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Abstract: Investing labor time in herbage measurements is important for precision pasture man-
agement. In this study, the labor input of three smart herbage measurement tools—multispectral
imagery linked to an unmanned aerial vehicle (UAV), a semi-automated rising plate meter (RPM),
and near-infrared reflectance spectroscopy (NIRS) of cut herbage samples—and of direct observation
was modeled based on the REFA work element method. Three to five users were observed during
work execution to identify best-practice workflows. Time measurements were conducted using
video footage. The resulting standard times of work elements were used to model labor input for
herbage measurements in different farm sizes (i.e., milking platforms of 6–100 ha) and subdivisions
of a farm’s milking platform (i.e., 4–45 paddocks). Labor time requirement differed between the
smart farming tools (0.7–5.9 h) depending on the farm size and milking platform scenario. The labor
time requirement increased for all tools with an increase in farm size and was lowest for the RPM.
For the UAV tool, it did not increase noticeably when the division of the milking platform changed.
Nevertheless, the potential to save time was identified for the UAV and the NIRS. Therefore, the
automation of certain steps in the workflows would contribute to sociotechnological sustainable
pasture management.

Keywords: precision grazing; labor time requirement; model calculation; rising plate meter; unmanned
aerial vehicle; near infrared; farm size scenario; work–life balance; automation of workflow

1. Introduction

Ensuring sustainable consumption and production patterns by 2030 was formulated
by the United Nations member states as one of the 17 Sustainable Development Goals [1]. A
sustainable and economically viable milk production can be achieved by the demand-based
feeding of cows. Although pasture-based systems score better on ecological and economic
sustainability than indoor dairy production systems [2], it is more difficult to implement
demand-based feeding in pasture-based systems because the growth and nutritional value
of herbage is affected by many environmental factors [3].

In pasture-based systems, herbage intake, not only in terms of quantity but also in
terms of quality, is difficult to estimate, making it difficult to control how much concentrate
feed to add. Well-implemented pasture management in strip or rotational grazing systems
can ensure the high production levels and nutritional health of dairy cows [4,5]. Moreover,
it can combine the farmer’s production goals with multiple ecosystem services [6–8] and
positive aspects of animal welfare [9] that pasture-based systems offer.
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Demand-based feeding on pasture relies on good pasture management, and thus
experience is needed [8]. However, there are tools to support pasture management. For
example, farmers can take destructive samples of defined grassland areas to weigh and
measure available herbage mass [10], or they can use rising plate meters (RPMs) to convert
measurements of compressed sward height into an estimate of herbage mass [11]. These
estimates can be visualized in a so-called “grass wedge”, i.e., a bar graph where paddocks
are sorted by the amount of available herbage so that it is easy to see which paddocks are
below and which are above the required amount of feed for the grazing herd. Based on
the grass wedge, farmers can better schedule the allocating or harvesting of paddocks, as
well as anticipate herbage shortages [12]. Additionally, farmers can send dried herbage
samples to a laboratory or use tables to look up the nutritional value of fresh herbage in
the fields [13]. With this, farmers can manage the supplementary use of concentrates more
efficiently [2].

However, even the basic tasks of grazing, such as setting up and checking fences
and water troughs or bringing animals to grazing areas and back, are perceived as labor
intensive [14,15]. Even more work is added when the precise herbage measurements are to
be conducted [16]. There is even more time pressure during bad weather periods because
the grass must not be wet for some measurement methods, which additionally complicates
the completion of the task. The additional work can affect social components of sustainable
farming practice, because there is less time and flexibility for family and social life [17].

In general, the volume of work in dairy farming and its physical strain are high [18,19],
as is the psychological workload for farm managers [20]. Therefore, some farmers identified
an unsatisfactory quality of life in a Swiss study [21]. In order for dairy farming to remain
an attractive occupation for future generations, a better work–life balance is urgently
needed [22,23].

Automation attempts to address these aspects of unsatisfactory social sustainability
on farms, particularly by reducing working hours and physical workloads in standardized
production processes [18,24,25]. Thus, new approaches and tools are constantly emerging
from research and industry that are semi-automated and make estimations nearly in real-
time and on-site, which supports farmers’ decision-making. They are hereafter referred to
as smart farming tools.

