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1  Introduction
Quantification of soil organic carbon (SOC) stocks and dynamics is required 
for and applied to different frameworks, situations and scales, ranging from 
an experimental plot (for evaluating treatment effects) to whole fields (e.g. 
in SOC-accounting or crediting systems) and inventories of whole countries 
or continents (Orgiazzi et al., 2018, Saby et al., 2008, Bolinder et al., 2010, 
Viscarra Rossel and Brus, 2018). Accurate estimates of belowground stocks of 
carbon are necessary for understanding ecosystem responses to changes in 
land use, management, climate and other environmental stresses. Monitoring 
of SOC stock responses to management has gained interest in recent years due 
to the call to raise ambitions for countries to include SOC storage in climate 
change negotiations (Wiese et al., 2019). At the same time, the opposite is also 
the case: understanding the impact of these drivers and underlying processes 
is key for designing appropriate frameworks for monitoring, reporting and 
verification (MRV) of SOC stock changes (Smith et al., 2020).

The estimation of SOC stocks is challenging at any scale because it requires 
measurement of several key parameters including SOC content, bulk density 
and rock fragments, some of which are highly variable in space and time, 
and are prone to sampling biases and other pitfalls. It is therefore even more 
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challenging to measure and verify changes in SOC stock, which are usually small 
compared to the total SOC stock and its spatial heterogeneity (Smith, 2004). Of 
all the parameters mentioned, the one with the largest spatial heterogeneity 
(both vertically and horizontally) is usually SOC content (Goidts et al., 2009). An 
appropriate sampling design, which accounts for the scale-dependent in situ 
variability, is thus crucial for representative sampling and quantification of SOC 
changes (VandenBygaart and Angers, 2006, VandenBygaart, 2006). Detecting 
change in SOC stock usually requires a large number of samples to account 
for spatial variability, that are collected at sufficiently long intervals to allow for 
changes to be detectable (Saby et al., 2008, Schrumpf et al., 2011, Heikkinen 
et al., 2020, de Gruijter et al., 2018, Schöning et al., 2006, Viscarra Rossel et al., 
2016). Our focus in this chapter will be to describe the methods, techniques 
and approaches used to measure SOC stocks and dynamics in the soil profile. 
The spatial variability of SOC stocks and their associated parameters and 
the sampling designs to best tackle this issue will not be discussed in detail. 
Instead, our objective here is to provide a general introduction to traditional, 
state-of-the-art and novel techniques and frameworks used to quantify SOC 
stocks and their dynamics.

Characterizing SOC dynamics refers not only to quantitative changes in 
bulk SOC over time, but also to the partitioning of SOC in fractions with distinct 
turnover kinetics, their residence times and stabilization pathways. The concept 
of fractionating SOC to derive these functional pools is introduced, as well 
as the use of C isotopes to accurately trace inputs in the soil profile. We also 
discuss techniques used to characterize and predict changes in SOC stocks for 
evaluating environmental or management changes.

2  Accurate estimation of parameters needed to calculate 
soil organic carbon stocks

2.1  Sampling and sensing methods

Three parameters are required to estimate SOC stocks at a given soil depth: (1) 
SOC content, which is usually measured in the fine soil fraction < 2 mm; (2) bulk 
density (mass of soil per volume); and (3) the fraction of rock fragments > 2 mm, 
which are usually considered to be free of SOC. An appropriate sampling design 
for the determination of these parameters for a particular spatial unit depends 
primarily on the size and properties of that unit (Goidts et al., 2009). Collecting 
a sample that contains a representative amount of SOC for the spatial unit of 
interest is not only the major goal, but also a major challenge of soil sampling. 
Here, we focus on the smallest spatial unit of field sampling – the soil profile – to 
introduce some basic techniques and pitfalls for sampling soils for subsequent 
measurements of the required parameters.
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The nature of the ‘soil profile’ and adequate sampling depth are important 
considerations when measuring and evaluating SOC stocks. Globally, the 
thickness of the layer that is usually defined as soil, that is, loose material above 
the bedrock that underwent (initial) pedogenesis and is biologically active, 
mostly exceeds 1 m (https://www .isric .org /explore /wise -databases). Only in 
regions characterized by strong erosion processes, such a mountain areas or 
deserts, as well as regions of initial soil development, can the soil thickness 
be much lower. Accordingly, the upper 30 cm of soil, which is the standard 
sampling depth in many experiments and inventories, stores only half of the 
total SOC stock on a global scale (Batjes, 2014), which implies that SOC storage 
and storage potential are strongly underestimated when only topsoils are 
considered. Furthermore, neglecting SOC in deeper layers may also lead to 
false conclusions about SOC dynamics (Luo et al., 2010, Hicks Pries et al., 2017).

The ability to detect either temporal or spatial changes in SOC stocks 
depends on the depth of sampling because deeper sampling usually increases 
the variability of the measurement (Ellert et al., 2008). However, increasing 
the depth of sampling increases the cost and effort to do so. Thus, a primary 
consideration with regard to the appropriate sampling depth relates to the soil 
management or process under investigation. Factors such as land use, cropping 
system, tillage management, rooting depth, landscape position, drainage class 
and other soil-forming factors affect the quantity and distribution of SOC with 
depth, and will therefore influence decisions on appropriate sampling depth. 
For example, in studies comparing contrasting tillage systems, the depth of 
sampling required to determine difference in SOC stocks may be just below the 
depth of plowing (e.g. 30-40 cm). In contrast, an assessment of SOC in systems 
with deep-rooted crops or those that receive additions of large amounts of 
organic amendments may require sampling below this depth (Tautges et al., 
2019).

