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Abstract
In this article, we analyze the effects of household location and weather vari-
ability on the adoption of borewell technology along the rural–urban interface
of Bangalore, India. Understanding these effects can help to design policies that
ensure smallholders’ livelihoods and the functioning of ecosystems in drought-
prone areas. First, a theoretical framework was developed that conceptualizes
how household location and weather can influence farmers’ adoption decisions.
Then, an empirical analysis based on a primary data set collected in 2016 and
2017, covering 576 farm households, was conducted. With a semiparametric haz-
ard rate model, determinants of the borewell adoption rate were analyzed. Dif-
ferent rainfall variables were included to capture the effect of changing climate
conditions as well as a two-dimensional penalized spline (P-spline) to estimate
the effects of household location. Results show that proximity to Bangalore, but
also secondary towns accelerate adoption rates. In terms of weather variability,
the study finds that a higher amount of total annual rainfall decelerates adop-
tion rates, whereas higher amounts of rainfall during the southwest monsoon
(the most important cropping season) accelerate adoption.
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1 INTRODUCTION

Borewell technology has surged in India since the Green
Revolution of the 1970s, making India the largest ground-
water user in the world today (Shah, 2014). The Indian
government supported the uptake of groundwater lifting
technology from the start and the adoption of this tech-
nology has maintained momentum to the present day.
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Changing rainfall patterns have made traditional rainfed
agriculture less predictable and more vulnerable (Alcon,
Miguel, & Burton, 2011), thereby making borewell tech-
nology an attractive option to compensate for unreliable or
insufficient rainfall. Furthermore, economic development,
improved infrastructure, and urbanization have improved
access to input and output markets and have made it
more profitable to modernize and intensify agriculture
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(Vandercasteelen, Beyene, Minten, & Swinnen, 2018).
Though agricultural intensification can considerably
improve smallholders’ livelihood, increased uptake of
borewell technology comes at a cost. More wells and
uncontrolled water extraction have already led to overex-
ploited aquifers in several regions of India, particularly in
the western and southern states including the Bangalore
area (Blakeslee, Fishman, & Srinivasan, 2020; Srinivasan,
Penny, Lele, Thomas, & Thompson, 2017). As a conse-
quence, borewells dry up, threatening the well-being of
water users. Thus, it is essential to implement policies
that strike a balance between the present well-being of
smallholders and sustainable, long-term availability of
water resources.
To do so, an understanding of what determines farm-

ers’ decisions to adopt borewell technology, particularly
when facing weather changes and urbanization, is neces-
sary. Recent literature primarily analyzes the adoption of
irrigation technologies with a focus onwater use efficiency
(Alcon et al., 2011; Caswell & Zilberman, 1985; Caswell
& Zilberman, 1986). However, these studies—generally
examining case studies in the Global North—assume that
farmers already have access to groundwater and the ques-
tion is how they use it. The case is different in develop-
ing countries, where many farmers still rely on rainwater
as a primary irrigation water source. Thus, adoption deci-
sions in this part of the world focus more on the access to
groundwater itself than on technologies for efficient water
use. To enhance agricultural productivity the Indian gov-
ernment subsidizes borewell implementation and electric-
ity for pumping water despite concerns of overexploited
aquifers; water extraction is hardly regulated and gener-
ally free of cost once a borewell is installed (Srinivasan
et al., 2017). This is in clear contrast to the water man-
agement policies in the Global North, where ground-
water access is strictly regulated and studies show that
water prices, for example, have a statistically significant
effect on adoption decisions (Alcon et al., 2011; Caswell
& Zilberman, 1985). It follows that results from adoption
studies based on data from the Global North cannot be
generalized and applied in a developing country context
without respective empirical analysis. However, to the best
of our knowledge such evidence is scarce in the literature
so far.
By analyzing farmers’ decisions to adopt borewell tech-

nology in the rural–urban interface of Bangalore, this study
aims at providing such empirical evidence. Bangalore is a
rapidly growing city and the area has experienced dras-
tic weather changes (reduced or absent monsoon rains)
in recent years. Such developments are prevalent in many
developing countries and have been repeatedly identified
as drivers of smallholders’ decisions to adopt new tech-
nologies (Dadi, Burton, & Ozanne, 2004; Damania et al.,

2017; Euler, Schwarze, Siregar, & Qaim, 2016). Thus, the
area presents an excellent showcase to analyze farmers’
decision making regarding groundwater extraction in a
developing country context.
For the analysis, a microeconomicmodel was developed

to conceptualize the influence of weather and household
location on farmers’ borewell adoption behavior. House-
hold location is used as a spatially explicit proxy for mar-
ket access, that is, the transaction costs necessary to reach
potential market centers. In the literature, market access
is generally modeled with one-dimensional (1D) measures
such as distance to a market (Chamberlin & Jayne, 2013;
Key, Sadoulet, & de Janvry, 2000). However, when house-
holds have access to more than one market center, such
proxies are of limited use because they require one single
point of reference to be calculated. For example, if a house-
hold is located between two accessible markets in different
directions,whichmarket should be chosen as the reference
point? Such a scenario is particularly likely in the periph-
ery of large urban centers. These have been shown to often
grow in polycentric patterns with a whole network of well-
connected smaller towns around the main city channeling
urbanization effects into the hinterland (Marull, Font, &
Boix, 2015; Taylor, Evans,&Pain, 2008). This is also the case
for the Bangalore area. There are several satellite towns
with functioning agricultural market infrastructure within
a 40-km radius around Bangalore and in direct proximity
to our research area. Therefore, bymodelingmarket access
spatially explicit as household location in two-dimensional
(2D) space, we propose a more flexible approach to
represent market access in a polycentric urbanization
pattern.
In the empirical analysis, a duration model frame-

work was applied. This model class is particularly suit-
able for analyzing the adoption of durable technologies
such as a borewell (Abdulai & Huffman, 2005; Dadi et al.,
2004). Several nonparametric elements were included in
the model, among others a 2D Penalized Spline (P-spline)
based on household GPS coordinates to directly estimate
the effect of household location derived in the microeco-
nomic model. The coordinates were treated as a bivariate
variable (latitude, longitude) and used to estimate nonlin-
ear effect surfaces (2D spline). Because these surfaces are
spatially explicit (coordinates), they can be mapped and
areas with high or low effects on borewell adoption rates
can be identified.
The remainder of this article is structured as fol-

lows: First, a short overview of irrigation in South
India and technology adoption is given. Then a concep-
tual framework (Section 3) is developed and the empir-
ical strategy (Section 4) is described. Finally, results
(Section 5) are discussed and the findings (Section 6) are
summarized.
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2 BACKGROUND ON IRRIGATION IN
SOUTH INDIA AND TECHNOLOGY
ADOPTION

The adoption of borewells has become crucial for food
security in large parts of South Asia; however, nowa-
days it is threatened by increasing overexploitation and
degradation of aquifers (Shah, 2007). A borewell describes
a deep and narrow well that is cased into the ground
using a tube. This type of well is often equipped with
an electric pump and is the most frequently used tech-
nology for groundwater extraction in the study area
(Srinivasan et al., 2015). Water pumped from the ground
can be combined with other irrigation techniques; most
commonly in the region are flood, sprinkler, or drip
irrigation.
The traditional irrigation system in South India was

dominated by reservoirs and local water bodies, also called
tanks. These tanks were used and managed at the com-
munal level. Since the 1990s, however, many farmers have
decided to exit the communal irrigation system by invest-
ing in private well equipment to extract groundwater
(Srinivasan et al., 2017). The reasons for this are manifold.
First, coordination problems within the command area of
the tanks led to uncertainty in water availability. Particu-
larly during the critical stages of cultivation, farmers favor
independent and secure water sources (Kajisa, Palanisami,
& Sakurai, 2007). Second, the maintenance of local water
bodies requires high labor inputs (Shah, 2003). Third,
pumping technology and drilling have become cheaper
in absolute and relative terms. Domestic production of
pumps and improved drilling technologies have lowered
the cost of establishing a borewell, and input prices have
decreased through subsidized flat rate electricity prices
(Srinivasan et al., 2017). Moreover, increased output prices
for agricultural products have also contributed to lowering
the relative price of groundwater irrigation (Kajisa et al.,
2007). Due to the aforementioned reasons, India is now
the biggest user of groundwater globally (Siebert et al.,
2010).
Nevertheless, this development is spatially concen-