Smart farming tools are being developed to assist herbage measurements in order to
make paddock management more precise. One tool, which is already in use, is a semi-
automated RPM that converts a sward height measurement into a herbage mass estimate
in real-time [26]. Another tool is an unmanned aerial vehicle (UAV) that is equipped with
optical sensors and generates a color-scaled farm map to indicate the spatially available
herbage masses. This tool is still in the development stage, because an established prediction
model was not accurate enough for practical use by farmers in an evaluation study [27].
However, it is seen as having a large potential to replace RPM measurements because it
has a high operative capability in determining herbage mass and is also affordable [28,29].
In a study by Lussem et al. [30], the UAV approach used even outperformed an RPM in
measurement accuracy. However, Sishodia et al. [31] note that image processing is complex
and needs expertise. Therefore, it is difficult to develop an easy-to-use workflow for real-
time application to promote the adoption of the tool [31]. A third tool uses near-infrared
reflectance spectroscopy (NIRS) to analyze the nutritive value of fresh herbage cuttings
on-site. By weighing the cut herbage samples, they can also be used to estimate the amount
of herbage available in pastures and to create the so called grass wedge [32]. The NIRS
is commercialized and available as a mobile work station to be operated either in farm
offices or car boots or as fixed variant mounted onto harvest machinery. Calibrations are
constantly evolving and are updated from time to time by the manufacturer.

To the best of our knowledge, labor times are as yet unknown for these tools, and
therefore also the implications for social sustainability on farms. There are different meth-
ods to quantify or estimate labor time requirements. Interviewing persons can provide
estimations on labor input. A more precise method is a work diary, for example, via a
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smartphone app as used by Deming et al. [16]. Although this method is partly subjective, it
is well suited to getting insight into the required labor input of a production system. Thus,
the total workload on a farm or the relative differences in workload for different work
operations can be estimated [33].

However, work operations can also be directly observed and measured using tradi-
tional watches, hand-held computers, or smart devices with time measurement apps [34,35].
Indirect time measurements are possible by taking videos of working persons and analyz-
ing video footage by means of time measurement software [36–38]. Direct and indirect time
measurements are usually no longer done at the farm level, but at the level of individual
work operations and procedures, for example, harvesting forage with a rotary mower [39]
or trellising greenhouse crops with an angle of 30◦ [40]. Hereby, it is essential to determine
influencing factors, for example, the distance driven with a tractor or the number of pepper
and tomato plants trellised within the measured time interval.

These time measurements, which are based on a variety of observations on different
farms, can further be used to establish dynamic labor time models [41]. Dynamic models
allow estimating labor time requirements under changing conditions [38,41,42], for example,
large versus small farms. Therefore, they are extremely valuable for labor planning and
for comparing the labor input of different work procedures before a potential purchase
decision is made.

The present study focuses on three smart farming tools supporting paddock manage-
ment decisions for which there is little or no information available about the temporal labor
input. No work diaries or survey data were available for two of the tools investigated,
because they were still relatively new and have not yet been widely applied in practical
agriculture. In addition, the best-practice workflow on farms is unknown, and it has not
yet been studied under which farm conditions, such as farm size, pasture subdivision, and
spatial and botanical heterogeneity, the tools are best used.

To study the above-mentioned aspects, dynamic labor time models were established
to determine the required labor time. Furthermore, work observations were conducted to
measure time in each work procedure.

The objectives of this study were (i) to model the labor time requirement of three smart
farming tools and the conventional approach for herbage measurement on an exemplary
dairy farm and (ii) to identify potential time savings by optimizing the smart farming tool
applications, especially their workflows. In addition (iii), the impact of the farm size and
the subdivision of the milking platform on labor input was investigated.

2. Materials and Methods

The labor time requirement for measuring herbage using the three smart farming tools
and a conventional approach was calculated by means of a dynamic modeling approach.
As the basis for modeling, the REFA work element method was used [34]. For this, the
work operations had to be analyzed to create workflow models. To do so, video footage
was gathered. From 2018 to 2020, different users were recorded on video during on-farm
and real-time measurements of fresh herbage from pastures using three smart farming
tools (Figure A1).