The sampling techniques and methods used to determine the SOC 
content can be used for any other variable to be measured in ‘disturbed’ soil 
samples (as opposed to intact soil cores). However, consideration of the depth 
gradients within the soil profile is of particular importance for elements (e.g., 
C, N and P) contained in soil organic matter. In the vast majority of soils, the 
distribution of SOC along the soil profile shows a clear depth dependency, 
with decreasing SOC at increasing soil depth. This is primarily related to the 
OC inputs to the soil, which are highest close to the surface and exponentially 
decline with depth (Jackson et al., 1996). In agricultural soils, particularly 
in tilled arable soils, the depth distribution of SOC differs from that of soils 
under natural vegetation, due to the homogenizing effect of tillage. The depth 
gradient within the plow layer can thus be expected to be relatively small, 
which, however, causes a sharp decline of SOC at the border between plow 
layer and the underlying subsoil (Fig. 1a). In any case, the depth gradient of 
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SOC needs to be considered during soil sampling to obtain reliable estimates 
of SOC content in a given volume of soil. When sampling a particular vertical 
distribution, it is necessary that the whole depth of the increment is covered in 
approximately equal shares. This might be the most basic, but is also the most 
important rule of soil sampling; disregarding this rule can cause large biases in 
estimates of SOC. There are exceptions to the typical sharp gradients in SOC 
with depth (e.g. soils with large amounts of allochthonous SOC, such as those 
observed in fluvisols or those characterized by pedogenesis that involves SOC 
redistribution with depth, such as podsols (Schneider et al., 2020)). For these 
soils, it is even more important to ensure that each layer or soil horizon is well 
represented in the sample used to estimate SOC stocks (Fig. 1b).

The simplest and cheapest technique to sample a soil is to use a spade to 
extract a slice of topsoil material from above ground (Fernández-Ugalde et al., 
2020b). However, this method can be particularly prone to a sampling bias, 
since the spade does not ensure collection of a homogeneously distributed 
sample for a given depth increment. Moreover, the sampling depth is not easily 
controllable and reproducible with a spade, since sampling usually occurs in 
a V-shape (http://kvkcachar .nic .in /soil .html). Finally, sampling multiple depth 
increments becomes almost impossible, unless a full soil pit is excavated first. 
The latter will be discussed as a separate technique in the following section. 
Spade sampling has the advantage of being cheap, quick and applicable to a 
wide range of situations. Therefore it has also been used in continental scale 
soil inventories such as the European LUCAS Soil Survey (Orgiazzi et al., 2018). 
However, it is not a volumetric sampling method, which precludes deriving the 

Figure 1 Example profile pictures of (a) a plowed arable soil with a sharp decline in soil 
organic carbon (SOC) below the plow layer; (b) a gleysol with a more complex depth 
distribution of SOC; and (c) a Stagnosol with hydromorphic properties. Photos belong to 
the Thünen Institute of Climate-Smart Agriculture, Germany.
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other two parameters (i.e., bulk density and rock fragment fraction) needed for 
SOC stock estimation from the same sample. Therefore, this technique is used 
mainly when only the SOC content of a single layer of topsoil is of interest, not 
the SOC stock of a whole profile.

A hand-operated gouge auger or a core sampler of any kind is often used 
for soil sampling because it allows for controlled depth sampling at multiple 
depths, and to obtain a representative sample of each depth increment. 
Depending on the diameter of the core, an undisturbed core of soil can be 
obtained with relatively low effort. For these reasons, a gouge auger or a core 
sampler are the most common tools used for soil sampling. A machine-driven 
hydraulic system is usually preferred if the diameter of the core exceeds 4–5 cm 
and the desired sampling depth exceeds ~30 cm. The disadvantages of the 
auger or core sampler include deformations of the core (compression and 
stretching) as well as a partial mixing of topsoil and subsoil (Walter et al., 2016). 
Wet, coarse-textured soil is specifically prone to compaction. Also, a high rock 
fragment fraction, a dense network of coarse roots in forest topsoils, frozen 
or extremely dry soil can aggravate or impede auger or core sampling. In 
specific situations, e.g. in permafrost soils, a drilling auger is indispensable to 
extract cores of sufficient depth and quality. The fact that the extracted cores 
derived from auger sampling or soil coring resemble relatively undisturbed soil 
samples, allows for simultaneous determination of physical (e.g. bulk density) 
and chemical soil properties in the same sample, which helps to reduce the 
uncertainty of SOC stock estimation. Also, the fraction of rock fragments, at least 
those not exceeding the diameter of the auger/ core sampler, can be estimated. 
Thus, if the soil core has a sufficient diameter (e.g. 4–10 cm) for volumetric and 
relatively undisturbed soil sampling, all parameters for estimating SOC stocks 
can be derived from one sample.

Another commonly used method to sample and describe soils is the soil pit 
method. This is usually the most labor-intensive method, but it is also a low-tech 
method which enables the most unbiased description of the soil profile and thus 
provides information related to pedogenesis (Vadeboncoeur et al., 2012). For 
example, hydromorphic properties, such as concretions of pedogenic oxides, 
are an important indicator for the presence of partial oxygen limitation which 
is directly coupled to SOC cycling (Poeplau et al., 2020). These properties are 
often only visible at the profile scale (see Fig. 1c). In addition, the abundance of 
macropores, the proportion of larger rock fragments, root distribution, as well 
as exact borders of pedogenic horizons can be best determined by a direct 
view of the entire soil profile. The length and depth of a soil pit can range from a 
few decimeters to several meters and are adjusted to the purpose of sampling 
and the site properties. Representative soil sampling of a profile pit for SOC 
content determination can best be achieved by (i) taking a thin slice of the 
whole depth increment or horizon, or (ii) using small metal cylinders to extract a 
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known volume of soil. The latter has the advantage that bulk density can also be 
measured in the same sample. Due to the strong negative relationship between 
bulk density and SOC content (Kaur et al., 2002), the sampling distance for 
both parameters should generally be minimized.