trated and large areas remain under rainfed agriculture
(Srinivasa Rao et al., 2015), indicating that there are local
differences in adoption rates. To understand what drives
the adoption process at the individual farm level, several
factors were analyzed.
One of the main reasons for adopting groundwater

lifting technology is to hedge against production risks.
One major production risk in agriculture is adverse cli-
mate and its consequences, such as drought and water
scarcity as well as increased volatility in weather events
(Alcon et al., 2011; Genius, Koundouri, Nauges, & Tzou-
velekas, 2014). At the farm level, unfavorable slopes

and soil characteristics (Genius et al., 2014; Koundouri,
Nauges, & Tzouvelekas, 2006), as well as farm size and
the degree of commercialization, additionally increase
the probability to adopt (Feder, Just, & Zilberman,
1985).
Another important factor, which may explain the dif-

ferences in adoption rates, is the diffusion of technology.
Diffusion is understood as the adoption process of tech-
nology over time (Taylor & Zilberman, 2017). A key role
in the diffusion of technology in agriculture is the distance
to regional centers. The closer producers are, the higher
the probability that they will adopt earlier than other pro-
ducers. Since learning and implementation may require
traveling for more remote farmers, opportunity costs can
be high and impede technology adoption (Sunding &
Zilberman, 2001). More recently, the interconnectedness
of market access and technology adoption has been stud-
ied. Damania et al. (2017) or Vandercasteelen et al. (2018),
for example, find that lower transportation costs due to the
proximity to cities and/or markets increase the likelihood
of technology adoption. Another factor related to technol-
ogy diffusion is learning due to social interaction (Abdulai
& Huffman, 2005; Sampson & Perry, 2019). Even though
our research focuses on exogenous spatial heterogeneity
induced by urbanization dynamics, potential spatial inter-
dependence in the decision making of neighboring farm-
ers has to be mentioned and will be controlled for in the
empirical analysis of this study.

3 CONCEPTUAL FRAMEWORK

To identifymechanisms of technology adoption in the con-
text of weather variability and urbanization, some microe-
conomic intuition is provided in this section following
models such as by Abdulai and Huffman (2005), Irwin and
Bockstael (2004), and Genius et al. (2014). Note that for the
conceptual model it is assumed that spatial heterogene-
ity exclusively results from urbanization dynamics, to be
more precise it results from households’ access to markets
in a town. This is a standard concept in the literature based
on the idea of transportation costs, which decrease with
proximity to markets (Damania et al., 2017; Ebata, Velasco
Pacheco,&Cramon-Taubadel, 2017;Minten,Koru,& Stifel,
2013; Vandercasteelen et al., 2018).
It is assumed that smallholders are profit-maximizing

agricultural producers and they choose one out of two pos-
sible production systems 𝑠. The possible production sys-
tems are defined by the source of irrigation, that is, 𝑠 = 1 if
the household adopted the borewell technology, and 𝑠 = 0

if the technology has not been adopted. In that way, it can
be noted that household 𝑖’s expected operational cash flows
𝐴𝑠,𝑖 are generated by either system, 𝑠, as a function of time
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period 𝑡 and household 𝑖’s location 𝑙 :1

𝐴𝑠 (𝑡, 𝑙) = 𝑝 (𝑡, 𝑙) 𝑞𝑠 (𝑡) − 𝑐 (𝑡, 𝑙) 𝑎𝑠, with 𝑠 = 0, 1. (1)

𝐴𝑠(𝑡, 𝑙), is described by the difference between the prod-
uct of expected output prices 𝑝(𝑡, 𝑙) and expected output
𝑞𝑠(𝑡) and the product of expected input prices 𝑐(𝑡, 𝑙) and
expected used inputs 𝑎𝑠. Prices 𝑝(𝑡, 𝑙) represent the differ-
ence between the price received for farm produce at the
market at time 𝑡 and transportation costs 𝜇(𝑙) defined by
the household location, 𝑙; whereas 𝑐(𝑡, 𝑙) is defined as the
sum of the price paid for inputs 𝑎 at the market in time, 𝑡,
and transportation costs𝜑(𝑙) also defined by the household
location, 𝑙, along the rural–urban interface2:

𝑝 (𝑡, 𝑙) = 𝑝𝑚𝑎𝑟𝑘𝑒𝑡 (𝑡) − 𝜇 (𝑙) , with 𝜇 (𝑙) > 0 (2)

𝑐 (𝑡, 𝑙) = 𝑐𝑚𝑎𝑟𝑘𝑒𝑡 (𝑡) + 𝜑 (𝑙) , with 𝜑 (𝑙) > 0. (3)

The amount of used inputs 𝑎 only depends on 𝑠. With
reliable irrigation (𝑠 = 1), farmers might apply additional
and more sophisticated inputs. Such a system is also likely
to generate a higher output, 𝑞𝑠, as more consistent irri-
gation is possible. Additionally, in regions highly vulner-
able to altering weather patterns in the course of climate
change, farmers’ expectations concerning their production
and outputs (i.e., a production function) are likely to vary
with changingweather patterns, that is, time. For example,
if a farmer expects decreasing rainfall, the expected outputs
from a rainfed production systemwill decrease. Therefore,
the weather component of the research objective is cap-
tured by allowing farmers’ expectations regarding output
quantities to vary over time, 𝑞𝑠(𝑡).3
In the decision to adopt a borewell, also one-time instal-

lation costs 𝐶(𝑡, 𝑙) have to be considered. These costs
depend onwhen a household decides to adopt the borewell
technology and, as in the case of other input costs, the
household’s location (inherent transportation costs).
Equation (1) and the one-time installation costs, 𝐶(𝑡, 𝑙),

are the basic building blocks that are used to formal-
ize the decision of a profit-maximizing farmer. Further-

1 For better clarity we drop the subscript 𝑖 in Equations (1)–(6).
2 In our model 𝜇(𝑙) and 𝜑(𝑙) allow for transportation costs to differ
between input and output markets.
3 Thus, when talking about weather variability in this study, we gener-
ally refer to changing weather patterns over time. One could argue that
𝑞𝑠 also depends on location, that is, rainfall might also show spatial pat-
terns. However, the research area is rather small and farmersmainly refer
to Bangalore weather forecasts. Furthermore, possible alternative water
sources in the research area are limited to one larger water reservoir in
the southern transect, which is also completely rainfed. Thatmeans farm-
ers’ expectations concerning reliability also depend on their expectations
about weather, rather than the location as such.

more, for durable technologies such as a borewell, the tim-
ing of adoption is often more important to understand
the drivers of decision making (optimal timing problem)
(Abdulai & Huffman, 2005; Dadi et al., 2004; Irwin &
Bockstael, 2004). Therefore, it can be assumed that the
farmer optimizes the time of adoption based on the com-
parison of the present value of expected net returns,
𝑉(𝑇, 𝑙), of adopting a borewell in time period 𝑇 (Equa-
tion 4a), and the present value of expected net returns,
𝑉(𝑇 + 1, 𝑙), of adopting a borewell in time period 𝑇 + 1

(Equation 4b) as:

𝑉 (𝑇, 𝑙) =

∞∑
ℎ=0

𝐴1 (𝑇 + ℎ, 𝑙) 𝛿 (ℎ)

−𝐶 (𝑇, 𝑙) −

∞∑
ℎ=0

𝐴0 (𝑇 + ℎ, 𝑙) 𝛿 (ℎ) (4a)

𝑉 (𝑇 + 1, 𝑙) = 𝐴0 (𝑇, 𝑙) +

∞∑
ℎ=1

𝐴1 (𝑇 + ℎ, 𝑙) 𝛿 (ℎ)

−𝐶 (𝑇 + 1, 𝑙) 𝛿 (1) − 𝐴1 (𝑇, 𝑙)

