history stages dur-
ing the recruitment year.
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plankton (Schröder et al. 2020) and advances in fore-
casting oceanographic phenomena such as El Niño−
Southern Oscillation (Ham et al. 2019) are among the
numerous applications of ML in marine science.
Additionally, the rapid emergence of high-quality
ocean data products from ocean model output, from
both reanalysis and remote sensing, constitutes a
vast resource of spatiotemporal data related to phys-
ical and low-trophic-level biological processes.

Classical ML approaches involve steps like feature
extraction (e.g. important signal in high-dimensional
data) and feature selection (e.g. which features to
include in the final model) to be partly overseen by a
human expert, before the final model is built (van
Ginneken 2017). In contrast, deep learning offers the
opportunity for complete automation of a model-
building pipeline, with these steps being learned
from the data via different layers at the expense of
requiring a large amount of data (van Ginneken
2017). However, many problems in marine science
do not fall in the category of big data; e.g. time series
from higher trophic levels are often aggregated at
coarser time steps with <100 data points. This is the
case for many fish stock−recruitment (SR) time
series, which are among the longest in biology, with
some dating back to the 1950s, but containing only a
single data point per year. In addition to their limited
length, recruitment signals are largely obscured by
environmental variability acting on various spatial
and temporal scales throughout the life cycle of the
organism. Attempts to improve recruitment predic-
tion by taking environmental processes into account
have a long history, yet are still considered to be
notoriously difficult because the choice of the envi-
ronmental signal to include can be subjective (Myers
1998, Houde 2008, Subbey et al. 2014). Although
deep learning methods are hardly applicable in such
situations, there is particular interest in more precise
and robust forecasts of population parameters from
living marine resources due to their importance in
terms of economic value and food security. However,
even in these data-limited situations, fisheries sci-
ence can benefit from harnessing advances in ML as
an alternative to classic statistical methods.

Various attempts have already been made to use
ML methods for the prediction of stock−recruitment
relationships, including neural networks (Chen &
Ware 1999, Megrey et al. 2005, Krekoukiotis et al.
2016), random forest (Hansen et al. 2015, Smoliński
2019) and naïve Bayes (Fernandes et al. 2010, 2015).
Although it is believed that these methods can
improve predictions of recruitment (Megrey et al.
2005), they are not a standard tool among fisheries

scientists. This is attributed, in part, to unfamiliarity
with ML (Olden et al. 2008) and the perception of ML
as a ‘black box’, with limited access on how the algo-
rithm derived its prediction (Burrell 2016). However,
recent advances (e.g. Goldstein et al. 2015, Biecek
2018) in understanding variable importance and
local and global model behaviour have helped to
shed light on this black box and have aided in the
interpretation and understanding of predictions.
Additionally, step-by-step model building guide-
lines, like that of Fernandes et al. (2010, 2015), span-
ning steps like filter-based variable selection and
robust cross-validation, are valuable to an under-
standing of, and adoption of, ML tools. Although the
use of ML methods in data-limited situations is
advancing, there is still a rather narrow focus on the
supervised ML algorithm, i.e. the part which per-
forms a regression or classification task on a response
variable. Other aspects like feature extraction from
spatiotemporal data and variable selection are often
neglected.

We believe that many spatiotemporal data sources
are underutilised in studies aimed at investigating
their influence on fish life cycle dynamics, as it is
common practice to rather use pre-processed and
readily available large-scale indices (like the North
Atlantic Oscillation [NAO] or Atlantic Multidecadal
Oscillation [AMO]) (Dippner 1997a, Gröger & Fogarty
2011, Sguotti et al. 2020) or simple averages of en -
vironmental variables of interest (e.g. sea surface
temperature [SST]). Large-scale indices offer the
advantage of condensing multiple, also unobserved,
variables to a simple index over a broad region,
which can summarize effects on highly migratory
species like Atlantic bluefin tuna (Faillettaz et al.
2019). However, the generalisation of large-scale
indices might overlook more local or regional condi-
tions of importance to a given fish stock. Therefore,
we argue for a hypothesis-driven extraction of local
environmental variables in the species’ range, as
large-scale indices like the NAO exert their effect
through local changes in the physical environment
(Drinkwater et al. 2003), which can reveal a more
direct relationship. The use of dimension reduction
methods in an ML pipeline can offer additional ways
to condense the multivariate nature of spatiotempo-
ral datasets to a few modes of variability.

A common tool used in oceanography and atmos-
pheric sciences is empirical orthogonal function
(EOF) analysis, which is able to extract dominant sig-
nals as linear combinations of the original dataset.
This can be sufficient if the underlying relations are
indeed linear, but there is a controversy around
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whether atmospheric and ocean processes are inher-
ently linear or non-linear in nature (Wunsch 1999,
Rudnick & Davis 2003, Hsieh et al. 2005). Hsieh et al.
(2005) argued that biological time series are indeed
non-linear, but oceanographic processes are more or
less linear stochastic processes. However, as atmos-
pheric processes can be multimodal, the mean might
not be the most frequently observed state (Hauser et
al. 2015). Therefore, extending the toolbox to cap-
ture non-linear system states as well is crucial for
summarizing spatio temporal environmental data. A
promising method is the use of self-organising maps
(SOMs) (Kohonen 1982). These unsupervised cluster-
ing algo rithms have some advantages over EOFs for
recovering asymmetric and non-linear features from
data (Liu & Weisberg 2005, Liu et al. 2006), albeit at
the expense of only providing a discretized time
series. SOMs have re ceived some attention in the
domain of oceanography in a descriptive sense, but
they are not yet used for predictive modelling in the
marine biological sciences.

By incorporating feature extraction via EOFs or
SOMs as a first step in the ML pipeline, we want to
bridge the gap between the big-data side of environ-
mental data and the data-limited side of marine bio-
logical data in this study. As a case study, we chose
North Sea cod recruitment, since our understanding
of stock−recruitment relationships is still one of the
unresolved fields in fisheries science (Subbey et al.
2014), which could benefit from new insights offered
by ML.

We argue for a complete end-to-end ML frame-
work that offers various tools for unsupervised fea-
ture extraction, automated feature selection and the
final model-building with model interpretation to
help marine biology scientists in adoption of ML
approaches.

2.  METHODS

2.1.  North Sea cod case study

The North Sea cod Gadus morhua stock is one of
the best-studied stocks in the North Atlantic, with
data available since the early 1960s. The spawning
stock biomass (SSB) peaked in the 1970s, together
with other gadoids (ICES 2018). This peak is referred
to as the ‘gadoid outburst’. Since then, the population
has generally been in decline, with an all-time low in
the years 2004−2006. The population somewhat
recovered until 2015, which was followed again by a
decline in recent years. Recruitment of age-1 fish

generally follows the trend in SSB, but with a regime
of very low recruitment for the last 20 yr (Fig. 1). In
addition to a direct impact of SSB, various hypothe-
ses have been put forward to explain the recruitment
pattern of cod, with the most prominent ones being
changes in temperature and zooplankton prey
dynamics (Sundby 2000, Beaugrand et al. 2003,
Beaugrand & Kirby 2010). Other environmental vari-
ables, like salinity and currents, have gained less
attention, although there are reports of a negative
association with low-salinity waters (<34‰) along
the Norwegian Trench (Svendsen et al. 1991), and
various studies found associations of cod larvae with
frontal zones in this area (Munk et al. 1995, 1999,
Munk 2007, 2014). For currents, most links have
been made indirectly through the NAO, with the
causal mechanism relating to the intrusion of
calanoid zooplankton prey via the northern inflow
(Planque & Fromentin 1996, Stephens et al. 1998),
which correlates with the NAO and westerly wind
patterns (Mathis et al. 2015). Recently, many studies
have focussed on assessing the vulnerability of early
life stages of cod to drift via individual-based drift
models (Peck et al. 2009, Jonsson et al. 2016, Huser-
bråten et al. 2018, Kvile et al. 2018, Romagnoni et al.
2020). Since our focus here is a demonstration of the
general ML framework, we limited our choice of
environmental variables to spatiotemporal fields of
temperature (SST), salinity and currents, for which
data have been available since the beginning of the
cod-recruitment time series (1963− 2017) and are
hypothesised to play a role in the life cycle of North
Sea cod.

