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Abstract 
Success of forest restoration at farm level depends on the farmer´s decision-making and the constraints to 
farmers’ actions. There is a gap between the intentions and the actual behavior towards restoration in Sub-
Saharan Africa and the Global South. To understand this discrepancy, our study uses empirical household survey 
data to design and parameterize an agent-based model. WEEM (Woodlot Establishment and Expansion Model) 
has been designed based on household socio-demographics and projects the temporal dynamics of woodlot 
numbers in Uganda. The study contributes to a mechanistic understanding of what determines the current gap 
between farmer’s intention and actual behavior. Results reveal that an increase in knowledge of the current forest 
policies laws and regulations (PLRs) from 18% to 50% and to 100% reduces the average number of woodlots by 
18% and 79% respectively. Lack of labor reduces the number of woodlots by 80%. Increased labor requirement 
from 4 to 8 and to 12 man-days, reduces the number of woodlots by 26% and 61% respectively. WEEM indicates 
that absence of household labor and de facto misconception of PLRs “perceived tenure insecurity” constrains the 
actual behavior of farmers. We recommend forest PLRs to provide full rights of use and ownership of trees 
established on private farmland. Tree fund in the case of Uganda should be operationalized to address the 
transaction costs and  to achieve the long-term targets of forest land restoration. 
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1.  Introduction 

Small-scale tree-based land-use intensification (STLI) associated with agroforestry, woodlot mosaics, fruit 
orchards, home gardens is seen as a pathway for forest land restorations (FLR) (Rudel et al., 2019), and forest 
product diversification (Rahman et al., 2017). This is supported by numerous governments and other 
development partners (Cesar & Jessica, 2010). Woodlot mosaics are also regarded as a suitable measure to 
enhance ecosystem services, and mitigate climate change (Kiyingi et al., 2016; Lienhoop & Brouwer, 2015). STLI 
is seen as conducive due to the increased occurrence of landscape fragmentation around the globe (Demetriou 
et al., 2013; Taubert et al., 2018). STLI through woodlot mosaics and boundary planting has historically been 
witnessed around the globe, particularly in sub-Saharan Africa, where smallholder tree planting has occurred 
for at least three decades in countries such as Kenya (Holmgren et al., 1994; Tiffen et al., 1994), Ethiopia (Nawir 
et al., 2007), Madagascar (Kull, 1998), and Uganda (Veljanoska, 2018). Key factors such as the need for 
consumption and commercial purposes motivated households to extend their available labor to include trees 
on their agricultural farms (Lambin & Meyfroidt, 2010) which is termed as the STLIs theory of the forest transition 
(Rudel et al., 2002).  
 
The historical paradigm implies that smallholder farmers have an intention to plant trees, especially through 
woodlot mosaics. However, the actual behavior “implementation of this intention” may be threatened by 
perceived control variables such as inadequate enabling de facto policy conditions, especially insecure land and 
tree tenure. Under the theory of planned behavior (Ajzen, 1991), the perceived control attribute creates a gap 
between intention and actual behavior towards woodlot establishment.  
 
Farm households are key actors and decision-makers in the transformation of land use towards STLI (McConnell 
& Dillon, 1997). It is crucial to explore and simulate the gap between intention and actual behavior from the 
household decision-making perspective. Farm household decision-making is influenced by several interacting 
factors that are poorly understood (French, 1995; Gebreegziabher et al., 2020; Twongyirwe, 2015; Villamor et 
al., 2012).  Research in the arena of household decision making towards STLI “woodlot establishment” is mainly 
carried out using econometric and empirical analysis that focus on the determinants to tree adoption  (Ashraf 
et al., 2015; Gebreegziabher et al., 2010; Nigussie et al., 2017; Tefera & Lerra, 2016). With the complexity in 
understanding the intention and actual behavior of individual households, there is need to advance and 
analytically expand econometric results. This entails building or developing a computational land use agent-
based simulation model based on empirical survey data. Integration of empirical data and results in Agent-Based 
Models (ABMs), improves our understanding of the gap between the intention and actual behavior of 
households in STLI. In particular, the knowledge derived from empirical data and household surveys at one point 
in time can be extrapolated in time using a dynamic ABM by simulating scenario-based projections of woodlot 
establishment.    
 
Agent-based modeling provides the possibility to better understand the impact of decision making in socio-
economic context and environmental scenarios. Although with challenges in modeling Social-Ecological Systems 
(SES), such as difficulties in integrating both qualitative and quantitative data, and representing human 
dimensions in SES (Elsawah et al., 2019), agent-based land-use decision models have evolved during the last 
decade, and have been grounded on empirical data. Groeneveld et al. (2017) reviewed agent-based land-use 
models and have found that 61% of the studies have been grounded on empirical data. Zhang & Vorobeychik 
(2019) also highlight that most ABMs are hypothetical and there is more need to ground them on empirical data. 
This approach is implemented in the current study by using WEEM model to simulate the intention and actual 
behavior of household decisions towards STLI. ABM is a promising tool to improve our understanding and 
increase our ability to predict and successfully manage systems (Gilbert & Troitzsch, 2005; Grimm et al., 2005; 
Squazzoni, 2012). Such models are widely used to represent and analyze land use and land cover changes 
(Matthews et al., 2007; Parker et al., 2003) and they are significant in policy guidance when based on empirical 
data (Zhang & Vorobeychik, 2019). The potential of ABMs in policy-related research is well documented and 
accepted with most focusing on land-use optimization, economics, climate change adaptation, and agronomy 
(e.g. Andersen et al., 2017; Balmann, 1997; Berger, 2001), with less focus on understanding the gap between 
intention and the actual behavior of forest land restoration through woodlot establishment. Lempert (2002) 
suggested the application of ABMs to check the impacts and performance of policies over different features. Yet 
there persists the gap in using ABMs to solve real-world problems in specific case studies to provide appropriate 
policy strategies as noticed by Lippe et al. (2019) and Schulze et al. (2017). ABMs could be applied to check the 
de facto policy impacts, human behavior, and their unintended consequences. As indicated by Lupo (2015), 
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actual behavior is influenced by the type of knowledge and information obtained and interpreted by 
smallholders. This creates either a favorable or unfavorable perception towards innovations (Lupo, 2015) such 
as woodlot mosaics. 
 
In Uganda, for example, the National Forestry and Tree planting Act, 2003 aims to sustainably restore and 
manage forest lands both on public and private land. As a strategy to achieve this aim, local governments are 
authorized to guide tree farmers on when (not) to harvest trees on their private land based on sustainable forest 
management principles prescribed in the National Forestry and Tree Planting Regulations, 2016. The Regulations 
require forest owners to prepare a felling plan before proceeding with timber extraction. The same Act gives 
sole ownership, decision making, and tree tenure to the forest owner. This mismatch is perceived by the 
smallholders as a behavioral control, which creates mixed interpretation, conflicts, and challenges in the de facto 
implementation of the Act. ABM can be used in such a case to highlight the mismatch of policy design and its 
implementation (de jure vs. de facto), pinpointing to the nexus of land and tree tenure and the unintended 
consequences of FLR policies by highlighting the gap of intention and the actual behavior of farmers in FLR. 
Assessing and visualizing the inadvertent consequences of current Policies, Laws, and Regulations (PLR) is a 
daunting task and crucial for the ongoing FLR initiatives that promote the STLI pathway. Therefore, we 
hypothesize that current de-facto understanding and knowledge of forest Policies, Laws, and Regulations (KPLR) 
hinders and threatens forest land restoration in Sub-Saharan Africa (SSA).  
 