The preference of sampling by horizon or depth increment is context-
specific. Usually, when SOC stocks are targeted, depth-specific values are of 
interest. However, the profile pit sampling provides the opportunity of a mixed 
approach, that is, a general sampling by fixed depth increments, with additional 
increments if horizon borders vary strongly from depth increment borders 
(Jacobs et al., 2018). Finally, the profile pit method is also of advantage in more 
stony soils, or soils with a high share of larger stones that will not be included in 
auger sampling or soil coring. The volumetric proportion of the rock fragment 
fraction can be visually estimated on the profile wall. If many spatial replicates 
are required, the profile pit sampling is less suitable than taking soil cores. It 
should be noted that two different sampling techniques will not yield identical 
results. In the German Agricultural Soil Inventory, profile pit sampling has 
been accompanied by eight core samples around the pit. Figure 2 shows that 
depth-specific sampling biases were detected for bulk density, SOC content 
and stocks. In the topsoil (0–30 cm), all parameters tended to be higher in the 
soil pit, while in the subsoils (50–100 cm), the opposite was true. A change in 
sampling method between sampling dates should be avoided.

Representative sampling of larger spatial units, for example, the field 
or landscape scale, requires greater sampling effort and ideally some 
knowledge about the spatial distribution of SOC (Viscarra  Rossel and 
Brus, 2018, Heikkinen et al., 2020, VandenBygaart, 2006). In recent years, 
cost-effective indirect measures such as proximal sensing or even mobile 
phone-based image analysis tools have been developed for non-destructive 
‘sampling’ of soils to estimate SOC and bulk density (Aitkenhead et al., 2016, 
Viscarra Rossel et al., 2016, Wills et al., 2007). Mobile phone applications, 

Figure 2 Ratios of bulk density, SOC content and stock, determined via profile pit (n = 1 
per site) or core sampler (n = 8 per site), for a total of 1236 sampling sites of the German 
Agricultural Soil Inventory. Dashed red line indicates no change.
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which are usually based on soil color sensing and a statistical model in the 
background (machine learning), might have the advantage that citizen science 
projects can easily be designed and big datasets can be gathered. However, 
among currently available proximal sensing techniques, visible near-infrared 
spectroscopy for SOC content estimation and active gamma-ray attenuation 
for bulk density have been found to be the most accurate measures (England 
and Viscarra Rossel, 2018). Claims have been made that these indirect 
methods might be as accurate, or even more accurate than composite 
sampling (Viscarra Rossel and Brus, 2018), and could be used for SOC stock 
estimation and even SOC stock change detection. For this reason, mobile 
proximal-sensing techniques are already used in official carbon accounting 
schemes such as the Emissions Reduction Fund of the Australian Government 
(https://www .industry .gov .au /regulations -and -standards /methods -for -the - 
emissions -reduction -fund /measurement -of -soil -carbon -sequestration -in 
-agricultural -systems -method). The accuracy of aerial means of proximal 
sensing might be higher than simple random composite sampling for 
determining aerial means of SOC in certain situations, since the spatial 
coverage is higher and more information about SOC heterogeneity can be 
obtained. Therefore, it can be a way forward for soil mapping, deriving field–
landscape-scale baseline SOC stocks and the development of sampling 
designs (see Chapter 11). However, it is doubtful that proximal sensing, or 
even remote sensing, will be accurate enough to verify changes in SOC 
stocks. Even with a large spectral library, Jaconi et al. (2017) used stationary 
(not mobile) near-infrared spectroscopy to determine SOC contents in 
dried and homogenized soil, and the uncertainty was 3.2 g C kg−1 , which 
exceeds the expected changes – as for example, induced by agricultural 
management – in reasonable timescales. The analytical error of, for example, 
elemental analyses, is one order-of-magnitude lower (Saby et al., 2008). 
Mobile field sensors are even less accurate (England and Viscarra Rossel, 
2018). The cost efficiency of sensor-based estimation of soil properties is 
often highlighted (Viscarra Rossel and Brus, 2018). However, this applies only 
to mobile sensors that are used in the field (with high uncertainty), while 
for stationary laboratory spectrometers, the costs of sampling and sample 
preparation for spectroscopy are equal to those of actual measurements. 
Furthermore, sensors for determining the rock fragment fraction are in an 
early stage of development (Jiang et al., 2021). Therefore, estimates of SOC 
contents or stocks should not rely on proximal sensing or image analysis 
methods alone. However, the major advantage and the great potential of 
these techniques are that the easily and rapidly obtained spectra contain 
information on a wide range of chemical, physical and even biological soil 
properties (Cécillon et al., 2009, Jaconi et al., 2019, Vohland et al., 2014, 
Hermansen et al., 2017). The development of global comprehensive spectral 
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libraries is a pre-condition for the routine use of infrared spectroscopy, for 
example, in soil monitoring (Cécillon et al., 2009).

As indicated above, sampling soil cores is more rapid and less labor-intensive 
than excavation of soil pits. Research involving spectroscopic analysis of soil 
cores has shown that this approach allows for rapid and data-rich investigation 
of the vertical distribution of soil properties, including SOC, at the scale of 
centimeters (Doetterl et al., 2013). Research using hyperspectral imaging of 
soil cores in the laboratory illustrates that even more detailed information can 
be obtained at even finer microscales (Steffens and Buddenbaum, 2013). The 
very fine resolution of this type of imaging can provide data about the hot- and 
cold-spots of SOC vertically through the profile (Hobley et al., 2018), potentially 
allowing for detailed assessments of subsoil changes in SOC.

In summary, all of these sampling techniques have their strengths and 
weaknesses and should be selected depending on the scientific question 
(including, for example, the desired accuracy and spatial extent of the area of 
interest), labor and resources available for sampling, expected soil properties, 
sampling depth and of course, cost–benefit considerations. However, especially 
in repeated samplings, there should not be a change in sampling methodology, 
since this can severely bias all three parameters of SOC stock estimation (Walter 
et al., 2016) and thus impede the interpretation of temporal trends or at least 
add significant noise to the data.