It is widely acknowledged that recruitment dynam-
ics of fish can be influenced at various times during
their life cycle (Houde 2008, Hare 2014), ranging
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Fig. 1. Stock dynamics of North Sea cod depicting the re-
cruitment (Rec, black bars) and spawning stock biomass
(SSB, red line) based on the 2018 assessment data ICES 

(2018)
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from the time of oocyte development in adults, to the
egg, larval and juvenile phases until recruits enter
the fishery. The recruitment process of cod in the
North Sea starts in autumn, when oocytes develop
over the winter (Kjesbu et al. 2010). Spawning takes
place between January and March, with regional dif-
ferences between the south and the north (González-
Irusta & Wright 2016). The pelagic eggs develop to
larvae and then juveniles, at which point they enter a
bottom-dwelling life style involving demersal feed-
ing at the beginning of summer (Bastrikin et al.
2014). After overwintering, the age-1 juveniles are
first considered as recruits. To fully capture the
potential effects of the environment on cod recruit-
ment, we also considered lagged environmental vari-
ables at these critical phases in the life of North Sea
cod (Table 1).

SST and salinity fields of the North Sea (5° W−12° E
and 49−62° N) were obtained from the Adjusted
Hydrography Optimal Interpolation (AHOI) (Núñez-
Riboni & Akimova 2015) dataset with a spatial reso-
lution of 0.2° × 0.2° in an extended run ranging from
1948 to 2017 (I. Núñez-Riboni pers. comm.) with a
monthly temporal resolution. SST was defined as
the average over the first 5 m, to be consistent with
other SST datasets based on buoys and ship bulk-
measurements, which are often taken between 1 and
5 m depth (Emery 2003). Salinity fields were aver-
aged over a depth of 100 m, to reduce the effects of
rainfall on the salinity signal in the coastal areas.

For spatiotemporal fields of currents in the North
Sea (5° W−12° E and 49−62° N), the upper layer (5.02 m
depth) of the ORAS4-reanalysis dataset was used,
with a spatial resolution of 1° × 1° and monthly
 temporal resolution ranging from 1958 to 2017
 (Balmaseda et al. 2013) and downloaded from the
Integrated Climate Data Center of the University
of Hamburg (https://icdc.cen.uni-hamburg. de/ daten/

reanalysis-ocean/ easy-init-ocean/ecmwf-ocean-reana
lysis-system-4-oras4.html).

Time series of North Sea cod (stock cod. 27. 47
d20) recruitment at age class 1 and SSB were re -
trieved from the official assessment summary
(http:// standardgraphs. ices. dk/ stockList. aspx), span-
ning the years 1963−2018. For further analysis, re -
cruitment was log-transformed and SSB was lagged
by 1 yr prior to match the age of recruitment.

Monthly anomalies for all environmental spatio -
temporal fields were calculated by subtracting the
long-term monthly mean values from each spatial grid.
Afterwards, mean seasonal anomalies were calculated
over 3 mo intervals (winter: December−February [DJF];
spring: March−May [MAM]; summer: June−August
[JJA]; autumn: September−November [SON]).

2.2.  ML framework

We developed a framework to summarise spa tio -
temporal information via EOF analysis or SOM fea-
ture extraction in an unsupervised way (with unla-
belled data) and link them to biological variables of
interest (e.g. cod recruitment time series) in a super-
vised learning approach (with labelled data). The
framework consists of 3 main steps (Fig. 2): (1) pre-
processing (e.g. anomaly calculation) of spatiotem-
poral data and feature extraction via unsupervised
EOF or SOM analysis and joining with the response
variable of interest in a common dataset; (2) feature
selection with a cross-validated multi-objective
wrapper in which an optimal subset of features is
selected within the supervised training phase of the
model; and (3) interpretation of the final model with
the selected features. The different parameters
used within the ML pipeline are summarized in
Table 2.
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Stage                                          Possible effect on recruitment                                                        Time period    Season index

Pre-spawning                            Environmental conditions during the pre-spawning phase 
                                                   in autumn affecting spawning stock conditioning                    Autumn lag 2         SONt-2

Spawning/egg phase                Environmental conditions during spawning and within 
                                                   the egg phase                                                                                Winter lag 1          DJFt-1

Late egg phase/larval phase    Environmental conditions during the end of the egg phase 
                                                   and throughout the whole larval phase                                      Spring lag 1         MAMt-1

Juvenile pre-recruit phase       Environmental conditions during the juvenile phase                 Summer lag 1         JJAt-1

                                                                                                                                                           Autumn lag 1         SONt-1

Juvenile recruit during            Environmental conditions during the first winter                         Winter lag 0            DJFt

first overwintering

Table 1. Life cycle stages of North Sea cod and time windows in which environmental effects are hypothesised to take place. SON:
fall (September−November); DJF: winter (December−February); MAM: spring (March−May); JJA: summer (June−August)
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2.2.1.  Feature extraction

Feature extraction is a way to describe dominant
patterns of variation in a high-dimensional dataset

within a lower-dimensional space. This is especially
important when dealing with dynamic data in
oceanography and meteorology, as there are at least
2 spatial dimensions (latitude, longitude), with depth
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considered in some cases, and a temporal dimension
is involved.

EOFs. A common method in the earth sciences to
decompose spatiotemporal environmental fields is
via EOF analysis or principal component analysis (S-
mode PCA) (Jolliffe 2002). It decomposes a time-
dynamic spatial field into a linear combination of
orthogonal spatially stationary structures (eigenvec-
tors or EOFs) and their oscillation in time (principal
components [PCs]) (Björnssin & Venegas 1997). As
EOF analysis is a linear method, it has problems cap-
turing non-linear spatiotemporal relationships. In ad -
dition, the orthogonality constraint, which ensures
that the derived spatial fields are orthogonal and cor-
responding time series are uncorrelated, limits the
physical interpretation of EOFs as true modes of cli-
mate variability and can result in mixing of modes
that are not orthogonal in nature. The analysis was
done as described by Wilks (2006) for scalar-valued
fields (SST and salinity) and vector-valued fields
(currents). To ensure the exclusion of noise in the fur-

ther analysis, the number of PCs included was trun-
cated by a form of Horn’s parallel analysis (Horn
1965), whereby the 95%-bootstrapped confidence
interval of the eigenvalues was compared against the
eigenvalues of an EOF null model with randomly
permuted time series at each spatial location. Only
PC time series with eigenvalues greater than corre-
sponding eigenvalues of the null model were re -
tained and used as features in the further analysis.