−

∞∑
ℎ=1

𝐴0 (𝑇 + ℎ, 𝑙) 𝛿 (ℎ) . (4b)

For simplicity, the time horizon of the decision is lim-
ited to 𝑇 + 1, that is, until the technology is adopted, the
farmer decides every year whether to adopt a borewell at
that moment or wait another year.4
If the technology is adopted in 𝑇 (Equation 4a), the

present value of the expected net returns is given by the
present value of the expected operating cash flows of a pro-
duction system with borewell discounted to time 𝑇 with
discount factor 𝛿(ℎ), minus the installation costs in 𝑇, and
minus the expected operating cash flows of the production
system without the technology discounted to time 𝑇. The
net present value of a production system with a borewell
(𝑠 = 1) represents the farmer’s expectation of all potential
profits, which they make after the installation of a well;
the net present value of a production system without a
borewell (𝑠 = 0) represents the forgone profit that is not
earned because of the change to the system with a well.
Analogously, in Equation (4b) the first two elements depict
the profits from one more year in the management sys-
tem without the borewell plus all profits after the installa-

4We are aware that a full strand of literature on optimal stopping prob-
lems and stochastic dynamic optimization exists (Dixit & Pindyck, 1994).
However, we believe that our simplification represents the time horizon
of decisionmaking in our research area appropriately. For example,many
farmers make cropping decisions from season to season, which under-
scores farmers’ short-term decision making.
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tion of the technology for all the following years. Since the
adoption decision is delayed by one year (𝑇 + 1), also the
installation costs of the year 𝑇 + 1 are considered. The last
two elements represent the forgone profits from waiting
until year 𝑇 + 1.
Assuming that Equations (4a) and (4b) are the basis on

which household 𝑖makes its decision, two decision criteria
were defined, which have to be fulfilled so that the adop-
tion of the borewell technology takes place in year 𝑇. First,
the net returns of adopting the borewell technology in 𝑇

have to be positive:

𝑉 (𝑇, 𝑙) ≥ 0. (5)

Second, given the first criterion in Equation (5), the
technology is adopted in 𝑇, if the net returns in time 𝑇

exceed the net returns of waiting (value of waiting) for
another year 𝑇 + 1 (see Derivation of Equation (6) in the
Appendix):

𝑉 (𝑇, 𝑙) ≥ 𝑉 (𝑇 + 1, 𝑙)⇔𝑞1 (𝑇) − 𝑞0 (𝑇)

≥
𝐶 (𝑇, 𝑙) − 𝐶 (𝑇 + 1, 𝑙) 𝛿 (1)

2𝑝 (𝑇, 𝑙)
+

𝑐 (𝑇, 𝑙) (𝑎1 − 𝑎0)

𝑝 (𝑇, 𝑙)
. (6)

The left-hand side of Equation (6) describes the expected
output difference of both production systems in𝑇. It, there-
fore, quantifies how relevant a farmer thinks water is
for the success of their production system, and to what
extent available rain-dependent water sources (e.g., reser-
voirs, rain) are as reliable as a borewell. Thus, a farmer
who thinks that weather is becoming less predictable
will expect a larger output difference than a farmer who
assumes sufficient and timely rain or has alternative water
sources.
The first term on the right-hand side of Equation (6)

shows the difference of expected installation cost in 𝑇 and
𝑇 + 1 normalized by two times the price of one output
unit 𝑞𝑠. Similarly, the second term describes the difference
between the variable inputs of both production systems
normalized by the unit output price. Note that this repre-
sentation places all variables that are influenced by farm-
ers’ expectations concerning weather and water availabil-
ity in general to one side, and all variables that are affected
by the household’s location—market access—to the other
side. Thus, the householdwill adopt borewell technology if
the output gain due to amanagement systemwith borewell
is larger than or equal to the net installation costs and addi-
tional net variable input costs relative to the price achieved
for the output gain. Therefore, the more pessimistic farm-
ers are about weather prospects, and the greater the access
to borewell technology and input and output markets, the
higher the likelihood that they adopt the technology in 𝑇.

4 EMPIRICAL STRATEGY

The theoretical model of optimal timing of the adoption
decision presented in the previous section can be empiri-
cally represented in the duration model framework. Thus,
it can be assumed that the borewell technology became
available to the sample population with the Green Revolu-
tion, 𝑡0 = 1970, after which households subsequently—
some sooner, some later—adopt the technology at time
points 𝑡 + ℎ, ℎ = 1,…𝑛 until time 𝑡𝑛 when all households
adopted the technology. Based on the observed adoption
times it is possible to estimate the probability that a house-
hold will adopt a borewell in the next time interval ℎ if
they have not adopted the borewell by 𝑡. This probability
is referred to as hazard rate 𝜆𝑖(𝑡) with 𝑇 being a nonnega-
tive random number and the nonadoption period ending if
𝑇 = 𝑡:

𝜆𝑖 (𝑡) =

lim
ℎ→0

Pr(𝑡 ≤ 𝑇∗ < 𝑡 + ℎ | 𝑇∗
≥ 𝑡)

ℎ
. (7)

One of the most popular duration models to estimate
covariate effects is the so-called Cox model (Cox, 1972):

𝜆𝑖 (𝑡) = 𝜆 (𝑡, 𝑥𝑖) = 𝜆0 (𝑡) exp
(
𝑥′
𝑖
𝛽
)
. (8)

In this model the hazard rate, 𝜆𝑖(𝑡), consists of two
parts: the baseline hazard 𝜆0(𝑡) and the effects of covari-
ates 𝑥𝑖 . The baseline hazard can be understood as the
pure time effect on the hazard rate and, by construction,
must be nonnegative as adoption rates cannot be negative
(Therneau & Grambsch, 2000). The overall framework of
the Cox model in the empirical analysis was followed but
extended by a semiparametric predictor to accommodate
more flexible effects. Since duration models require a cer-
tain type and preparation of data, the next sections describe
the survey and variables included in the empirical analysis;
afterwards the specifications of the semiparametric predic-
tor are presented.

4.1 Survey design and data set

The empirical analysis is based on data collected in a sur-
vey from 1,275 households in two transects following the
rural–urban gradient of Bangalore (Figure 1). To capture
the systematic spatial heterogeneity caused by urbaniza-
tion dynamics, a two-stage stratified sampling approach
was applied to identify the households to be interviewed.
In the first stage, a Survey Stratification Index was used to
classify all villages in the transects into three strata (rural,
peri-urban, and urban) (Hoffmann, Jose, Nölke, &Möckel,
2017). Then, 10 villages in each stratum per transect were
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F IGURE 1 Research area, gray polygons indicate northern and southern transect, respectively [Color figure can be viewed at wileyon-
linelibrary.com]
Source: Own survey data.

randomly selected. This equates to about one-third of all
villages located in the transects. Afterward, an average of
20 households (adjusted by the village population) was
randomly drawn from the household lists of the selected
villages. All householdswere interviewed betweenDecem-
ber 2016 and May 2017. Thus, the maximum observed
time period in the duration model is 47 years (1970–2016).
Household information prior to 2016 is based on recall data
(e.g., year an asset was purchased) and calculation (e.g.,
age or years of experience).
Because the focus is on the adoption of borewells

for agricultural purposes, in the following analysis only
households that grew at least one crop in 2016were consid-
ered (farm households). Therefore, the sample comprises

a total of 576 households of which 316 are located in the
transect north of Bangalore (northern transect) and 260 in
the transect south of Bangalore (southern transect).5
To accommodate time-variant covariates, the data set

had to be augmented in a way that there is one observa-
tion per year and per household, that is, a maximum num-
ber of 47 observations per household. An indicator variable