2.1. The Work Operations Using Different Work Procedures

The work procedures under study (i.e., three smart farming tools and the conventional
approach “direct observation”) differed from each other in terms of the application method.
However, they all consisted of a work operation “sampling” and “analysis,” the former
involving sampling the pastures, i.e., collecting the data or fresh biomass for analysis.
This included digitalization and visualization of the data as downstream work. The later
analysis involved determining the herbage quality. Each work procedure’s workflow and
associated sub-operations are described below.
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2.1.1. Direct Observation

Determining herbage mass by direct visual observation is done by walking a few
meters into a paddock, looking at the available herbage within the paddock, and noting
down the herbage mass estimate as kilograms of dry matter per hectare.

For paddocks that will be grazed next, look-up tables are used to determine herbage
quality parameters by observing a representative spot within the paddock. In look-up
tables by Daccord et al. [13], users assess the herbage category (richness on legumes, grasses,
and herbs) and the phenological stage of the plants (e.g., shooting and flowering). After
the precise determination of the indicators mentioned, users can read the corresponding
table values for several nutrient concentrations.

2.1.2. Unmanned Aerial Vehicle

Available herbage mass and crude protein concentration in herbage were determined
by collecting and analyzing multispectral images via a UAV. For the collection of the images,
a quadcopter (DJI Phantom 4 Pro+, DJI, Shenzhen, China) was set up on the farm at a
starting point (=home-point), and the flight planning was done with the help of a smart
device app (Pix4D Capture, Version 4.5.0, Pix4D, Lausanne, Switzerland), after which
the flight took place autonomously. The attached multispectral camera (Parrot Sequoia
sensor, Parrot SA, Paris, France) took images every 2 s to ensure an 80% overlap. For the
radiometric correction, i.e., the calibration of the camera, images of a reference panel were
taken immediately before or after the flight. The multispectral camera was operated using
a separate app rather than the app for flight planning. The next generation of UAVs offers
a version with a pre-installed camera for agricultural purposes.

After the flight in the field, the geo-referenced multispectral images were downloaded
from the memory card in an office. Next, the images of each spectral band had to be
merged to farm maps, which could then be analyzed on an online platform, e.g., the
GrassQ platform. This platform uses an algorithm that was developed on Irish grasslands
(www.grassq.com accessed on 2 July 2019) [43]. The process of merging images, in the
present case by using the professional Pix4D Mapper software (Version 4.3.31, Pix4D,
Lausanne, Switzerland), is detailed in Assmann et al. [44].

In the present study, it was assumed that sub-operations for merging images and
analyzing farm maps were outsourced. Thus, for the UAV tool to gain practical relevance,
image processing could be done overnight in the future by a commercial provider and
via a cloud onto which images are uploaded. Consequently, the next day, the users are
provided with color-scaled result maps, on which they could base their decisions on pasture
management and supplemental feeding.

2.1.3. Rising Plate Meter

The RPM tool, as it was used in the present study, only allowed the determination of
the compressed sward height, which was automatically converted into a dry matter estimate
per unit area by an algorithm and did not measure any nutritional values. However, with
the help of the Global Positioning System module, the precise portioning of herbage within
a paddock can be easily implemented by the user. The semi-automated RPM works with a
smart device app (Grasshopper G2 Sensor, TrueNorth Technologies, Shannon, Ireland). For
the compressed sward height measurement, the ultrasonic sensor was first calibrated at
the field boundary by measuring the distance between the sensor and the pendulous plate.
This represented the reference value for a sward height of zero millimeters. After entering
the paddock name, the estimated dry matter concentration (DM%), and the desired number
of sampling points per paddock into the app, the user walked across the paddock in a
zigzag pattern and placed the RPM on the sward at regular intervals until the appropriate
number of RPM drops (i.e., sampling points) was reached. The same was done for the
remaining paddocks. After completing the weekly farm walk across all paddocks, the grass
wedge was displayed in the app, and the user could thus make a management decision
while still in the field.

www.grassq.com
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2.1.4. Cut Samples and Near-Infrared Reflectance Spectrometer

The NIRS analysis allowed for the determination of multiple nutrient concentrations
relevant to livestock feeding: dry matter and crude protein concentrations as well as
the concentrations of different structural carbohydrates and crude ash. The technology
under study (HarvestLabTM 3000, Deere & Company, Moline, IL, USA) was a mobile NIRS
laboratory that analyzed un-dried herbage in nearly real-time and on the farm.