SOMs. SOMs (Kohonen 1982) are unsupervised
neural networks that find a low dimensional embed-
ding/clustering of large data sets (Sang et al. 2008).
SOMs were introduced in climate and ocean sci-
ences as an alternative to EOF analysis to find domi-
nant modes and patterns (Liu & Weisberg 2011).
SOMs project a multi-dimensional input to pre-
defined 2-dimensional maps, so that objects which
are closely related in the input space are mapped to
neighbouring units on the map (topological preserv-
ing). Each node on the map is associated with a cor-
responding weights vector, with the same dimension
as the input vector. In its stochastic version, the algo-
rithm is trained iteratively by projecting a random
vector from the input to the closest unit on the map
(best-matching unit, BMU), thereby changing the
weights of the selected and neighbouring units by
moving them closer to the input points. This results in
a self-organisation of the grid to more closely resem-
ble the input space. To gain a low-dimensional map-
ping of spatiotemporal fields, the input is organised
in an m × n − matrix with m (rows) denoting time and
n (columns) the spatial dimension. The resulting SOM
weights then describe the spatial pattern and the
association of a BMU to each time step, the time pro-
gression of the spatial pattern (Liu et al. 2016b). The
advantage of SOMs over EOF analysis is that they
are able to detect non-linear relationships, with the
cost of not exactly conserving the amplitude of the
data (Reusch et al. 2005). Additionally, the produced
maps can be readily interpreted as physical pro-
cesses, as they are in the same units as the original
dataset. Moreover, the problem of mode-mixing,
i.e. the blending of distinct spatial patterns fre-
quently observed in EOF analysis, is well handled by
SOMs as they do not enforce orthogonality or require
rotations (Reusch et al. 2005, Liu et al. 2006). The
drawback, however, is the a priori decision on the
number of patterns (nodes on the map) and the dis-
creteness of the resulting time series of pattern
occurrence. The latter can be an advantage in using
SOMs as input for ML models, as some models show
better performance with categorical features because
they take non-linear relationships into account
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Parameter Value

SOM
Type Stochastic
Distance Euclidean
Neighbourhood Rectangular
Neighbourhood−function Bubble
Neighbourhood−radius Linear decreasing 

(2/3 of maximum 
unit-to-unit distance
to 0)

Learning rate Linear decreasing 
(0.05 to 0.01)

NSGA-II
Crossover operator Uniform crossover
Selection operator Simple selection
Mutation operator Bitflip mutation
Crossover rate 0.8
Mutation rate 1/N
Population size 100
Maximum offspring size (variable) 100
Maximum number of runs 500
Stop criterion 100

Random forest/
extreme randomized trees 
Number trees 200
mtry
Number random splits 1
n-Repeated k-fold CV 5 × 30

p

Table 2. Parameters used for different algorithms. SOM: self-
organising map; NSGA-II: non-dominated sorting genetic al-
gorithm; mtry: number of variables randomly sampled as can-
didates at each split; CV: cross-validation; N: total number of
features; p: number of features selected in the evaluated model



Kühn et al.: Machine learning for cod recruitment

(Myllymäki et al. 2002, Lustgarten et al. 2008, Gupta
et al. 2010). However, in the case of linear relation-
ships, one might lose statistical power by using cate-
gorical features (Myllymäki et al. 2002). For an objec-
tive a priori decision on the SOM grid structure and
associated number of patterns, we used the mini-
mum of the dynamic validity index (DVI) proposed
by Shen et al. (2005) for k-means clustering. It finds a
trade-off between the compactness of each cluster
and its separateness from other clusters. The BMU
time series were then used as covariates in the analy-
sis. Further details on the SOM analysis and the DVI
can be found in Text S1 in Supplement 1 at www. int-
res. com/ articles/ suppl/ m664 p001 _ supp .pdf.

2.2.2.  Feature selection

Search algorithms. Feature subset selection is a
way of removing redundant and uninformative vari-
ables (i.e. features) in an ML model. The goal is to
avoid overfitting, increase model performance,
reduce running and training time and gain a better
model understanding with a reduced set of features
(Iguyon & Elisseeff 2003, Guyon et al. 2006, Saeys et
al. 2007). There are 3 selection approaches: (1) filter
methods: the number of features is reduced inde-
pendently before model fitting; (2) wrapper methods:
feature selection is done during model fitting; and (3)
embedded methods: natural feature selection is a
built-in part of the model. Filter methods select fea-
tures before model training, with the aim of selecting
variables with a high correlation to the response and
low correlation to other variables. Filtering is compu-
tationally fast, but potentially misses out on features
that are important in interactive relationships with
other variables. In contrast, wrapper methods find a
best feature set during model fitting and therefore
use interaction between features and the model, with
higher computational costs. Embedded algorithms
are intrinsic to a specific learning algorithm (e.g. fea-
ture importance in random forest or boosting ridge
regression), mostly with fewer computational costs
than wrappers. In our framework, we chose a wrap-
per feature selection method to harness both the full
strengths of the ML model and to allow flexibility in
the choice of the model.

Wrapper algorithms consist of 3 broad categories:
(1) exhaustive search, (2) greedy search and (3) meta -
heuristic global search algorithms (Diao & Shen 2015,
El Aboudi & Benhlima 2016). Although exhaustive
search guarantees the detection of a global optimal
solution, it is only applicable if the search space is

small, as the computational cost grows exponentially
with the number of features (2N model evaluations).
Greedy search algorithms, like stepwise selection
(forward, backward) or recursive feature elimination,
add/remove a feature to/from the model and look at
the performance gain/drop. They are computation-
ally fast, but the order of features added/removed
plays an important role in the obtained result. The
search is limited to a narrow area of the search space
and is easily trapped in local optima (Xue et al. 2016).
Metaheuristic global search algorithms are efficient
optimisation strategies that mostly harness a way of
stochastic search to escape local optima. Popular
methods are population-based metaheuristics that
often utilise a form of evolutionary search strategy
(e.g. genetic algorithm) to track the improvement of a
set of possible solutions simultaneously (Xue et al.
2013). Usually, they optimise a single goal, namely
model performance. However, because feature sub-
set selection is by definition a multi-objective prob-
lem, representing a trade-off between minimising
the number of features in a model and maximising
performance, multi-objective feature selection meth-
ods have gained attention. They explicitly take into
account the number of features as part of the optimi-
sation to force the algorithm to explore the lower
parameter end of the search space. Various applica-
tions have used the advantages of multi-objective
feature selection methods (Hamdani et al. 2007, Xue
et al. 2013, Ribeiro et al. 2015), but they are still not
widely known outside the field of ML and computer
science, and we are not aware of any application in
marine sciences.

Non-dominated sorting genetic algorithm. One
com monly used multi-objective evolutionary algo-
rithm is the non-dominated sorting-based gen etic
algorithm in its second improved version (NSGA-II)
proposed by Deb et al. (2002). NSGA-II and its
 modifications have already been used in a feature
selection context (e.g. Hamdani et al. 2007, Huang et
al. 2010, Ribeiro et al. 2015) and despite their age,
still show good performance compared to newer
algorithms (Xue et al. 2013). NSGA-II is a genetic
algorithm (GA), which employs the idea of Darwin’s
survival of the fittest to optimisation problems uti -
lising concepts like natural selection, mating and
mutation. To employ GA in a feature selection set-
ting, the number of covariates in the model is
encoded into a binary vector (‘individual’) denoting if
a variable (‘gene’) is included (1) or not (0). A set of
individuals with differing genes forms a ‘population’
of potential candidate solutions (Fig. 3). The popula-
tion evolves by allowing individuals with a higher
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‘fitness’, the optimisation objective, to produce ‘off-
spring’. A crossover operator determines how the
individual vectors are mixed to produce new solu-
tions. Genes (the covariates) that produce fitter off-
spring are more likely to be included in the next gen-
eration. Random changes (‘mutations’) to the genes
of an individual increase the diversity of the popula-
tion and provide a chance to escape local optima. To
ensure that good solutions are not lost in the evolu-
tionary process, a portion of the most fit individuals
from the parent generation pass over to the next gen-
eration (‘elitism’). In the multi-objective case, the
evolution of individuals with higher fitness is deter-
mined by multiple explicit goals simultaneously,
which can be described in terms of Pareto-set theory.
Solutions are Pareto-optimal if an improvement in
one objective leads to the worsening in the other