5 This number of households excludes 66 observations that were excluded
during the empirical analysis because of missing values in important
covariates. The inference strategy does not allow for missing values
unfortunately. The dropped observations are evenly distributed over both
transects and include two households, which already had adopted the
borewell technology.
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(1/0) for each year observation signals whether the house-
hold adopted the borewell technology in the respective
year. Once the household adopted the technology (𝑡 = 𝑇)

all subsequent year observations were dropped; the adop-
tion period of the respective household ended. Compara-
bly, year observations were omitted, if households entered
the adoption period later due to migration or age (left-
truncation). If the technology had not been adopted, the
indicator variable remained zero in the last year observa-
tion (year 47). These observations are called right-censored
and it is assumed that they will adopt the technology in the
future (Moore, 2016). As a consequence, our final data set
for estimation included 7,641 observations for the northern
and 6,563 observations for the southern transect.
The consideration of time-variant covariates has some

important methodological advantages (Dadi et al., 2004;
Euler et al., 2016). First, one general assumption of the Cox
model is that the hazard ratio of different subjects stays
constant throughout the entire time period (proportional
hazard). Therefore, the baseline hazard can be left unspec-
ified for estimating the covariate effects 𝛽 and no a priori
assumptions about the functional form of the baseline haz-
ard are necessary. However, it is unlikely that the hazard
ratio is constant over longer periods such as the 47 years
in our case. Time-variant covariates in 𝑥′

𝑖
𝛽 can counter the

proportional hazard assumption (Therneau & Grambsch,
2000). Second, some covariates might cause problems of
reverse causality or endogeneity if they are included in a
cross-sectional fashion. If these covariates are included as
time-varying, a temporal causality is established and, thus,
these issues (see Section 4.2. for respective variables) are
avoided.

4.2 Variable description

To estimate adoption probabilities and the hazard rate,
all 576 farm households were asked whether they have a
borewell and, if yes, when they installed it. To prevent
recall bias andheaping effects6, (i.e., a farmer ismore likely
to give responses such as five or ten years than seven years,)
farmers were asked to give the year of adoption instead
of the number of years that they have had a borewell. In
the sample, 149 (26%) of the farm households had adopted

6 The problem is that estimates of adoption probability will approximate
zero at time points with no observed positive adoption decisions (Kneib,
2006). This would lead to highly fluctuating estimates of the baseline haz-
ard in the duration analysis. This does not seem to be a problem either
(see Figure A3 in the Appendix ). In addition, the histogram in Figure
A2 in the Appendix shows that there is no obvious heaping. Therefore,
we are confident that recall bias in the dependent variable is no issue in
the empirical analysis and hence strategies such as interval censoring to
correct it were not applied.

the technology by 2016. Of these 149 households, 88 are in
the northern and 61 in the southern transect. Thus, the
adoption level appears to be higher in the northern tran-
sect.
To model the effect of urbanization, that is, market

access, on borewell adoption rates, explicit household loca-
tions were used. The GPS coordinates of every household
are a bivariate and continuous variable consisting of the
latitude and longitude information of the respective loca-
tion. Therefore, they can be used to estimate smooth sur-
faces of location effects (see Section 4.3 for details). Pre-
vious studies quantify market access by proxies such as
distance to the city based on the assumption that dis-
tance and transportation costs are proportional (Cham-
berlin & Jayne, 2013). However, urbanization dynamics
in the rural–urban interface of Bangalore are polycentric,
with several satellite towns offering additional marketing
options to farmers. As a consequence, it is impossible to
determine only one market or town of reference to estab-
lish a 1D proxy such as distance.
The amount of rainfall was used to measure weather

variability over time. Rainfall has become more and more
volatile in recent years in the Bangalore area (Figure A1
in the Appendix), substantially increasing the drought
pressure. Rain patterns define the agricultural seasons in
Bangalore, of which the southwest monsoon determines
the main cropping season. Therefore, to obtain a more
nuanced understanding of the effect of weather, not only
the amount of total yearly rainfall but also the amount
of premonsoon rainfall and rainfall during the southwest
monsoon was included in the dataset. A summary of the
rainfall variables is presented in Table 1. Furthermore, the
current and previous years’ rainfall is considered. Rainfall
data were used for the Bangalore urban district published
on the website of the Agrometeorology Department of
theUniversity of Agricultural Sciences, Bangalore (UASB).
The department provides disaggregated measures such as
premonsoon or southwestmonsoons on a yearly basis. The
rainfall variables are time-variant but can be assumed to
be consistent for the entire research area, that is, they vary
over time t but not among the households. This assump-
tion is reasonable as the research area is rather small and
farmers in the transects generally build their expectations
aboutweather based on theweather forecast for Bangalore.
Tables 2 and 3 present a description and descriptive

statistics for all other time-invariant and time-variant
covariates, respectively. These tables also show the varia-
tion between the two transects and between adopters and
nonadopters of the borewell technology.
As for time-invariant variables, the following are con-

sidered: household caste, a dummy for dairy production,
years of education of the household head, farm size, and
the gender of the household head (Table 2). Caste is still
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an important social factor in India often defining access
to resources and income level. A share of 77% of house-
holds in the sample pursues dairy production; the share
appears to be even higher among borewell adopters (83–
89%). Household heads received an average of 6 years of
formal education, without any large differences between
the two transects or adopters and nonadopters. In contrast,
adopters hold on average double the area of land than non-
adopters. Only 17% of interviewed household heads were
female. Furthermore, the share is even lower when look-
ing exclusively on adopters (7–15%).
Time-variant variables included in the model are the

age of the household head, years of experience as a farmer,
the number of durable assets available to the farmer, the
amount of transport equipment available, a dummy for off-
farm employment and the number of adopted borewells
in the village at 𝑡 − 1. Table 3 shows that adopters are on
average 5– 10 years younger than nonadopters. However,
adopters seem to have slightly more farming experience
than nonadopters. Living standard and purchasing power
can also affect farmers’ decisions to adopt technolo-
gies (Cameron, 1999). In India the New Socio-Economic
Classification (SEC) System is a common tool to classify
households according to their socioeconomic status,
particularly when comparing rural and urban households
(MRSI, Market Research Society of India, 2011). The SEC
is based on two variables, namely the education of the
household head and a count of durables out of a list of
11 items. The items include transport equipment, such as
a car or two-wheelers, and other durable assets like TVs,
washing machines, or air conditioners. The education
variable is time-invariant, the number of assets can, how-
ever, change during the years. Hence, the SEC components
are considered separately (durable assets and transport
equipment).7 In addition, considering transport equip-
ment and durable assets in a time-variant way allows us to
establish temporal causality and, thus, to prevent potential
endogeneity between the asset variable and farmers’ adop-
tion decisions. The same holds for the dummy of off-farm
employment. Abdulai and Huffman (2005) show that the
number of technology adopters in a village at 𝑡 − 1 is a use-
ful way to capture social learning and interaction among
farmers. Farmers observe their neighbors’ experiences
with the borewell technology and include them in their
own optimization decision. This can include production-
related information (e.g., yields) but also technical

7 There are some concerns that asset indices do overestimate the wealth
of a household. These indices only count assets without taking the depre-
ciated value of older assets (Harttgen, Klasen, & Vollmer, 2013). Nonethe-
less, depreciation is often hard to measure or to estimate (Booysen, van
der Berg, Burger, Maltitz, & Du Rand, 2008), especially in a developing
country context and for long time periods as in our case. Therefore, the
asset count only provides an upper bound estimate.
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information, for example the depth of water tables which
is generally unknown in the area. Next to quantifying the
effect of social interaction, the variable also ensures that
the location effect based on household coordinates is not
biased by endogenous or small-scale local spatial patterns.