2.2  Calculation of soil organic carbon stocks and the 
equivalent-soil-mass concept

Once the required parameters are obtained, the calculation of SOC stocks 
based on the amount of fine soil present and its SOC content should be 
straightforward. However, careful consideration must be given to all of the 
parameters.

2.2.1  Case study 1

It has been shown recently that up to 87 out of 100 randomly picked studies 
overestimated SOC stocks due to misuse of the parameters ‘bulk density’ 
and ‘rock fragment fraction’ in various ways (Poeplau et al., 2017). In brief, the 
following three biases (M1–M3) were found (summarized in Fig. 3):

M1: Bulk density of the whole soil (including stones with a bulk density of 
~2.6 g cm−3) was determined, and the volume occupied by fine soil was 
not corrected for the volume of stones. This method, which basically 
neglects the presence of stones, is correct when the soil has no rock 
fragments at all (e.g., eolian deposits). In all other cases, such as those with 



Published by Burleigh Dodds Science Publishing Limited, 2022.

Quantifiying soil carbon stocks and dynamics 9

missing data on the rock fragments fraction, the method will overestimate 
the SOC stock (i.e. fine soil bulk density is overestimated and stones are 
considered to be filled with fine soil). Sampling with a spade, a narrow 
auger or by using proximal sensing all lead to this type of error, since no 
reliable data on the rock fragment fraction can be obtained and it is not 
possible to estimate this parameter using other soil properties (e.g. by 
using pedotransfer functions).

M2: The rock fragment fraction was estimated and used to calculate the bulk 
density of the fine soil, but was not used to correct the total volume of 
soil. Therefore, the amount of fine soil was overestimated, as was the SOC 
stock.

M3: The opposite happened in this method: the bulk density of the whole 
soil was used (which is an overestimation) while the volume of the soil was 
corrected for the rock fragment fraction.

Only when the rock fragment fraction was used to determine the correct fine 
soil mass and the correct soil volume (M4), unbiased SOC stock estimates were 
obtained. It is particularly relevant to apply M4 when investigating stony soils. 
More details and equations for all methods, as well as a simplified version of M4 
can be found in (Poeplau et al., 2017). This method was applied to the dataset of 
the German agricultural soil inventory, which contained relatively few soil profiles 
with a high rock fragment fraction; the average bias caused by methods M1–M3 
ranged from 2.1% to 10.1%, depending on depth increment and method.

For unbiased comparison of SOC stocks in time series or the valuation of 
treatment effects, the SOC stock estimates must be calculated for equal masses 
of soil (von Haden et al., 2020). The equivalent-soil-mass approach has been 
proposed under various names for a long time (Ellert and Bettany, 1995, Sposito 
et al., 1976), but is often overlooked or solved in different ways. Due to the fact 
that SOC content and bulk density are negatively correlated, the effect can be 
quite severe and usually leads to underestimation of SOC stock differences 
when fixed depth increments are compared. When a soil accumulates SOC in a 
specific depth increment (e.g. 0–30 cm), its bulk density decreases. In the case 

Figure 3 Schematic figure of four methods to calculate SOC stocks (Poeplau et al., 2017) 
in samples with rock fragments. The different shades of brown indicate the density of 
the material. The highest bulk density is found in stones (oval) and the lowest in fine soil.
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of resampling after SOC accumulation to the same depth of the initial sampling, 
several centimeters of soil will be missed and the mass of soil will be lower than 
at initial sampling. Since it is almost impossible to account for this change in soil 
mass per depth increment during sampling, this is only done in rare cases (Don 
et al., 2019). The best option in the majority of cases is to correct the soil mass 
arithmetically. In the above-mentioned example with a single-layer sampling, 
no data is available for the depth increment below 30 cm. Therefore, the only 
possible correction is to ‘cut’ the heavier soil to a depth that equals the mass 
of the lighter soil in 0–30 cm. In single-layer sampling, this is straightforward, 
especially when this layer does not cross a pedogenic horizon border in which 
there is a strong shift in SOC content and bulk density. However, when multiple 
layers are sampled, the problem of equivalent soil mass to a given depth 
becomes more complex and can be solved (approximately) using post hoc 
non-linear models which are fitted to cumulative SOC stocks, to derive specific 
SOC stocks for any desired soil mass (Wendt and Hauser, 2013, Rovira et al., 
2015). As discussed by Rovira et  al. (2015), such a correction has limitations 
in stony soils, in which differences in fine soil mass can be driven by random 
differences in the rock fragment fraction.

For comparison of cumulative SOC stocks, such approximations are 
a reduction of the fixed depth bias, and in most cases, reasonably accurate. 
However, a serious problem related to the equivalent soil mass remains 
unsolved: if a depth increment includes the border between two pedogenic 
horizons (A and B horizons), a change in bulk density within one horizon (e.g. 
the Ap layer in tilled arable soils), will lead to a shift in the proportions of A 
and B horizon material, characterized by distinct SOC contents (Fig. 1a). Such 
‘dilution effects’ can mask actual treatment effects and increase the noise in 
SOC stock data. This is another argument for exceeding the typical sampling 
depth of 30 cm and estimating the SOC stock in deeper layers.

In summary, even if all parameters for SOC stock quantification are 
estimated with high accuracy, major biases can still be introduced when 
calculating SOC stocks.