However, the tool required destructive samples of fresh herbage. This can be done
by hand-sampling while walking across a certain paddock if knowledge about available
herbage mass per area is not required. It can also be done by cutting a defined area within
the paddock in order to calculate available herbage mass per area unit (e.g., kg DM ha−1).

For the purpose of this study, the latter was done. By determining herbage mass, this
work procedure could be compared to the other tools. For destructive herbage sampling,
users randomly dropped a metal frame of one-quarter square meter into a representative
area within the paddock. This was repeated twice within each paddock; one sample was
taken in an area where the lowest herbage mass, and one where the highest herbage mass
was assumed, as recommended by Nakagami [45]. A hand-held electronic shear was used
to cut the herbage within the metal frame at approximately 5 cm above-ground. Plant
material of each cut square was collected in a bag, and its fresh weight was determined
using an electronic hanging scale and noted on the bag’s label.

Back at the farm, the measurements were digitized. First, an herbage subsample
of each bag was grabbed by hand and analyzed for its dry matter concentration using
NIRS. Therefore, the NIRS analysis software was set up using a laptop connected to the
portable NIRS instrument. Next, the herbage sample was filled into the sample bowl of the
instrument and analyzed in three measurement repetitions using the stored algorithms,
interrupted by two mixing procedures. The determined dry matter concentration was
related to the fresh weight of each cut herbage sample, resulting in an estimate for kg
DM per ha. With this, the grass wedge was created, and it was decided which paddocks
would be grazed next. Finally, fresh herbage samples of the paddocks that would be
grazed next were analyzed similarly for the above-mentioned nutrient concentrations. The
data storage, documentation, and illustration of the results took place manually via an
Excel sheet. Further information on the HarvestLabTM 3000 system and the processing of
multispectral images is given by Hart et al. [27].

2.2. Determining Labor Time Requirement

To determine the labor time requirement, an established model calculation approach
was followed. For the model calculation, time measurements were performed for single
work elements within a workflow.

2.2.1. Model Calculation System

The labor time requirement for each of the four herbage measurement tools was calcu-
lated using an established dynamic model calculation system called PROOF (Agroscope,
Ettenhausen, Switzerland [46]). The PROOF system operated in MS Excel (Microsoft,
Redmond, WA, USA) and was developed using the Visual Basic for Applications script
language. There were PROOF modules available for different agricultural production
branches such as arable farming, tree fruit production, and dairy farming. In the present
study, the PROOF module on grazing (last updated 2001 [15]) was used. The module
contained work operations such as bringing cows to pasture, fencing, and water trough
control. The work operations for measuring herbage were newly modeled and comprised
the four work procedures “UAV”, “RPM”, “NIRS”, and “direct observation”.

2.2.2. Modeling the Work Operations

To create the work operations in PROOF, workflow models were established to reflect
the ideal execution variant for each of the work procedures UAV, RPM, NIRS, and direct
observation. The workflow models of the three smart farming tools (i.e., UAV, RPM,
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and NIRS) were identified from the video observations wherein the users performed the
individual tasks according to best experienced practice, or if a sub-operation involved an
instrument, according to the manufacturer’s instructions. Section 2.1 gives an impression
of the workflow of each work procedure and thus the respective workflow models. As an
example, Table A1 shows the workflow model of the RPM.

The workflows for measuring herbage consisted of two work operations that can be
described by a step where herbage is sampled and a second step where it is analyzed.
The digitalization and visualization of the measurements were treated as a downstream
sub-operation of sampling or analysis, respectively. They were performed in the office.
To ensure the comparability of the work procedures, the workflow was modeled for each
procedure until the work operation was completed, i.e., until the results were visualized.
The next work operation would be the decision-making of the farmer about the paddock
management and the supplementary feeding of the cows.