Furthermore, since smallholders mainly base their decisions on farm inputs, primarily available household labor 
(Hoch et al., 2012; Taylor & Charlton, 2019; Tripathi et al., 1992), it is also vital to understand the influence of 
labor availability on the implementation and expansion of STLI, that in turn affects the success or failure of 
respective forest initiatives. Based on simulation experiments, we focus in the presented study on extrapolating 
the farmers’ intention and the actual behavior of STLI while, evaluating the influence of KPLR and household 
labor on the observed household intention in SSA, using a case study in Uganda. In summary, we test the 
hypotheses that there is a significant gap between intention and the actual behavior of smallholder farmers, and 
this is influenced by the current situation of de-facto forest PLRs and the absence of labor. These perceived 
control variables hinder and threaten the observed forest land restoration intention to fully evolve through STLI 
in the form of woodlot mosaics. 
 

2. The ABM Woodlot Establishment and Expansion Model (WEEM) 

2.1 Model development and implementation 

For a better understanding of smallholder decision-making and intentions towards STLI and its adoption trends 
in forest restoration, we developed a stylized agent-based simulation model experiment called Woodlot 
Establishment and Expansion Model (WEEM). The model is grounded on survey data collected in 2018. Data 
were obtained from small scale tree growers around Budongo protected forest reserve in Masindi District, 
Uganda. It is calibrated based on empirical results and implemented in NetLogo 5.3.1 and updated in 6.2 
(Wilenski, 2016). A screen shot of the graphical user interface is provided in Figure 2. For simplicity, 
understanding and uniformity and to enable reproducibility, the model is presented using an established 
protocol for describing ABMs, namely the ODD (Overview, Design Concepts, and Details) protocol (Grimm et al., 
2006; Grimm et al., 2010). Since the current model involves a concept of human decision-making, its description 
was further extended to the ODD + Decision (ODD+D) protocol (Müller et al., 2013). The ODD+D is suitable and 
it allows a clear and comprehensive description of ABMs with an emphasis on human decisions, including 
appropriate decision sub-model and theoretical foundations (Müller et al., 2013). The model can be downloaded 
at CoMSES Net (Ahimbisibwe et al., 2021). 

2.2 Model overview 

2.2.1 Purpose 

WEEM model is designed to project woodlot establishment and expansion in space and time based on 
demographic data and behavioral data from a household survey. The model translates empirically derived stated 
preferences for woodlot establishment into the cumulative number of established woodlots considering both 
exogenous constraints, also known as perceived control variables (Ajzen, 1991), such as knowledge and 
awareness of forest land use PLRs, and endogenous constraints such as demographic changes that affect the 
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availability of household labor. The current model is specifically designed for decision- and policy makers, 
stakeholders, and practitioners especially those involved in forest land restoration initiatives. 
 

2.2.2 Entities, State variables, parameters, and Scales 

Model entities cover both the social and ecological components of the SES. The social entities in the model 
include households and household members whilst the ecological entities include patches, and the respective 
trees (Table 1). Patches are characterized by their owner, presence of woodlots which is determined by the 
number of individual trees of the same species (e.g. Eucalyptus grandis) and their respective ages. Woodlots are 
subjected to harvesting in two phases, <10 years and >10 years of age, assigned with different market prices, 
that is tree-price1 and tree-price2 respectively. 
 
Households are characterized by individual farm households including their household traits, household 
available labor (l), savings, and food security. Household members are characterized by their home, respective 
to their household head "decision-maker", and parents both father and mother with their respective gender and 
age. Household members are further categorized by their level of knowledge on land use PLRs (Kplr), willingness 
to establish woodlots, and the ability to access an extra source of non-farm income. Seasonality is characterized 
by dry and wet seasons that are defined by the probability of rainfall occurrence. Rainfall dynamics are 
considered due to their high influence on the chance of tree planting, growth, and yield. In case of labor 
shortage, a given number of man-days termed as labor-pool are set aside within the community. This enables 
continual establishment and expansion of woodlots, especially for the households that have enough savings but 
without household labor.  
 
For the temporal resolution, the model runs on a discrete-time step of 6 months called a season. It runs for a 
period of 25 years to represent a given generation of a population. Each household is assigned initially with one 
patch randomly located in the simulation arena. The rest of the empty patches are randomly distributed among 
households using a tessellation routine such as each patch belong to its nearest household. Each patch 
represents a woodlot parcel owned by an individual household termed as owner. The initial landscape builds on 
84 randomly selected households with 44 having woodlots and 40 with no woodlots. The spatial configuration 
is currently not based on the real geographical information of the study area which allows for model expansion. 
Each grid cell represents one patch that is equivalent to one acre (0.4 hectares). The simulations are run on a 
virtual landscape and its extent is 33 grid cells * 35 grid cells making it a total of 1155 patches i.e. a total area of 
1155 * 0.4 ha = 462 ha real-world area represented.  
 

2.2.3 Process overview and scheduling 

The model is comprised of various procedures (Figure 1) projected during the time step of 6 months in sequential 
order. Most important procedures that are repeated are setting up weather that provides the probability of 
rainfall occurrence, set up and update household structure, update household labor, tree growth and yield, 
household security, and update plots, land use decision on “woodlot establishment” and tree harvesting.  
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Table 1: Global and state variables for WEEM Agent-Based Model of trees planting decision making by the household 

Variable Name Description 

Global variable   
Season Defines the particular weather patterns; dry and wet seasons  

Weather Defines the probability of either having a drought or having rains, ranging from 0 to 1 

Labor pool The number of people/man-days within the community that can provide human labor. These can be 
hired by any household if there is a shortage of household labor. 

newwoodlotslowlabour The accumulated number of woodlots established by household that have not enough family labour 
to establish a woodlot on their own 

newwoodlotshighlabour The accumulated number of woodlots established by household that have enough family labour to 
establish a woodlot on their own 

State variables  

Patches own  
Owner Defines the owner of the patches with a respective who number/ household code e.g. from 0 to 85. 

Woodlot A patch that contains a necessary number of trees. Each household has a maximum of 23% fraction 
of the patches to establish a woodlot. 

Woodlot _age Defined by the age of the trees which increases on an annual basis 

Trees own  
Tree_age Defines the age of trees hence their growth and yield. It also enables to determine the harvesting 

decision of the tree by the households. 

Households own 

Savings Amount of money in dollars per year a household owns. This contains all income minus the 
household´s expenditure in terms of the number of members within the household. 