4.3 Model specification and the use of
P-splines

To accommodate more flexible, nonlinear effects in the
duration model, the linear predictor 𝑥′

𝑖
𝛽 in Equation (8)

is extended to an additive predictor 𝜂𝑖 (Kneib & Fahrmeir,
2007). By transforming 𝑔0(𝑡) = log(𝜆0(𝑡)), the following
semiparametric hazard rate model was specified:

𝜆𝑖 (𝑡) = exp (𝜂𝑖 (𝑡)) (9)

with

𝜂𝑖 (𝑡) = 𝑔0 (𝑡) + 𝑥′
𝑖
𝛽 + 𝑢𝑖 (𝑡) ′𝛾 + 𝑓1𝐷 (𝑢𝑖 (𝑡))

+ 𝑓2𝐷 (𝑠𝑖) + 𝑏𝑣𝑖 . (10)

Thus, the additive predictor consisted of the log-baseline
hazard 𝑔0(𝑡), linear effects 𝛽 of time-invariant covari-
ates 𝑥𝑖 , linear effects 𝛾 of time-variant covariates 𝑢𝑖(𝑡),
potential nonlinear effects of continuous and time-variant
covariates 𝑓1𝐷(𝑢𝑖(𝑡)), effects of household location 𝑠𝑖 =

(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑖), and the household and village ran-
dom effects 𝑏𝑣𝑖 .
The baseline hazard, 𝑔0(𝑡), and 𝑓1𝐷(𝑢𝑖(𝑡)) are estimated

as 1D P-splines, that is, nonlinear effect functions. How-
ever, explorative data analysis implied that most of the
explanatory variables show simple linear relationships
with the hazard rate 𝜆𝑖(𝑡) and a nonlinear estimate is
unnecessary. The only exception is the number of borewell
adopters in a village at 𝑡 − 1, which is considered in
𝑓1𝐷(𝑢𝑖(𝑡)) in the subsequent analysis.
The characteristic and advantage of P-splines can be

described as an optimized tradeoff between the flexibility
of an estimated function 𝑓(𝑧) and the smoothness of the
function due to a penalty term (Fahrmeir, Kneib, Lang, &
Marx, 2013). Function 𝑓(𝑧) is estimated as a polynomial
spline of degree 𝑙 ≥ 0. Such a spline is a piecewise construct
of polynomials of degree 𝑙 in intervals [𝜅𝑗, 𝜅𝑗+1) defined by
a number of knots 𝑎 = 𝜅1 < … < 𝜅𝑚. Finally, to ensure that
these interval polynomials result into one smooth function
𝑓(𝑧), the condition that 𝑓(𝑧) is (𝑙 − 1)-times continuously
differentiable must hold. With higher degrees and more
knots, function 𝑓(𝑧) can become quite rough and is likely
overfitted and difficult to interpret. Therefore, when esti-
mating a P-spline, simultaneous to the polynomial spline

a penalty term based on differences of neighboring coeffi-
cients is considered. This ensures that the spline is smooth
but still presents enough detail. For a detailed introduction
to P-splines and smoothing approaches see, for example,
Eilers & Marx (2010), Fahrmeir et al. (2013), Kneib (2006).
The concept of P-splines can be transferred to spatial

effects. Considering theGPS coordinates 𝑠𝑖 as bivariate (lat-
itude, longitude) and continuous variable, a 2D nonlinear
effect of household location (𝑓2𝐷(𝑠𝑖)) on the borewell adop-
tion rate can be estimated. Such 2D effects are referred
to as smooth surfaces. Comparable to the 1D P-splines,
smoothness is achieved by a penalty term based on differ-
ences in coefficients of neighboring observations. Because
smooth surfaces are spatially explicit, they can be mapped
and areas with particularly large or small effects of house-
hold location on adoption rates can be identified. The 1D
P-splines are estimated with three degrees of freedom and
20 knots. The 2D P-splines are specified with ten knots and
a 2D first-order random walk penalty.
Traditionally, randomeffects (sometimes also referred to

as frailties) are used in the duration model framework to
correct for omitted variables such as small-scale local pat-
terns (e.g., soil quality, biophysical characteristics) or time-
variant variables that are very difficult to collect, especially
over the time of 47 years (Therneau & Grambsch, 2000).
Examples would be crops, which have been grown in the
past years, or other information concerning the agricul-
tural management system. Therefore, random effects on
household (𝑖) and village (𝑣) level (𝑏𝑣𝑖 ) are included.

8

A mixed model approach introduced by Kneib and
Fahrmeir (2007) was used for the inferences of the addi-
tive regression model in Equation (9). The model was
implemented using the software BayesX and the respec-
tive R-package R2BayesX (Umlauf, Adler, Kneib, Lang,
& Zeileis, 2015). The estimation of smoothing parame-
ters for nonlinear effects was conducted via restricted
maximum likelihood (REML). This estimation approach
relies on a Laplace approximation and, thus, no Markov
chain Monte Carlo (MCMC) simulation techniques as in
a fully Bayesian approach were necessary. In this way, the
smoothing parameters could be estimated from the data in
advance, given priors for the other regression parameters.
The result was an empirical Bayesian approach (Kneib &
Fahrmeir, 2007). The REML approach became fairly stan-
dard in recent years and studies show that results are very
similar to the ones of the fully Bayesian inference (Kneib,

8 The model displayed in Equation (9) is large and its estimation is com-
putationally intense. Consequently, estimations of household random
effects did not converge. However, estimations of reduced model specifi-
cations imply that household random effects do not improve model fit or
contribute to coefficient estimates (Table A2 in the Appendix). Therefore,
household random effects were excluded in all subsequent estimations.
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2006). Furthermore, one can avoid mixing and conver-
gence problems in the MCMC simulation step.
Three model specifications were estimated as a robust-

ness check to differentiate between the effects of current
and past rainfall. The first model (I) includes all variables
in Equation (10), that is, both the current and past years’
rainfall values. The second model (II) only contains the
current year’s rainfall variables and the third model (III)
only the past year’s values. To compare the model fit, the
Akaike information criterion (AIC) and the log-likelihood
of estimates are presented.9

5 RESULTS AND DISCUSSION

Tables 4 and 5 show the estimated linear effects of mod-
els I–III for the northern and the southern transect. The
linear effects are presented as percentage changes of the
adoption hazard rate (AHR), a convenient transformation
of estimated coefficients since the hazard rate is modeled
as an exponential function of the additive predictor 𝜂𝑖(𝑡).
Estimated nonlinear effects of household location (2D
P-spline) and borewell adopters in the village (1D P-spline)
are displayed in Figures 2 and 3, respectively. These fig-
ures show results for the northern transect based onmodel
specification I and for the southern transect based on
model specification III. These are the model specifications
that yield the lowest AIC values (Tables 4 and 5) and are
supported by likelihood ratio tests (10% significance level).
However, estimated effects—linear as well as nonlinear—
are robust through all model specifications and, thus, we
can regard the effects presented in Figures 2 and 3 as statis-
tically significant patterns. This is also supported by rather
small differences among the AIC and log-likelihood values
of the three model specifications for the respective tran-
sect.
Figure 2 shows the estimated 2D effect (smooth surface)

of household location on the AHR. The scale at the bot-
tom of Figure 2 represents direct coefficient estimates and,
thus, is an exponential scale. Transforming them compa-
rably with the linear effects in Tables 3 and 4 (e.g., (𝑒𝛽 −
1) × 100)), an absolute coefficientmagnitude of 2 (themar-
gins of the scale) implies a 639% change in the adoption
rate, whereas a coefficient of 1 results in a change of 122%.

9 As a robustness check we also estimated the same model specification
only replacing the 2D P-Splines by a 1D urbanization proxy, namely the
geographic distance betweenhouseholds and the city center of Bangalore.
Results are reported in Table A3 in the Appendix. Coefficient estimates
of control variables hardly vary between specifications with 1D and 2D
proxies and we can assume that the estimated effects are robust. How-
ever, estimations with 2D P-Splines yield significantly better AIC values.
Hence, the 2D P-Splines appear to show and capture the urbanization
effect more appropriately.

F IGURE 2 Estimated smooth effect surfaces of household loca-
tion (values are original coefficients; Northern transect: N = 7,641,
Model I; Southern transect: N = 6,563, Model III) [Color figure can
be viewed at wileyonlinelibrary.com]
Note: Red areas imply an acceleration of the adoption hazard rate,
whereas blue areas signal decelerating effects. The scale represents
direct coefficient estimates and is an exponential scale. For per-
centage changes transform by (𝑒𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 − 1) × 100, for example, an
absolute coefficient magnitude of 2 implies a 639% change in the
adoption rate.
Source: Own survey data.