Each work element occurring in each workflow and the work elements’ standard time
value (in centiminutes (cmin), i.e., 1/100 min) were identified during time measurements
according to REFA [34]. They were either conducted as part of the present study (see
Section 2.2.3) or previous projects, where an extensive database was created at Agroscope
(Switzerland). The database currently contains around 3500 work elements, gathered since
the 1980s [47]. The work elements used from the database (Table A2) were determined by
numerous work experiments, and their standard time values are statistically verified.

In PROOF, all occurring work elements (Tables A2 and A3) were itemized following
the workflow models. The work elements’ standard time value was multiplied by the
frequency of the work element occurrence. In addition, each work element was related to
its procedure-specific influencing factors, for example, the number of sampled points per
paddock by the RPM, and related to its farm-specific influencing factors, such as, among
others, the paddock size, paddock number, and traveling distances (Table 1). Finally, the
time values were summed up in MS Excel to calculate the total required time for each work
procedure during a one-time execution (in manpower minutes (MPmin) or manpower
hours (MPh)).

The modeled work procedures differed in the number of work elements they contained:
43 (UAV), 14 (RPM), 38 (NIRS), and 19 (direct observation). Some work elements occurred
in multiple work procedures.

The workflow model for direct observation was established by interviewing an expert.
The workflow in the field was similar to the work operation “sampling” of the NIRS tool
(i.e., cutting samples) and included some of the same work elements. Three additional
work elements (i.e., “estimating herbage mass”, “determining herbage category”, and
“determining the phenological stage”) were defined and their duration estimated by the
expert (Table A3).

2.2.3. Time Measurements

For work elements not available in the database, work observations were conducted
on three dairy farms in Switzerland in 2018, 2019, and 2020. One of these farms was the
Agroscope Dairy Research Barn Waldegg, located in the north-east of Switzerland. The
other two farms were commercial farms, located in central Switzerland and the Zurich re-
gion. The farms were visited during the vegetation period when the tool users (technicians,
researchers, and interns) performed regular herbage measurements as part of a study that
evaluated the precision and accuracy of the tools [27]. The pastures were either grazed
or defoliated four to six times per year with regular fertilization. They were permanent
grasslands with multiple species (relative abundances of 5–28% ryegrasses, 30–72% other
grasses, and 10–61% clover species and herbs).
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Table 1. List of influencing factors with assumptions made during modeling in PROOF.

Influencing Factor Assumption

Distance from vehicle shed to equipment shed (m) 20
Distance from farmyard to field (m) 200

Distance from paddock to paddock (m) 10
Distance from equipment shed to office (m) 50
Distance from pilot to UAV home-point (m) 6

UAV flight altitude (m) 50
UAV flight speed between home-point and

capturing area (m/s) 8.3

UAV sampling area before battery change (ha) + 9
Distance sampling path (m) Depending on tool

Paddock size (ha) * 1.44
Paddock number (n) * 20

Paddock shape (length (m)/width (m)) Rectangular (ratio 2:1)
Number of grazed paddocks until next herbage

measurement (n) (depending on rotation length) ◦ 1/3 Paddock number

Number of herbage estimates per paddock (n) 1
Number of sampling points per paddock

Captured images for UAV (n) # Around 20–320
RPM drops (n) 45

Cut samples for NIRS (n) § 2
Abbreviations: UAV, unmanned aerial vehicle; RPM, rising plate meter; NIRS, near-infrared reflectance spec-
troscopy. + Based on findings by Hart et al. [48]. * The assumption varied depending on the modeled farm
scenario (Section 2.3). The given value applies to the standardized farm. ◦ The number of paddocks that were
analyzed for herbage quality using NIRS. # Influenced by paddock size and flight altitude to ensure 80% overlap
of the images. The number of captured images is determined via flight planning software. § The assumption
varied (Section 2.4). The given value applies to the standardized farm and was chosen based on recommendations
of Nakagami [45].

For the time measurements, between three and five experienced users per smart
farming tool and the associated work operations were filmed during several executions
(Table 2). All work elements occurring in the workflow were identified by following the
REFA method [34]. Their frequency of occurrence, their influencing factors, and their unit
were determined. The respective start and end situation of each work element were defined,
and its duration in centiminutes was measured using video analysis software for time
measurements (MEZA, Version 8.8, Drigus Systeme GmbH, Dortmund, Germany). After
a plausibility check, all measured values per work element were averaged to obtain the
standard time value.

