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A B S T R A C T   

Spatially explicit knowledge on grassland extent and management is critical to understand and monitor the 
impact of grassland use intensity on ecosystem services and biodiversity. While regional studies allow detailed 
insights into land use and ecosystem service interactions, information on a national scale can aid biodiversity 
assessments. However, for most European countries this information is not yet widely available. We used an 
analysis-ready-data cube that contains dense time series of co-registered Sentinel-2 and Landsat 8 data, covering 
the extent of Germany. We propose an algorithm that detects mowing events in the time series based on residuals 
from an assumed undisturbed phenology, as an indicator of grassland use intensity. A self-adaptive ruleset 
enabled to account for regional variations in land surface phenology and non-stationary time series on a pixel- 
basis. We mapped mowing events for the years from 2017 to 2020 for permanent grassland areas in Germany. 
The results were validated on a pixel level in four of the main natural regions in Germany based on reported 
mowing events for a total of 92 (2018) and 78 (2019) grassland parcels. Results for 2020 were evaluated with 
combined time series of Landsat, Sentinel-2 and PlanetScope data. The mean absolute percentage error between 
detected and reported mowing events was on average 40% (2018), 36% (2019) and 35% (2020). Mowing events 
were on average detected 11 days (2018), 7 days (2019) and 6 days (2020) after the reported mowing. Per
formance measures varied between the different regions of Germany, and lower accuracies were found in areas 
that are revisited less frequently by Sentinel-2. Thus, we assessed the influence of data availability and found that 
the detection of mowing events was less influenced by data availability when at least 16 cloud-free observations 
were available in the grassland season. Still, the distribution of available observations throughout the season 
appeared to be critical. On a national scale our results revealed overall higher shares of less intensively mown 
grasslands and smaller shares of highly intensively managed grasslands. Hotspots of the latter were identified in 
the alpine foreland in Southern Germany as well as in the lowlands in the Northwest of Germany. While these 
patterns were stable throughout the years, the results revealed a tendency to lower management intensity in the 
extremely dry year 2018. Our results emphasize the ability of the approach to map the intensity of grassland 
management throughout large areas despite variations in data availability and environmental conditions.   

1. Introduction 

Grasslands are important ecosystems in the agricultural landscapes 

of temperate zones both area-wise and considering the ecosystem ser
vices provided (Zhao et al., 2020). In Europe, permanent grasslands 
account for approximately one third of all agricultural areas (Huyghe 
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et al., 2014) and provide a broad range of ecosystem services, such as 
filter or retention functions, carbon storage as well as provisioning and 
recreational services (Gibson and Newman, 2019; Zhao et al., 2020). 
Grasslands offer habitats for endangered and key species and play a 
critical role for maintaining the biodiversity in agricultural landscapes 
(White et al., 2000; Zhao et al., 2020), which is, amongst others, critical 
for biological pest control, crop pollination and productivity 
(Tscharntke et al., 2005). The economic value of grasslands is directly 
linked to the production of fodder for livestock farming, for which 
grasslands are either mown or used as pasture. Grasslands provide 
high-quality basic feed with low transportation and production costs 
when produced in the same area where livestock farming occurs. The 
productivity of grasslands is influenced by various factors, such as 
topography, soil condition, and climate. In this context, water supply is 
key, which is mediated through the soils’ storage capacity and the ample 
and timely supply of water either through rainfall or shallow ground
water, demanding to adjust grassland management decisions to local 
environmental conditions. These management decisions, in turn, 
directly and indirectly impact ecosystem services provided by grasslands 
as well as their biodiversity (Allan et al., 2014; Le Clec’h et al., 2019; 
Wrage et al., 2011). A sufficient share of grasslands in the agricultural 
landscape as well as adapted management are therefore needed to 
maintain critical ecosystem functions. 

High losses of permanent grasslands were observed in the last de
cades of the 20th and the first decade of the 21st century in several 
European countries, including France, the Netherlands and Germany. 
This development can be attributed to land conversions to arable land, 
urban areas and afforestation as well as to the abandonment of marginal 
range- and grasslands (Huyghe et al., 2014). Incentives such as the 
Greening program within the framework of the Common Agricultural 
Policy (CAP) were put into place in 2013 to halt this trend, aiming e.g., 
to foster the maintenance of permanent grasslands (EC, 2018). Moni
toring of grassland areas is accordingly crucial to assess the success of 
such measures. Rough estimates of the extent of grasslands can be 
derived from national statistics and farmers’ reports in the European 
Geospatial Aid Application (GSAA) system, based on which farmers can 
apply for subsidies within the CAP. However, information on the 
grassland productivity, which is influenced by the grassland manage
ment intensity (GLMI), is not well documented (Huyghe et al., 2014)(; 
Smit et al., 2008). In addition to the use of such information for 
cross-compliance checks in the context of the CAP, knowledge of the 
intensity of grassland use is an important indicator for assessing the 
status and development of both faunal and floral biodiversity in agri
cultural landscapes (Klein et al., 2020). Although such data can be 
derived for individual parcels to monitor trends in grassland use in
tensity over several years (Vogt et al., 2019), such information is not 
available in a spatially explicit form on national scale. 

In the last decades remote sensing has been shown to be a beneficial 
tool for large-scale monitoring of grasslands, e.g., management-related 
degradation processes in rangelands around the world (Bastin et al., 
2014; Lewińska et al., 2020; Munyati and Makgale, 2009; Zhou et al., 
2017). However, intensively managed meadows and pastures in 
Northern and Central Europe are managed differently than expansive 
rangelands and different climatic conditions do apply. This is due to the 
high diversity in spatial and temporal patterns of grassland extent and 
management intensity, which challenges commonly employed large- 
scale monitoring approaches that were developed for monitoring 
grazed rangelands. A common approach to map GLMI with remote 
sensing data is to estimate the number and timing of mowing events per 
season, which requires data of sufficient spectral, spatial and temporal 
resolution (Ali et al., 2016; Reinermann et al., 2020). Franke et al. 
(2012), for example, used multi-temporal RapidEye data, with a spatial 
resolution of 6.5 m in a study area in southern Germany and highlighted 
the use of high-resolution, multi-spectral and multi-temporal satellite 
data for monitoring GLMI. Their findings were confirmed by Gómez 
Giménez et al. (2017) who also used multi-temporal RapidEye data for 