3  Understanding soil organic carbon dynamics
3.1  Long-term experiments, repeated inventories and space-

for-time substitution

Changes in SOC that occur in response to alterations in land use, 
management or environmental factors are slow (often on the timescale of 
decades) and occur at relatively low rates compared to the total SOC stock 
and its variability (Smith, 2004). Therefore, detecting significant changes in 
SOC can take many years, depending on the effects of a given treatment and 
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the background variability in SOC. The effects of agricultural management, 
such as tillage, fertilization, residue management or crop rotation on the 
SOC stock are relatively small, usually ranging from <0.1–0.5 Mg C ha−1 yr−1 
(Freibauer et al., 2004, Bolinder et al., 2020). The management effects are 
therefore mostly studied in long-term field experiments (Debreczeni and 
Körschens, 2003), in which treatment effects are compared to a reference or 
control treatment and spatial variability is ideally tackled by random, block-
wise replication. Having a control treatment is crucial to distinguish between 
treatment effects and changes in storage that represent the absolute transfer 
of C between soil and atmosphere (Fig. 4). In this case, the average initial SOC 
stocks in the plots of treatment A and B were equal. However, in reality, this 
is rarely the case because many of the existing older experiments were not 
designed for rigorous statistical analysis. For example, many old, long-term 
experiments have only two replicates per treatment. When plots are laid out 
in a field having a gradient in SOC, it is likely that two treatments may differ 
in initial SOC stocks, which would be a major pitfall in quantifying treatment 
effects on SOC dynamics. For unbiased quantification of treatment effects, 
this difference should be accounted for if there is information on the initial 
SOC contents available. In ten Swedish long-term experiments on mineral 
fertilization with a total of 1116 treatment pairs, we found that initial absolute 
SOC content differences between plots were on average 1.3 g C kg−1, while 
the final differences after about 50 years were 1.5 g C kg−1, with 47% of the 

Figure 4 An example of SOC changes between two treatments, A and B. For treatment 
A, the absolute change is the difference in SOC at time x, compared to that at time 0. The 
net change is the difference between SOC in treatment A and that in treatment B, at time 
x, assuming that SOC was the same in both treatments at time 0. The latter approach is 
often used to measure the effect on SOC of a proposed treatment (e.g., no-till) compared 
to a standard ‘control’ (e.g. conventional tillage). Figure content adapted from (Ellert 
et al., 2001).
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treatments having larger initial differences than final differences (Poeplau 
et al., 2016). We also found that the initial and final differences were 
significantly correlated, indicating a long-lasting legacy effect of different 
starting conditions across plots. Ideally, treatment effects at time x should 
thus be calculated as (Ax − A0) − (Bx − B0), rather than Ax − Bx.

On larger spatial scales, repeated soil inventories are useful to evaluate 
SOC stock changes over large areas and long periods of time (Bellamy 
et al., 2005). It has been suggested that a period of ten years is necessary for 
detecting changes in average SOC stocks on a national scale (Schrumpf et al., 
2011), while the continental-scale soil monitoring network, LUCAS Soil, was 
able to detect significant SOC losses (decline in SOC contents) in European 
croplands between 2009 and 2015 (Fernández-Ugalde et al., 2020a). For a 
correct interpretation of the regional trend in SOC stocks, careful records of 
land use and management practices are important. For example, Bellamy 
et al. (2005) suggested that SOC losses in Great Britain were mainly climate 
change-driven, while Smith et  al. (2007) later showed that the reported 
losses were most likely overestimated and mainly attributable to changes 
in agricultural management. Other difficulties arise if the types of soil are 
not fully characterized across the sampling area or if the sampling is not 
conducted uniformly in space and time. If SOC inventories are carried out 
over long periods of time, factors that significantly affect the soil profile 
depth (e.g., erosion and deposition) or bulk density (e.g., compaction) 
should also be quantified repeatedly. A closer look at those inventories 
that have repeatedly sampled soils also reveals that even if the exact same 
sampling plots are resampled, the reproducibility of site-specific SOC stocks 
can be limited (Heikkinen et al., 2013). Figure 5 depicts the distribution of 
observed SOC changes in European topsoils (0–20 cm) between 2009 and 
2015. Only 25% of the 16145 resampled soils had a relative deviation in SOC 
content between +/-10%, a range that could be related to changes caused 
by management or even climate change within six years. The other 75% 
of soils were out of this range, indicating that resampling caused a strong 
random error, masking potential management effects. It is not known what 
causes such large deviations in repeated sampling, but the reasons could be 
manifold, including slight shifts in sampling position, sampling depth, sample 
preparation or the above-mentioned problem on changes in bulk density 
and a related ‘dilution’ of depth increments. Although this effect is not only 
observed in the LUCAS dataset (Heikkinen et al., 2013), the relatively large 
deviations in this case could be related to the low reproducibility of the spade 
sampling method, as described above. Soil monitoring networks are currently 
set up in many parts of the world. The issue of the random resampling error 
should be further evaluated.
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The space-for-time substitution approach is a common and powerful way 
to overcome the problem that SOC dynamics occur relatively slowly, while 
research questions often need to be answered in the short term (Pickett, 
1989). This approach is based on the extrapolation of a temporal trend from a 
series of differently aged sites, also known as a chronosequence. For example, 
forest sites of different ages (i.e. time since afforestation) are compared to 
each other and to a long-term cropland to estimate the temporal dynamic 
of SOC since afforestation (Vesterdal et al., 2002, Quezada et al., 2019). 
Of course, the major assumption is that all sites had the same initial SOC 
stock at the time of conversion. This may rarely occur (see above), but site 
selection should account for this by minimizing pedological or topographical 
differences as well as different management across sites. Complementary 
to chronosequences, other naturally occurring gradients can be useful to 
study SOC dynamics. One example is thermosequences – a series of plots in 
close proximity to a geothermal source that are used to study soil-warming 
effects on SOC dynamics (O’Gorman et al., 2014, Sigurdsson et al., 2016). In 
addition, translocation experiments, along altitudinal gradients for example, 

Figure 5  Distribution of relative deviations in SOC content between the LUCAS Soil 
sampling campaigns in 2009 and 2015. A total of 16 145 sampling locations could be 
compared, while only 15 406 are displayed here, due to even more extreme deviations 
of 739 sampling locations. The area between the red dotted lines indicates the range 
of deviations that could potentially be attributed to actual changes in SOC over time 
(+/-10%).
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can be used to mimic climate change effects on SOC dynamics (Luan et al., 
2014).