Table 2. Overview of the video observations.

Used Smart
Farming Tool

Work Operation or
Sub-Operation Number of Users Number of Work

Observations per User
Hours of

Video Footage

UAV Flight execution 3 3–4 3.0
UAV Image processing 1 5 1.1
RPM Paddock walk 4 2–5 1.7
NIRS Cutting samples 4 3–5 1.8

NIRS Analysis with mobile
NIRS instrument 5 2–5 3.5

Abbreviations: UAV, unmanned aerial vehicle; RPM, rising plate meter; NIRS, near-infrared reflectance spectroscopy.

The sample size of each work element varied between 1 and 480, because during
work observations the execution speed of the work differed between the users (Table A3).
Whereas the coefficient of variation is a measure of the quality of a standard time value for
non-cyclic work elements, the epsilon value is valid for cyclic work elements. Coefficients
of variation of ≤25% and relative half confidence intervals (i.e., epsilon values (ε)) of ≤7%
were targeted for the work elements based on the REFA recommendation [49]. Nevertheless,
the coefficients of variation ranged from 1.7% to 69.4% between work elements and the
epsilon values from 0.6% to 90.7% (Table A3).
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2.2.4. Distribution of Working Time

The individual work elements were further assigned to individual time classes, namely
operation time, fault time, and non-productive time [50]. These time classes can be further
divided into sub-classes according to Reith et al. [50]. Thus, the class “operation time”
designates the times for executing, turning, loading and unloading, inherent delay, ad-
justing, and relaxation allowance. “Fault time” occurs owing to functional and technical
faults, weather, work organization, or contingency allowance. Supply time, job preparation
and closing time, transit time, and servicing time are components of the time class “non-
productive time.” The times belonging to the same time sub-class were added up, and the
sub-class’s relative proportion on the total labor time requirement was calculated for each
work operation.

2.3. Modeled Farm Scenarios

The model calculation system PROOF allows modeling different farm scenarios. In
general, the modeled dairy farms followed a rotational grazing system where animals
grazed on pasture full-time and rotated between paddocks every 1 to 1.5 days. For model-
ing, we assumed a farm site with good grass growth rates that was well suited for grazing,
i.e., climatic conditions that allow full-time grazing from March to October and sufficient
grass growth. As a result, we assumed paddocks that could be re-stocked every three
weeks after herbage had re-grown.

Lactating cows grazed on paddocks of highly productive and nutritious pasture in
contrast to the non-lactating cows. Those high-quality paddocks formed the milking
platform. The size of the milking platform depended on the number of animals. According
to Teagasc’s grassland management recommendation, 2.8 cows can be stocked per hectare
of high-quality and high-production pasture, i.e., a sward dominated by perennial ryegrass
and with a relatively high growth potential [51]. Consequently, an area of 0.36 ha was
required per cow in the modeled farm scenarios.

2.3.1. Standardized Farm

An exemplary dairy farm (Figure 1), hereafter referred to as standardized farm, was
used to compare the modeled labor time requirements of the four herbage measurement
tools. The size and structure of the standardized farm was based on an average Irish dairy
farm in the year 2019 and therefore comprised 80 lactating cows [52]. Considering the need
for 0.36 ha of pasture per animal, cows grazed on a 28.8 ha milking platform that consisted
of 20 paddocks between which cows were rotated. In the model, it was assumed that the
20 paddocks comprised an equal size of 1.44 ha each.

2.3.2. Modeled Farm Sizes and Subdivisions of the Milking Platform

Different farm structure scenarios were modeled to identify best use cases for each of
the four herbage measurement tools. Best use cases were defined as the conditions where a
tool requires the shortest working time compared with the other tools.

To model different farm sizes and subdivisions of the milking platform, two variables
of the model calculation system were adjusted: the paddock size and the number of
paddocks (Table 1). Different farm sizes comprising milking platforms of 6 to 100 ha were
modeled by increasing the paddock size from 0.3 to 5.0 ha and keeping a constant number
of 20 paddocks. These scenarios aimed to represent increasing farm sizes by increasing the
numbers of animals but maintaining the rotation schedule.
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Additionally, we modeled scenarios where the number of animals was kept constant,
but rotations were shorter or longer because paddock sizes often differ from farm to farm.
To do so, the size of the milking platform was kept at 28.8 ha, but we subdivided it in
different numbers of rectangular paddocks. The number of paddocks was between 4 and
45, resulting in paddock sizes between 7.20 and 0.64 ha.