assessing GLMI in the Canton of Zurich in Switzerland. However, as 
high-resolution satellite data are commonly commercial, they are not 
freely available, which can result in high costs for regular area-wide 
mapping approaches. Kolecka et al. (2018) therefore made use of 
openly available Sentinel-2 data and highlighted the benefits of dense 
time series for mapping mowing frequency as an indicator of GLMI in the 
Canton Argau in Switzerland. In their study, the authors highlight the 
influence of data availability for an accurate mowing detection and 
stress the importance for an optimized cloud detection. Thus, several 
studies tested the use of Synthetic Aperture Radar (SAR) data that are 
not confined by cloud contamination. Tamm et al. (2016); Voormansik 
et al. (2016) and De Vroey et al. (2021) for example, emphasized the use 
of coherence time series derived from TerraSAR-X, RADARSAT-2 or 
Sentinel-1 in their respective case studies for mapping GLMI of European 
grasslands. Taravat et al. (2019) used Sentinel-1 time series and derived 
texture metrics in a multilayer perceptron neural network to detect 
mowing on a study site in Germany. Both optical and SAR based ap
proaches assume that mowing events can be detected by sudden drops 
(optical) or increases (coherence) in dense time series of remote sensing 
data, see Voormansik et al. (2020). However, there are still uncertainties 
in the interpretation of SAR signals in the context of GLMI (De Vroey 
et al., 2021). 

While these approaches have proven that it is possible to accurately 
map GLMI, most approaches had a regional focus to showcase the 
applicability of the respective method, while very few aimed to create 
information on a national or even larger scale. General change detection 
approaches that make use of Landsat data with a spatial resolution of 30 
m × 30 m such as the Continuous Change Detection and Classification 
(CCDC; Zhu and Woodcock, 2014) or the Continuous monitoring of Land 
Disturbance (COLD; Zhu et al., 2020) algorithm, have shown to be able 
to detect major land cover changes over large scales. However, they 
were not designed for the detection of mowing events, as these are 
characterized by short-term mowing and regrowth cycles that frequently 
repeat during the course of one year in contrast to gradual or persistent 
land use changes. Stumpf et al. (2020) made use of Landsat time series 
with a spatial resolution of 30 m × 30 m to map grassland management 
for Switzerland. For Germany, Griffiths et al. (2020) derived a national 
dataset on GLMI for the year 2016 from the Harmonized-Landsat- 
Sentinel (HLS) dataset at 30 m spatial resolution (Claverie et al., 
2018). They proposed a convex hull approach, which was used to model 
an undisturbed seasonal time series profile and identified deviations 
under the curve as mowing events. Even though the approach yielded 
comprehensible results, it was constrained by the limited data avail
ability at that time and the 30 m spatial resolution, which enforced 
relying on interpolated time series that can suffer from omission of 
mowing events. 

The few available broad-scale studies, however, are good examples 
of how to make use of the advances in satellite data availability, which 
tremendously increased with more freely available remote sensing data 
becoming available in open archives (Wulder et al., 2015), and which 
catalyzed the development of approaches that make use of dense time 
series in virtual constellations (Wulder et al., 2018). The use of such time 
series has become feasible across large areas since the advent of high- 
performance computing and advances in analytical capabilities and is 
supported by analysis-ready data (ARD) cubes that can be derived from 
highly automated processing workflows (Dwyer et al., 2018; Frantz, 
2019; Gorelick et al., 2017; Lewis et al., 2017). These comprise opti
mized pre-processing, such as automated cloud and cloud-shadow 
masking (Frantz et al., 2018; Qiu et al., 2019; Skakun et al., 2019), 
spatial co-registration (Rufin et al., 2021) and the intercalibration of 
different sensor systems (Scheffler et al., 2020), which together enable 
to develop workflows and to integrate algorithms that allow large-scale 
analyses with a fine temporal and spatial resolution. In comparison to 
optical data, ARD data cubes that contain SAR data and cover large 
regions are still rare. 

Accordingly, the overarching objective of this study was to develop a 
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reproducible mowing detection algorithm that uses dense optical Earth 
observation time series and allows mapping, describing, and under
standing large-scale patterns of GLMI at high spatial resolution. Here, we 
explicitly build on the results of Griffiths et al. (2020) who were the first 
to produce a wall-to-wall map of GLMI at national scale. In addition, the 
algorithm shall prove its capability to produce robust results for years 
with different data availability and meteorological conditions. The study 
focuses on Germany where extreme droughts in the summertime in two 
out of the four years under investigation allow assessing the applica
bility of algorithms under highly diverse meteorological conditions. We 
employed combined Sentinel-2 and Landsat 8 time series covering the 
period of four years from 2017 to 2020 to investigate three specific 
research questions:  

1. How accurately can the number and date of mowing events be 
detected for multiple years across Germany? 

2. To what extent does the availability of clear-sky observations influ
ence the quality of the mowing detection results?  

3. How do droughts affect grassland management patterns? 

2. Data and methods 

2.1. Study area 

With an area of about 357,000 km2, the Federal Republic of Germany 
is located in Central Europe between the maritime West and the conti
nental East, as well as between the warmer South and the cooler North. 
Germany is divided into five natural regions from North to South 
(Fig. 1): the (1) North and Baltic Sea coast and the North German Plain, 
(2) the Central Uplands, (3) the South German Scarplands and the Upper 
Rhine Plain, (4) the Alpine Foreland, and (5) the German Alps (Beier
kuhnlein, 2017). Within these natural regions typical agricultural parcel 
sizes follow a North - South gradient, with higher shares of large parcels 
in the North and smaller parcel in the South (Destatis, 2019a). Germany 
has a humid temperate climate with warm summers and corresponds to 
a Cfb climate in the Köppen and Geiger classification (Beierkuhnlein, 
2017). The long-term mean (1961–1990) temperature for Germany is 
8.2 ◦C with an annual rainfall of approx. 788.9 mm (Imbery et al., 2021). 
The four years under consideration were characterized by varying 
meteorological conditions. 2018 to 2020 were the three warmest years 
on record since 1881 (DWD, 2018, 2019, 2020). The three years were 
not only characterized by generally warm temperatures but also by 
heatwaves and long periods of drought over the summer months, and a 
precipitation deficit that could not be compensated for over the 
following winter months (DWD, 2018, 2019, 2020). 2018 became 
known as the driest year since 1881, as there was too little precipitation 
from February to November (only 75%), while the years 2019 and 2020 
almost reached average precipitation conditions (93% and 90%; DWD, 
2018, 2019, 2020). In contrast to the following years, 2017 had a surplus 
in precipitation and cooler summer temperatures, especially in the north 
of Germany (DWD, 2017). 