objective and vice versa. The set of Pareto-optimal
solutions is called the ‘Pareto front’, consisting of
only non-dominated solutions, for which no equal or
better solution in terms of all other objectives can be
found. NSGA-II tries to guide the search towards the
global Pareto front by simultaneously utilising the
search strategy of GA together with a ranking of
solutions based on non-dominance (Fig. 3). For that,
the parent Pt and offspring population Ot are com-
bined to form a new population Rt and sorted based
on the principle of non-domination, which ensures
both convergence towards the optimal Pareto front
and elitism as previous and current population mem-
bers are included. Individuals belonging to the same
non-dominated set F1...,k are then grouped together,
and the best sets are subsequently chosen until the
size of the new population equals the previous one.
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Fig. 3. Schematic of NSGA-II feature selection, beginning with a population P at time step t consisting of various candidate
models (individuals), which are encoded in a binary vector showing which feature (gene) is included into the model (1) or not
(0). Each individual has an assigned fitness consisting of the number of features and the metric used to evaluate the goodness
of fit of a machine learning model (in this case RMSE). The population now evolves by means of selection, mating (crossover)
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on the concept of non-dominance into different Pareto fronts. From this ordered population, a new population for time
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will be either accepted or rejected based on crowding distance, which prefers solutions which lie in less occupied areas
of the fitness space. The optimisation is finished if the maximum number of simulation steps is reached or a stopping condition 
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For the last set Fk, which does not fully fit into the
next population, the individuals are sorted based on
a crowded-comparison operator, which preserves
diversity by favouring solutions that are not in the
same neighbourhood in the objective space. The pro-
cess is repeated until the convergence of the solution
(stop criterion) or until the pre-defined number of
simulations steps is reached. Convergence was meas-
ured by translating the bi-objective optimisation
problem into a single-objective one by means of the
hypervolume indicator (Zitzler & Thiele 1998, 1999).
It measures the volume (or area in a bi-objective
case) enclosed by the Pareto front and a reference
point, allowing a comparison of different Pareto sets
with the same reference point. As the reference
point, we chose r = (1,1) and scaled the different
objectives accordingly. Due to the discrete nature of
solutions with respect to the number of parameters,
the original NSGA-II algorithm suffers from an accu-
mulation of duplicate solutions. To preserve diversity
in the population, decrease selection bias and
increase performance, duplicates among offspring
were removed (Aguirre & Tanaka 2007). For faster
computation, we included parallel computing of indi-
viduals in the population and memoisation (Michie
1968), the efficient storage of previously visited solu-
tions in the feature space.

Fitness function. In a multi-objective case, the fit-
ness function reflects the different objectives − in the
case of feature selection, namely the number of
parameters and the performance of the ML model.
Here, we used the root mean squared error RMSE =

as a metric to assess model per-
formance and guide the evolutionary search. To
track the convergence with the hyper-volume indica-
tor, the RMSE of the model was scaled by the RMSE
of a naïve prediction (in this case the mean value of
the response variable, yobs) and set to 1 if predictions
were performing worse.

Choice of the final solution from the Pareto front.
The solutions obtained from the search consist of
non-dominating solutions, meaning the possibly best
model under a given size of parameters. The decision
on a final compromise solution was based on the
Euclidean distance of each solution within the Pareto
front to an ideal solution (in this case the coordinate
origin [0,0]) and finding the ‘knee’ of this curve. We
used this measure for its simplicity and interpretabil-
ity; however, there are many more measures from
the field of multi-criteria decision making that can be
used for choosing a compromise solution within a
Pareto front (see e.g. Wang & Rangaiah 2017 for an
overview).

2.2.3.  ML model

For the wrapper approach, the ML model is part of
the fitness function. In general, the framework is
flexible enough to allow for implementation of any
kind of classification or regression model. For the cod
case study, we decided to use a modified version of
random forest (Breiman 2001), as the algorithm is
flexible enough to consider non-linear relationships
and interactions. Random forest is an ensemble of
uncorrelated decision trees. By themselves, they are
weak learners that are sensitive to small perturba-
tions in the training data (low bias, high variance). To
reduce the variance, random forest uses bootstrap
aggregation (or short: ‘bagging’) of the training data
to train each tree with a bootstrap sample and aver-
aging across all predictions. In addition, candidate
variables for each split are randomly selected among
the input variables, which leads to more diversity in
trees. The key idea behind random forest is to have
many uncorrelated trees acting as a committee to
gain a stable prediction, in which the individual
errors of each tree cancel each other out. A way to
further reduce correlation of individual forests is an
algorithm called ‘extreme randomized trees’ by
Geurts et al. (2006), where in addition to the random
selection of features for splitting, the cut point for the
split itself is also determined randomly. The original
‘extreme randomized trees’ algorithm builds the
trees on the full dataset; however, to aid comparison
with the original random forest algorithm, we
decided to keep the original bagging step, character-
istic for random forest. The advantage of the addi-
tional randomization is a smoother prediction. To
show the effects of the proposed changes, we com-
pared the performance and predictions for both algo-
rithms on our case study in Fig. S1 in Supplement 2.
To (1) ensure stability of results, (2) avoid overfitting
and (3) assess the predictive performance on un -
seen data, we used repeated n-fold cross-validation
(5 folds × 30 permutations) of the model within the
NSGA-II algorithm.

2.2.4.  Interpretation of model output

ML models are often referred to as black-box mod-
els, with a potentially large number of parameters,
making it hard to understand how the model uses its
inputs to derive a prediction (Biecek 2018). However,
in marine science in general, and fisheries science in
particular, it is crucial to understand predictions; oth-
erwise, it would be difficult to gain the trust of
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human decision makers. In recent years, advances in
model-agnostic methods, which are applicable for
various types of models, further fostered the interpre-
tation of black-box ML models. In this framework,
we used methods to gain understanding of feature
importance and local and global model behaviour.
Feature importance was assessed by permuting each
feature randomly and looking at the increase in pre-
diction error, a concept originally proposed by
Breiman (2001) for random forests and extended for
other models by Fisher et al. (2018). ‘Pd plots’ were
used to assess the global effect of each individual
feature on the response. Local effects were examined
via ‘breakdown plots’, which try to decompose each
model prediction into the additive contribution of
each feature (Staniak & Biecek 2018). To enable a
compact visualisation, we scaled the variable contri-
bution produced by the breakdown analysis, to
obtain a measure in percentages for each data point.
Additionally, to understand potential mechanisms for
cod recruitment, the chosen features in the best EOF-
based model were correlated to various regional
indices of climate variability including box averages
of SST, salinity, currents, precipitation, wind, SST
and salinity fronts and large-scale indices like the
NAO (for the detailed methodology and results, see
Text S2, Fig. S2 and Table S1, all in Supplement 3).
This final step sheds light upon linking particular
PCs to physical mechanisms. The choice of these
additional datasets was based on the accessibility of
readily available datasets and hypothesis-driven
selections, and is similar in its approach to the analy-
sis of Núñez-Riboni & Akimova (2017), who related
inter-annual variability of salinity in the North Sea to
box averages of wind, currents, sea level pressure,
precipitation, discharge and salinity in specific
regions.

