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1  |  INTRODUC TION

One of the major challenges in microbial ecology is to gain a pre-
dictive understanding of microbial diversity through elucidating the 
principles, patterns, and interactions that lead to the assembly of 
highly diverse microbial communities as found for example in soil 

(Green et al., 2008). To achieve this, it is essential to consider tempo-
ral and spatial variation in microhabitat conditions. In soil microbial 
ecology, the latter, however, is commonly ignored (Lombard et al., 
2011; Vos et al., 2013). Instead, large composite samples are favored 
to obtain an overview of microbial diversity at the scale of a plot or 
a field. This neglects the fine-scale heterogeneity of soil structure, 
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Abstract
Sequencing	PCR-amplified	gene	fragments	from	metagenomic	DNA	is	a	widely	ap-
plied method for studying the diversity and dynamics of soil microbial communities. 
Typically,	DNA	is	extracted	from	0.25	to	1	g	of	soil.	These	amounts,	however,	neglect	
the heterogeneity of soil present at the scale of soil aggregates and thus ignore a 
crucial scale for understanding the structure and functionality of soil microbial com-
munities. Here, we show with a nitrogen-depleted agricultural soil the impact of re-
ducing	 the	 amount	of	 soil	 used	 for	DNA	extraction	 from	250	mg	 to	 approx.	1	mg	
to access spatial information on the prokaryotic community structure, as indicated 
by	16S	rRNA	gene	amplicon	analyses.	Furthermore,	we	demonstrate	that	individual	
aggregates from the same soil differ in their prokaryotic community compositions. 
The	analysis	of	16S	rRNA	gene	amplicon	sequences	from	individual	soil	aggregates	
allowed us, in contrast to 250 mg soil samples, to construct a co-occurrence network 
that provides insight into the structure of microbial associations in the studied soil. 
Two dense clusters were apparent in the network, one dominated by Thaumarchaeota, 
known	to	be	capable	of	ammonium	oxidation	at	low	N	concentrations,	and	the	other	
by Acidobacteria subgroup 6, representing an oligotrophic lifestyle to obtain energy 
from	SOC.	Overall	 this	study	demonstrates	that	DNA	obtained	from	individual	soil	
aggregates provides new insights into how microbial communities are assembled.
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and thus loses much information on patterns of community assem-
bly (Thakur et al., 2020).

Soil structure develops as primary particles of different sizes and 
mineral composition, that is, clay, silt, and sand interact with each 
other, and with organic material to build microaggregates and mac-
roaggregates, that are below or above 250 µm in diameter respec-
tively (Six et al., 2000). Most bacterial cells occur inside aggregates 
rather	 than	on	their	surfaces	 (Ranjard,	Poly,	et	al.,	2000),	and	bio-
geochemical cycles, which are key ecosystem services driven by an 
interacting microbial community (Smith et al., 2015), are considered 
to	mainly	occur	within	aggregates	(Wilpiszeski	et	al.,	2019).	Soil	ag-
gregates have been regarded as “massively concurrent evolutionary 
incubators”	(Rillig	et	al.,	2017)	or	as	“microbial	villages”	(Wilpiszeski	
et	al.,	2019)	that	represent	small	communities	separated	by	distance	
and physical barriers and connected only periodically, for example, 
during wetting events.

DNA-based	methods	to	assess	microbial	diversity	typically	start	
with extracting 250 mg to 1 g of soil material (Young et al., 2014). 
This strategy has been useful to investigate the overall microbial 
diversity	of	 soils	 (Fierer	&	Jackson,	2006;	Roesch	et	al.,	2007),	 its	
variation across geographical regions (Griffiths et al., 2011; Karimi 
et al., 2018), or its response to land-use change at a continental scale 
(Szoboszlay	et	al.,	2017).	However,	to	understand	the	processes	and	
interactions occurring within soil microbial communities, it would 
be rewarding to increase the spatial resolution of the community 
analysis to individual aggregates and investigate microbial diversity 
in	 these	 spatial	 entities.	 Approaching	 the	 “calling	 distance”	 of	mi-
crobial	interactions	(Nunan,	2017)	would	increase	the	likelihood	of	
detecting interacting microbial partners. Correlation networks have 
increasingly been applied to reveal relationships between microbial 
community	members	as	detected	by	PCR	amplicon	sequence	analy-
ses (Banerjee et al., 2016; Barberan et al., 2012; Karimi et al., 2020; 
Li	et	al.,	2017).	However,	to	interpret	a	positive	correlation	as	a	mu-
tualistic and a negative correlation as an antagonistic relationship is 
possible only for community members sharing the same microhab-
itat (Weiss et al., 2016). Without distinction of microhabitats, it is 
hard to assign the presence of taxa to niche exclusion (Faust & Raes, 
2012).	Analyzing	soil	DNA	extracted	from	250	mg	to	1	g	represents	
mixed	DNA	from	many	microhabitats.	In	contrast,	working	with	indi-
vidual soil aggregates should strongly enhance the ecological signif-
icance of soil microbial network analyses.

The potential impact of the heterogeneous soil constituents on 
structuring microbial communities at a microscale has already been 
demonstrated with pooled soil primary particles, where the majority 
of abundant bacterial and fungal taxa exhibited particular prefer-
ences for clay, silt, or sand-sized fractions with particulate organic 
matter	 (Hemkemeyer	 et	 al.,	 2018,	 2019).	 Furthermore,	 comparing	
pooled samples of micro- and macroaggregates revealed that these 
two size classes also differ in microbial community composition 
(Constancias et al., 2014; Davinic et al., 2012; Fox et al., 2018), di-
versity (Bach et al., 2018; Ivanova et al., 2015) and their response 
to	stress	 (Ranjard,	Nazaret,	et	al.,	2000).	However,	 information	on	
the heterogeneity of microbial communities of individual aggregates 