Food-security Calculated from household´s savings and indicates the ability of a household to live either above or 
below the poverty line. 

Family-labor Amount of people aged between 9 to 65 years who can provide human power to carry out farm 
activities within a household. 

Household-labor Family labour and potential labor from the labor pool 

 

Members own  
Gender Defines the gender of household members including parents and children to enable make 

appropriate decisions during update household sub-model and household heads. 

Age (AH) Defines the age of the household members including parents and children to enable make 
appropriate decisions during updating a household and labor. 

Home It indicates the household the members belong to.  

Knowledge Knowledges indicates whether a member is aware of PLRs (knowledge = 1) or not (knowledge = 0) 

Willingness (W) Willingness indicates whether a member is willing to establish a woodlot (W = 1) or not (W= 0)  

Extra-income (EI) EI indicates whether the member has access to extra income (EI = 1) or not (EI = 0) 

Selected model parameters 

Likelihood to establish a woodlot “see logit model" 

Con-policy knowledge log-odds for policy knowledge  

Con-extra income log-odds for access to extra non-farm income 

Con-age log-odds for the age of household head 

Con-willingness log-odds for willingness to change land use activities towards tree planting 

Woodlot establishment and harvesting 

Rainfall_drySeason  Absence of rainfall "dry season" 

Rainfall_wetSeason  Availability of rainfall “wet season” 

Labor-para Average human labor required to carry out an activity 

Tree-price 2 The market price of trees harvested at age of < 10 years 

Tree-price1 The market price of trees harvested at age of >= 10 years 
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Figure 1: WEEM model process and overview and scheduling (T = time. Each time is 1 season = 6 months) 

 
 
 

 

Figure 2: Interface of the agent-based Woodlot Establishment and Expansion Model (WEEM) providing an interactive test and 
application for users and decision makers. The diagrams indicate results at the end of the 50th season (25 years). 
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2.3 Model design concepts 

Theoretical and Empirical Background  
Overall, the model conceptualization is based on the socio-ecological understanding that embeds both social 
and ecological settings implicitly interacting together (Koontz et al., 2015) within the farm household system. In 
summary, the model has components such as the biophysical input (e.g. landscape patches) and social actors 
(e.g. the household agents), the environment (e.g. weather) and institution (e.g. forest policy). The social actors 
are built on agent traits comprising household assets based on the household livelihood framework as explained 
in Ahimbisibwe et al. (2019) and exogenous variables such as KPLRs. The biophysical input only considers the 
farm landscape on which a household under conducive weather environment may establish their woodlots. The 
components interact with each other, for example, the agent interacts with the biophysical system by causing 
an effect through the alternation of the land use patch based on his decision to establish a woodlot. On the 
other hand, the biophysical system (the farm landscape) reciprocates by providing positive feedback as 
outcomes such as tree products that are converted into household income, which then affects household 
savings. Other processes such as fertilization, change in landscape status (e.g. soil fertility and water table) are 
not modelled.  
 
The concepts of forest transition theory are taken into consideration. The theory states the change from net 
forest loss to net forest gain over time (Farley, 2010; Mather, 1992). We focus on the recovery  (forest net gain) 
phase that is mainly explained by five pathways such as globalization, governance, changes in socio-economic 
attributes, state forest policy, and smallholder, tree-based land-use intensification (Lambin & Meyfroidt, 2010; 
Meyfroidt et al., 2018). Herein, we only consider the smallholder, tree-based intensification concept, a 
significant pathway towards forest restoration in agricultural-forest frontiers. The concept highlights a baseline 
for farmer’s intention to reforest their farmlands as long as the intended action removes costs or promises 
revenue (Rudel et al., 2002), in the model termed as savings. To understand the gap between intention and 
actual behavior, the theory of planned behavior (Ajzen, 1991) further helps to understand how household 
intentions are restricted by the perceived control variables, which links between perceived intention and actual 
behavior. The probability of establishing a woodlot is based on an empirical preference function that has been 
derived from an empirical analysis (Ahimbisibwe et al., 2019). Empirical data was obtained from household 
surveys, which were accompanied with direct observation and key informant interviews.  
 
Level of aggregation 
Generally, the model is based on the household member level. Land use decisions are made by the head of the 
household. Thus, his or her attributes are decisive and not household averages. The initial level of aggregation 
comprises a total of 84 households among which 44 have woodlots and 40 with no woodlots. However, this 
categorization changes at a faster rate with the trend moving towards more households establishing woodlots.  
 
Individual decision making 
Decision-making is modeled at the individual household level and in particular based on the attributes of the 
household head. The initial settings are imported into the ABM model from tabulated string files compiled from 
the empirical data. Newborns inherit the attributes from their mother and if new agents appear in the system 
their attributes are assigned randomly based on the proportion derived from the household survey. Each 
household head decides whether or not to establish woodlots and the decision is done once every season (6 
months). This decision is constrained by a number of factors such as availability of empty patches, labor and 
savings to hire external labor. For newly formed households, a new household head will take over an abandoned 
household.  
 
Usually, the household head (mainly father) decides on woodlot establishment and harvesting and if there is no 
father, the mother acts as the household head. The decision to establish or expand the woodlot is simulated 
based on a logit function (equation 1) that provides the probability of either to plant or not to plant trees. The 
function is denoted by: 

 log(
𝑝

1−𝑝
) =  − 0.302 − 2.771KPLRs + 2.279W − 1.312EI + 0.072AH   (1) 

 
Where KPLRS = Knowledge on forestry PLRs; EI = Non-farm income; W = Willingness to change land use; AH = Age 
of household head (Ahimbisibwe et al. 2019). Within the model, KPLRS, EI, and W are between 0 and 1, while AH 
ranges from 22 to 65 years. A combination of these parameters provides the estimated probability (p) as a 
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measure of intention to establish woodlots. Whereas p at the end of the simulation ranged from 0.18 to 0.99, 
with a median of 0.98 and mean of 0.92. The lower range closer to 0.18 belongs to relatively young household 
heads, with limited resources and savings. 
 
However, irrespective of the high probability to plant or expand woodlots, a household head has to check for 
different constraints such as labor availability and weather before he/she executes a decision. Land availability 
is attributed to the occurrence of potential empty patches without both woodlots and households. With the 
availability of empty patches, woodlot establishment and expansion were limited to a mean fraction f in 
equation 2 below. The fraction is given by:  

f =  
pw

ph⁄                      (2) 

 
Whereby pw = patches with woodlot and ph = total number of household patches. This implies that, if all these 
constraints are trounced, households start establishing trees every year. 
 
As a result, from the empirical analysis, farmers who own woodlots set aside only a proportion of 23% of all 
patches for woodlot establishment. Therefore, we set our system limits in the model for woodlot establishment 
to 23%. This 23% are in line with the advice from the agricultural extension officers to set aside land to fulfill the 
high demand of both annual and perennial crops for both food consumption and commercial purposes. 
Additionally, the rule is also used to test and suggest it as minimum standard for tree inclusion on farms in the 
farm forest policy of Uganda.  
 