2.2. Grassland areas in Germany 

Approximately 50% of the land area of Germany is used for agri
cultural production with 28% being permanent grasslands (Destatis, 
2019b). We extracted the grassland areas from remote sensing-based 
crop type classifications for Germany for the years 2017–2019 with a 
spatial resolution of 10 m × 10 m, which was derived from time series of 
Landsat, Sentinel-1 and 2 and environmental data (maps online avail
able; Blickensdörfer et al., 2021). Each of these annual classifications 
contain a grassland class with user’s accuracies of above 90%. However, 
they include all types of grassland areas and do not differentiate between 
temporary and permanent grasslands in the individual years. For a fair 
comparison between the four years of our investigation period, we 
derived a consistent grassland mask that considers only pixels that have 

been classified as grasslands in 2017, 2018 and 2019, which total to an 
area of around 40,000 km2. Given its size and environmental gradients, 
as well the areal extent and variety of grasslands, the case of Germany 
allows for developing a transferable GLMI mapping approach for 
temperate grasslands. 

2.3. Satellite and reference data 

We used a harmonized time series derived from Sentinel-2 A/B Level 
1C (Drusch et al., 2012) and Landsat 8 collection 2 Tier 1 L1TP data 
(USGS, 2021) including all available data from 2017 to 2020, with a 
cloud cover of up to 75%. All data were ingested in a data cube structure 
generated within the FORCE environment (v. 3.6; Frantz, 2019). All data 
were corrected for geometric and radiometric effects using the FORCE 
Level 2 Processing System. Radiometric correction included corrections 
for atmospheric, topographic, adjacency and BRDF effects (Buchner 
et al., 2020; Frantz et al., 2016a; Roy et al., 2017). Clouds were masked 
based on the Fmask algorithm (Frantz et al., 2018; Zhu et al., 2015; Zhu 

Fig. 1. Overview of the five natural regions of Germany and the distribution of 
the reference sites a) for which management information were available: Old
enburg (OLD), Ramin (RAM), Schorfheide (SOH), Ribbeck (RIB), Dummerstorf 
(DUM), Iden (IDE), Hohennauen (HOH), Riswick (RIS), Hainich (HAI), 
Schwäbische Alb (ALB), Aulendorf (AUL) and b) for which management in
formation were derived from satellite time series: Lower Saxony I and II (NI_I; 
NI_II), Saxony (SN), Hesse (HE), Baden-Württemberg I and II (BW_I; BW_II) and 
Bavaria I and II (BY_I; BY_II). 
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Table 1 
Number of reported/identified cuts in the reference data per year.  

No. cuts 2018 2019 2020 

0 – – 4 
1 18 25 16 
2 29 18 56 
3 20 12 71 
4 31 30 28 
5 10 21 4 
6 – – 1  

Fig. 2. Number of clear sky observations (CSO) in Germany from March to November for the years 2017–2020. Federal state boundaries with abbreviations of their 
names: BW: Baden-Württemberg, BY: Bavaria, BE: Berlin, BB: Brandenburg, HB: Bremen, HH: Hamburg, HE: Hesse, LS: Lower Saxony, MV: Mecklenburg- 
Vorpommern, NW: North Rhine-Westphalia, RP: Rhineland-Palatinate, SL: Saarland, SN: Saxony, ST: Saxony-Anhalt, SH: Schleswig-Holstein, TH: Thuringia. 
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and Woodcock, 2012). The Sentinel-2 scenes were co-registered to the 
Landsat 8 data to ensure the best possible geometric accuracy across 
different sensor systems for time series analyses (Rufin et al., 2021; Yan 
et al., 2018), reprojected to Lambert Equal Area projection (EPSG:3035) 
and stored as 30 km × 30 km tiles in a data cube structure (Frantz, 
2019). Landsat 8 spatial resolution was adjusted to the 10 m Sentinel-2 
spatial resolution by nearest neighbor resampling. For each pixel, the 
enhanced vegetation index (EVI) was calculated, as it can be related to 
vegetation biomass, reduces atmospheric influences and decouples the 
canopy signal from the background (Huete et al., 2002). In cases when 
Landsat 8 and Sentinel-2 acquired data at the same date, the mean value 
of both observations was used for creating the time series. Values above 
1 and below 0 were set to “No Data”. This resulted in radiometrically and 
geometrically consistent cloud-free Sentinel-2 and Landsat 8 EVI time 
series that cover the entire extent of Germany. 

Reference data on grassland management was available for 2018 and 
2019 for the five main natural regions in Germany and include inten
sively and extensively managed grassland areas (Fig. 1). We thus 
covered the environmental gradient as well as large parts of the expected 
gradient in management intensity in Germany. The data were provided 
by partners from the Raminer Agrar GmbH & Co. KG, the Havellandhof 
Ribbeck GbR and the Agrargenossenschaft Hohennauen eG. Additional 
reference data were provided by partners from the agricultural research 
institutions of the chamber of agriculture Lower Saxony (Oldenburg) 
and North Rhine-Westphalia (Riswick), the state institute for agriculture 
and horticulture Saxony-Anhalt (Iden) and the center for agriculture 
Baden-Wuerttemberg (Aulendorf). Further reference data were avail
able for the three biodiversity exploratories located in the regions 
Schorfheide, Hainich and Schwäbische Alb (Fischer et al., 2010). For 
2018 a total of 92 reference parcels (~ 672 ha) and for 2019 a total of 81 
reference parcels (~ 435 ha) were available, for which the number and 
dates of mowing events was reported (Table 1). We applied an inward 
buffer of 10 m, to assure that mixed pixels were excluded as well as to 
account for uncertainties in geo-registration between satellite and vector 
data (see S 1 for parcel details). 

To evaluate the results for the year 2020 grassland parcels were 
manually digitized based on time series of PlanetScope data that cover 
the visible and near infrared spectral regions in four spectral bands with 
a spatial resolution of approximately 3 m (Planet Team, 2017). To 
ensure that the reference data are representative for a thorough vali
dation, parcels were identified across Germany in selected regions that i) 
have high shares of grasslands (according to the grassland masked used) 
ii) cover a broad range of grassland management intensity (according to 
the mowing detection results) and iii) vary in the number of clear-sky- 

observations (i.e., inside and outside orbit overlaps; Fig. 2). In total 
we used 257 PlanetScope images, covering the period March to 
November 2020 in eight selected regions (Fig. 1; see S2 for a list of 
acquisition dates per region). As some of these images did not cover the 
entire region or were influenced by cloud remnants, the high-resolution 
time series had partly long gaps and were thus complemented by 
Sentinel–2 and Landsat 8 data. From these dense time series mowing 
events were manually identified for a total of 180 grassland parcels 
using the EO Time Series Viewer (Jakimow et al., 2020). 