Furthermore, red areas imply an acceleration of the AHR,
whereas blue areas signal decelerating effects. Since the
color shades in the northern transect are generally darker
than in the southern transect, the urban influence appears
to bemore heterogeneous in the north.Households located
in the southern part of the northern transect are likely
to adopt borewells up to 6.39 times faster, ceteris paribus,
than the average household in the transect. This is in line
with the conceptual framework. In terms of Equation (6),
the right-hand side decreases for households located closer
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to the city as market access increases and transport costs
decrease. However, there is also an area in the northeast
of the transect, where the household location has strong
accelerating effects on the AHR. Though rather far away
from Bangalore, this area is located close to a road, which
connects households to the secondary town of Chikballa-
pur (road intersection in the northeast corner of the map)
and thus provides these householdswith access tomarkets.
In the southern transect, there is one red area in the east
of the transect, close to Bangalore and right next to a large
highway (road in north-south orientation in Figure 2). Fur-
thermore, there are two red areas located in the southern
part of the transect. Comparable with the northern tran-
sect, there are three secondary towns located close to these
areas (Bidadi, Ramanagara, and Kanakapura) and con-
nected by highways. Interestingly, there is a break between
these two red areas just next to a large water reservoir. This
might suggest thatwater demand is covered by sources that
are cheaper to establish in this area. Pumping water from
the reservoir saves the installation costs needed for drilling
a borewell and, thus, could explain negative effects on the
AHR. Finally, differences in the effect patterns andmagni-
tude between the two transects as well as their fragmenta-
tion support the assumption that effects of market access
in a complex rural–urban interface are nonlinear and poly-
centric and, thus, require a 2D representation. In contrast,
the 1D measure of market access (e.g., distance) will be
of limited use because they assume that urban influences
spread in uniform and concentric rings around an urban
center (see Table A3 in the Appendix for estimation results
with the 1D measure).
Concerning the effects of the rainfall variables on the

AHR, the effects are very similar in both transects (Tables 4
and 5). Adoption rates decelerate with an increasing
amount of total rainfall in the current (𝑡) or preceding
time period (𝑡 − 1) as well as with the premonsoon rain-
fall in period 𝑡 − 1. The effects range from −0.2% to −0.9%
per additional millimeter of rain. According to the con-
ceptual framework in Section 3 (in particular Equation 6),
the value of waiting increases when the amount of rain-
fall increases. The farmer then has less need for a second
water source and sticks to the old production system for
another year. When there is less rain, the farmer expects
a larger output difference between the two production
systems and ismore likely to adopt the borewell now rather
than in the next year. However, we also observed an accel-
erating effect of increasing premonsoon rainfall in both
transects in year 𝑡 as well as with the southwest monsoon
in year 𝑡 − 1, effect sizes between 0.2 and 0.8 per additional
millimeter of rain. A year withmoremonsoon rain usually
generates higher agricultural output as the monsoon sea-
son is the principal growing season. Thus, the accelerated
AHRmight result from extra agricultural income and cap-

ital available for the next season or the desire to keep up
with a previous successful season. This explains the posi-
tive lagged effect of monsoon rainfalls, but an explanation
of the contemporaneous effect of premonsoon rainfalls is
less clear. First of all, the effect is only statistically signifi-
cant in model I and, thus, not robust (compare to model II
in Tables 4 and 5). Additionally, we observe borewell adop-
tion on a yearly basis and since the premonsoon occurs
early in the year (March toMay) a time-lag in the adoption
decision making might be lost due to the level of aggrega-
tion. After observing this effect in both transects, it seems
that the households observe and take some time for their
decision to adopt a borewell. This is consistent with the lit-
erature, which states that farmers try to hedge against pro-
duction risks (Koundouri et al., 2006).
Differences between the transects become more evident

when looking at the effects of the control variables in
Tables 4 and 5 and Figure 3. Only the effects of age and
experience are similar. Increasing age reduces the AHR,
in the northern transect by about 3.5% and in the south-
ern transect around 7%. In contrast, farming experience
increases the AHR by 5% in the northern and 9% in the
southern transect.
Turning to variables describing agricultural manage-

ment and income composition of the household, dairy
production has a large accelerating effect and off-farm
employment a large decelerating effect on the AHR in the
northern transect. Dairy production requires a lot of water
for the animals to drink and wash them but also to grow
fodder crops. In addition, dairy production is profitable
and might lead to extra income that can be invested into
borewell adoption.10 Off-farm employment can generally
have two effects on agricultural production. Either addi-
tional income is invested in agricultural production (e.g.,
in the form of technology adoption) (Barrett, Bezuneh,
& Aboud, 2001; de Janvry, Sadoulet, & Zhu, 2005), or the
relevance of agricultural production for the income of
the household decreases (Huang, Wu, & Rozelle, 2009).
Several studies show that smallholders—if they have
access to a labor market—will diversify their income
sources (Deichmann, Shilpi, & Vakis, 2009; Fafchamps &
Shilpi, 2003; Imai, Gaiha, & Thapa, 2015). Moreover, the
literature shows that higher management demands of new
technologies and the opportunity costs of skilled labor fur-
ther decreases technology adoption (Pannell et al., 2006).
At least in the northern transect, it appears that the latter
negative effect (82—84%, Table 4) of off-farm employ-
ment is the case. Neither dairy production nor off-farm
employment shows significant coefficients in the southern

10 Unfortunately, no time-variant information on dairy production is
available. Hence, results might suffer from potential endogeneity, thus
we observe correlation rather than causality.
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F IGURE 3 Estimated nonlinear effect of the number of adopters in a village at t − 1 on borewell adoption rate (values are original coeffi-
cients; northern transect: N = 7,641, model I; southern transect: N = 6,563, model III)
Note: The scale represents direct coefficient estimates and is an exponential scale. For percentage changes transform by (𝑒𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 − 1) × 100,
for example, an absolute coefficient magnitude of 2 implies a 639% change in the adoption rate.
Source: Own survey data.

transect. However, farm size is a highly statistically signifi-
cant factor for borewell adoption (in the northern transect
only significant in model II). With every additional acre,
the AHR increases by 3% everything else being equal.
Furthermore, transport equipment and durable assets

were included as measures of the living standard of a
household. In the northern transect only durable assets
show significant effects, whereas in the southern tran-
sect only transport equipment yields significant effects.
However, both show negative signs and comparable
magnitudes. Since both are measures of living standard,
they are likely to signal the same effect (see correlation
Table A1 in the Appendix). Accordingly, these results
imply that wealthier households are less likely to adopt
borewell technology. This is somehow counterintuitive
as it could be assumed that wealthier families have better
access to financial resources needed to invest in borewell
technology. One explanation of this effect could be that
wealthier families are less dependent on agricultural
production. Similar to the effect of off-farm employment,
income diversification decreases the borewell adoption
rate. Table 3 shows that about 50% of the sample has
at least one household member in the off-farm sector
and off-farm employment is positively correlated with
both wealth indicators (Table A1 in the Appendix). If

farming is no longer the main income source, the need
to modernize production systems and adopt groundwater
lifting technology might decrease.
Furthermore, measures of social status and interaction

produce different effects as well. For caste, significant
negative effects of scheduled castes and scheduled tribes
in the southern transect were found. These represent
the castes that generally hold the lowest social status.
Thus, belonging to these groups in the southern transect
reduces a household’s adoption rate by 67% and 90%,
respectively. While no significant effects for caste were
found in the northern transect, gender has a statistically
significant negative effect on the AHR (not significant in
the southern transect). If the household head is female,
the adoption rate of the household is 75–79% lower in
the northern transect. These results imply different social
structures between the two transects. Since the shares of
households in the different castes are very similar in both
transects (Table 1), caste boundaries are more relevant in
the southern transect. Lower caste households have less
and later access to groundwater lifting technology. How-
ever, the same holds for female-headed households in the
northern transect. As a consequence, already disad-
vantaged households will be more vulnerable to water
shortage.