In summary, SOC dynamics are assessed in a wide range of scenarios, 
frameworks and experimental approaches, all of which require a high degree 
of standardization and reproducibility.

3.2  Soil organic carbon fractionation

SOC is the main constituent element of soil organic matter, a highly complex 
material consisting of countless compounds of various chemical properties and 
biogeochemical stability. For a better understanding, predicting and modeling 
of its dynamics and turnover in the soil, SOC is often conceptualized into 
different functional pools with distinct turnover kinetics (von Lützow et al., 2007). 
SOC models distinguish roughly between 2 and 7 partly interrelated pools, 
and experimental attempts have been made to quantify these pools by various 
fractionation schemes. Those approaches developed over time, following the 
prevailing paradigms of SOC stabilization in soils or vice versa (Dynarski et al., 
2020). Starting from pure and harsh chemical extractions (Waksman, 1925), 
SOC fractionation has become more related to physical separation methods, 
such as size or density fractionation (Carter et al., 2003). A problem with SOC 
fractionation is that a myriad of different fractionation methods and method 
variations have been used, which usually preclude cross-study comparisons. 
A total of 20 different fractionation methods were evaluated by Poeplau et al. 
(2018) to investigate their efficiency to isolate pools with different turnover 
times. It turned out that methods separating clay or clay and silt-associated SOC 
from coarse and free particulate SOC were among the most effective. These 
methods were only outperformed by methods that additionally included a step 
to obtain an oxidation-resistant SOC fraction. How meaningful such chemical 
fractionation methods are with respect to in situ biogeochemical stability 
(Poeplau et al., 2019, Lutfalla et al., 2014) or regarding their representativeness 
of model pools has often been debated (Elliott et al., 1996, Luo et al., 2014). 
It has recently been proposed that the mere separation of particulate organic 
matter (POM) and mineral-associated organic matter (MAOM), two pools that 
have been shown to be substantially different in their mean residence time and 
response to changes, should be a possible way forward toward an improved 
understanding and prediction of SOC dynamics (Lavallee et al., 2020). This 
suggestion will be examined by many researchers around the globe, since this 
efficient simplification strongly reduces the workload compared to other, more 
complex methods and increases the comparability across studies at the same 
time. However, the choice of a method should always suit the purpose, and 
a reduction to the mentioned two fractions might not always be the optimal 
solution.
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3.3  Use of carbon isotopes to quantify soil organic carbon 
turnover

3.3.1  ¹³C natural abundance (discrimination with age)

Well-drained soils under stable vegetation (i.e. forest or grassland) are 
characterized by regular inputs of litter and root material which are gradually 
decomposed and mixed as they move down through the soil profile. Thus, 
a gradient is established in these profiles as the undecomposed organic 
material at the surface is transformed by decomposition into smaller particles/
compounds that become more mobile and are transported deeper in the 
profile. The soil profile under forest or grassland contains an undisturbed, 
long-term record of decomposition and mixing processes useful for 
evaluating the rate of SOC turnover and determining the factors that regulate 
it. This evaluation can be conducted by coupling measurements of the stable 
C isotope composition (δ13C) and SOC at different depths through the soil 
profile.

The observation that the natural abundance of δ13C increases as SOC 
concentration decreases from the surface litter to deep layers in forest and 
grassland soils has been widely reported in different ecosystems and climates 
(Powers and Schlesinger, 2002, Wang et al., 2018, Garten Jr. et al., 2000). These 
observations show that δ13C increases vertically in the profile, until it reaches a 
maximum steady-state value (Acton et al., 2013, Kohl et al., 2015). This increase 
in δ13C with depth is attributed to several factors, including the mixing of two 
isotopically different sources of C (Garten et al., 2000). The change in δ13C 
values with depth may reflect the depletion of atmospheric δ13C-CO2 due to 
combustion of δ13C-depleted fossil fuels (a decrease of about 2‰ since the 
pre-industrial era) (Keeling et al., 2017). The change in isotopic composition 
with depth may also be attributed to the mixing of above- and below-ground 
vegetative sources of C because of the isotopic differences in, for example, 
root inputs compared to leaf litter inputs. Soil C may also be enriched with 
13C due to isotopic discrimination against the heavier isotope in biological  
processes.

Soils formed under similar conditions exhibit similar trends in δ13C with 
depth, and the generally observed opposing trends of δ13C increases and SOC 
concentration decreases with depth result in a negative linear relationship 
between log10-transformed SOC and δ13C. The slope of the gradient, β, has 
been proposed as a proxy for SOC turnover (Garten Jr. et al., 2000). More 
recently, litter quality and mean annual temperature (MAT) were observed to be 
related to β (Campbell et al., 2009), as are soil texture and drainage (Powers and 
Schlesinger, 2002). It should be noted that these observations hold true only for 
well-drained forest and grassland soils, because it has been observed that the 
gradient in δ13C with depth was reversed in soils with very high clay content 
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(Krull and Skjemstad, 2003) and in water-logged soils with poor drainage due 
to the production of 13C-depleted methane (Krull and Retallack, 2000).

Recently a meta-analysis was conducted with data from studies that 
measured the vertical gradients of stable C isotopes and SOC in 176 forest 
and grassland soil profiles to evaluate the controls of climate, soil properties 
and nutrients on SOC turnover in different biomes worldwide (Wang et al., 
2018). A significant relationship between β and modeled SOC turnover rates 
was observed. Also, relationships observed between β and MAT, MAP, soil N 
concentration and clay content suggest that these data could be used at a 
regional level to estimate SOC turnover. This would help to clarify the role of 
SOC in the climate system and could reduce modeling uncertainty.