2.4. Mowing detection 

The above described EVI time series are non-stationary over time, as 
cloud cover and overlapping sensor orbits lead to substantial variation in 
data densities (Fig. 2). We thus developed a mowing detection algorithm 
that uses dynamic thresholds to account for these variations as well as 
for gradients in environmental conditions and varying management 
intensities. We identified mowing events as deviations from an assumed 
undisturbed phenology. The approach is pixel-based and includes the 
following: first, the season in which grassland growth and hence rele
vant mowing events can be expected (here: 1st of March to 15th of 
November) is defined. The pre-processed EVI time series is used to 
identify up to five local maxima within the user defined grassland sea
son. The mid-season peak is identified as the absolute maximum EVI 
value in a period in which maximum grassland growth is expected (here 
between: 30th of April and 28th of August), subsequently further peaks 
can be identified before and after this peak with a temporal distance of at 
least 15 days if data availability allows. These peaks are used as vertices 
and EVI values are linearly interpolated between the vertices for each 
date when an observation was available in the time series, hence 
forming an upper envelope that approximates an ideal, non-disturbed 
growing season (Fig. 3). 

The residual between the interpolated and the original EVI values is 
calculated, as well as the difference between the values of two consec
utive observations ΔY. Then, five rules are applied that qualify the 
detected differences as potential mowing events:  

1. The residual must exceed a threshold, which is defined for each pixel 
as the mean value of all absolute residuals within the grassland 
season. To avoid misclassifications for pixels with values slightly 
below or above the threshold, we accounted for variations around 
this threshold (compare Frantz et al., 2016b). For that, we drew 100 
random values from a Gaussian normal distribution around the 
derived threshold with a standard deviation of 0.02 and tested them 

Fig. 3. Example of a grassland phenology as captured by an integrated Landsat 8 and Sentinel-2 EVI time series, with three detected mowing events. The green dots 
mark the defined start and end of season, the mid-season peak, and the additional local EVI maxima. The green line depicts the linear interpolation. The blue vertical 
lines mark mowing events as identified by the algorithm. If rules one to three are positively evaluated, rule four checks whether grassland regrowth can be identified 
between two mowing events. Mowing events that are followed by an unnaturally quick regrowth are excluded by rule five. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

M. Schwieder et al.                                                                                                                                                                                                                             



Remote Sensing of Environment 269 (2022) 112795

6

against the calculated difference. The potential mowing event qual
ifies for the next rule, if at least 40 of those tests were positive.  

2. ΔY between two consecutive observations must be larger than an 
adaptive threshold. This rule depicts the main characteristic of a 
mowing event – a sudden drop in EVI between two observations. The 
threshold is defined per pixel as the standard deviation of the original 
EVI time series for the defined grassland season, to account for the 
regional variations in land surface phenology.  

3. Potential mowing events must be more than 15 days apart from each 
other, as this depicts real-world regrowth potential and management 
opportunities.  

4. Between two potential mowing events, there must at least be one 
observation with a value higher than the preceding one (i.e., a pos
itive ΔY), as there must be regrowth to justify another mowing event.  

5. Mowing events followed by unnaturally quick regrowth, i.e., ΔY 
larger than a user defined fixed threshold (here: 0.15) within 5 days, 
are excluded. This pattern is likely caused by an undetected cloud or 
cloud shadow. 

The results are written into a raster, which includes the number of 
detected mowing events, along with the date for each event (Fig. 4). 
Additionally, the output contains pixel-wise information on the number 
of clear sky observations for the defined grassland season. 

2.5. Accuracy assessment and influence of data availability 

We validated the results for the years 2018, 2019 and 2020 with the 
available reference parcels. For each pixel within a parcel of the refer
ence data, the predicted number and dates of mowing events was 
compared to the ones reported by the data providers. From this com
parison we calculated the mean absolute percentage error (MAPE) of the 
number of mowing events. The MAPE prevents values from cancelling 
each other out and relates the error to the number of reported events in 
the reference data. If zero mowing events were reported for one parcel, 
the calculation of the MAPE was corrupted by dividing by zero. In case 
we predicted zero mowing events and had zero reference mowing events 
we set the MAPE to 0. In case we falsely predicted mowing, we set the 
MAPE to 100%. It has to be noted that the MAPE can, due to its defi
nition, exceed 100% in cases where we predict more mowing events 
than reported in the reference. Subsequently the absolute difference 
between the dates of the detected mowing events and the nearest re
ported mowing date (offset) was calculated and averaged per pixel. 

The MAPE is based on the number of mowing events only and does 
not account for the temporal domain. Therefore, we additionally 
calculated precision, recall and f-score of the mowing detection based on 
true/false positives and false negatives, as these measures qualify to 
assess the accuracy of imbalanced classification results (De Vroey et al., 
2021; Sokolova et al., 2006). Precision can also be referred to as user’s 
accuracy and recall as producer’s accuracy, while the f-score is a com
bination of both. Using the f-score avoids an over-optimistic validation, 
as it does not consider true negatives, which are frequent in rare event 
detection approaches. Therefore, we considered the algorithm as binary 
classification of a time series, classifying each observation either as 
mowing event or no mowing event. A predicted mowing event qualified 
as true positive if it was predicted within a time window of three days 
before and no later than 12 days after a reported reference mowing 
event. This time window approach enables to account for discrepancies 
e.g., due to the temporal resolution of the satellite data or reported 
mowing events that took longer than one day on one parcel. Using this 
procedure, we obtained a confusion matrix for each pixel within a 
reference area, which we finally summed either per region or on a na
tional level to derive accuracy measures for comparisons on various 
scales. 

We analyzed the influence of data availability on the results with two 
approaches. First, we performed a linear regression with the number of 
available clear-sky observations (CSO) as predictor and the f-score as 

response variable. As this analysis was restricted to the years in which 
reference data were available, we randomly sampled 500,000 pixels 
within the final map to analyze the relationship of CSO and the predicted 
number of mowing events and to assess if more observations in general 
lead to a higher detection rate of mowing events. Therefore, we used a 
generalized linear model (GLM) with CSO as predictor and the number 
of mowing events as response variable. More specifically, a B-spline with 
three knots was used to enable the model to depict changing relation
ships between the variables. For the modelling, the CSO variable was log 
transformed and rescaled. 

The amount of detected mowing events was compared between the 
years on the level of the 13 federal states of Germany (the city states 
Berlin, Bremen and Hamburg were excluded from the comparison). 