within	specific	aggregate	fractions	is	still	lacking.	A	major	limitation	
of analyzing individual aggregates is the difficulty of obtaining a suf-
ficient quantity of nucleic acids from small amounts of soil for molec-
ular	methods.	Attempts	made	so	far,	therefore,	either	pooled	several	
aggregates	 for	 DNA	 extraction	 (Bach	 et	 al.,	 2018;	 Bailey	 et	 al.,	
2013; Ivanova et al., 2015), sampled very large aggregates weighing 
20–70	mg	(Kravchenko	et	al.,	2014),	or	applied	whole	genome	ampli-
fication	(WGA)	(Bailey,	McCue,	et	al.,	2013).	These	solutions,	how-
ever, do not deliver data on individual aggregates, provide coarse 
spatial resolution, or generate substantial bias in the results (Direito 
et al., 2014; Wang et al., 2016), respectively. To our knowledge, the 
only study that reported the bacterial community composition in 
smaller, that is below 3 mm, individual aggregates without applying 
WGA	 utilized	 taxonomic	 microarrays;	 a	 method	 of	 relatively	 low	
resolution, and focused solely on linking enzyme activity profiles 
with community structure (Kim et al., 2015). Furthermore, applying 
molecular methods to small samples that yield very low amounts of 
nucleic acids require validation to prove the consistent performance 
of the methods and rule out the possibility of contamination and sto-
chastic effects influencing the results.

The tremendous scientific potential that individual soil aggre-
gate-based microbial community analysis should have for character-
izing the heterogeneity of soil microbial communities at a biologically 
and ecologically more meaningful scale motivated us testing the fol-
lowing hypotheses in this study:

1.	 Metagenomic	 DNA	 of	 sufficient	 quantity	 and	 quality	 for	 PCR-
based analyses can be extracted from soil samples in the mg-
range, thus representing the scale of macroaggregates

2. Increasing spatial resolution reveals heterogeneity in soil bacterial 
and archaeal community structure and abundance

3.	 A	higher	heterogeneity	seen	among	small	soil	samples	is	not	a	re-
sult of contamination or sub-optimal performance of molecular 
methods

4. Comparing individual aggregates from the same soil unveils pat-
terns of microbial co-occurrence within the soil microbial commu-
nity not seen with the commonly used 250 mg soil sample size.

2  |  MATERIAL S AND METHODS

2.1  |  Overview of the experiments

Three experiments were conducted in this study. In the 1st experi-
ment, samples decreasing in size from 250 mg to 1 mg taken from the 
same	soil	were	subjected	to	DNA	extraction.	To	address	the	first	two	
hypotheses,	qPCR	and	high-throughput	amplicon	sequencing	target-
ing	the	16S	rRNA	gene	were	conducted	to	characterize	the	bacte-
rial, archaeal, and fungal abundance and the prokaryotic diversity in 
these samples. The 2nd experiment addressed the third hypothesis 
by comparing 250 mg soil samples and aliquots of a homogenized 
soil slurry. The volumes of the aliquots were chosen to contain the 
amount	of	DNA	expected	from	1,	5,	and	25	mg	soil	samples.	Since	
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all aliquots were taken from the same thoroughly homogenized soil 
slurry, differences in prokaryotic community structure between 
these soil homogenate samples must be results of contamination, 
stochastic	effects,	or	sub-optimal	performance	of	the	DNA	extrac-
tion	and	PCR.	In	the	3rd	experiment,	DNA	was	extracted	from	indi-
vidual aggregates and 250 mg soil samples taken from the same soil 
to	address	the	fourth	hypothesis.	All	experiments	included	several	
control samples to test for the presence of contamination.

2.2  |  Soil sampling and DNA extraction

The soil used in all experiments was loam topsoil of a Haplic 
Chernozem	 (FAO	 classification)	 from	 the	 Bad	 Lauchstädt	 experi-
mental research station of the Helmholtz Centre for Environmental 
Research	in	Germany	(51°24'N	11°53'E)	(Merbach	&	Schulz,	2013).	It	
originated	from	the	Static	Fertilization	Experiment,	initiated	in	1902,	
and samples were collected in December from a plot without any 
fertilization	since	1903	(treatment	NIL)	(Ludwig	et	al.,	2011),	which	
was under long-term sugar beet—potato—winter wheat—barley rota-
tion. Consequently, the soil was compared with its fertilized variants 
depleted in nitrogen (Blair et al., 2006). The soil samples had a pH 
value	 of	 7.1	 (in	 0.01	M	CaCl2)	 and	17.7	mg	 kg

−1 organic C. It was 
sieved (2 mm mesh size) and stored at 4°C until use.

Before sampling, approximately 100 g of soil was incubated at 
room T in the dark for 24 h. The soil was then spread out in a sterile 
Petri	dish	and	samples	were	taken	with	sterilized	spatulas	directly	
into	the	bead-beating	tubes	of	the	DNA	extraction	kit.	Control	sam-
ples were included in all experiments. They were handled together 
with,	and	the	same	way	as	the	soil	samples.	DNA	was	extracted	with	
the	Quick-DNA	Fecal/Soil	Microbe	Microprep	Kit	(Zymo	Research,	
Freiburg,	Germany)	including	two	45	s	bead-beating	cycles	in	an	MP	
FastPrep-24	5G	Instrument	(MP	Biomedicals,	Eschwege,	Germany)	
at	6.5	m/s	speed	with	a	300	s	break	in	between.	The	DNA	extracts	
were	eluted	in	30	µl	elution	buffer.	All	work	was	done	in	a	biosafety	
cabinet decontaminated with UV light to minimize the chance of 
contamination.	 Measurement	 of	 the	 DNA	 yield	 was	 attempted	
with	Quant-iT	PicoGreen	dsDNA	Assay	Kit	(Molecular	Probes,	Life	
Technologies, Eugene, OR) but accurate quantification was not 
possible for many of the small samples due to results close to the 
background fluorescence in the blank controls. In preparation for 
this	study,	several	DNA	extractions	methods	were	tested	but	were	
not	found	suitable.	This	included	the	Fast	DNA	Spin	kit	for	soil	(MP	
Biomedicals, LLC, Illkrich, France) and variations of the phenol-chlo-
roform	protocol	(Miller	et	al.,	1999).