3.3.2  C3–C4 vegetation change

The natural 13C abundance of SOC is also useful as a quantitative tracer in 
systems when two plant species sources differ in their isotopic composition. 
For example, introduction of C4 plants to soil previously developed under C3 
vegetation (or vice versa) results in the SOC containing two isotopically different 
sources of C. The δ13C signature of the soil organic matter integrates the relative 
contribution of the fresh C4 plant-derived carbon and the C3-derived SOC. In 
this situation, a two-end-member mixing model (Chalk et al., 2020) is used to 
partition the SOC to origin, thereby allowing for an in situ estimate of SOC 
turnover:

 � � �M f fA A B B� �  

where fA and fB are the fractions or proportions of A (e.g., C4-C) and B (e.g.  
C3-C) in M, and δM, δA and δB represent the mean 13C signatures for the mixture 
M and sources A and B, respectively. The estimate of the proportion of C4-C 
derived from this model best characterizes turnover for the period of time 
following the vegetation change. The turnover rate of bulk soil and physical 
fractions of soil can also be determined using this mixing model (Derrien and 
Amelung, 2011).

The natural δ13C abundance method has been widely used to estimate 
SOC turnover in soils and soil fractions under different climates and types 
of vegetation (Balesdent, 1987, Gregorich et al., 1995). The strength of the 
method is evident in its use as a soil profile indicator of both known and 
presumed changes in vegetation and/or climate, in timescales ranging from 
years to centuries (depending on the approach). In a comprehensive review, 
Chalk et al. (2020) summarized studies using δ13C measurements at different 
depths/horizons in the soil profile to indicate shifts in ecotone boundaries and 
changes in vegetation (e.g. induced by fire, grazing or climate change) within 
ecosystems.
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3.3.3  Case study 2

In this case study, several of the approaches discussed above were applied 
to study SOC dynamics at the soil profile scale. These include: the space-for-
time substitution (change from annual crops to the perennial bioenergy crop 
Miscanthus), SOC fractionation and the natural δ13C abundance method, to 
study fraction and depth-specific SOC turnover (Poeplau and Don, 2014). 
Miscanthus, a perennial C4 grass from Eastern Asia, is considered a bioenergy 
crop in European agro-ecosystems, due to its high biomass production under 
low input conditions (Clifton-Brown et al., 2015). It was hypothesized that SOC 
sequestration could be an additional, climate-smart benefit of Miscanthus 
cultivation on soil that has been used as long-term cropland earlier. Soils of 
six Miscanthus plantations and their adjacent croplands across central Europe 
(Germany, the Netherlands, Switzerland and Denmark) were sampled to a depth 
of 80 cm to assess total SOC stock changes as well as C4-carbon accumulation 
and C3 depletion along the soil profile. For the topsoil (0–10, 10–20 and 20–30 
cm increments), an SOC fractionation was conducted and the fraction of C4 
carbon was determined for each of the five following fractions (Zimmermann 
et al., 2007): POM, dissolved organic C (DOC), sand and stable-aggregates-
associated-C (S+A), silt and clay associated C that was (rSOC) or was not resistant 
to a chemical oxidation treatment (S+C-rSOC). Conceptually, the turnover rate 
of the different fractions follows the order POM > DOC > S+A > S+C−rSOC 
> rSOC. After 16 years of Miscanthus cultivation, SOC stocks increased at an 
annual rate of 0.4±0.2 Mg C ha−1 yr−1. As expected, sequestration of Miscanthus-
derived SOC was highest in the topsoil and decreased exponentially with 
depth (Fig. 6a). However, even in the deepest subsoil increment (50–80 cm), 
a clear Miscanthus signal was detected at all sites. The fractionation revealed 
that the POM fraction was most enriched in Miscanthus-derived SOC, while the 
lowest enrichment was found in the oxidation-resistant carbon of the silt and 
clay fraction (rSOC) (Fig. 6b). This case study represents a proof of concept for 
the applied fractionation method.

3.4  Other isotope approaches and alternatives to quantify soil 
organic carbon turnover

The use of C isotopes is not restricted to the natural abundance and stable 
isotopes 12C and 13C. The much lower natural abundance of the radioactive 
isotope 14C is also used for studying SOC age and turnover, in the so-called 
radiocarbon dating method (Balesdent, 1987, Trumbore et al., 1989). This 
powerful method, which is widely used in age determination in many subject 
areas, is based on the radioactive decay of 14C. It has fundamentally contributed 
to our understanding of SOC ages, which range from years to millennia (Paul 
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et al., 1997). Whole-profile SOC dynamics were extensively studied using 
radiocarbon dating, leading to improved understanding of soil–atmosphere 
carbon transfers (Balesdent et al., 2018). Paul et al. (2001) measured 14C natural 
abundance in the profiles of agricultural soils in mid-west USA and determined 
the mean residence time (MRT) of SOC at different depths. The MRTs of the SOC 
of surface horizons ranged from modern to 1100 years (mean: 560 years). The 
MRT increased to an average of 1700 years in the 25–50-cm depth increment 
and 2757 years at 50–100 cm. One important feature of radiocarbon dating 
is the use of the so-called ‘bomb peak,’ which relates to the testing of nuclear 
weapons in the 1950s and 1960s, which increased the atmospheric 14C content 
by as much as 70%. This peak helps to distinguish modern (post-bomb peak) 
from older (pre-bomb peak) carbon and can thus be used to estimate several 
parameters of SOC dynamics, such as annual input and turnover time (Goh, 
1990). The steep depletion of atmospheric 14C after the bomb peak can further 
be used as a calibration curve for exact dating of entirely modern (post-bomb 
peak) organic matter (Wild et al., 2000). Apart from natural abundance, 13C and 
14C are also used as tracers in labeling studies, mainly to study shorter-term 
(days to years) SOC dynamics and related processes (Gregorich et al., 2015, 
Ziegler et al., 2005). When applied as pulses to living plants, carbon allocation 
within the plant and to the soil (microbes) can be directly quantified (Johnson 
et al., 2002, Epron et al., 2012, Swinnen et al., 1994).