3. Results 

3.1. Detection of mowing events 

Annual maps of GLMI were derived for the years 2017–2020 
covering the entire extent of Germany (Fig. 9). The comparison with the 
reference data showed that we detected fewer mowing events than re
ported in 2018 and 2019 (Table 2 and S 3). The MAPE in the number of 
detected mowing events was 40% (2018), 36% (2019) and 35% (2020; 
Table 3). The detected mowing events had an average absolute offset of 
11.25 (2018) and 7.47 (2019) days regarding the dates of the detected 
mowing events. The f-scores differed amongst the regions, with highest 
values in Riswick (RIS), Randow Bruch (RAM) in 2018 and Schwäbische 
Alb (ALB;) and Aulendorf (AUL) in 2019. Lowest values in both years 
were in the lower Havel alluvial plain (HOH; Table 2). 

The f-score is in 2018 despite Hohennauen in all study regions above 
0.5 and up to 0.75 in Riswick. In 2019 f-scores were in Schorfheide and 
Hohennauen below 0.5 and values range up to 0.85 in Schwäbische Alb. 
The aggregated assessment shows comparable f-scores for the natural 
regions Zone 2 to 4, while the median f-score is lower in Zone 1 (Fig. 5). 
This pattern is influenced by the study site Hohennauen (Table 2 and 
Fig. 1) which is located in a region without orbit overlap (Fig. 2) and was 
in both years evaluated with the lowest f-score. The f-score in 2020 was 
derived from image-based reference data and identified mowing dates 
are thus dependent on the availability of clear-sky-observations and 
consequently do not exactly align with the reported reference data. 
Nevertheless, the overall f-score of 0.67 is comparable to the f-score of 
2019 (0.64). Also, the overall MAPE is in the same range as in the pre
vious years (35–40%). The study area in Saxony performed the worst in 
terms of MAPE with a value of 85%, but still has a high f-score of 0.76. 
For the f-scores, no region stands out as they are all close to the overall 
average of 0.67 (range between 0.61 and 0.78) and no clear distinction 
can be identified between regions with or without orbit overlaps in 
2020. 

In contrast to the f-score, the MAPE evaluates all detected mowing 
events and neglects temporal differences. Despite Hohennauen all MAPE 
values are below 0.5 in 2018. In 2019 Hohennauen and Schorfheide are 
evaluated with a MAPE of above 0.5. The average absolute offset is in 
2018 below 15 days for all study sites. In 2019 only Hohennauen has an 
offset of more than 15 days. 

3.2. Impact of data availability 

The different accuracy measures showed that a higher data avail
ability was not necessarily associated with higher f-score values (see 
Table 2). Hainich and Schwäbische Alb for instance achieved a higher f- 
score in 2019 despite a lower data availability. The scatter plots between 
CSO and f-score per parcel show a rather dispersed distribution, even 
though the fitted linear regression indicates a positive relation (Fig. 6). 
Higher f-score values can be observed in both years with an increasing 
amount of CSO. In 2020 there is no visible relationship between CSO and 
the f-score (S 4). 
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The analysis based on 500,000 random samples revealed that the 
number of CSO was substantially lower in 2017 as compared to the 
following years, as 2017 was earlier in the Sentinel-2 constellation 
lifetime and cloudiness was substantially higher that year (Fig. 7). While 
in 2017 less observations were related to fewer mowing events, this 
cannot be observed for the later years. 

This assessment was quantitatively confirmed by the GLM between 
the number of CSO and detected mowing events, which showed a sig
nificant relation (p < 5%) for all years. Even though the effect size of 
CSO on the number of mowing events was small for all years except for 
2017, there is a threshold where the effect of the number of CSO changes 
(Fig. 8). This threshold occurred at about 16 observations with small 
variations between the four years. Thus 16 observations were the 
threshold, where more observations not necessarily resulted in more 
detected mowing events. Below that point, there is a strong positive 
relationship in all years. The distribution density plot of CSO shows that 
the years 2018 and 2020 had a very similar, bimodal distribution. The 

years 2019 and 2017 were unimodal distributed with peaks around CSO 
of 16 (2017) and 28 (2019). This distribution indicates that the results 
for 2017 are likely to be more influenced by data availability than the 
other years. 

3.3. Spatial and temporal patterns of mowing events 

The broad-scale patterns revealed areas with consistently different 
levels of GLMI in all four years (Fig. 9). The resulting maps show rather 
homogeneous parcels and depict the structural differences in the agri
cultural landscape across Germany with comparably large parcel sizes in 
the Northeast and East (Fig. 9; C) and smaller parcel sizes in the 
Northwest (Fig. 9; A and B), West (Fig. 9; D) and South (Fig. 9; E and F). 
Highly intensive grassland use can be observed in the alpine forelands in 
southern Germany and in the lowlands of northwest Germany. This 
pattern of management intensity is consistent throughout all years. 

We detected one to three mowing events on the vast majority of 

Fig. 4. Structure of the mowing detection algorithm. From top to bottom: (1) Input data, (2) data processing, (3) rule-based identification, and (4) output.  
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Table 2 
Validation results for the mowing event detection for the years 2018 and 2019.  

Region (no. of reference parcels and area in ha, for 
2018/2019 respectively) 

F- 
score 

MAPE 
[%] 

Offset 
[days] 

Data availability 
(median) 

F- 
score 

MAPE 
[%] 

Offset 
[days] 

Data availability 
(median)  

2018 2019 

Oldenburg (OLD) 
(6/5; 39/36) 

0.61 40 8.90 38 0.77 34 4.18 26 

Ramin (RAM) 
(7/0; 101/0) 

0.70 9 8.40 48 – – – – 

Schorfheide (SOH) 
(14/12; 33/34) 

0.62 24 14.16 49.5 0.49 60 9.66 36 

Ribbeck (RIB) 
(6/0; 139/0) 

0.58 40 13.92 44 – – – – 

Iden (IDE) 
(1/0; 13/− ) 

0.68 96 1.04 42 – – – – 

Hohennauen (HOH) 
(10/10; 128/128) 

0.21 57 14.08 28.5 0.43 52 19.51 18.5 

Riswick (RIS) 
(3/3; 43/43) 

0.75 49 4.93 38 0.58 43 6.76 30 

Hainich (HAI) 
(10/11; 39/45) 

0.51 23 9.63 35.5 0.66 16 3.9 32 

Schwäbische Alb (ALB)(14/12; 77/72) 0.56 30 11.72 32 0.85 12 5.08 29 
Aulendorf (AUL) 

(16/16; 38/38) 
0.55 36 9.91 35 0.82 30 4.84 30 

Dummerstorf (DUM) 
(0/2; 0/15) 

– – – – 0.61 43 6.84 31.5 

Overall 0.58 40 11.25 – 0.64 36 7.47 –  

Table 3 
Validation results for the mowing event detection for the year 2020 based on mowing events identified from combined time series of PlanetScope, Sentinel-2 and 
Landsat 8 time series. Ovl or non-ovl indicates if the study site is located in an orbit overlap or not.  