In the 1st experiment, five size-groups of soil samples were col-
lected: 250, 125, 25, 5, and 1 mg, respectively. Eight samples were 
taken from each size-group along with six control samples. Sample 
weights from all experiments are listed in Table 1. In the 2nd ex-
periment, ten samples of 250 mg soil and six control samples were 
taken.	Eight	of	the	soil	samples	were	processed	normally	in	the	DNA	
extraction,	while	for	the	other	two,	the	DNA	extraction	was	inter-
rupted after the centrifugation following the bead beating. By this 

point, the samples had been turned into homogenized slurry by the 
bead beating, and the soil debris had been separated from the su-
pernatant	that	contained	the	metagenomic	DNA.	The	supernatant	
from the two samples was pooled and homogenized by vortexing. 
The mass of the resulting suspension was 1112 mg and it originated 
from	497	mg	soil	in	total.	Accordingly,	a	55.9	mg	aliquot	of	this	sus-
pension	contained	the	amount	of	DNA	extractable	from	25	mg	soil,	
an 11.2 mg aliquot the amount from 5 mg soil, and a 2.2 mg aliquot 
the amount from 1 mg soil. Eight aliquots from each of these sizes, 
hereafter 25, 5, and 1 mg soil homogenate samples, were taken and 
mixed	with	350	µl	BashingBead	Buffer	from	the	DNA	extraction	kit	
to	continue	the	DNA	extraction.	In	the	3rd	experiment,	37	individ-
ual soil aggregates, weighing 5.3 mg on average and similar in size 
(ca.	2	mm),	were	taken	for	DNA	extraction	along	with	35	samples	of	
250 mg soil and nine control samples.

2.3  |  Abundances of microbial groups assessed 
by qPCR

The abundance of Bacteria, Archaea, and Fungi	was	assessed	by	qPCR	
targeting	the	16S	rRNA	gene	and	the	ITS	region	as	described	previ-
ously	 (Hemkemeyer	 et	 al.,	 2015).	 Archaeal	 and	 fungal	 abundance	
were investigated only in the 1st experiment. Reactions were run in 
a	Bio-Rad	CFX96	real-time	PCR	system	in	duplicates	from	different	
dilutions	of	 the	DNA	extracts.	 In	the	case	of	 the	250	and	125	mg	
soil samples, 50- and 100-fold dilutions were taken; from the 25 mg 
samples 10- and 20-fold dilutions; and from the 5, 1 mg, individual 
aggregate,	and	control	samples	undiluted	DNA	extracts	and	twofold	

TA B L E  1 Number	of	samples	and	soil	weights	within	each	
sample category

Soil weight class or sample 
type

Sample weight (mg) 
±SD

Number of 
soil samples

1st experiment

250 mg 251 ± 1 8

125 mg 125 ± 1 8

25 mg 25.1 ± 0.4 8

5 mg 4.9	±	0.2 8

1 mg 1.1 ± 0.2 8

Control, no soil 6

2nd experiment

250 mg 252 ± 3 8

25 mg soil homogenate 8

5 mg soil homogenate 8

1 mg soil homogenate 8

Control, no soil 6

3rd experiment

250 mg 251 ± 0 35

Soil aggregate 5.3 ± 1.6 37

Control 9
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dilutions	were	 used.	 PCR	efficiencies	were	95.9%–104.6%	 for	 the	
bacterial	16S	rRNA	gene,	94.2%–96.2%	for	the	archaeal	16S	rRNA	
gene,	and	83.3%–84.3%	for	the	fungal	ITS	with	R2	≥0.995	in	all	cases.	
Results were compared with Tukey's HSD tests or Welch's t-test in 
case of the data from the 3rd experiment. The analysis was carried 
out in R 3.4.4 (www.r-proje ct.org). One of the 250 mg samples from 
the 1st experiment yielded a magnitude higher copy number in the 
fungal	ITS	qPCR	assay	than	the	others.	It	was	treated	as	an	outlier	
and excluded from the analysis.

2.4  |  High-throughput sequencing of 16S rRNA 
gene amplicons and data processing

To characterize the bacterial and archaeal communities in the sam-
ples,	 DNA	 extracts	 were	 subjected	 to	 high-throughput	 amplicon	
sequencing	of	the	V4	region	of	the	16S	rRNA	gene	following	the	pro-
tocol of Kozich et al. (2013) with primers updated to match the modi-
fied 515f and 806r sequences according to Walters et al. (2016). In 
the case of the small soil samples and control samples, due to the low 
DNA	yield,	10	µl	DNA	extract	was	used	as	a	template	in	the	PCRs.	
Paired-end	sequencing	was	done	on	Illumina	MiSeq	instruments	at	
StarSEQ (Mainz, Germany). Samples from the same experiment were 
sequenced in the same run. For the availability of all data, see Data 
Availability	Statement.

The sequencing data from the three experiments were analyzed 
separately. Raw reads were processed with the dada2 (version 1.6.0) 
pipeline (Callahan et al., 2016) in R 3.4.4. Forward and reverse reads 
were	truncated	at	positions	240	and	90,	respectively.	Reads	with	any	
ambiguous bases were discarded as well as forward reads with over 
two and reverse reads with over one expected error. The data from 
the 2nd experiment had higher quality allowing the reverse reads 
to be truncated at position 130 and keeping those with two or less 
expected errors. Error models were constructed from 106 randomly 
selected reads. Sequence variants (SVs) were inferred using the pool 
option. Forward and reverse SVs were merged trimming overhangs, 
and the removeBimeraDenovo function was employed to detect 
chimeras.	The	SVs	were	classified	according	to	the	SILVA	reference	
version	132	(Pruesse	et	al.,	2007)	accepting	only	results	with	≥70%	
bootstrap	support.	SVs	shorter	than	220	nt	or	 longer	than	275	nt,	
or identified as chimeric, mitochondrial, or chloroplast sequences, 
or not classified into Bacteria or Archaea were deleted. Good's index 
was	calculated	to	estimate	the	coverage	of	the	SVs.	SVs	with	≥0.1%	
relative abundance in any of the control samples of an experiment 
were regarded as a potential contaminant and removed from the 
dataset of that experiment.