Goal orientation 
In the model, the goal orientation is represented by the probability to establish a woodlot p (equation 1). 
 
Adaptive behavior  
Agent’s adaptive behavior is then modeled considering various aspects from the real farm household system. 
Firstly, farm household decision to establish a woodlot is constrained following available household labor, 
savings, rainfall, and potential patches "land" for woodlot establishment. For example, if a household cannot 
establish a woodlot when there is no household labor, the head adapts by hiring external labor using available 
savings. An individual household adapts to drought by delaying tree planting until sufficient rain occurs. This is 
to avoid losses in time and resources due to expected high tree mortality. Having managed to establish the 
woodlots, an individual household adapts to the lack of savings and food insecurity by harvesting some of the 
woodlots to increase his/her income and livelihood security.  
 
Spatial aspects  
Although not modeled explicitly, WEEM considers spatial aspects in the decision process, as the number of 
woodlots cannot exceed 23% of all patches own by a household. 
 
Temporal aspects 
Learning, memory, or discounting effects are not considered in the decision-making process, but households 
cannot commence with tree harvesting unless woodlots are 6 years of age or above.  
 
Sensing 
Households are modeled in such a way that they can sense the occurrence and absence of rains. This enables 
them to make an objective decision of whether to plant trees or not to plant. For example, household agents do 
not plant trees in dry seasons and only in the wet seasons. Household agents further detect the availability of 
empty patches which are occupied by newly formed households by male children at the age equal to or greater 
than 22 years old. The absence of these empty patches leads to no formation of new households. Household 
information is modeled explicitly based on empirical data. 
 
Level of interaction 
There are several feedbacks between social actors and environmental entities since patches are managed by 
social actors. Households indirectly interact through the labor pool where they compete for extra labor. Only 
households owning savings are able to participate in the competition for labor from the labor pool. 
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Heterogeneity 
Heterogeneity is expressed as differences in: household traits such as household size, savings and household 
labor; member’s traits such as parents, home (agent location), knowledge, willingness and access to extra 
income. Heterogeneity is also envisioned in terms of households’ decision making caused by the differences in 
traits and also based on the probability decision function. 
 
Stochasticity  
Attributes of family members, apart from aging, are assigned stochastically, i.e. knowledge, willingness to 
establish a woodlot, and access to extra income are assigned stochastically based on the proportions of the 
empirical data set from the survey. For example, in the data set 18% of the participants had knowledge. Thus, 
in the model the probability that a household-member has knowledge is 18%. Some processes are implemented 
stochastically such as reproduction, initial household patch distribution, and the order of households to access 
the labor pool.  The state of the weather is also determined stochastically. 
 
Observation  
The number of established woodlots, household savings, and household food security is collected at the end of 
each season and year (two seasons). 

2.4 Details 

2.4.1 Initialization 

The model is initialized at time t = 0, with 84 households among which 44 have woodlots and 40 with no 
woodlots. The initial state of the external labor pool is 50 individuals and is a limit as observed from the empirical 
data in the case study. Each household is initiated with only one patch and later all other patches are randomly 
distributed using the minimum distance of the owner to the respective patch. Households also initiate with their 
respective attributes such as age, number of household members, gender, and woodlot ownership based on the 
field data. The age of the woodlots is initiated to an age of 2 years as the average age observed during the survey. 
 

2.4.2 Input data 

The model uses input files obtained from the field surveys (Ahimbisibwe et al., 2019) and these include gross 
margin, household size, age and gender status of children, age and gender status of parents, and woodlot 
ownership. These files are used to build the household structure, allocate woodlots and savings to the respective 
households.  
 

2.4.3 Sub-models 

Update household structure 
Within the household, the age of all household members increases annually (Figure 3), and those ≥ 65 years old 
are eliminated from the system. Choosing 65 years is based on the life expectancy within the study area, which 
is significantly not different from the average life expectancy at birth of 63.7 years for Uganda at large (Uganda 
Bureau of Statistics [UBOs], 2019). During the simulations, male offspring with an age of 22 years and above, 
searches for or inherits an empty patch within the landscape to start up a new household. Lack of any empty 
patch available eliminates him from the system. After occupying an empty patch, he gets married by finding a 
spouse within the landscape. The spouse is randomly created from and within the system at an age of 18 to 28 
years old. The unmarried offspring are then eliminated from the system at the age of ≥ 22 years. Each woman 
that lives with a partner and is in a certain age interval (18-35 years) may reproduce with a probability of 0.5 
each year.  
  
Update household labor 
This sub-model (Figure 4) updates household labor and provides the decision rules towards establishment of 
woodlots. If planting is true, household head checks for the availability of household labor which is, composed 
of household members aged between 9 to 65 years old who belong to a specific home and depend on him. The 
household head compares current labor with that of the labor-para a global variable that act as a perceived 
constraint. At the farm household in reality, an average of 4 individuals/household members is required to 
achieve the respective land activities ranging from land clearing to harvesting of tree products. Therefore, labor-
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para in our current model is set at four. With a deficit in household-labor, the household head calculates labor 
needed and obtains the additional labor from the labor pool given sufficient savings.  
 
 

 

Figure 3: Process for updating household structure sub-model 

 
 

 

Figure 4: Process for updating household labor sub-model 
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Tree growth and yield 
Tree growth and yield are updated through a simple linear equation: age = current age + 1, updated on an annual 
basis. Dimensions of tree growth such as height and diameter were not considered in the current version of the 
model since there are not management activities such as pruning and thinning currently carried out by the 
households. Additionally, management aspects and productivity are currently not considered because the only 
focus is on decisions to establish and harvest a woodlot.  
 
Harvesting 
Households only harvest trees in their woodlots if the tree age is 10 years and above. Secondly, households 
harvest trees in case of emergency "savings ≤ 0" provided trees are 6 years and above but below 10 years. 
Additionally, a tree price of 20 USD (tree-price1) and 10 USD (tree-price2) is assigned according to the average 
farm gate market prices of standing trees, for the first and second case respectively. Furthermore, harvesting 
expenses are not included within the model since households from the study area sell standing trees. Lastly, 
household income is updated for every tree harvested on an annual basis. 
 

3. Model application and scenario analysis 

3.1 Model sensitivity analysis 

Both global and local sensitivity analysis was used to analyze the model. This aided us to integrate potential 
changes and errors plus their impacts on the model output (Pannell, 1997; Railsback & Grimm, 2012). Sensitivity 
analysis included testing the effect of five model input parameters, labor-para, rainfall_wetSeason, 
rainfall_drySeason, tree-price1, and tree-price2 on the cumulative number of established woodlots. Model 
parameters in local sensitivity analysis were altered one at a time [one-factor-at-time approach (OAT)] (Bar 
Massada & Carmel, 2008; Broeke et al., 2016). Here, we calculated elasticities since the units of measure of the 
parameters are not comparable. This also provides a good indication of the parameters to which the cumulative 
number of established woodlots is most sensitive. The input parameter was varied on a small range using the 
standard deviation for labor-para and a ± 10% range above (Xmax) and below (Xmin), and the reference value (Xref) 
for the rest of the parameters (rainfall_wetSeason, rainfall_drySeason, tree-price1, and tree-price2). The 
sensitivity of the model to changes in input parameters was measured as the relative change in the established 
number of woodlots at above (Ymax), low (Ymin), and reference level (Yref) per model input.  
 