STEINHÜBEL et al. 701

The number of borewell adopters in a village shows sta-
tistically significant effects in both transects (Figure 3). Up
to a number of six adopters per village in t − 1 (sample
population), strong accelerating effects on the AHR (about
700%, the y-axis in Figure 3 represents coefficient esti-
mates) are observed in the northern transect (Figure 3a).
In the southern transect, the effect is lower (by about 100%)
and is observable for up to four adopters in the sample per
village. Hence, there is a positive effect of social interac-
tion on technology diffusion. Interestingly, effects change
at higher numbers of adopters. In the northern transect,
effects even become significantly negative, that is, if there
are more than nine adopters, the adoption probability of
remaining nonadopters decreases. A reason might be that
wells are shared among neighbors. Since water extraction
is unregulated, water prices are close to zero once the well
is drilled. Consequently, even if farmers have to pay their
neighbors a fee to use their well, it might still be cheaper
than drilling one for themselves. However, no household
in the sample reported such agreements. Another explana-
tion could be that with more wells and unregulated water
extraction, groundwater tables are likely to fall (Blakeslee
et al., 2020). Observing the drop in water availability in
already existing wells might prevent further adoption as
farmers are less optimistic that their own drilling will be
successful.

6 CONCLUSIONS

This analysis aims at understanding both the effect of
households’ location as a measure of urban influence and
market access, and the effect of changing climate condi-
tions on borewell adoption behavior along the rural–urban
interface of Bangalore. Duration models were applied
with semiparametric predictors to accommodate for com-
plex and polycentric urbanization patterns (e.g., secondary
towns) and three rainfall variables were used to obtain
nuanced insights into the effect of weather changes.
The results show that household location matters. Both

proximity to Bangalore and proximity to secondary towns
increase the borewell adoption rate. This supports the
assumption that urbanization effects are polycentric and
that empirical strategies using 2D splines are a useful
instrument to quantify them. Moreover, adoption rates
are further accelerated by social interaction within vil-
lages. The study finds that the number of adopters in
a village increases the adoption probability of remaining
nonadopters. Only if adoption shares are already high,
the effects will decrease and even turn negative in the
northern transect. Considering changing climate condi-
tions, the study finds that the amount of rainfall affects
decisions in two ways. First, a decelerating effect with

the amount of total rainfall in year t as well as in the
lagged time period t − 1 was observed. Hence, dry peri-
ods accelerate the adoption of borewell technology. Sec-
ond, an accelerating effect with the amount of rainfall dur-
ing the southwestmonsoon in period t− 1was observed.As
themonsoon season is themost important growing period,
the adoption rate also depends on households’ additional
income.
Based on these results, we propose the following pol-

icy implications distinguishing between two issue areas
policy makers might be interested in: sustainable resource
use and the accessibility and equal distribution of borewell
technology as a development tool. For policy makers con-
cerned with overexploitation of groundwater, our results
hint at possible increasing effects of social learning on
adoption rates. Such dynamics might amplify already
increasing adoption rates due to proximity to urban cen-
ters and better market access. Borewell adoption is not an
evenly distributed phenomenon and there might be geo-
graphic clusters of high borewell density. Hence, a close
monitoring of drilling activities is necessary to ensure a
sustainable use of the resource. If such clusters coincide
with falling groundwater tables, the implementation of
regulatory policies might be necessary. For policy makers
more concerned with accessibility and an equal distribu-
tion of the access to a resource, our results suggest focus-
ing on vulnerable and already disadvantaged groups. The
study finds that for example female-headed or lower caste
households have statistically significantly lower adoption
rates.
There is also room for further research. The estima-

tion results show that a household’s income composition
affects decision making in the context of urban growth
and drought pressure. Urban centers provide opportuni-
ties for off-farm employment and increasing water inse-
curity might encourage farm households to pursue off-
farm opportunities. This means, farmers’ decision making
might not rely on themaximization of agricultural produc-
tion but rather on the maximization of overall household
utility. This aspect could be an interesting addition tomod-
els explaining technology adoption decisions.

ACKNOWLEDGMENT
The authors gratefully acknowledge the helpful comments
by three anonymous referees and the editor. The data
were collected under the auspices of Research Unit 2432
“Ecological and Social Systems at the Indian Rural-Urban
Interface: Functions, Scales and Dynamics of Transition”
funded by the German Research Foundation (DFG) and
theDepartment of Biotechnology (DBT),NewDelhi, India.
This research was also supported by the DFG Research
Training Group 1644 “Scaling Problems in Statistics”, grant
no. 152112243.



702 STEINHÜBEL et al.

REFERENCES
Abdulai, A., & Huffman, W. E. (2005). The diffusion of new agricul-
tural technologies. The case of crossbred-cow technology in Tan-
zania. American Journal of Agricultural Economics, 87, 645–659.

Alcon, F., Miguel, M. D. de, & Burton, M. (2011). Duration analysis
of adoption of drip irrigation technology in southeastern Spain.
Technological Forecasting and Social Change, 78, 991–1001.

Barrett, C. B., Bezuneh, M., & Aboud, A. (2001). Income diversifica-
tion, poverty traps and policy shocks in Côte d’Ivoire and Kenya.
Food Policy, 26, 367–384.

Blakeslee, D., Fishman, R., & Srinivasan, V. (2020). Way down in the
hole: Adaptation to long-term water loss in rural India. American
Economic Review, 110, 200–224.

Booysen, F., van der Berg, S., Burger, R., Maltitz, M. V., & Du Rand,
G. (2008). Using an asset index to assess trends in poverty in seven
sub-Saharan African countries.World Development, 36, 1113–1130.

Cameron, L. A. (1999). The importance of learning in the adoption of
high-yielding variety seeds. American Journal of Agricultural Eco-
nomics, 81, 83–94.

Caswell, M., & Zilberman, D. (1985). The choices of irrigation tech-
nologies in California. American Journal of Agricultural Eco-
nomics, 67, 224.

Caswell, M. F., & Zilberman, D. (1986). The effects of well depth and
land quality on the choice of irrigation technology.American Jour-
nal of Agricultural Economics, 68, 798.

Chamberlin, J., & Jayne, T. S. (2013). Unpacking themeaning of ‘mar-
ket access’. Evidence from rural Kenya. World Development, 41,
245–264.

Cox, D. R. (1972). Regression models and life-tables. Journal of the
Royal Statistical Society. Series B, Statistical Methodology, 34, 187–
220.

Dadi, L., Burton, M., & Ozanne, A. (2004). Duration analysis of tech-
nological adoption in Ethiopian agriculture. Journal of Agricul-
tural Economics, 55, 613–631.

Damania, R., Berg, C., Russ, J., Federico Barra, A., Nash, J., & Ali,
R. (2017). Agricultural technology choice and transport. American
Journal of Agricultural Economics, 99, 265–284.

Deichmann, U., Shilpi, F., & Vakis, R. (2009). Urban proximity, agri-
cultural potential and rural non-farm employment. evidence from
Bangladesh.World Development, 37, 645–660.

de Janvry, A., Sadoulet, E., & Zhu, N. (2005). The role of non-farm
incomes in reducing rural poverty and inequality in China, Depart-
ment of Agricultural & Resource Economics, UC Berkeley. Work-
ing Paper No 1001.

Dixit, A. K., & Pindyck, R. S. (1994). Investment under uncertainty.
Princeton, NJ: Princeton University Press.

Ebata, A., Velasco Pacheco, P. A., & Cramon-Taubadel, S. von (2017).
The influence of proximity to market on bean producer prices in
Nicaragua. Agricultural Economics, 48, 459–467.

Eilers, P. H. C., & Marx, B. D. (2010). Splines, knots, and penalties.
WIREs Comp Stat, 2, 637–653.

Euler, M., Schwarze, S., Siregar, H., & Qaim, M. (2016). Oil palm
expansion among smallholder farmers in Sumatra, Indonesia.
Journal of Agricultural Economics, 67, 658–676.

Fafchamps, M., & Shilpi, F. (2003). The spatial division of labour in
Nepal. Journal of College Student Development, 39, 23–66.

Fahrmeir, L., Kneib, T., Lang, S., & Marx, B. (2013). Regression: Mod-
els, methods and applications. Dordrecht: Springer.

Feder, G., Just, R. E., & Zilberman, D. (1985). Adoption of agricultural
innovations in developing countries. A survey. Economic Develop-
ment and Cultural Change, 33, 255–298.