2.4. Varying Numbers of Cut Samples per Paddock

The impact of the number of cut samples per paddock on the labor time requirement
was studied, because with a higher number of samples the measurement accuracy most
likely increases compared with one-point-sampling (although one-point sampling is the
most time efficient for on-farm use) [45]. Especially in multi-species swards, several cut
samples from one paddock can represent the herbage quality and mass better than only one
sample. Therefore, the labor time requirement was calculated for 1 to 10 cut samples taken
per paddock by following a specific sampling path (Figure 1b). To do so, the input variable
“number of sampling points per paddock” (Table 1) of the model calculation system was
adjusted keeping all other variables according to the scenario of the standardized farm. It
was assumed that for a number of four samples the sampling path is walked in the form of
a cross, and before that a diagonal is walked into the paddock (Figure 1b).

2.5. Calculation of Optimization Potential

To calculate the working time to be saved when the three smart farming tools and
respective workflows were optimized, we first identified the work elements that could be
omitted if technologies would be further developed or when commercial installation and
support were offered by manufacturers (i.e., development of apps, browser platforms and
databases, data transfer via wireless LAN, automated UAV flight planning and take-off,
automated data upload and analysis). We assumed that the identified work elements
in each tool were subtracted from the total labor time requirement when using them to
measure herbage and no additional labor was required through the adjustments in the
technologies and workflows. The total time savings were calculated by summing up the
time for superfluous work elements under the scenario of the standardized farm.
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3. Results
3.1. Labor Input under Different Farm Scenarios

The labor time requirement for RPM and UAV increased most with increasing paddock
size (Figure 2). Enlarging paddocks had the greatest effect on the labor time requirement
for the UAV, whereby the required time was disproportionately greater than with other
tools from a paddock size of 4 ha (i.e., a milking platform of >80 ha). Each additional 9 ha
to be sampled using the UAV required flying back to the home-point to change batteries.
Below paddock sizes of 1 ha (i.e., a milking platform of <20 ha), the UAV required less
labor time than the other tools.
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Figure 2. Labor time requirement of three smart farming tools and direct observation (DO) in
measuring herbage mass (and quality) of 20 paddocks on model farms with increasing paddock size
and thus farm size. UAV, unmanned aerial vehicle; RPM, rising plate meter; NIRS, near-infrared
reflectance spectrometer analysis with cutting samples.

An increase in paddock size affected the labor time required for direct observation and
for NIRS slightly less, at least under the assumption that the number of sampled squares
per paddock is constant. NIRS required more time than the RPM and direct observation
among all paddock sizes.

When subdividing a given milking platform into fewer or more paddocks, the labor
time requirement of the UAV tool remained approximately the same despite increasing
paddock numbers (Figure 3). In contrast, labor time requirements for the other two smart
farming tools and the direct observation increased significantly as the number of paddocks
increased. For NIRS and direct observation, the labor time requirement increased even
more with the increasing number of paddocks than for the RPM, making them unfavorable
for large numbers of paddocks. NIRS required always more time than direct observation.
The RPM required the least time when used on >4 and <30 paddocks.
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measuring herbage mass (and quality) on a model farm with a 28.8 ha milking platform and different
paddock numbers. UAV, unmanned aerial vehicle; RPM, rising plate meter; NIRS, near-infrared
reflectance spectrometer analysis with cutting samples.

3.2. Influencing Factors of Labor Input

In contrast to the other tools, the UAV’s labor time requirement was hardly influenced
by the number of herbage estimates and sampling points per paddock, the distances
between the paddocks, or the rotation scheduling (as described in Table 1), because in any
case the UAV flies over and samples the entire milking platform. However, the size of the
paddocks and the battery life do play a role for the labor input.