2.5  |  Analysis of sequencing results

Principal	 component	 analysis	 (PCA)	 plots	were	 created	 in	 R	 using	
the rda function of the vegan package version 2.5-2 (Oksanen et al., 
2018).	To	decrease	the	sparsity	of	the	data,	SVs	not	reaching	0.1%	

relative	abundance	in	any	of	the	samples	included	in	the	PCA	were	
removed. Zeroes were replaced with the count zero multiplica-
tive (CZM) method using the zCompositions package version 1.1.1 
(Palarea-Albaladejo	&	Martin-Fernandez,	 2015),	 and	 centered	 log-
ratio (CLR) transformation was applied to the data to correct for 
compositional effects and differences in sequencing depth (Gloor 
et al., 2016).

Aitchison	 distances	 between	 the	 samples	 were	 calculated	 as	
Euclidean distances in the CLR transformed dataset (Gloor et al., 
2017).	SVs	that	did	not	have	at	least	0.1%	relative	abundance	in	any	
of the compared samples were removed and zeroes were replaced 
with the CZM method to allow CLR transformation before calcu-
lating Euclidean distances with the “vegdist” function of the vegan 
package. Results were compared with Tukey's HSD tests.

Plots	illustrating	the	prevalence	of	abundant	SVs	among	the	soil	
samples	 were	 prepared	 in	 Cytoscape	 3.7.1	 (www.cytos	cape.org).	
CoNet	 1.1.1	 beta	 (Faust	&	Raes,	 2016)	 in	Cytoscape	was	 used	 to	
construct co-occurrence networks from the data from the 3rd ex-
periment. To limit the number of parallel significance tests and the 
sparsity	of	the	data,	only	SVs	with	≥0.2%	relative	abundance	 in	at	
least one of the samples were included. Separate networks were 
constructed for the 250 mg soil samples and the soil aggregates. 
However, the selection of SVs was done on the joint data matrix to 
ensure that both networks include the same SVs. The data were rel-
ativized	 to	 the	 total	 sequence	count	of	 each	 sample.	Pearson	and	
Spearman correlations, mutual information (jsl setting), and Bray-
Curtis and Kullback-Leibler (with a pseudo count of 10−8) dissimilari-
ties were calculated and the 1 000 highest and 1 000 lowest scoring 
edges from each of the five metrics were kept. The ReBoot method 
(Faust et al., 2012), which mitigates compositional effects, was used 
to assess the significance of the edges based on 1000 permutations 
with renormalization and 1000 bootstrap iterations. In the network 
of the soil aggregates, edges with scores below the 2.5th and over 
the	97.5th	percentile	of	the	bootstrap	distribution	or	not	supported	
by at least three of the five metrics were considered unstable and 
removed. Brown's method of p-value merging was applied followed 
by Benjamini-Hochberg correction. Only edges with q	≤	0.05	were	
included in the final network. In the network of the 250 mg samples, 
unstable edges were not removed and the Benjamini-Hochberg cor-
rection was not applied as otherwise no edges were retained. The 
networks were visualized in Cytoscape using the compound spring 
embedder layout. Topological parameters were calculated using 
NetworkAnalyzer	version	2.7	(Assenov	et	al.,	2008).

3  |  RESULTS

3.1  |  Microbial DNA can be extracted from soil 
samples in the mg-range

DNA	could	be	extracted	from	soil	samples	as	little	as	0.87	mg	as	well	
as	from	intact	soil	aggregates.	In	all	cases,	the	extracted	DNA	was	
sufficient	 for	 16S	 rRNA	 gene	 amplicon	 sequencing	 and	 the	 qPCR	

http://www.r-project.org
http://www.cytoscape.org
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assays.	Accurate	quantification	of	the	DNA	yield	with	PicoGreen	as-
says was not possible because the fluorescence readings from many 
of the small samples were close to the background fluorescence in 
the blank controls.

To	 assess	 whether	 the	 DNA	 extraction	 could	 recover	 microbial	
DNA	with	similar	efficiency	from	small	quantities	of	soil	as	from	250	mg	

samples, estimates of the abundances of Bacteria, Archaea, and Fungi 
in	1	g	of	soil	were	calculated	from	the	qPCR	results	 (Figure	1;	Table	
S1:	https://doi.org/10.5281/zenodo.4282475).	Similar	estimates	were	
obtained from the 250 and 5 mg soil samples from the 1st experiment. 
Estimates from the 1 mg samples tended to be lower but were not sig-
nificantly different. In contrast, the estimates of fungal abundance in a 

F I G U R E  1 Estimates	of	(a)	bacterial,	(b)	archaeal,	and	(c)	fungal	abundance	in	a	gram	of	soil	based	on	qPCR	from	the	samples	from	the	1st	
experiment	(gene	copy	numbers	per	g	of	soil	wet	weight).	One	of	the	250	mg	soil	samples	was	an	outlier	in	the	fungal	ITS	qPCR	results	and	is	
not included in the plot. Sample groups not labeled with the same letter were significantly different in Tukey's HSD tests. Thick lines indicate 
the	median	values,	the	upper	and	lower	hinges	the	75th	and	25th	percentile,	whiskers	extend	to	the	data	extremes

https://doi.org/10.5281/zenodo.4282475
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gram of soil were significantly lower from the 1 and 5 mg than from the 
250 mg samples. Estimates of bacterial abundance obtained from the 
25 and 125 mg samples and archaeal abundance from the 25 mg sam-
ples were significantly higher than from the 250 mg samples. Bacterial 
abundance estimates from the single aggregates and 250 mg soil sam-
ples	of	the	3rd	experiment	covered	the	same	range	(Figure	A1),	but	the	
mean	of	the	estimates	from	the	single	aggregates	(2.27	×	109 copies/g 
soil) was lower (p	<	0.001)	than	from	the	250	mg	samples	(4.69	×	109 
copies/g soil).