Region (no. of reference parcels and area in ha) F-score MAPE [%] Offset [days] Data availability (median) 

BW_I; non-ovl (31; 55) 0.61 33 9.54 19 
BW_II; ovl (21; 18) 0.62 31 7.72 45 
BY_I; ovl (32; 32) 0.71 28 4.67 48 
BY_II; non-ovl (20; 31) 0.64 35 5.04 23 
HE; non-ovl (30; 55) 0.69 35 6.39 23 
NI_I; ovl (20; 26) 0.63 47 4.77 43 
NI_II; ovl (20; 26) 0.78 29 3.86 32 
SN; ovl (6; 20) 0.76 85 8.61 40 
Overall 0.67 35 6.2 –  

Fig. 5. Combined boxplots of all f-scores per natural region in Germany for years 2018, 2019 and 2020.  
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grassland areas for all four years. In 2017, 2019, and 2020, we detected 
two mowing events on between a quarter to a third of the overall 
grassland area of Germany, followed by one mowing event detection. 
The extreme drought year of 2018 was the only year for which most 
grasslands were mown only once. It is also 2018 in which grasslands stay 
unmown twice as often as in the other years (Fig. 10). 

The distribution of detected mowing events differed between the 
individual federal states (Fig. 9 Fig. 11), with higher shares of inten
sively mown grasslands in Southern Germany. While the general dis
tribution of detected mowing events was comparable between the years 
2017, 2019, and 2020, we detected differences between 2018 and the 
other years in seven out of the analyzed 13 federal states (S 5). A shift to 
less intensively used grasslands in 2018 was observed, indicated by 
higher shares of zero and one mowing events. This trend is less pro
nounced in the southern states of Bavaria and Baden-Wuerttemberg, in 
comparison to northern states i.e., Brandenburg, Schleswig-Holstein and 
Lower Saxony, where the share of unmown grasslands more than 
doubled in 2018 in comparison to 2019 (Fig. 11). In Baden- 
Wuerttemberg, Brandenburg, and Schleswig-Holstein the share of 
grassland areas with one detected mowing event increased by around 
10% in 2018. 

3.4. Dates of mowing events 

The timing of the detected mowing events differed between the in
dividual federal states, and it was observable in all years that the median 

dates of the detected events do not overlap (Fig. 12 and S 6). In com
parison to the other years, the variations around the median date were 
highest in 2017, which was especially pronounced in the timing of the 
first and second mowing event. The first mowing event in 2018 was 
detected earlier than in 2019 in all federal states but not necessarily 
earlier than in 2020. Largest differences in median dates between 2018 
and 2019 are in Saxony (19 days), Baden-Wuerttemberg (17 days) and 
Bavaria (15 days). Lowest interquartile ranges were also detected in 
2018 in Saxony-Anhalt and Lower Saxony. The results revealed that the 
timing of the second and third detected mowing event varied stronger 
around the median, with the median itself also not occurring at the same 
time of the year across the federal states. Interestingly, in most of the 
federal states the results showed that the fourth and, in some cases, the 
fifth mowing event was detected earlier from 2018 onwards. 

4. Discussion 

Spatially explicit knowledge on grassland extent and management is 
critical to understand and assess the impacts of land-use intensity on 
ecosystem services and biodiversity. Even though remote sensing-based 
approaches have been shown valuable to gather such information, large- 
scale mapping approaches are still scarce (Reinermann et al., 2020). To 
bridge this gap, we made use of an ARD cube that contains co-registered 
Sentinel-2 and Landsat 8 collection 2 data, in combination with an 
advanced mowing detection algorithm that uses adaptive per-pixel 
thresholds. In contrast to approaches with fixed thresholds (e.g., 
Kolecka et al., 2018; Griffiths et al., 2020), the proposed use of adaptive 
thresholds facilitates to account for variations in land surface phenology 
and data availability. This enabled us to map mowing events for the 
years 2017–2020 for the considered grassland areas in Germany, to 
assess the results with a representative reference data set and to inves
tigate the influence of data availability on the amount of detected 
mowing events. 

4.1. Mowing detection accuracy 

Validation of our results with reference data available in two years 
and a third year of manually digitized reference data confirmed the 
applicability of the proposed approach. On average, the f-score was at 
about 0.6 for all years while only one test site exhibited values below 0.5 
in 2018 and 2019 (Hohennauen). These values strongly influence the 
pixel-based overall measures, as Hohennauen was the second largest 
reference site covering a total of 128 ha in a region without orbit-overlap 
and thus fewer clear-sky observations with an equal distribution 
throughout the season. Here, in 2018 and 2019, the precision is higher 
than the recall value, suggesting that the algorithm detects less false 
positives than false negatives (S 3). The trend of precision being higher 
than recall can also be observed in the global values (for 2018: 0.68 vs 

Fig. 6. Scatterplots of average CSO per parcel on the x-axis and average f-score per parcel on the y-axis for the years 2018 (A) and 2019 (B); Note the different x- 
axis ranges. 

Fig. 7. Distribution of the number of clear-sky observations per number of 
detected mowing events for each year based on 500.000 random samples. 
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0.50), suggesting that the results are conservative as the approach tends 
to detect fewer rather than too many mowing events, which should be 
considered in subsequent analyses. In contrast to the f-score the MAPE 
refers to the absolute number of mowing events predicted vs reference 
and does not consider the correct timing of the predicted mowing. The 
overall MAPE values are consistently low for all years. However, in the 
Saxony study area we obtained a high f-score despite high MAPE. This is 
likely because the MAPE is more sensitive to overestimation than un
derestimation. In these cases, the MAPE can exceed 100%, which is what 
happened in Saxony in two parcels and thus biased the overall value. 

Next to the availability and distribution of CSO, mowing events may 
remain undetected when only a small amount of biomass was extracted. 
This might, for example, be the case when a clean-cut is applied to 
meadows or pastures, which is rather intended for maintenance of the 
grasslands than for biomass extraction. This results in subtle signal 
changes in the time series for which the adaptive thresholds might not be 
sensitive enough. These cases were also hard to identify in the high- 
resolution time series. However, more sensitive adjustment of the 
thresholds e.g., by enlarging the Gaussian distribution or the number of 
positive evaluations, could lead to overestimations in other regions, a 
dilemma also reported by De Vroey et al. (2021), who estimated mowing 
events from coherence time series. Identifying a threshold of extracted 
biomass that needs to be crossed could help to overcome this limitation, 
but this would require sufficient reference data on the amount of 
extracted biomass. Although not all mowing events reported in the 
reference data were detected, the results show that the algorithm can 
cope with the non-stationary data availability and enabled for the first 
time the monitoring of grassland management over large areas with 
strong environmental gradients in several years. This is confirmed by the 
f-score, which is quite stable across natural areas and years, whereas 
Zone 1 in the North of Germany shows the lowest median f-score values 
(Fig. 5). This might partly be caused by Hohennauen (Zone 1), which is 
not in an overlap region, suggesting that systematic differences in data 

availability have a bigger impact on the f-score than the environmental 
gradient within Germany. 