Model elasticities were calculated using: 

 

E =  
Ymax-Ymin

Yref
*

 Xref

Xmax  - Xmin
             (e.g. in Groeneveld et al., 2002; Pannell, 1997).   (3) 

 
Where Ymax, Ymin, Yref, and Xmax, Xmin, Xref  are the maximum, minimum, and reference mean values of the model 
output(Y) and input (X) parameters respectively.   
 
Since local sensitivity analysis does not consider the interaction effect between input parameters, we 
implemented a global sensitivity analysis (Saltelli, 2008). This was done by varying input parameters 
simultaneously to evaluate not only the effect of one factor at a time but also the interaction between input 
factors using a full factorial experimental design (Thiele et al., 2014). The input parameters are included using 
the minimum, mean and maximum values. Data output from the global sensitivity analysis was further 
statistically analyzed using general linear regression models and analysis of variance tests. The results indicated 
relationships between the input factors, and the model output parameter, including their interaction effects. 

3.2 Model experiment (Scenarios) 

3.2.1 Effect of knowledge of Policy Law Regulations (Kplr) on tree planting 

Despite an abundance of policy instruments and guidelines for afforestation and reforestation, the success rate 
of these efforts to enhance forest cover is limited in many countries (Lienhoop and Brouwer 2015). As an 
example of Uganda, we assessed farmer’s percentage in awareness of PLRs related to tree planting and 
harvesting (tree tenure and security) on their land. To observe and understand the role of policy on established 
woodlots at the landscape level, we ran policy scenarios while other decision-making constraints such as EI, W 
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and AH are set to zero. The scenarios are divided into 3, namely scenario one (Kplr 0%), scenario two (Kplr 50%), 
and scenario three (Kplr 100%), which represents percentage awareness of forest policies at 0%, 50%, and 100% 
respectively (Table 2). From the survey data, only 18% of the respondents knew about PLRs, while 50% and 100% 
are hypothetical scenarios. Therefore, we set our baseline at Kplr = 18%. The results obtained from scenario one 
to three are compared within and between the scenarios at selected point of analysis using error bars. 
 
 
Table 2: Scenario settings for the effect of PLRs on woodlot establishment. All other scenarios are based on a reduced decision 
model (see text for details). 

Scenario  Designated name Description 

Baseline Kplr  Kplr 18% 
18% of the household are aware of the forest policy, laws, and regulations 
and this acts as a baseline situation.  

Scenario one 
(SC_1 Kplr) 

Kplr 0% 
None of the households are aware of the forest use policies, laws, and 
regulations most especially concerning tree planting and harvesting. While 
keeping other decision-making variables to zero. 

Scenario two 
(SC_2 Kplr) 

Kplr 50% 
Half of the households are aware of the forest use policies, laws, and 
regulations most especially concerning tree planting and harvesting. While 
keeping other decision-making variables to zero. 

Scenario three 
(SC_3 Kplr) 

Kplr 100% 
All households are aware of the forest policies, laws, and regulations most 
especially concerning tree planting and harvesting. While keeping other 
decision-making variables to zero. 

 
 

3.2.2 Effect of household labor availability on tree planting 

The effect of household labor on woodlot establishment was evaluated using a global variable called labor-para 
and labor-pool. As stated earlier, labor-para acts as a perceived control variable for the households’ decision-
making. It creates the sense of feasibility for a household (not) to establish a woodlot. On the other hand, labor-
pool is the number of man-days available in the labor market and can be hired by households with enough 
savings to establish woodlots. The evaluation was conducted in two ways. First, we ran the model at the normal 
parameter levels to obtain the number of newly established woodlots for two household categories those with 
high and low family labor.  
 
Secondly, we assumed that the increase in the commitment to restore more forest lands would require more 
labor input, herein restricting the labor-para to 4, 8 and 12-man days. Using these limits, we created 3 scenarios 
with labor-para at zero, 8 and 12 man-days while keeping the baseline at 4 man-days and labor-pool at 50 man-
days for all scenarios. Scenario one indicates no constraints in terms of labor whereas scenario two and three 
indicates that 8 and 12 man-days are required to establish woodlots.  
 
 
Table 3: Scenario settings for the effect and importance of household labor on woodlot establishment 

Scenario  Designated name Description 

Baseline  labor-para = 4 man-days 
Woodlot establishment and expansion requires more or equal to 
4 man-days of household labor 

Scenario one 
(SC_1L)  

labor-para = 0 man-days   
Woodlot establishment and expansion does not have a 
restriction on the number of required man-days of household 
labor 

Scenario two 
(SC_2L) 

labor-para = 8 man-days 
Woodlot establishment and expansion requires more or equal to 
8 man-days of household labor  

Scenario three 
(SC_3L) 

labor-para = 12 man-days 
Woodlot establishment and expansion requires more or equal to 
12 man-days of household labor  
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4. Results 

4.1 Changes in the number of woodlots (intention of woodlot establishment and 
expansion) 

Generally, the model simulates a high rate of increase in the number of established woodlots with increased 
time until the 20th to 23rd season and then 38th to 45th seasons (Figure 5). Woodlot expansion ceases to happen 
with the maximum number of established woodlots being attained at 38th season. The downward trends from 
18th to 23rd and from 38th to 45th season indicate tree harvesting while upward trends from 23rd to 38th and 45th 
to 50th season indicate re-establishment and expansion. The trends in household savings increases at the 
commencement of woodlot harvesting especially from t >= 20 seasons (10 year). Overall the graph indicates 
that local households have a high intention to establish and expand the number of woodlots. It additionally 
suggests that STLI is a potential pathway to FLR in fragmented landscapes. 
 
   

 

Figure 5: Trend of woodlot establishment and expansion concerning changes in mean savings of households (USD). The 
simulation runs at a seasonal time step (2 seasons = 1 year).  

 

4.2 Sensitivity analysis 

In table 4, the average number of established woodlots is highly sensitive to labor_para and rainfall_wetseason 
with an elasticity of 0.33 and 0.19 respectively.  Additionally, the factorial analysis in Table 5 confirms a strong 
significant effect, degree of freedom (df) = 196798, standard error (se) = 44.5, adj. R2 = 0.53, p-value ≤ 0.001, of 
labor-para, tree price2, rainfall_wetSeason and rainfall_drySeason on the number of established woodlots. Other 
factors such as tree price1 show no effect on the number of established woodlots (p-value = 0.3472). The results 
further indicate a significant (p-value ≤ 0.001) profound interaction effect of weather and labor on the changes 
in the number of woodlots. This further confirms the importance of weather and labor availability towards FLR. 