Genius, M., Koundouri, P., Nauges, C., & Tzouvelekas, V. (2014).
Information transmission in irrigation technology adoption and
diffusion. social learning, extension services, and spatial effects.
American Journal of Agricultural Economics, 96, 328–344.

Harttgen, K., Klasen, S., & Vollmer, S. (2013). An African growthmir-
acle? Or: What do asset indices tell us about trends in economic
performance? Review of Income and Wealth, 59, S37–S61.

Hoffmann, E., Jose, M., Nölke, N., & Möckel, T. (2017). Construction
and use of a simple index of urbanisation in the rural–urban inter-
face of Bangalore, India. Sustainability-Basel, 9, 2146.

Huang, J.,Wu, Y., &Rozelle, S. (2009).Moving off the farm and inten-
sifying agricultural production in Shandong. A case study of rural
labor market linkages in China. Agricultural Economics, 40, 203–
218.

Imai, K. S., Gaiha, R., & Thapa, G. (2015). Does non-farm sector
employment reduce rural poverty and vulnerability? Evidence
from Vietnam and India. Journal of Asian Economics, 36, 47–
61.

Irwin, E., & Bockstael, N. (2004). Endogenous spatial externalities.
Empirical evidence and implications for the evolution of exurban
residential land use patterns, In L. Anselin, R. J. G. M. Florax, & S.
J. Rey (Eds.), Advances in spatial econometrics: Methodology, tools
and applications (pp. 359–380). Berlin Heidelberg: Springer.:

Kajisa, K., Palanisami, K., & Sakurai, T. (2007). Effects on poverty and
equity of the decline in collective tank irrigation management in
Tamil Nadu, India. Agricultural Economics, 36, 347–362.

Key, N., Sadoulet, E., & de Janvry, A. (2000). Transactions costs and
agricultural household supply response.American Journal of Agri-
cultural Economics, 82, 245–259.

Kneib, T. (2006). Mixed model-based inference in geoadditive haz-
ard regression for interval-censored survival times.Computational
Statistics & Data Analysis, 51, 777–792.

Kneib, T., & Fahrmeir, L. (2007). Amixedmodel approach for geoad-
ditive hazard regression. Scandinavian Journal of Statistics, 34,
207–228.

Koundouri, P., Nauges, C., & Tzouvelekas, V. (2006). Technology
adoption under production uncertainty. Theory and application to
irrigation technology.American Journal ofAgricultural Economics,
88, 657–670.

Marull, J., Font, C., & Boix, R. (2015). Modelling urban networks at
mega-regional scale: Are increasingly complex urban systems sus-
tainable? Land Use Policy, 43, 15–27.

Minten, B., Koru, B., & Stifel, D. (2013). The last mile(s) in modern
input distribution. Pricing, profitability, and adoption. Agricul-
tural Economics, 44, 629–646.

Moore, D. F. (2016).Applied survival analysis using R. Cham: Springer
International Publishing.

MRSI, Market Research Society of India. (2011). Socio-economic
classification 2011. The SEC system. Mumbai, India: The Market
Research Society of India

Pannell, D. J., Marshall, G. R., Barr, N., Curtis, A., Vanclay, F., &
Wilkinson, R. (2006). Understanding and promoting adoption of
conservation practices by rural landholders. Australian Journal of
Experimental Agriculture, 46, 1407–1424.



STEINHÜBEL et al. 703

Sampson, G. S., & Perry, E. D. (2019). The role of peer effects in nat-
ural resource appropriation – The case of groundwater. American
Journal of Agricultural Economics, 101, 154–171.

Shah, E. (2003). Social designs: Tank irrigation technology and agrar-
ian transformation in Karnataka, South India. Hyderabad, India:
Orient BlackSwan.

Shah, T. (2007). The groundwater economy of South Asia. An assess-
ment of size, significance and socio-ecological impacts, InM.Gior-
dano&K. G. Villholth (Eds.),The agricultural groundwater revolu-
tion: Opportunities and threats to development (pp. 7–36). Walling-
ford: CABI.

Shah, T. (2014). Groundwater governance and irrigated agriculture.
Paper presented at Global Water Partnership, Stockholm

Siebert, S., Burke, J., Faures, J.M., Frenken,K.,Hoogeveen, J., Döll, P.,
& Portmann, F. T. (2010). Groundwater use for irrigation – a global
inventory. Hydrology and Earth System Sciences, 14, 1863–1880.

SrinivasaRao, C., Lal, R., Prasad, J. V.N. S., Gopinath, K.A., Singh, R.,
Jakkula, V. S., . . . Virmani, S.M. (2015). Potential and challenges of
rainfed farming in India, In D. L. Sparks (Ed.), Advances in agron-
omy (pp. 113–181). Burlington: Elsevier Science.

Srinivasan, V., Penny, G., Lele, S., Thomas, B. K., & Thompson,
S. (2017). Proximate and underlying drivers of socio-hydrologic
change in the upper Arkavathy watershed, India. Hydrology and
Earth System Sciences Discussions, 1–28.

Srinivasan, V., Thompson, S., Madhyastha, K., Penny, G., Jeremiah,
K., & Lele, S. (2015). Why is the Arkavathy River drying? A
multiple-hypothesis approach in a data-scarce region. Hydrology
and Earth System Sciences, 19, 1905–1917.

Sunding, D., & Zilberman, D. (2001). Chapter 4 The agricultural inno-
vation process: Research and technology adoption in a changing
agricultural sector. In B. L. Gardner & G. C. Rausser (Eds.) Hand-
book of agricultural economics : Agricultural production (pp. 207–
261). Amsterdam: Elsevier

Taylor, P. J., Evans, D. M., & Pain, K. (2008). Application of the inter-
locking network model to mega-city-regions: Measuring polycen-
tricity within and beyond city-regions. Regional Studies, 42, 1079–
1093.

Taylor, R., & Zilberman, D. (2017). Diffusion of drip irrigation. The
case of California. Applied Economic Perspectives and Policy, 78,
16–40.

Therneau, T. M., & Grambsch, P. M. (2000). Modeling survival data:
Extending the Cox model. Springer New York, NY

Umlauf, N., Adler, D., Kneib, T., Lang, S., & Zeileis, A. (2015). Struc-
tured additive regression models: An R interface to BayesX. Jour-
nal of Statistical Software, 63(21), 1–41

Vandercasteelen, J., Beyene, S. T., Minten, B., & Swinnen, J. (2018).
Big cities, small towns, and poor farmers: Evidence from Ethiopia.
World Development, 106, 393–406.

SUPPORT ING INFORMATION
Additional supporting information may be found online
in the Supporting Information section at the end of the
article.

How to cite this article: Steinhübel L, Wegmann
J, Mußhoff O. Digging deep and running dry – the
adoption of borewell technology in the face of
climate change and urbanization. Agricultural
Economics. 2020;51:685–706.
https://doi.org/10.1111/agec.12586

APPENDIX
DERIVATION OF EQUATION (6)

𝑉 (𝑇, 𝑙) ≥ 𝑉 (𝑇 + 1, 𝑙)
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ℎ=0
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+
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ℎ=1
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2
[𝐶 (𝑇, 𝑙) − 𝐶 (𝑇 + 1, 𝑙) 𝛿 (1)]

+𝑐 (𝑇, 𝑙) (𝑎1 − 𝑎0)
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F IGURE A1 Total rainfall in the Bengaluru
urban district, 1970–2016
Source: Rainfall data (Department of
Agrometeorology, University of Agricultural
Sciences, Bangalore (UASB)).

F IGURE A2 Response frequency of when
borewell was adopted (N = 149, households)
Source: Survey data.

F IGURE A3 Estimated log-baseline of spatial
model I (P-spline), northern and southern transect
(northern transect: N = 7,641; southern transect:
N = 6,563)
Note: Dark gray bandwidth indicates the 90%
confidence interval, light gray bandwidth indicates
the 95% confidence interval.
Source: Own survey data and rainfall data from
Department of Agrometeorology, University of
Agricultural Sciences, Bangalore (UASB).
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