Apart from the coupled use of isotopes and SOC fractionation, other 
methods, such as thermal analysis techniques, have been used (Plante et al., 
2009). The main idea is to link SOC thermal stability to its biogeochemical 

Figure 6  (a) Miscanthus-derived carbon sequestration as a function of depth at six 
central European sites; and (b) average proportion of Miscanthus-derived carbon in bulk 
SOC (total) and five different SOC fractions (POM = particulate organic matter, DOC = 
dissolved organic carbon, S + A = sand and stable aggregate-associated organic carbon, 
S + C − rSOC = silt and clay-associated organic carbon that is not resistant to oxidation 
with NaOCl, rSOC = NaOCL-resistant SOC). Adapted from Poeplau and Don (2014).
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stability, and in recent years, thermogravimetry, differential scanning calorimetry 
and temperature-controlled thermal analysis (e.g. Rock Eval pyrolysis) have 
been found to be promising high-throughput approaches (Peltre et al., 2013, 
Barré et al., 2016, Disnar et al., 2003). Several indices from temperature-
controlled thermal analysis have been developed to successfully describe in 
situ biogeochemical stability (Cécillon et al., 2018, Poeplau et al., 2019). In 
combination with a machine-learning model, Rock Eval pyrolysis was found to 
be potentially applicable to estimate the proportion of centennially stable SOC 
in large sample sets, such as from soil inventories (Cécillon et al., 2018).

The ratio of SOC stocks and inputs or output (i.e., heterotrophic respiration) 
is often used as a measure of the MRT of SOC (Chen et al., 2013, Carvalhais 
et al., 2014). Due to several critical assumptions associated with using this 
approach, the absolute numbers should be interpreted with care, and the 
correct terminology is also important, as pointed out by Sierra et  al. (2017). 
Moreover, it has recently been pointed out that the MRT of SOC is strongly 
underestimated by the ratio of total SOC divided by total annual C input or 
efflux, since a major part ~80% of fresh C inputs to the soil is decomposed 
rapidly and never appears in the pool that is usually defined as SOC (that is, 
organic carbon quantified in the < 2 mm soil fraction) (Luo et al., submitted, 
Poeplau et al., 2021). The stock/input or stock/output ratio might therefore 
define the MRT of organic carbon that freshly enters the soil rather than that of 
stabilized SOC, which should also explain the discrepancies usually detected 
when comparing estimates of MRT or SOC turnover based on δ13C approaches 
(Sanderman et al., 2003).

4  Conclusion
This chapter gives a broad overview on advances in measuring SOC stocks 
and dynamics. Owing to its high relevance for scientists, land owners and 
policy makers, soil organic matter research has a long history in many parts 
of the globe. The focus of this research in the past has been on surface soils. 
However, in the past 2–3 decades, more attention has been given to SOC in 
the subsoil. Thus, there has been more effort to characterize SOC stocks and 
dynamics within the soil profile. The complexity and diversity of soils has led 
to the development of a wide range of different methods and approaches to 
sample soils, to design experiments and monitoring schemes, calculate SOC 
stocks, fractionate SOC and investigate its dynamics through the soil profile. 
This diversity can be problematic because one method, technique or concept 
may not be universally applicable or comparable to other methods. However, 
even in situations where no change in method and geographical position 
occurs, it remains a challenge to ‘reproduce’ SOC stock estimates, hampering 
the verification of SOC stock changes. Soil-sensing methods have become 
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more widely used in recent years and more attention is currently devoted to 
developing proximal and remote-sensing-based methods for estimating SOC 
stocks. However, in the short term, it seems unlikely that soil-sensing methods 
will fully replace traditional soil sampling and analysis. It is therefore necessary 
to continue to work toward improving our techniques for measuring SOC 
stocks and dynamics at the profile scale.

5  Where to look for further information
A text book with a good overview on soil sampling and analysis methods

 • Carter, M. R. and Gregorich, E. G. (Eds.). (2007). Soil Sampling and Methods 
of Analysis. CRC Press.

Further material on sensing methods, including mobile phone applications:

 • http://blog .our -sci .net /2019 /01 /15 /an -open -strategy -to -build -soil -carbon 
-part -2/.

 • https://www .quickcarbon .org/.
 • https://www .hutton .ac .uk /research /departments /information -and 

-computational -sciences /esmart.

A webpage on SOC fractionation methods, based on an international method 
comparison (Poeplau et al., 2018):

 • https://www .somfractionation .org/.

Comprehensive guidelines for measuring and modeling SOC stocks and 
changes:

 • http://www .fao .org /3 /CA2934EN /ca2934en .pdf.

Project page of the European soil monitoring system LUCAS Soil, with links to 
data repositories:

 • https://esdac .jrc .ec .europa .eu /projects /lucas.

Tea time! – An inspiring global citizen science project related to organic matter 
(litter) decomposition:

 • http://www .teatime4science .org/.

http://blog.our-sci.net/2019/01/15/an-open-strategy-to-build-soil-carbon-part-2/
http://blog.our-sci.net/2019/01/15/an-open-strategy-to-build-soil-carbon-part-2/
https://www.quickcarbon.org/
https://www.hutton.ac.uk/research/departments/information-and-computational-sciences/esmart
https://www.hutton.ac.uk/research/departments/information-and-computational-sciences/esmart
https://www.somfractionation.org/
http://www.fao.org/3/CA2934EN/ca2934en.pdf
https://esdac.jrc.ec.europa.eu/projects/lucas
http://www.teatime4science.org/
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