4.3 Effect of PLRs on woodlot establishment and expansion (intention and actual behavior) 

Overall, the cumulative number of established woodlots increased throughout the simulation and stabilizes after 
the 25th year (Figure 6). The rate of woodlot establishment in all scenarios (SC_1 Kplr,  SC_2 Kplr,  and SC_3 Kplr) reaches 
maximum at the year of 8.5. This thereafter fluctuates indicating woodlot re-establishment and harvesting. 
However, the rates occur at different levels with SC_3 Kplr having the lowest number of established woodlots. 
This indicates an inverse trend respective to the increase in knowledge on forest PLRs. This further suggests that 
farmers especially in SC_3 Kplr that previously owned woodlots became hesitant to re-plant trees with increased 
awareness of forest policy and regulations. Empirically, the cumulative number of established woodlots reduced 
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by an average of 16% and 79% from the baseline to SC_2 Kplr  and SC_3 Kplr respectively.  On the other hand, 
reduction in the number of people with Knowledge on PLR to zero, slightly increased the number of established 
woodlots by 9%.  
 
 
Table 4: Local sensitivity analysis of the model for the 5 input variables. Where Xmin, Xref, and Xmax indicate minimum, mean 
(reference), and maximum values per variable. 

Model parameters         
Elasticity on the number 
of established woodlots Process and parameter Meaning of parameter Xmin Xref Xmax 

Woodlot establishment and harvesting     
labor-para Average human labor required to 

carry out an activity 
0.91 4 7.81 0.33 

rainfall_wetSeason Availability of rainfall 0.81 0.9 0.99 0.19 

tree price2 The market price of trees 
harvested at age of < 10 years 

9 10 11 0.10 

tree price1 The market price of trees 
harvested at age of >= 10 years 

18 20 22 0.04 

rainfall_drySeason Absence of rainfall "dry season" 0.09 0.1 0.11 -0.01 

 
 
 
Table 5: Results of a general linear regression and analysis of variance. Names in the first column are the input factors, lone 
names are the main effects, and combined with a colon are interaction effects. The estimate variable is the number of 
established woodlots at the end of the simulation. 

Input parameters Estimate Std. Error t value Pr(>|t|) Sig. level 

(Intercept) 1.03E+02 3.03E+00 33.908 0.000 *** 

tree-price1 9.01E-02 9.58E-02 0.94 0.347  

tree-price2 1.61E+00 2.29E-01 7.029 0.000 *** 

rainfall_wetSeason 3.20E+01 3.66E+00 8.764 0.000 *** 

rainfall_drySeason 7.38E+01 1.03E+01 7.17 0.000 *** 

Labor-para 3.64E+00 4.15E-01 8.777 0.000 *** 

tree-price2: rainfall_wetSeason -1.28E+00 2.76E-01 -4.627 0.000 *** 

tree-price2: rainfall_drySeason -2.10E+00 7.78E-01 -2.699 0.006954 ** 

rainfall_wetSeason: rainfall_drySeason -4.55E+01 1.24E+01 -3.666 0.000 *** 

tree-price1: labor 3.00E-02 1.31E-02 2.286 0.022257 * 

tree-price2: labor 2.72E-01 3.14E-02 8.674 0.000 *** 

rainfall_wetSeason: labor 4.72E+00 5.01E-01 9.43 0.000 *** 

rainfall_drySeason: labor 9.64E+00 1.41E+00 6.844 0.000 *** 
Note: Significant. Codes: * = p < .05, *** = p < .01 ,  *** = p < .001  

 
Consistent with the previous results, Figure 7 indicates similar results but only at selected points of analysis i.e. 
at 6, 10, 12, 18, 20 and 24 years. The error bars indicate an overall similarity in number of woodlots for the 
Baseline Kplr and SC_1Kplr at all points of analysis. It also indicates a significant low number of established woodlots 
especially in SC_3Kplr compared to the Baseline Kplr and SC_1Kplr at all points of analysis. This emphasizes that an 
increase in PLR knowledge reduces the probability of forest restoration at the landscape level. This further 
confirms the assumption that the current Kplr inhibits the establishment and expansion of small-scale tree-based 
land use in smallholder farms.  
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Figure 6: Changes in the number of woodlots due to the changes in PLRs awareness. 

 
 

 

Figure 7: Change in number of woodlots in relation to the level of knowledge on PLR at different points of analysis. Error bars 
with no intersection indicate significant differences in the number of woodlots. 

 

4.4 Effect of household labor availability on woodlot establishment (intention and actual 
behavior) 

Effect of labor-pool 
The cumulated number of established woodlots increases with time (Figure 8a) but the rate of increase is lower 
with low household labor as compared high household labor. As seen in Figure 8b, the results indicate that there 
is a significant gap at all points of analysis i.e. at 1st, 10th, 24th and 50th season in the number of newly established 
woodlots between households with high and low labor.  This is evidenced with the low number of newly 
established woodlots for households with low labor in relation to those with high labor. On average, the number 

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

N
u

m
b

er
 o

f 
w

o
o

d
lo

ts

Year

BaselineKplr 18% SC_1Kplr 0% SC_2Kplr 50% SC_3Kplr 100%

0

50

100

150

200

250

300

at 6 years at 10 years at 12 years at 18 years at 20 years at 24 yearsC
u

m
u

la
ti

ve
 n

u
m

b
er

 o
f 

w
o

o
d

lo
ts

Years

BaselineKplr 18% SC_1Kplr 0% SC_2Kplr 50% SC_3Kplr 100%



V. Ahimbisibwe et al. (2021) Socio-Environmental Systems Modelling, 3, 18036, doi:10.18174/sesmo.2021a18036  

 16  

of established woodlots is 67% lower if households have low labor compared to when households have high 
labor input. Therefore, lack of access to labor pool (absence of external source of labor) restricts the expansion 
and establishment of new woodlots, especially for those with low household labor. This clearly shows the 
importance of the role of household labor in woodlot establishment and forest restoration as only those with 
family labor could establish more woodlots when external labor force cannot be accessed.  
 
 

8     

Figure 8: (a) indicates the trend in the number of newly established woodlots for households with low and high labor. (b) 
further highlights the number of woodlots at the point of analysis (at 1st, 10th, 24th and 50th season). Note: Each season 
indicates a half a year. Error bars with no intersection indicate significant different between household categories at different 
seasons in time. For this simulation we have used a reduced labor pool of 4. Also we used a labor-para as the threshold to split 
the groups into high or low labor.  

 
 
Effect of the amount of labor that is needed to establish a woodlot 
The parameter labor-para constrains the rate of woodlot establishment as observed with the slow and lower 
increase in scenario two and three compared to baseline and scenario 1 (Figure 9). Increase in restriction from 
4 to 8 to 12 man-days indicates that households with no 8 or 12 man-days and above would not establish 
woodlots unless they have enough savings to hire external labor. Therefore, the smaller number of woodlots 
witnessed in SC_2L and SC_3L could be established using external labor force.   
 