4.2. Influence of data availability 

For 2018 and 2019 the relationship of CSO and the f-score per parcel 
suggests that increasing CSO will incrementally increase mowing event 
detection accuracy. A higher number of CSO increases the probability to 
include data from critical points in time, i.e., before and after a mowing 
event. In 2020 no relationship between CSO and f-score can be observed, 
which might be due to the difference in how the reference data were 
generated. In 2020 the reference data were manually generated and 
partly relied on the same data as the mowing detection algorithm. In this 
case the reference data are not fully independent and resulting re
lationships may differ, as we cannot compare our results to true mowing 
events and dates. Our results thus suggest that the distribution of CSO is 
more important than the sheer number of CSO, indicated by high f- 
scores related to an average number of CSO. However, it must be kept in 
mind that the f-score includes the temporal domain, as detected events 
are only counted as true positives, when they are within a temporal 
window of 3 days before or 12 days after the reported mowing event. 
Detected mowing events outside this temporal window are not consid
ered, which can subsequently lead to low f-score values. 

A positive relationship between CSO and the numbers of predicted 
mowing events was only found up to a certain number of CSO (Fig. 8). 
This is especially pronounced in the 2017 results, when cloud cover was 
overall high, and Sentinel-2 B was only available since the second half of 
the year (Barsi et al., 2018), but negligible in the following years when 
more data were available and fewer cloud contaminations hampered 
data acquisitions. We found that this relationship holds up until a 
minimum number of 16 observations is available, which still is not al
ways met with our current observing capabilities in regions that are not 
within orbit overlaps (Fig. 2). These data gaps are visible in the GLMI 

Fig. 8. Plot of CSO number against the number of mowing events for the years 2017–2020. The histograms show the CSO data distribution for the four years (top) 
and the detected mowing events (right side). The graphs show the yearly fitted splines. 
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Fig. 9. Maps of the average number of mowing events in Germany on municipality level for the years 2017 (I), 2018 (II), 2019 (III), and 2020 (IV). Insets show selected regions with varying GLMI in the federal states 
with the highest shares of grassland (see Fig. 10): Lower Saxony (A), Schleswig-Holstein (B), Brandenburg (C), North Rhine-Westphalia (D), Baden-Württemberg (E), and Bavaria (F). The maps can be explored in an 
interactive webviewer: https://ows.geo.hu-berlin.de/webviewer/mowing-detection/. 
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map for the year 2017 as they led to a systematic underestimation of 
mowing events, when the general data availability was not as high as in 
the following years (compare Fig. 2). This becomes increasingly prob
lematic towards the South and may thus hamper comparable analyses in 
the context of CAP in other European countries. The launch of Landsat 9 
and the planned launches of Sentinel-2C, and –2D in 2021/24/25 
would enable to increase the density of optical time series — but only if 
all sensors remain active. This operation scheme is, however, not 
envisaged as Sentinel-2A will be taken offline once Sentinel-2C becomes 
operational. Another option could be the integration of data from other 

sensors e.g., that are mounted on low-orbit satellites with a potential 
revisit time of up to one day (Houborg and McCabe, 2016). Promising 
cubesat data fusion approaches have recently been presented (Houborg 
and McCabe, 2018) and benefits of fusing Sentinel-2 with PlanetScope 
time series have been shown e.g., for daily LAI estimations (Sadeh et al., 
2021). However, considerable calibration efforts would need to be 
taken. The Landsat-Sentinel-2 virtual constellation was planned for 
consistency (Drusch et al., 2012) and is being rigorously cross-calibrated 
(Helder et al., 2018), thus any addition to this virtual constellation shall 
meet these calibration requirements. 

Another option to overcome data gaps in cloud-prone periods of the 
year or areas with systematic data gaps could be the integration of SAR 
data into the analysis. While the usefulness of SAR data for detecting 
grassland management has already been tested in several studies with a 
regional focus (De Vroey et al., 2021; Tamm et al., 2016, Lobert et al. 
accepted), mowing detection algorithms that make use of SAR and op
tical data together are still scarce. Even though mowing events can be 
identified in SAR time series, additional factors such as topography, 
parcel size and shape influence the results and there are still signal in
teractions that need to be further explored (De Vroey et al., 2021). 
Another challenging factor in the analysis of SAR data is the speckle 
effect on grasslands. This hampers pixel-wise analyses on a spatial res
olution of 10 m × 10 m and makes object-based analyses mandatory for 
which (Wesemeyer et al., 2021) proposed a promising approach that 
enables to identify areas of homogeneous grassland management based 
on Sentinel-1 and Sentinel-2 time series. Once time series are corrected 
for these issues, they may complement the proposed approach, as shown 
for a test site in Brandenburg (Schwieder et al., 2019). 

Fig. 11. Detected mowing events for those federal states of Germany with a share of more than 2500 km2 of grasslands (number in brackets). See S 2 for the other 
federal states. 

Fig. 10. GLMI as defined by the area of grassland relating to the number of 
mowing events for the years 2017–2020. The areas shown are derived from the 
pixel count and are not corrected for potential errors. 
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4.3. Patterns of grassland-use intensity in Germany 

Spatial information in maps and in the derived statistics revealed 
similar general patterns of grassland-use intensity on a national as well 
as on the federal state level throughout all four years, indicating the 
transferability of the proposed approach in space and time. Comparing 
our results to Griffiths et al. (2020) reveals that we map an overall 
comparable pattern in terms of spatial distribution of grassland-use in
tensity and timing of mowing events as compared to 2016. However, 
between 2017 and 2020, we detect a considerably lower share of 
grassland areas without mowing activity, which was estimated to be 
above 25% in 2016 (Griffiths et al., 2020). While Griffiths et al. (2020) 
provided a first attempt to map temperate grassland use intensity on a 
national scale from dense HLS time series, their results were hampered 
by limited Sentinel-2 data availability at that time, as well as the 30 m 
spatial resolution of the time series. Thus, it was necessary to overcome 
data gaps by using best-pixel-composites and a linear interpolation to 
create equally spaced time series as input for their analyses. However, 
temporal resampling and gap filling approaches are problematic for the 
identification of subtle changes in time series and might have led to the 
overestimation of areas without mowing events in 2016. Our results 
highlight that data densities created from fully operational Sentinel-2 
and Landsat 8 image acquisition from 2017 onwards is as much a 

prerequisite as the biomass regrowth-related thresholding for frequent 
mowing event detection. The underlying algorithm is based on general 
knowledge about mowing process, which is mainly associated with a 
sudden removal of biomass. Even though machine learning approaches 
have been shown to accurately identify mowing events (e.g., Lobert 
et al., 2021), such a process-based approach enables to detect mowing 
events, to understand how certain output is produced and thus allow for 
adjustments if the algorithm is used e.g., in different management 
regimes. 