2.3.  Software implementation

The analysis was done in the programming lan-
guage R version 3.6.1 (R Core Team 2019). Apart
from the base-R functionality, several additional
packages were used for this analysis, including
‘kohonen’ (Wehrens & Buydens 2007, Wehrens &
Kruisselbrink 2018) for SOM-feature extraction;
‘ecr 2.0’ (Bossek 2017) for feature selection via
NSGA-II; ‘R.cache’ (Bengtsson 2019) for memoisa-
tion; and the ‘caret’ (Kuhn 2008) and ‘ranger’ pack-
ages (Wright & Ziegler 2017) for implementing the
ML model and cross-validation. Model interpreta-
tion was done with the help of the ‘pdp’ package

(Greenwell 2017) as well as ‘DALEX’ (Biecek 2018)
and ‘iBreakDown’ (Version 1.3.1; Gosiewska &
Biecek preprint, https://arxiv.org/abs/1903.11420)
for breakdown analysis. The code for the frame-
work was compiled into the R-package ‘marmalaid’
v0.1 (Kühn 2020) under the repository https://
github. com/ Bernhard Kuehn/ marmalaid. Data and
code to comprehend the main steps of the North
Sea cod case study are distributed via figshare. com
at https://doi.org/10.6084/ m9. figshare. 13473162.

3.  RESULTS

3.1.  Feature extraction

From the EOF analysis, the largest number of
significant PCs were extracted from the salinity
fields yielding 7, 6, 5 and 6 PCs for the seasons
DJF, MAM, JJA and SON, respectively. SST fields
yielded 5, 4, 4 and 5 PCs, whereas the current
fields resulted in 2, 3, 3 and 3 extracted PCs for the
respective seasons (see Figs. S3−S14 in Supplement
4 for spatial fields and time series). Combined with
their lagged versions and the time series of SSB, 82
predictor variables were used as input for the fea-
ture selection algorithm.

The number of optimal patterns extracted via
SOM varied between 4 (Currents JJA) and 10 (SST
SON, Salinity MAM), with the most frequent num-
ber of patterns being 6 (Figs. S15−S26 in Supple-
ment 4). Rather than having 1 abrupt minimum in
the DVI, the optimal solutions were similar to neigh-
bouring SOM complexities, indicating the validity
of various grid choices within a certain range
(Fig. S27 in Supplement 4). Altogether, only 19
input time series were presented to the feature
selection algorithm.

The extracted spatial EOF-patterns were similar
among seasons; however, the seasonal PC time series
differed within a given year, indicating substantial
seasonal variation (compare spatial pattern and asso-
ciated time series for each environmental variable in
Figs. S3−S14). The EOF1 patterns for SST and salin-
ity show a global pattern over the whole domain, with
the largest variability associated with the eastern
North Sea for SST and especially coastal regions
around the German Bight for salinity (Figs. S3−S10).
They capture the warming trend of the North Sea in
the case of SST, and for salinity, the intrusions of
North Atlantic water caused by remote salinity varia-
tions in the North Atlantic (e.g. great salinity anom-
alies, Dickson et al. 1988, Belkin et al. 1998, Belkin
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2004) and/or variation in the intensity of the inflow).
Simultaneously, EOF1 of salinity shows strong vari-
ability in the German Bight, possibly attributed to the
discharge of large rivers like the Elbe. For currents,
the EOF1 pattern seems to reflect changes in inten-
sity of the wind-driven cyclonic circulation together
with changes in Atlantic inflow through the Dover
Passage and the Norwegian Trench (Figs. S11−S14).
The system shows an oscillatory structure with
higher anomalies of inflow in the south and less
inflow in the north and vice versa. The EOF2 pattern
depicts a north−south oscillatory field in the case of
SST and opposite fluctuations of the Southern/Ger-
man Bight and the coast of Denmark/Skagerrak/Nor-
wegian Trench area for salinity, likely attributable to
outflow from the Baltic. For currents, this pattern
mainly represents the strength of the inflow from a
western direction into the Skagerrak. The SOM pat-
terns largely reflect a clustering in the space spanned
by the first 2 PCs (Fig. S28 in Supplement 4). Extreme
patterns are mostly mapped at opposite corners of
the grid, with an intermediate pattern of lower ampli-
tude in between (Figs. S15−S26). Similar to EOFs, the
time evolution of the SOM pattern captures the
warming trend in the case of SST (Figs. S15−S18) as
well as the different variations in salinity attributed
to northern inflow, Baltic Sea outflow and discharge

from the main rivers (Figs. S19−S22); however, SOMs
resolved the spatial differences in far more detail and
asymmetrically, compared to the EOF pattern. For
currents, the SOMs mainly resolved the north−south
and west−east current patterns found in EOF1 and
EOF2 (Figs. S23−S26).

3.2.  Feature selection

EOF-derived PCs (continuous temporal variables)
yielded better predictors for cod recruitment time
series than SOM-derived patterns (discrete temporal
variables) (Fig. 4, Table 3; Table S2 in Supplement 5).
The final solution, reflecting the compromise be -
tween complexity and performance, was the 5-
parameter solution in the case of EOF-derived pat-
terns and the 3-parameter solution for SOM-derived
patterns (Fig. 4, Table 3; Table S2). The SOM-based
model feature selection (19 input variables) con-
verged to the final solution after only 18 generations,
whereas the EOF-based model feature selection (82
input variables) reached the final solution after 149
generations. The NSGA-II-based feature selection
successfully guided the search to models with in -
creased performance and fewer parameters in the
objective space (Fig. 4b).
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3.3.  Model interpretation

Since the EOF-derived model performed in total
better than the SOM-based model, only the ‘best’
solution from the EOF-based model is described here
in detail. Feature importance of the final EOF-model
showed the SST-pattern in summer (denoted as
SST.PC1.JJAt−1) during the juvenile pre-recruit

phase being the most important, followed by SSBt−1

when the cohort is born, overwintering SST
(SST.PC3.DJFt) and 2 salinity signals in summer
(Salt.PC2.JJAt−1) and spring (Salt.PC5.MAMt−1)
linked to the juvenile pre-recruit and larval phase,
respectively (Fig. 5a). All temperature effects in the
final model were negatively associated with recruit-
ment (Fig. 5b,d) and associated with high SSTs in the
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Covariates No. of Predictors RMSEcv(5×30) MAEcv(5×30) Pseudo-R2
cv(5×30) Distance to (0,0)

(SST.PC1.JJA)t–1 1 0.528 0.42 0.591 0.640

(SST.PC1.JJA)t–1 2 0.532 0.44 0.589 0.640
+ (SST.PC1.MAM)t–1

(SST.PC3.DJF)t 3 0.502 0.415 0.651 0.606
+ (SST.PC1.JJA)t–1
+ (SST.PC1.MAM)t–1

SSBt–1 4 0.49 0.415 0.668 0.59
+ (Salt.PC2.JJA)t–1
+ (SST.PC1.JJA)t–1
+ (SST.PC3.DJF)t

SSBt–1 5 0.484 0.413 0.691 0.587
+ (Salt.PC2.JJA)t–1
+ (Salt.PC5.MAM)t–1
+ (SST.PC1.JJA)t–1
+ (SST.PC3.DJF)t

SSBt–1 6 0.484 0.415 0.687 0.587
+ (Salt.PC2.JJA)t–1
+ (Salt.PC5.MAM)t–1
+ (SST.PC1.MAM)t–1
+ (SST.PC1.JJA)t–1
+ (SST.PC3.DJF)t

SSBt–1 7 0.484 0.412 0.705 0.589
+ (Salt.PC2.JJA)t–1
+ (Salt.PC5.MAM)t–1
+ (Salt.PC7.DJF)t