The	control	samples	were	amplified	in	the	qPCR	assay	targeting	
the	bacterial	16S	rRNA	gene	but	yielded	only	3–356	copies	per	µl	
DNA	extract.	In	comparison,	the	1	mg	soil	samples	had	8777–45,534	
copies	 per	 µl	 DNA	 extract	 (Table	 S1:	 https://doi.org/10.5281/ze-
nodo.4282475).	The	control	samples	from	the	1st	experiment	had	0	
to	13	fungal	ITS	copies	per	µl	DNA	extract	and	none	of	them	showed	
amplification	in	the	archaeal	16S	rRNA	gene	qPCR	assays.

3.2  |  Removing potentially contaminant SVs 
from the sequencing results

It was possible to generate sequencing results from all control sam-
ples (the complete dataset with the taxonomic classification of the 
SVs	is	in	Table	S2:	https://doi.org/10.5281/zenodo.4282475).	Good's	
coverage	index	of	the	SVs	was	>0.993	in	all	of	them	indicating	that	
their complete prokaryotic community was captured by sequencing 
(Table	A1).	They	were	similar	in	their	prokaryotic	community	struc-
tures	but	very	different	from	the	soil	samples	(Figure	A2).	Every	SV	
that	reached	0.1%	relative	abundance	in	any	of	the	control	samples	
of an experiment was considered as a potential contaminant. There 
were	450,	77,	and	591	such	SVs	in	the	datasets	of	the	1st,	2nd,	and	
3rd experiments, respectively. In the data from the 1st experiment, 
these	 SVs	 together	 covered	 98.9%–99.8%	 of	 the	 sequences	 ob-
tained	from	the	control	samples	and	2.5%–6.6%	of	 the	sequences	
from	the	soil	samples.	In	the	2nd	and	3rd	experiments,	92.5%–99.5%	
and	98.6%–99.6%	of	the	sequences	from	the	control	samples,	and	
2.9%–17.3%	and	5.9%–9.4%	of	the	sequences	from	the	soil	samples,	
respectively, were covered by the potentially contaminant SVs. To 
mitigate the effect of contamination on the results, the potentially 
contaminant SVs were deleted from the data matrices before further 
analysis.

3.3  |  Increasing spatial resolution reveals 
heterogeneity in soil bacterial and archaeal 
community structure but not in their abundance

The	yield	of	high-quality	16S	 rRNA	gene	amplicon	sequences	was	
lower from the 1 mg samples than from the 5 and 25 mg samples 
in	the	1st	experiment	(Figure	2a).	Apart	from	this,	however,	the	se-
quencing yield did not differ between the sample groups within any 
of the experiments. Thus, it is possible to compare the number of 
SVs detected in the samples without rarefying the data. The number 

of SVs in the 1st experiment was not significantly different be-
tween the 250, 125, and 25 mg samples, but decreased significantly 
in the 5 mg and even further among the 1 mg samples (Figure 2b). 
An	 opposite	 trend	was	 clear	 in	 the	 Good's	 coverage	 index	 (Table	
A1).	Similarly,	significantly	 lower	numbers	of	SVs	were	detected	in	
the single aggregates than in the 250 mg soil samples of the 3rd 
experiment.

Principal	component	analysis	from	the	sequencing	results	from	
the 1st experiment arranged all 250 and 125 mg samples, and most 
25 mg samples into a single, tight group, indicating high similarity in 
their prokaryotic community structures (Figure 3a). In contrast, sam-
ples from the 5 mg and more so from the 1 mg categories, showed 
higher	 heterogeneity	 in	 community	 structure.	 Similarly,	 PCA	 indi-
cated heterogeneity between individual aggregates that was not 
seen among the 250 mg samples in the 3rd experiment (Figure 3b).

The	abundant	SVs	(≥0.1%	relative	abundance	in	at	 least	one	of	
the samples) in the 250, 125, and 25 mg samples from the 1st ex-
periment were almost all detectable in each sample, showing that 
the composition of the soil prokaryotic community appears uniform 
when investigated at such a coarse spatial resolution (Figure 4). In 
contrast,	 172	 of	 the	 abundant	 SVs	 detected	 in	 the	 1	mg	 samples	
were	unique	to	just	one	or	two	of	these	samples.	Among	these	SVs,	
representatives of Planctomycetes, Proteobacteria, and Acidobacteria 
were especially numerous, while Thaumarchaeota and Actinobacteria 
were dominant among the SVs present in all samples. The 5 mg sam-
ples represented a level of spatial resolution at which some hetero-
geneity in the prevalence of the abundant SVs was clear with 22 of 
them detectable in two or only in a single sample.

In total, 5620 SVs were detected in the eight 1 mg soil sam-
ples of the 1st experiment (Table S2: https://doi.org/10.5281/ze-
nodo.4282475).	Of	these,	4764	(85%)	were	also	present	in	at	 least	
half of the 250 mg samples. The remaining 856 SVs had low relative 
abundance	 in	 the	1	mg	 samples	with	 only	 59	 reaching	more	 than	
0.1%	relative	abundance	in	any	of	them.	The	5	mg	samples	together	
contained	8010	SVs,	of	which	6	443	(80%)	were	also	detectable	in	
at	least	half	of	the	250	mg	samples.	Of	the	remaining	1567	SVs,	only	
26	reached	more	than	0.1%	relative	abundance	in	any	of	the	5	mg	
samples.

The	qPCR	 results	did	not	 confirm	our	hypothesis	 that	 increas-
ing spatial resolution would reveal heterogeneity in microbial abun-
dance.	Bacterial	and	archaeal	16S	rRNA	gene	and	 fungal	 ITS	copy	
numbers did not show a larger variation among the 1 and 5 mg sam-
ples than between the 250 mg samples from the 1st experiment 
(Figure 1). Similarly, in the 3rd experiment, bacterial abundance did 
not vary more in the single aggregates than in the 250 mg samples 
(Figure	A1).