Empirically, the cumulative number of established woodlots reduced by an average of 26% and 61% in SC_2L 
and SC_3L respectively compared to the baseline. On the other hand, removal of the restriction in number of 
man-days slightly increased the number of established woodlots by 4%.  
 
Figure 10 indicates similar results but only at selected points of analysis. The error bars indicate an overall 
similarity in number of woodlots for the baseline and SC_1L at all points of analysis i.e. at 6, 10, 12, 18 and 20 
years. It also indicates a significant reduction in number of established woodlots with increase in labor-para to 
8 and 12 as noticed in SC_2L and SC_3L respective to the baseline. The results provide evidence that woodlot 
establishment at household level could be successful with labor demand 0-4 man-days. Therefore, the lesser 
number of woodlots observed in SC_2L and SC_3L  indicates that household labor has significant importance, 
and current restoration projects that would require an optimal of 4 or less man-days could be successful 
compared to those that need more than 4 man-days of household labor.  
 
This highlights that with the increased commitment and pledges to forest restoration, requirement for more 
labor would pose a significant barrier towards realizing the restoration goal at the landscape level. In such 
instances, results further indicate the need to incentivize households to enable access to external labor from 
the labor-pool or to compensate for their free leisure time in case of forest restoration and woodlot expansion. 
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Figure 9: Changes in the number of woodlots due to the changes in household labor. 

 
  

 

 Figure 10: Number of established woodlots in relation to the number of required man-days for woodlot establishment at 
different point of analysis. Error bars with no intersection indicate significant different in the number of woodlots. 

 

5. Discussion 

5.1 The intention of woodlot establishment and expansion   

The model simulates a higher rate of woodlot establishment in comparison to reality. This shows that there is a 
difference between intention and the actual behavior of households. The model suggests the number of 
woodlots that would be established if no constraints would hinder the actors from following their intention. 
Nevertheless, WEEM simulations indicate the possibility and potential of small-scale tree-based land use 
towards forest land restoration especially for smallholder farmers with an area of less than a hectare. The 
limitation of woodlot establishment to 23% of the total number of patches allows farmers to utilize the 
remaining 77% for agriculture (food production). Irrespective of this limitation, the model shows the feasibility 
of restoring forest lands in small-scale farms as also observed in Tanzania (Kimambo et al., 2020). As a rule, we 
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recommend that the National Forestry and Tree Planting Act of Uganda, 2003, should create a provision for 
maintaining 23% tree cover on agricultural land. A 10% rule already exists in the farm forestry rules 2009 of 
Kenya (The Agriculture (Farm Forestry) Rules, 2009). Likewise, farmers with land parcels smaller than one 
hectare could be considered in farm forest projects, which has not been the case in FLR initiatives in Uganda. 
The proposed tree cover could be implemented not only in the form of woodlot mosaics but also through a 
combination of fruit trees mixed with crops, shade trees, and boundary planting. 

5.2 Impact of land-use related PLRs on woodlot establishment  

As observed, the model simulates a reduction in woodlot establishment with an increase in KPLRs awareness.  
The negative trend in woodlot establishment could be attributed to the past experiences and de facto 
interpretation of PLR. The requirement by the National Forestry and Tree Planting Act, 2003 and the regulations 
of 2016 for any tree harvesting to be permitted by the District Forestry officer through issuance of several 
permits involving payments is a disincentive for establishment of woodlots.  This perceived behavioral control 
creates insecurity in the certainty of gaining from the long-term woodlot investments, hence acting as a 
constraint towards FLR. This is in agreement with numerous FLR reports as identified by McLain et al. (2018) 
that highlight land and tree tenure issues as a major challenge to the success of forest land restoration.  
Moreover, according to the PLR households are required to develop a management plan that has to be approved 
by government officials and also prove ownership through payment of several dues. This increases transaction 
costs, which demotivates the local farmers, especially, towards engaging in tree planting initiatives and projects. 
 
With the role invested into local forest officials, PLRs formulation and implementation are based on a top-down 
approach without adequate consideration of the farm household needs, ideas, and aspirations. A similar 
situation was also observed in Vietnam by Salvini et al. (2016). With the current policy situation, farmers feel 
they have no full tenure rights to their trees hence reducing the chances in woodlot establishment. Accordingly, 
active participation of smallholders could ensure farmer’s security of tree rights, thereby increasing the 
likelihood for and effectiveness of forest PLRs. With the continued inflexible PLRs, the success of landscape forest 
restoration is threatened (Lienhoop & Brouwer, 2015). This confirms the notion that smallholder farmers are 
more likely to plant trees when they have full rights with secure tenure on land and over the trees they cultivate 
(e.g. Newby et al., 2012; Treue, 2001). We recommend amendments in the legal framework governing privately 
owned woodlots/forests to avoid misinterpretation of PLRs that the framers envisioned would facilitate 
sustainable forest management among private tree farmers but are instead disincentivizing participation in 
woodlot establishment. The PLRs need to be amended to clearly clarify the roles between District and National 
forestry officials and tree farmers in relation to utilization of trees on privately owned land.  
 
There is also need for investment in policy awareness at the local level which could differentiate between 
delayed harvest and denial to harvest woodlots, hence avoiding the unintended consequences of PLRs.  
Moreover, the Ugandan government needs to formulate guidelines that will be used in the preparation of 
management plans for all categories of forests that are sensitive to the inherent inequities and challenges of 
small-holder farmers that are involved in woodlot establishment. The country does not have guidelines for 
preparation of management plans for small-holder farmers that are investing in woodlots or forests yet the law 
requires farmers to have them. The National Forestry and Tree Planting Act, 2003 needs to be amended to create 
more positions in the District Forestry Services so that at least every sub-county which is the lowest unit of local 
governance in Uganda, to have a forest officer who among the several extension services they offer is supporting 
tree farmers with the preparation of management plans at subsidized rates. It will also be useful to create and 
operationalize policy incentives that encourage small-holder farmers to establish woodlots. We argue that if this 
is not considered, the overarching goal of Uganda’s Forestry Policy of 2001, which states inter alia “to develop 
an integrated forest sector that achieves sustainable increases in the economic, social and environmental 
benefits from forests and trees by all the people of Uganda, especially the poor and vulnerable” may not be 
achieved. 

5.3 Impact of labor changes on the rate of woodlot establishment  

WEEM indicates reduction in the cumulative number of established woodlots with low household labor, lack of 
labor pool and increased number of required man-days. This approves the importance of household labor in 
driving the changes in farm management as also observed in agricultural production (Dahlin & Rusinamhodzi, 
2019; Ellis, 1993; Nyberg et al., 2020).  
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It also indicates the role played by household savings in woodlot establishment, as observed in the limited 
number of woodlots in scenario 2 and 3. This is because, the low number of woodlots are established by 
households that can afford to hire an external labor force using extra savings. Thus, enabling them to implement 
their intended behavior. In summary, it indicates that households with no labor and savings may hardly engage 
in small-scale tree growing unless when supported externally as shown by a case in the Amazonia (Hoch et al., 
2012).  
 