+ (SST.PC1.JJA)t–1
+ (SST.PC3.DJF)t

+ (SST.PC1.SON)t–1

SSBt–1 8 0.481 0.412 0.701 0.589
+ (Salt.PC2.JJA)t–1
+ (Salt.PC5.MAM)t–1
+ (SST.PC1.MAM)t–1
+ (SST.PC1.JJA)t–1
+ (SST.PC3.DJF)t

+ (SST.PC1.SON)t–1
+ (Salt.PC7.DJF)t

SSBt–1 9 0.478 0.405 0.707 0.589
+ (Salt.PC2.JJA)t–1
+ (Salt.PC2.MAM)t–1
+ (Salt.PC5.MAM)t–1
+ (SST.PC1.MAM)t–1
+ (SST.PC1.JJA)t–1
+ (SST.PC3.DJF)t

+ (SST.PC1.SON)t–1
+ (Salt.PC7.DJF)t

Table 3. Final models as part of the Pareto front for the empirical orthogonal function (EOF) analysis; the chosen solution is 
highlighted in bold. CV: cross-validation; MAE: mean absolute error
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whole North Sea in summer and high winter SSTs in
the northwestern North Sea as well as low winter
SSTs in the eastern North Sea and the Skagerrak
(Fig. 6). The SST signal in winter (SST.PC3.DJFt) was
strongly associated with SST fronts in the central (r =
0.79, p < 0.05) and eastern part of the North Sea
(Table S1), with particularly strong gradients in cold
winters (results not shown). The salinity effect was
estimated to be negative on recruitment, as the sum-
mer signal of salinity anomalies correlated positively
with the original field in the Norwegian Trench/
Skagerrak area (Table S1). Correlation analysis of
PC2 of salinity in the summer months during the
juvenile pre-recruit phase with various local and
regional climate indices revealed a strong positive
correlation (r = 0.73, p < 0.05) with an index of frontal
zone strength in an area along the Norwegian Trench/
Skagerrak (Table S1). This indicates that cod recruit-
ment is linked to the gradient of salinity differences
responsible for front formation rather than the

absolute salinity values. For the salinity signal in
spring (PC5 MAM), no strong explanatory physical
mechanism could be found via correlation analysis
(Table S1). However, both salinity signals in the
model were associated with the area along the Nor-
wegian Trench/Skagerrak, indicating a possible as -
sociation with the salinity gradients/changes related
to the Norwegian Coastal Current and Baltic Sea
outflow (Fig. 6). The model also captured the com-
pensating influence of SSB on recruitment (Fig. 5c).
Summer temperatures exert a non-linear effect on
recruitment, with a strong almost linear effect in
both negative and positive directions and a positive
but plateau-like influence at values near 0 (Fig. 5b).
Temperature during the overwintering phase in win-
ter (Fig. 5d) and salinity (Fig. 5e) in summer during
the pre-recruit juvenile phase exert almost a linear
influence on cod recruitment, while salinity in spring
during the larval phase revealed a non-linear, but
weak, effect (Fig. 5f).
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Fig. 5. (a) Variable importance for each covariate; boxplots denote median (thick line), interquartile range (IQR, box), 1.5× IQR
(whiskers) and extreme values (points) for 100 successive builds of the final model. (b−f) Partial-dependence plots showing the
relative change in the response (log(recruitment)) with variation in each feature; SST: sea surface temperature; PC: principal
component; JJA: summer (June−August); SSB: spawning stock biomass; DJF: winter (December−February); Salt: salinity; 

MAM: spring (March−May)
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Individual predictions of the random forest model
were decomposed into additive components related
to the contributing features. One key feature is the
mostly positive contributions of summer SST to the
recruitment prediction until the end of the 1980s
and a largely negative contribution from 1998 on -
wards with a phase of transition in between (Fig. 7).
From the end of the 1960s to the mid-1970s, SSB
largely contributed positively to the recruitment
pre diction. The highest recruitment events in the
time series from the beginning of the 1970s to 1984
were largely driven by SSB and favourable summer
and overwintering temperatures. From 1985 on -
wards, the positive SSB effect ceased, with tem -
peratures in summer solely driving the good re -
cruitment of cod. In the transitioning phase, from
1990 to 1997, SSB was already estimated to exert a
negative effect on re cruitment, with summer tem-
peratures being favourable for recruitment in the
years 1992, 1994 and 1997, and adverse in the rest.
The period is characterised by largely fluctuating
influences from all environmental variables rather
than a consistent positive or negative impact, with
salinity in the summer months being a dominant
driver in the years 1990, 1991, 1996 and 1997. From
1998 on, SSB and almost all environmental variables,
particularly SSTs in summer, had a strong negative
impact on recruitment.

4.  DISCUSSION

4.1.  General discussion of the framework

We presented a framework for deriving a robust
ML model incorporating important steps, from sum-
marising spatiotemporal information to selecting
robust features and choosing an appropriate model.
Although it is believed that methods like artificial
neural networks or random forest can greatly help in
improving predictions like SR relationships (Megrey
et al. 2005, Dreyfus-León & Chen 2007, Smoliński
2019), ML modelling is still not a standard tool. Appli-
cations of ‘classic’ SR models (e.g. Ricker, Beverton-
Holt, Cushing) are still predominantly used (Keyl &
Wolff 2008), while ML methods are only briefly men-
tioned in a recent review on future and perspectives
in SR research (Subbey et al. 2014), and no applica-
tion was listed that includes ML in assessments and
simulations of management strategy evaluation (Hal-
tuch et al. 2019). Our proposed framework extends
existing work (e.g. Fernandes et al. 2010, 2015) re-
garding research on recruitment of marine fishes and
offers guidance for marine ecologists in general by
starting with feature extraction from spatiotemporal
data showing 2 important pathways like EOF analysis
or using SOMs and a wrapper-based feature selec-
tion with NSGA-II. The framework itself can be po-
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tentially applied to many different datasets and
 research questions within the marine realm.

4.2.  Feature extraction

Local-scale EOF analysis has a long history of appli-
cations in fisheries science, but is mostly linked in a
descriptive and correlative sense (Dippner 1997a,b,
Dippner & Ottersen 2001, Petitgas et al. 2009, Huret et
al. 2010) rather than predictive modelling. Similarly,
large-scale oceanographic and atmospheric patterns
like the NAO, AMO or the Subpolar Gyre index,
which can be defined as results of EOF analysis, are
frequently used, as they are easily available and often
correlate with biological variables of interest. Rather
than using large-scale indices, we want to emphasize
the use of local EOF- or SOM-derived indices for pre-
dictive modelling that better match the spatial distri-
bution of e.g. the fish stock. Similarly to local EOF
analysis, SOMs are mostly used in a descriptive sense

in the field of oceanography (Liu & Weisberg 2005,
2011, Liu et al. 2016b), while their use is still limited in
biological science applications (e.g. Liu et al. 2016a).
We provide the first application on how SOM-derived
patterns allowing for non-linear relationships can be
incorporated into predictive models of fish recruitment.
Although the performance of the SOM-based models
was inferior in our case study compared to the EOF-
based cod recruitment models, they present an alter-
native pathway to summarize spatiotemporal environ-
mental information for use in predictive modelling and
may be superior to EOFs in other applications. Com-
paring the resulting patterns from both analyses
yielded insights into the temporal and spatial distribu-
tions of the dominant signals of SST, salinity and cur-
rents in the North Sea. While it would be desirable to
identify EOF patterns with clearly separate physical
mechanisms, this is not guaranteed (Emery & Thomson
1997). In our particular case, the EOF patterns of salin-
ity seem to mix mechanisms which are not necessarily
in phase (like Baltic outflow and changes in volume
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transport of the Rhine; I. Núñez-Riboni pers. comm.)
and to separate mechanisms which are in phase (like
changes in river discharge of the Rhine and Elbe; I.
Núñez-Riboni pers. comm.). Note, however, that the
identification of specific physical mechanisms is not
fundamental to the validity of the present analysis.
What is important is simply the link to cod recruitment,
which could arise from a combination of mechanisms
instead of individual mechanisms.