However, our study lacks a separation of meadows and pastures, 
which can be a major confounding factor for remote sensing-based 
detection of mowing events (De Vroey et al., 2021). Nevertheless, we 
assume that due to the adaptive thresholds of the proposed approach, 
the management intensity of pastures is also reflected to a certain extent. 
On the one hand pastures are commonly mown once or twice during the 
seasons to clean the turf, which should be recognized in the time series 
signal. On the other hand, pastures in Germany are often managed with 
a rotational grazing scheme, in which herds stay on small paddocks for a 
few days only, before they are moved to a neighboring paddock (Mielke 
and Wohlers, 2019). Depending on the size of the herd as well as on the 
size of the parcel, the biomass removal is comparable to a mowing event. 
Thus, grazing with a large stock density may lead to a signal very similar 
to a mowing event (De Vroey et al., 2021). Extensive grazing on the 

Fig. 12. Day of year of mowing events for all years in six federal states. The whiskers end at +/− 1.5 times the interquartile range.  
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other hand with a lower stocking density leads to a slower biomass 
removal, which would probably not be detected by our algorithm as a 
“mowing event”. Also, grazing with a lower stocking density might lead 
to a more heterogeneous signal in space, as some livestock graze the 
plants in order of their preference, which could be the reason for the salt 
and pepper effect in the GLMI maps that we sometimes observed. 
Separating grassland uses prior to analysis might help to overcome this 
limitation but is still an unsolved challenge. Combining our additional 
outputs, such as the descriptive EVI time series statistics together with 
spatially explicit reference data could enable to identify phenological 
variations that allow to separate pastures from meadows, which should 
be tested in follow-up studies. 

Our results suggest that the low precipitation in 2018 in wide areas of 
Germany influenced the management decisions to some extent and 
might have led to an overall decrease in mowing frequency. As the date 
of the first mowing event is linked to the start of the phenological season, 
years with an earlier start of season are expected to show earlier mowing 
events. Accordingly, the regionalized analyses revealed that in most 
federal states fewer mowing events were detected in 2018, as well as 
earlier dates of the first cut in comparison to 2019. While 2018, 2019 
and 2020 were in general comparably warm years, 2018 was rather cold 
during March and overall way too dry (DWD, 2018, 2019, 2020). This 
caused a delayed plant development that was, however, mitigated by 
beneficial meteorological conditions in April, leading to phenophases 
being reached earlier than on long-term average (BMEL, 2018). This 
development was also confirmed in a remote sensing-based analysis 
with spring vegetation development in 2018 being above long-term 
average, followed by strongly negative deviations from typical 
phenology in summer and autumn (Reinermann et al., 2019). Even 
though our results reveal less intensive grassland-use patterns in 2018, 
we do not claim that these are caused by the abnormal drought condi
tions only. Cofounding factors on grassland management or indirect 
impacts from the drought, such as economic decisions related to land 
management, may play an important role as well. Still, with the mete
orological conditions in the years under consideration we covered 
extreme gradients that future climate change may enforce more often on 
temperate grasslands and our results highlight the robustness of the 
proposed approach, making it transferable to other temperate regions 
with similar grassland management practices if enough clear sky ob
servations are available. 

For a fair comparison throughout the years, we used a stable grass
land mask and only included areas that were classified as grassland 
throughout the years 2017–2019. However, fodder grasses on arable 
land and permanent grasslands were not differentiated in their analyses 
and they did not consider peatlands during their mapping efforts, 
leading to approximately 7500 km2 of permanent grasslands that we 
miss according to the agricultural statistics (BLE, 2021). Nevertheless, 
the derived maps allow to observe changes in management intensity 
between different years for at least 85% of the reported grassland areas 
in Germany. 

5. Conclusions 

We present a novel mowing detection algorithm that makes use of a 
harmonized time series of all available Sentinel-2 and Landsat 8 data. By 
using adaptive thresholds, the proposed algorithm accounts for varia
tions in land surface phenology and partly for variations in data avail
ability. The workflow was developed on an optimized ARD cube 
structure and performs very well without any kind of training data on a 
vegetation index time series. This enables transferring the approach in 
space and time and allows to create spatially explicit, wall-to-wall maps 
of temperate grassland management in a frequent manner. On this basis, 
we mapped the spatial distribution of grassland-use intensity for Ger
many for four years with a spatial resolution of 10 m × 10 m. The strong 
regional gradients in environmental conditions and the extreme annual 
variations in the meteorological conditions in the considered study area 

and period, highlighted the transferability of the approach. We revealed 
the geographical distribution of grassland-use intensity throughout 
Germany and identified potential influences of extreme meteorological 
conditions on management decisions. In our study, meadow and pasture 
management intensity was not assessed independently. Since the man
agement intensities of these two uses are accompanied by different ef
fects, future studies should continue to aim at evaluating both grassland 
types separately, for which additional reference data are crucial. We 
showed that currently available optical time series are an important 
prerequisite for a reliable assessment of the intensity of grassland use. 
Future satellite missions should thus aim to maintain or even improve 
data continuity to enable long-term monitoring of land use and man
agement in agricultural areas with high precision and frequency. This is 
critical, as long-term monitoring supports framework conventions and 
strategies at national, European, and global level that aim at the sus
tainable management of resources for the effective and long-term 
containment of climate change impacts. However, in regions that are 
often covered by clouds, the use of optical data may always be 
hampered. Thus, future mapping and monitoring attempts should 
further investigate the potential to integrate radar data in the analysis. 
The algorithm used is available as a user-defined function in the FORCE 
processing environment (https://github.com/davidfrantz/force-udf/ 
tree/main/python/ts/mowingDetection) and all maps are online avail
able under: https://doi.org/10.5281/zenodo.5571613. 
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