As observed in real-world case studies, household labor for tree planting is often unavailable because 
households prefer to use it for intensive agricultural-crop production, and off (non) farm activities. This may also 
be attributed to the high interest and demand from the household dependents that lead to the allocation of 
more labor to short-term food crops for feeding and quick returns. Additionally, if the household's portfolio of 
activities does not contain enough short-term profit, households would integrate profitable but long-term 
investments like the establishment of woodlots due to the future return on land. On the other hand, the current 
investment in woodlots would be explained by the expected future returns on investment as highlighted by the 
increment on household savings in Figure 5. This hence shows the positive contribution of woodlot on household 
savings (Kiyingi et al., 2016).  As a recommendation, showing households a piece of the evidence-based and 
economic contribution of woodlots to their livelihood would influence them to implement their intentions into 
actual behavior.  Nevertheless, this further proves the dependence and importance of household labor in 
smallholder farms as noted by Ellis (1993) and Vicente & Pérez (2008), and that labor scarcity acts as a control 
variable to the implementation of the intended behavior especially in tree planting initiatives.  
 
With the current requirement of 4 man-days per established woodlot relatively similar to the 5 man-days as 
observed by Hoch et al. (2012), and in Teak plantations by Newby et al. (2012; 2014), it confirms that tree 
cultivation in small-scale tree-based land-use intensification systems (woodlot establishment) is less intensive 
and requires less labor as compared to pure agricultural land-use systems (FAO, 1989; Nyberg et al., 2020). This 
is because woodlots require less attention with only either twice or once per year in comparison to crop 
production (Nyberg et al., 2020). Hence, it provides more profitable tangible and intangible benefits to the 
farmers as labor returns on investment. In contrast, this only applies to woodlots but not to other tree-based 
systems such as agroforestry (Foster & Neufeldt, 2014) and high tree density diverse systems (Nyberg et al., 
2020). Therefore, caution should be taken on the type of STLI initiated for the respective forest restoration 
projects. 
 
Consequently, due to increased pledges of FLR, more man-days would be required for households to expand 
and re-establish and restore their farm lands. This poses a challenge as observed that increase in the required 
number of man-days to 8 and 12 drastically reduces the chance to establish woodlots. Therefore, it is crucial to 
estimate the labor required and available at the farm level before the implementation of FLR initiatives to avoid 
failure. In cases of labor scarcity, support in form of incentives, could be focused on addressing the trade-offs, 
opportunity costs, and transaction costs of household labor, and on helping farmers access external labor where 
necessary. These could be, for example, support in terms of access to low-interest loans based on business plans, 
compensation payments for labor, performance-based payment, effective training, and advice from forest 
officials on post-planting silviculture operations, payment for ecosystem service, and provision of alternative 
sources of livelihood and fuelwood.  
 
In summary, WEEM indicated an aspect of the importance of household labor and external labor which could 
not be observed in the empirical economic analysis (Ahimbisibwe et al., 2019), hence highlighting the 
significance of combining empirical data and ABM approaches. Therefore, it confirms the hypothesis that 
household labor has a significant effect and importance in the STLI system especially on the number of 
established woodlots. Additionally, it advances research on household labor and its necessity in forest land 
restoration. 

5.4 Policy implication 

The results show that WEEM can be used to understand different policy scenarios and labor requirements for 
individual farm households as a starting point towards FLR. There is a great need in developing models that not 
only integrate social and ecological systems but also consider the social behavior in the restoration 
interventions. Approaches such as WEEM can further play an important role in achieving the goals of the African-
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led initiative of the ‘Great Green Wall’ (AFR100) which aims to restore 100 million ha of currently degraded land 
across the continent. It complements socio-economic farm models (Kremmydas et al., 2018) and contributes to 
the gap of applying ABMs to solving real-world problems such as unintended de facto consequences of PLR. This 
is relevant for decision support and policy advice of initiatives such as AFR100 and the currently declared decade 
(2021-2030) of ecological restoration by the United Nations.  
 
Our findings also provide more insights for countries such as Uganda for the need of operationalizing the “Tree 
Fund” which is provided for in the National Forestry and Tree Planting Act, 2003 of Uganda. The farmers 
envisaged that the fund would promote tree planting and growing at national and local level and support tree 
planting and growing efforts of a non-commercial nature which are of benefit to the public. If operationalized, 
it will address the issues of opportunity cost and trade-offs related to use of household labor, hence in the long 
run, it will lead to the achievement of FLR targets through woodlots. Additionally, a provision for maintaining 
23% tree cover on agricultural land in the Land Act, 1998, Physical Planning Act, 2010 and the National Forestry 
and Tree Planting Act, 2003, of Uganda, could highly contribute towards FLR. 
 

6. Model limitations and proposed extensions and further work. 

The model mainly focused on intention and actual human behavior and the perceived control towards forest 
restoration at farm level. Thus, it lacks social networks and explicit spatial maps that we recommend to be 
included in model expansion. Nevertheless, WEEM in its current state is robust and provides useful insights in 
relation to the role of household labor and current cognitive policy understanding of forest Policy laws and 
regulations in Uganda. 
 

7. Conclusion and highlights 

WEEM was developed with the main goal to contribute to forest land restoration through the small-scale tree-
based land-use intensification (STLI)  pathway, herein woodlot establishment. This is done by capturing mainly 
two knowledge gaps that have not been highlighted by other ABM models. The gap of understanding a de-facto 
policy implication on forest land restoration (FLR) through the STLI pathway, and the link between intention and 
the actual behavior of small farmers towards woodlot establishment. We advocate the use of a holistic 
approach, combining qualitative and quantitative empirical data and theories (theory of planned behavior and 
STLI theory) in model building and implementation in solving real-world problems. This approach provided an 
efficient and effective methodology, indicating that quantitative empirical data sources highly supplements 
model building and analysis.  
 
Households have a high potential to establish and expand woodlots on their farm, thus a high possibility of 
woodlots as a pathway to forest transition. This indicates that woodlot establishment can combat wood scarcity 
and also contribute to the conservation and restoration of forest lands. In summary, WEEM indicates the 
potential of STLI as a pathway towards forest restoration in agriculture-forest frontiers, especially households 
that surround protected forest areas, and in highly fragmented landscapes. Given the potential (intended 
behavior) of woodlot establishment in forest restoration, de-facto policy implementation and awareness of 
current forest PLRs on land and tree tenure threaten STLI implementation. This is witnessed with the negative 
trends towards woodlot establishment and expansion with increased awareness of land and tree PLRs. Thus, we 
confirm the hypothesis that the current situation of de-facto forest PLRs hinders and threatens the observed 
forest land use restoration potential to fully evolve.  
 
The number of established woodlots decreases with the lack of household labor unless for a household with 
enough extra savings to hire external labor. This further proves the hypothesis that household labor has a 
significant effect and importance on the number of established woodlots.  Additionally, ignoring the labor 
requirements and constraints in restoration projects is one channel to failure in achieving restoration targets 
such as the AFR100 and Bonn Challenge of restoring 350 million hectares of degraded forest and agricultural 
land by 2030. 
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