4.3.  Feature selection

In marine science in general, and fisheries science
in particular, it is important to derive parsimonious
models with fewer variables, as it both helps in un-
derstanding and communicating results to stakehold-
ers and facilitating predictions. This can be done by
limiting the number of variables a priori, selecting the
possible candidate models manually or using auto-
mated methods of feature selection. Many of the ear-
lier studies that used ML in recruitment research ei-
ther selected variables a priori or manually (e.g. Chen
& Ware 1999, Chen et al. 2000, Huse & Ottersen
2003). As manual selection of variables becomes
im practical with the use of many environmental
variables in different seasons, we presented an au-
tomated multi-objective evolutionary algorithm
(MOEA), specifically NSGA-II, to derive a limited
number of variables. It can be seen as an alternative
to various other feature selection methods applied in
fishery science, like correlation-based filters (e.g.
Fernandes et al. 2010), the K2 algorithm specific for
Bayesian networks (e.g. Trifonova et al. 2014) or
Boruta for random forests (e.g. Smoliński 2019). The
advantage of using a MOEA like NSGA-II is that, un-
like filter-methods, it fully takes into account the
model structure. The simultaneous control for model
complexity and performance allows the effective ex-
ploration of solutions with low complexity. Using a
heuristic search algorithm on various inter-correlated
variables poses the risk of increased Type I error
rates, as unimportant variables can be selected by
random chance. In separate simulation experiments,
conducted as a quality control measure, 4 artificial
predictors and 200 additional inter-correlated non-
sense variables with similar autocorrelation structure,
but unrelated to the response variable, were
designed to test the ability of the differing feature se-
lection methods in correctly identifying true signals
related to the response variable (Text S3 in Supple-
ment 6). The results showed fewer cases of falsely
 selected variables with NSGA-II than with Boruta,

 recursive feature elimination and a filter approach
(Fig. S29 in Supplement 6). This is due to the effective
search in the feature space combined with rigorous
cross-validation. Further improvements may be
achieved by decreasing the number of folds at the ex-
pense of possibly missing important variables (Type II
error). Furthermore, contrary to other algorithms (e.g.
Boruta for random forest), NSGA-II is not limited to a
particular ML model, as any model can be included
via the definition of an appropriate fitness function.

The major drawback of the NSGA-II-based feature
selection is the long runtime, which was reduced via
parallelisation and the option for memoisation (stor-
ing already evaluated covariate combinations). Even
under these improvements, the algorithm may not
scale well for ML models that involve a long training
time or have a large number of observations/vari-
ables. An overview study on genetic algorithm-based
feature selection estimated evolutionary approaches
to be suitable for tasks with less than 1000 features
(Xue et al. 2016). One option for a larger number of
variables would be to use an additional step of
dimension-reduction techniques like PCA or to re -
duce the number of permutations in the repeated k-
fold cross-validation step. However, at least for appli-
cations where the number of observations is relatively
low, we believe that the efficient exploration of the
feature space outweighs the additional runtime.

4.4.  North Sea cod case study

The final model (R2 = 0.69, via 5-fold cross-valida-
tion) is among the highest performing models for
North Sea cod recruitment that take into account one
or more environmental variables. Early work assess-
ing recruitment of North Sea cod used an environ-
mental Ricker, which accounted for 42% of the vari-
ance using SST time series from February to June
(Planque et al. 2003) and 47% from February to
March (Cook & Heath 2005). A model combining
both the Ricker and Beverton-Holt relationship
together with annual-averaged SST and zooplankton
abundance yielded a similar fit (45% explained vari-
ance) (Olsen et al. 2011). Sguotti et al. (2020) found
that an environmental Ricker together with annual-
averaged SST outperformed more sophisticated mod-
elling approaches like empirical dynamic modelling
or stochastic cusp modelling for North Sea cod (55%
explained variance). Akimova et al. (2016) found that
cod recruitment was strongly related to temperature
in January−March at 75 m depth near the Fair Isle
region, where a modified Cushing function fitted
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with the data explained around 67% in recruitment
variability. Pécuchet et al. (2015) used residuals from
a Ricker model and fitted a generalised additive
model taking into account temperature, currents and
nutrients (NO3 and PO4 separately) in the time from
February to March, explaining 67% in deviance.

Although a direct comparison of studies is difficult,
as the time series of North Sea cod recruitment be-
came longer over the years, the temperature effect on
cod recruitment seems to be a dominant and prevail-
ing feature found by our model and other models. The
incorporation of various lagged temperature (JJAt−1

and DJFt) and salinity signals (MAMt−1, JJAt−1) in dif-
ferent seasons in the model can represent different ef-
fects on life stages. The fact that the influence of SST
is almost linear on cod recruitment explains why
linear models yield a similar performance compared
to the more flexible approach presented here. How-
ever, according to our results, the season in which the
temperature effect is manifested in the population is
variable. Many authors have found an effect in winter
or spring, whereas variable importance in our model
showed a higher importance of summer temperatures
for cod recruitment. The effect of temperature at
the beginning of the year is estimated to be an effect
experienced during the larval stage, either directly
through unfavourable temperatures for growth/
mortality or indirectly through food availability via
match−mismatch dynamics (Beaugrand et al. 2003,
Beaugrand & Kirby 2010, Buckley et al. 2010, Kris-
tiansen et al. 2011). The high importance of summer
and overwintering temperatures in our model, however,
might point to the pre-recruit juvenile phase as an ad-
ditional bottleneck in recruitment. This can be due to
direct detrimental effects of summer temperatures, as
supported by Laurel et al. (2017), who found modelled
summer growth stress especially in the months from
July to September for 0-group coastal cod in the
 Skagerrak to be related to im paired recruitment from
1998 to 2012. Also, predator−prey relationships can be
amplified by higher temperatures as e.g. predator−
prey overlap between 0-group cod and grey gurnard
increases with higher temperature in the North Sea
in summer (Kempf et al. 2013). 

The effect of the winter SST signal on cod overwin-
tering juveniles might be rather complex, as it corre-
lates with SST in the northwestern North Sea, an
area influenced by Atlantic water and SST fronts in
the central North Sea (Table S1), where these warm
water masses meet cold water from the southern
North Sea in winter. Although overwintering mortal-
ity in pre-recruits is recognized in affecting recruit-
ment signals (Hurst 2007), no studies are yet avail-

able that systematically evaluate the conditions in
the overwintering period of North Sea cod pre-
recruits. Further work is needed to evaluate if this
effect is a direct effect of temperature or rather an
indirect effect, e.g. due to increased predation or
starvation in winter. The salinity effect in summer
(PC2 JJAt−1) during the juvenile phase might point to
conditions in the nursery habitat of cod. The signal is
strongly linked to frontal zones along the Norwegian
Trench and the Skagerrak area (Table S1), a region
which is known for higher densities of larval and
juvenile cod and their preferred food at the shelf-
break front (Munk et al. 1995, 1999, Munk 2007,
2014). The causal mechanism behind this might be
indirect and associated with favourable feeding con-
ditions for late-stage larvae and juveniles or a slow-
down in early life stage dispersal due to strong reten-
tion in the front. Although the effect of salinity in
spring (PC5 MAMt−1) is only marginal in the model,
the association with approximately the same area in
the northeastern North Sea provides a consistent pic-
ture of the salinity effect on cod. However, as the
salinity signal in spring could only be weakly linked
to any physical mechanism (Table S1), caution in
making an interpretation is recommended.