3.4  |  Impact of stochastic effects and inconsistent 
performance of the methods

The soil homogenate samples from the 2nd experiment served to 
test the influence of stochastic effects and sub-optimal performance 

https://doi.org/10.5281/zenodo.4282475
https://doi.org/10.5281/zenodo.4282475
https://doi.org/10.5281/zenodo.4282475
https://doi.org/10.5281/zenodo.4282475
https://doi.org/10.5281/zenodo.4282475
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of	the	DNA	extraction	and	PCR	when	extracting	small	amounts	of	
soil. The estimated bacterial abundance in a gram of soil based on 
the	qPCR	results	was	in	general	higher	in	the	samples	from	the	2nd	
experiment but followed the same pattern as in the samples from the 
1st experiment with no differences between the 1, 5, and 250 mg 
samples but significantly higher values in the 25 mg samples (Figure 
A3).	The	small	soil	homogenate	samples	did	not	show	the	degree	of	
heterogeneity in the prokaryotic community structure we observed 
among the small soil samples of the 1st experiment. The abundant 
SVs	(≥0.1%	relative	abundance	in	at	least	one	sample)	in	the	25	mg	

soil homogenate samples were all detectable in at least five of the 
eight replicates. Out of the 354 abundant SVs in the 5 mg soil ho-
mogenate samples, one was present in only three of the samples but 
the others were detectable in at least six. The 1 mg soil homogenate 
samples	harbored	446	abundant	SVs.	None	of	them	was	unique	to	a	
single sample and 442 were present in five or more of the eight sam-
ples.	The	Aitchison	distances	of	the	community	structure	were	much	
higher among the 5 mg, and especially among the 1 mg soil samples 
of the 1st experiment compared with the distances between the 
250 mg soil samples (Figure 5). In contrast, the distances between 

F I G U R E  2 Number	of	(a)	sequences	and	(b)	sequence	variants	(SVs)	in	the	samples	after	the	removal	of	potentially	contaminant	SVs.	
Thick	lines	indicate	the	median	values,	the	upper	and	lower	hinges	the	75th	and	25th	percentile,	whiskers	extend	to	the	data	extremes.	
Letters indicate significant differences between sample groups of the 1st experiment according to Tukey's HSD tests. * indicates a 
significant difference based on Welch's t-test between the aggregate and the 250 mg soil samples of the 3rd experiment
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5 or 25 mg soil homogenate samples of the 2nd experiment were 
similar to the distances among the 250 mg soil samples, indicating no 
difference in the heterogeneity of prokaryotic community structure 
between these sample groups. The distances between the 1 mg soil 
homogenate samples were only slightly increased.

3.5  |  Bacterial and archaeal co-occurrence patterns 
in 250 mg soil samples and aggregates

Networks	of	prokaryotic	co-occurrence	were	constructed	using	the	
272	SVs	that	reached	≥0.2%	relative	abundance	in	at	least	one	of	the	
samples	of	the	3rd	experiment.	No	network	was	obtained	from	the	
250 mg samples unless the removal of unstable edges and the correc-
tion of the p-values for multiple testing were skipped. The resulting 
network	has	78	edges	between	35	nodes	(Figure	6a).	Thus,	this	spa-
tial resolution revealed only a small number of putative associations 

many	of	which	are	false	discoveries.	 In	contrast,	a	network	of	137	
edges	and	67	nodes	(with	the	removal	of	unstable	edges	and	control	
of the false discovery rate) was obtained from the individual soil ag-
gregates	(Figure	6b).	A	total	of	54	of	the	nodes	are	part	of	a	connected	
component in which there are three nodes with high betweenness 
centrality: SV15 (Verrucomicrobia, Candidatus Udaeobacter), SV31 
(Actinobacteria), and SV36 (Acidobacteria subgroup 6). Their relative 
abundance	in	the	aggregates	was	0.46	±	0.16%,	0.33	±	0.13%,	and	
0.30	±	0.11%,	respectively.	These	SVs	potentially	serve	a	keystone	
function by connecting two clusters in the network. One of the clus-
ters contains several SVs of Thaumarchaeota, Verrucomicrobia, and 
Actinobacteria. The other is dominated by Acidobacteria subgroup 6. 
The hub of the latter cluster is SV58 (Acidobacteria subgroup 6) with 
a	 relative	abundance	of	0.23	±	0.16%	that	has	 the	highest	degree	
in	 the	 network	 being	 connected	 to	 19	 nodes.	 SV399	 (Chloroflexi) 
(0.06	±	0.05%)	and	SV123	(Acidobacteria	subgroup	6)	(0.13	±	0.06%)	
are linked with negative associations to several members of this 
cluster.

4  |  DISCUSSION

The large disparity between the scale in which the soil microbiota 
is usually studied with molecular methods (0.25–1 g of soil) and the 
distance over which microbial interactions occur, impede the detec-
tion	of	 interacting	partners	 (Nunan,	2017).	To	gain	 information	on	
the soil microbial diversity at an increased spatial resolution that 
considers soil structure, in this study, we reduced the amount of soil 
used	for	DNA	extraction	from	250	to	1	mg	and	also	extracted	indi-
vidual	soil	aggregates.	Bacterial	and	archaeal	DNA	were	recovered	
with not significantly different efficiencies from the 250 mg and the 
5	 and	 1	mg	 samples	 as	 shown	by	 the	 qPCR	 results.	 This	was	 not	
true	for	fungal	DNA.	Either	the	DNA	extraction	kit	was	not	efficient	
in	 isolating	 fungal	DNA	 from	 samples	 below	25	mg,	 or	 fungi	may	
preferentially colonize larger soil aggregates. Our results show that 
the	DNA	extraction	kit	was	the	most	efficient	in	recovering	bacterial	
and	archaeal	DNA	from	25	to	125	mg	soil,	although	the	variation	in	
the	yield	of	16S	rRNA	gene	copies	was	large	among	these	samples.	
Since this increased variation was apparent among the 25 mg soil ho-
mogenate samples of the 2nd experiment as well, it is not an indica-
tion of an uneven distribution of bacterial cells at the scale of 25 mg 
samples	but	must	be	due	to	this	particular	DNA	extraction	method	
not working with consistent efficiency with this amount of soil.

As	a	consequence	of	 sampling	small	amounts	of	 soil,	 the	DNA	
extracts	had	 low	template	concentrations	for	the	subsequent	PCR	
analyses. Thereby, we had to anticipate a high risk of contamination 
affecting the results (Weiss et al., 2014). Quantifiable amounts of 
Bacteria and Fungi, but not Archaea, were detected in the control 
samples	without	soil.	However,	they	reached	no	more	than	4%	of	the	
number	of	bacterial	rRNA	gene	copies	in	the	smallest	soil	samples,	
and thus, the influence of contamination on our results is negligible. 
The bacterial community found in the control samples was distinct 

F I G U R E  3 Principle	component	analyses	(PCA)	plots	from	
the	16S	rRNA	gene	sequencing	data	from	the	1st	(a)	and	3rd	(b)	
experiments
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from the soil communities suggesting that the contamination origi-
nated	from	the	reagents	of	the	DNA	extraction	and	sequencing	li-
brary preparation rather than cross-contamination between samples 
(Glassing	et	al.,	2016;	Salter	et	al.,	2014).	Another	concern	of	work-
ing with small samples is that molecular methods applied to such 
small amounts of a template may perform inconsistently leading to 
artificial variation in the results. The 2nd experiment showed that 
DNA	extraction,	PCR,	and	sequencing	did	not	artificially	generate	
more variation in the results from 5 mg samples than the variation 
present among the 250 mg samples and the 1 mg samples showed 
only a slightly higher variation. Therefore, the large heterogeneity 
in prokaryotic community composition and structure among the 1 
and 5 mg soil samples from the 1st experiment was not caused by 
stochastic	effects	or	PCR	bias.

The samples of 25 up to 250 mg of soil were close to identical 
in prokaryotic community composition, thus they provide a good 
representation of the overall prokaryotic diversity of our soil. This 
is also indicated by the fact that increasing the amount of soil ex-
tracted up to 25 mg increased the number of SVs detected in the 
samples, but larger soil samples did not yield more SVs. Thus, the 
25 mg samples had good coverage of the total prokaryotic com-
munity. In contrast, the 1 and 5 mg samples and single aggregates 
were heterogeneous in community structure. We found that while 
small soil samples could recover some SVs not necessarily detected 
with the conventionally used 250 mg samples; these SVs were typ-
ically low in abundance. Very few exceeded the relative abundance 
threshold we applied to control the sparsity of the data in our anal-
ysis of community structure. Therefore, the large heterogeneity of 

F I G U R E  4 SVs	arranged	according	to	how	many	of	the	1,	5,	25,	125,	or	250	mg	samples	from	the	1st	experiment	they	were	detected	in.	
Only	SVs	that	reached	at	least	0.1%	relative	abundance	in	any	of	the	samples	are	included.	Each	node	represents	one	SV	colored	based	on	
its phylum-level classification and sized according to its average relative abundance across all samples excluding those in which it was not 
detected
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the prokaryotic community structure we observed among the small 
samples was not because they would have enabled the detection of 
more SVs. Instead, it appears that they contained different subsets 
of the total community present in the 25–250 mg samples. This could 
be explained by the fact that the smaller samples contain fewer mi-
crohabitats, each of which harbors a local community of fewer spe-
cies (Leibold et al., 2004). Interestingly, the 1 and 5 mg samples did 
not significantly differ in the abundance of Bacteria, Archaea, and 
Fungi compared with the 250 mg samples. Similarly, the variation in 
bacterial abundance found with the individual aggregates was not 
different from the 250 mg samples. Microbial abundance in soil has 
a	patchy	distribution	at	the	scale	of	a	few	micrometers	(Nunan	et	al.,	
2003) but, for the soil of this study, not at the scale of macroaggre-
gates or 1–5 mg samples.

Network	 analyses	 based	 on	 microbial	 co-occurrence	 have	
been applied to soil samples as large as 10 grams (Khan et al., 
2019)	and	are	typically	used	with	250	mg–1	g	samples	(Barberan	
et al., 2012; Karimi et al., 2020). In this study, however, we could 
not detect stable and significant associations between SVs from 
35 samples of 250 mg soil. These samples were taken from the 
same well-mixed batch of soil and were similar in their prokaryotic 
community composition. This is fundamentally different from the 
above-cited studies that compared soil samples taken from differ-
ent ecosystems or across an entire country, thus soil samples that 
can greatly differ in microbial community composition. In contrast, 
our 250 mg samples, coming from the same soil, were similar. It is 
likely that each of them gave a good representation of the overall 
prokaryotic diversity in our soil, in which case, the variation of the 
relative abundance of SVs in these samples was mostly random. 
It is not surprising if small, random differences do not yield stable 

and significant associations in network analysis. The value of using 
much smaller samples is shown by our result that the 1 and 5 mg 
samples contained subsets of the total soil microbial diversity cap-
tured by the 250 mg samples, and with increasing spatial resolu-
tion the heterogeneity in the bacterial and archaeal community 
structure increased among the samples. This results in detectable 
co-occurrence patterns. Furthermore, the smaller spatial scale in-
creases the likelihood that the observed co-occurrences indicate 
interactions (Cordero & Datta, 2016).