An interesting aspect of the breakdown analysis is
the different contribution of variables throughout the
historical recruitment record, especially the time
period from 1998 onwards, with an ongoing low
recruitment of cod and a consistent negative contri-
bution from the predictors in the model. There is evi-
dence that the North Sea underwent a regime shift in
the years 1997/1998, which is related to the switch
from a cold-phase to a warm-phase AMO (Auber et
al. 2015) and a change in the plankton community
composition of the North Sea (Alvarez-Fernandez et
al. 2012). Alvarez-Fernandez et al. (2012) found that
the 1998 regime shift was characterised by a
decrease in total copepod biomass and a larger con-
tribution of warm-water zooplankton. Additionally,
the authors noted that the increase in temperature
was governed by a decrease in wind speed post-
1996, lower Atlantic water inflow from the North
and, in general, a situation with less mixing and more
permanent stratification. This is supported by a
recent study, which concluded that the reduction in
the NAO in 1996, an accompanying drop of Calanus
finmarchicus in 1997, the low spawning stock and
especially the increase in summer−autumn tempera-
tures created a ‘perfect storm’ of unfavourable condi-
tions that led to the drop in juvenile Norwegian
coastal cod in the Skagerrak (Perälä et al. 2020).
Although our analysis did not include the effects of
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the NAO or zooplankton dynamics, the breakdown
analysis points in the same direction, as summer tem-
peratures and SSB were the most influential vari-
ables explaining the low recruitment in the period
after 1998. Tools such as the breakdown analysis can
help to disentangle such effects of multiple drivers
and to make ML models more understandable.

4.5.  Lessons learned

4.5.1.  There is no free lunch

In the ML community, the saying ‘There is no free
lunch!’ (Schaffer 1994, Wolpert & Macready 1997)
refers to the fact that no algorithm exists that is in all
aspects superior for all problems. Indeed, random
forest comes close to being a promising solution for
many problems, as it has good out-of-box perform-
ance, contains comparatively few tuning parameters
and is rather robust to overfitting due to ensemble
averaging. However, in our case study, the ‘standard’
random forest algorithm showed signs of overfitting
in regions where only few data points with high vari-
ance were observed. This was especially evident in
strong spikes in recruitment for small changes in SSB
(e.g. years 1985/1986), which is not biologically
meaningful (Fig. S1). Tools like Pd plots or break-
down can help to reveal this unexpected model
behaviour and should be included at the end of every
ML pipeline. The additional randomization via ex -
treme randomized trees presents a natural way to
help alleviate this problem. Alternative ways would
be a reduction in tree depth or a smaller bagging
fraction, although finding the right amount of reduc-
tion is a rather subjective step.

The ‘no free lunch’ theorem is also applicable to the
NSGA-II feature selection algorithm. We used the al-
gorithm as it is widely used in many applications,
easily understandable and already implemented in
the programming language R. However, for differ-
ently shaped Pareto fronts, other MOEAs might out-
perform NSGA-II. Jiménez et al. (2017) compared
NSGA-II feature selection to an evolutionary non-
dominated radial slots based algorithm (ENORA) for
feature selection with random forest as the ML model.
Although ENORA outperformed NSGA-II in regards
to the diversity of solutions obtained, the lower pa-
rameter solutions of NSGA-II almost always had
lower RMSEs compared to solutions with similar com-
plexity found by ENORA. Xue et al. (2013) compared
2 variants of their proposed multi-objective particle
swarm-optimisation (PSO) for feature selection to var-

ious MOEAs, including NSGA-II, on 12 benchmark
datasets. NSGA-II was among the top-performing al-
gorithms for the small datasets (<50 features), but was
outperformed for large datasets (>100 features) by the
PSO, albeit with similar performance as the other
MOEAs. Under the ‘no-free-lunch’ theorem, we see
our framework as a modular tool with interchangeable
parts to aid the use of ML methods in fisheries
science, rather than an all-in-one solution.

4.5.2.  Extrapolation

A great problem one needs to be aware of when
working with flexible ML methods is the low ability
for extrapolation. Predictions of tree-based methods
can only lie within the range of the response values
already seen in the training dataset, due to averaging
over partitions of the space spanned by the response
and the features. Extrapolating will result in a constant
value representing the highest/lowest prediction
learned from the data. In the case of stock−
recruitment modelling, this becomes crucial espe-
cially in management strategy evaluations, where a
meaningful extrapolation between zero and the low-
est observed value may be required. Additionally,
long-term forecasts, where variables are expected
to increase largely outside the historical range (e.g.
a strong temperature trend), pose a problem for
regression trees. An alternative here would be to
continuously update the training data set as new
data become available. On the other hand, there are
cases were this conservative extrapolation provides a
better suited solution as, for example, linear polyno-
mial regression models that grow to infinity when
extrapolated. Also, parametric methods can suffer
from poor predictions outside the data range, if
parameter estimates are unreliable in the case of
limited observations (Hillary 2012).

4.5.3.  Stochasticity

Contrary to classical statistical methods, many ML
methods show inherent stochasticity. In our analysis,
this aspect encompasses the stochastic nature of SOMs,
stochastic cross-over and mutation in genetic algo-
rithms, the splitting in training and test set in cross-vali-
dation and the randomization of splits, the variable
choice for each node, and the bagging step in the ‘ex-
treme’ version of random forests. Controlling for these
steps by using a specified random seed for the random
number generator makes research reproduc ible among
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different machines. Also, using enough repetitions is
crucial in making sure results do not arise by pure
chance. However, dependent on the feature set, one
cannot entirely rule out that other similar solutions with
almost equal performance than the chosen one exist.

5.  CONCLUSION AND SCOPE FOR FURTHER
APPLICATIONS

The proposed framework offers a modular and
flexible tool for applications in which pattern ex -
traction from a multitude of variables combined with
a classification/regression-type problem is ac quired.
The choice to limit the number of extracted patterns,
and cross-validating the feature selection, helps to
avoid overfitting and identify robust models, which
should be useful in many ecological marine science
applications. These in clude linking aggregated time
series of e.g. species biodiversity, community compo-
sition, stock− recruitment, catches, age/length at matu-
rity or any other indicator of ecosystem/stock health
to spatiotemporally resolved data such as fleet move-
ments, spatial distributions of species life stages or
further spatiotemporal environmental variables. Al -
though SOMs did not perform as well as EOF analy-
sis in our case study, we emphasize their use as
exploratory tools to extract patterns from biological
variables such as plankton or species counts of fish
and benthos, due to their capability to identify non-
linear patterns. Furthermore, we showed that NSGA-
II offers an effective way to find a parsimonious
model in a large feature space, by simultaneously
taking the unique structure of the ML model into
account that goes beyond mere correlation. The
modular nature of the framework also allows for the
inclusion of parametric linear models and testing a
multitude of predictor variables. However, as these
models have problems dealing with correlated fea-
tures, a prior filter for collinearity might be needed.
Tree-based ensembles, on the other hand, offer some
flexibility over conventional methods, being able to
deal with correlated features and model non-linear
behaviour. However, we argue that the drawbacks of
these flexible methods need to be openly communi-
cated, especially if extrapolation is the goal.
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