From	37	 soil	 aggregates,	we	 obtained	 a	 complex	 network	 of	
bacterial and archaeal co-occurrence that contained two clus-
ters, one with several Thaumarchaeota, Verrucomicrobia, and 
Actinobacteria SVs, the other mainly with Acidobacteria subgroup 
6 SVs. Three SVs, which could represent keystone taxa, were 
found to connect these clusters. If these putative keystone SVs 
are abundant in an aggregate, we can expect that members of 
both clusters are present there. The two major clusters present 
in the network may provide complementary functions in the soil 
ecosystem. There are indications that Acidobacteria subgroup 6, 
dominating one of the clusters, prefer agricultural soils with low 
nitrogen input where it could be involved in the slower turnover 
of soil organic carbon (SOC) originating from microbial necromass 
or	 plant	material	 (Hester	 et	 al.,	 2018;	 Li	 et	 al.,	 2018;	 Navarrete	
et al., 2013). The soil of this study originated from a long-term ni-
trogen-depleted agricultural soil, thus supporting the preference 
for low nitrogen concentrations and SOC turnover. The other clus-
ter included several abundant SVs from phylum Thaumarchaeota, 
which is known to be a strong contributor to ammonium oxidation 
in agricultural soils (Leininger et al., 2006). Compared to ammoni-
um-oxidizing bacteria, Thaumarcheaota are thought to be adapted 
to	lower	nitrogen	concentrations	(Pester	et	al.,	2011);	thus,	the	ni-
trogen-depleted soil of this study is likely a favorable environment 
for them. The two clusters in our aggregate co-occurrence net-
work could represent two distinct types of metabolism adapted to 
a nitrogen-depleted soil: a chemoorganotroph that oxidizes SOC, 
and a chemolithotroph that oxidizes ammonia produced for ex-
ample by ammonification from crop residues. The presence of the 
less abundant Verrucomicrobia and Actinobacteria SVs within the 
Thaumarchaota dominated cluster is possibly linked to an oligo-
trophic	 lifestyle	 (Bergmann	et	 al.,	 2011;	 Fierer	 et	 al.,	 2007),	 but	
considering	the	limited	information	that	16S	rRNA	gene	analyses	
can provide for these phyla, this remains yet only a hypothesis. 
Shotgun	sequencing	and	metagenomic	analysis	of	DNA	extracted	
from individual soil aggregates could shed more light on the nature 
of the associations we detected in the co-occurrence network. 
In general, such aggregate-level analyses of the soil microbiota, 
which we call “aggregatomics,” could inspire new ways of linking 
structure to function in soil microbial communities.

While the spatial scale that we reached in this study is not yet fine 
enough to reveal most microbial interactions as they may occur in mi-
croaggregates	(Raynaud	&	Nunan,	2014),	it	should	be	able	to	support	
the development of hypotheses and experiments to understand the 

F I G U R E  5 Aitchison	distances	in	the	bacterial	and	archaeal	
community	structure	(16SrRNA	gene	amplicons)	within	sample	
groups from the 1st and 2nd experiments. Thick lines indicate 
the	median	values,	the	upper	and	lower	hinges	the	75th	and	25th	
percentile, whiskers extend to the data extremes. Sample groups 
from the same experiment not labeled with the same letter were 
significantly different in Tukey's HSD tests
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patterns and processes shaping the assembly of soil microbial com-
munities and modeling their behavior (Faust & Raes, 2012; Tecon & 
Or,	 2017).	Developing	DNA	 extraction	 protocols	 from	 even	 smaller	
soil samples, approaching the microaggregate level, should be a way 

forward	 to	 fuel	 soil	 aggregate-oriented	 research	 (“Aggregatomics”;	
https://www.thuen en.de/en/bd/field s-of-activ ity/feld-und-labor studi 
en/micro biolo gy-and-molec ular-ecolo gy/soil-aggre gatomics) for un-
veiling hidden patterns of functions and ecological interactions.

F I G U R E  6 Co-occurrence	networks	from	the	(a)	250	mg	samples	and	(b)	the	single	aggregates	from	the	3rd	experiment.	The	frames	
mark the two clusters discussed in the text. It should be noted that in (a) unstable edges were not removed and the Benjamini-Hochberg 
correction for multiple comparisons was not applied

https://www.thuenen.de/en/bd/fields-of-activity/feld-und-laborstudien/microbiology-and-molecular-ecology/soil-aggregatomics
https://www.thuenen.de/en/bd/fields-of-activity/feld-und-laborstudien/microbiology-and-molecular-ecology/soil-aggregatomics
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APPENDIX 

TABLE	A1 Good's	coverage	index	of	the	16S	rRNA	gene	sequence	
variants

Soil weight class or sample type
Good's coverage 
(average ±SD)

1st Experiment

250 mg 0.962	±	0.014

125 mg 0.965	±	0.008

25 mg 0.970	±	0.009

5 mg 0.980	±	0.010

1 mg 0.992	±	0.010

Control, no soil 0.997	±	0.001

2nd Experiment

250 mg 0.939	±	0.033

25 mg soil homogenate 0.939	±	0.031

5 mg soil homogenate 0.945	±	0.029

1 mg soil homogenate 0.923	±	0.028

Control, no soil 0.994	±	0.005

3rd Experiment

250 mg 0.950	±	0.017

Soil aggregate 0.952	±	0.032

Control 0.998	±	0.001

Figure	A1 Estimates	of	bacterial	abundance	in	a	gram	of	soil	from	
the	samples	of	the	3rd	experiment	based	on	qPCR.	Thick	lines	
indicate	the	median	values,	the	upper	and	lower	hinges	the	75th	
and 25th percentile, whiskers extend to the data extremes
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Figure	A2 Principle	component	analysis	(PCA	plot)	from	the	16S	rRNA	gene	sequencing	data	from	the	1st	experiment	including	the	control	
samples and without the removal of potentially contaminant SVs

Figure	A3 Estimates	of	bacterial	abundance	in	a	gram	of	soil	based	
on	qPCR	from	the	soil	and	soil	homogenate	samples	from	the	1st	
and 2nd experiments. Thick lines indicate the median values, the 
upper	and	lower	hinges	the	75th	and	25th	percentile,	whiskers	
extend to the data extremes. Sample groups from the same 
experiment not labeled with the same letter were significantly 
different in Tukey's HSD tests