A strong effect of the number of sampling points per paddock on labor input was
found for the NIRS tool (i.e., the number of cut samples). Additionally, the labor time
requirement was noticeably influenced by the number of paddocks sampled in sequence
and the fact that the sample bags must always be placed at the paddock boundaries owing
to the limited carrying capacity of the user when no device with a carrying function
(wheelbarrow or motorized cart) is used, as modeled in the present study. The labor time
requirement reflects this particularly if herbage cuttings are repeated per paddock.

The work operation of cutting fresh herbage had a large share in the total labor time
requirement of the NIRS tool and was responsible for the long adjustment and execution
time in the field (see Section 3.3). It included the time for walking the respective pattern
within a paddock and the time for cutting the herbage sample in a representative area.

The labor time requirement rose with each additional sample that had been cut
(Figure 4). Whereas for up to three samples a diagonal was walked across the paddock,
for four or more samples the complete cross was walked, as shown in Figure 1. From four
samples per paddock, the labor time requirement increased linearly by 1.23 manpower
minutes (MPmin) with each additional sample.
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3.3. Time Distribution on the Standardized Farm

The labor time requirement in measuring herbage by direct observation was 132.1 MPmin.
In contrast, using the three smart farming tools required 116.1 MPmin (UAV), 182.2 MPmin
(152.1 MPmin for cutting samples and 30.1 MPmin for NIRS analysis), and 94.2 MPmin (RPM)
under the conditions of the standardized farm.

The work procedures direct observation, UAV, and RPM had almost no job preparation
time on the farm. Nevertheless, for the direct observation and UAV, job closing time
occurred on the farm to document and visualize the herbage measurement results (for the
direct observation) or to download the image data and prepare them for image analysis
(for the UAV). For the RPM, most of the work, starting from calibrating the plate until
visualizing the measurements of herbage mass, was performed in the field. The RPM had
no fault time due to work organization, in contrast to the other tools (Figure 5).

In contrast to direct observation, the three smart farming tools required the user to
spend a smaller proportion of time on transit. This is because the user of direct observation
has to enter the paddocks to estimate herbage mass in order to get a picture of the complete
area. In addition, the user has to go to the field a second time to evaluate the herbage
quality for the number of paddocks that will be grazed next.

The two work operations of NIRS had the highest proportions of adjustment time and
job closing time. Adjustment time occurred during cutting samples in the field when the
user walked across paddocks and a representative area for sampling had to be found. Job
closing time included work for the documentation and visualization of measurements.

The total operation time (t1) was smallest for UAV (55.1%), where the remaining 26.3%
and 18.7% of the total required time were non-productive time (t3) and fault time (t2),
respectively. Unlike the other tools, the UAV has a large proportion of supply time and job
preparation time within the non-productive time.
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3.4. Optimization Potential

An automation of the workflow of the UAV tool could reduce the total labor time
requirement by 34.4 MPmin under the conditions of the standardized farm (Table 3). Labor
time invested in gathering multispectral images by means of UAV flights in the field could
be reduced by 12.1 MPmin (−10.4%). Thereof, a great part are savings in supply time
and job closing time (installing and uninstalling of UAV and supplies), and adjustment
time (setting up the sensor calibration and capturing metrics, flight planning on the smart
device). A minor part that can be saved is transit time (walking distance between the
storage location of the UAV and the home-point).

During the workflow in the office, the total labor time requirement can be reduced
by another 22.3 MPmin (−19.1%). This time saving is largely due to the reduction in job
preparation and closing time if a wireless LAN connection were to be used for image data
backup instead of a physical memory card, and if images were uploaded automatically to a
database where they are stored and analyzed via an external service.

When collecting the cut samples for real-time NIRS analysis, a smartphone app for
in-field use could reduce the total labor time requirement by 4.9 MPmin (−2.7%) (Table 3).
The app would eliminate the need to write down the bag weight in the field and enter
it on the computer at the farm. In addition, the geolocation function of the smart device
could automatically record the paddock name for the corresponding sample. A feed wedge
would be available in real-time, and a decision on pasture management could be made
directly in the field.
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Table 3. Time saving potential through technological advancement of the tools using unmanned
aerial vehicles (UAVs) and near-infrared reflectance spectroscopy (NIRS).

Tool Sub-Operation with
Time Saving Potential Location of Execution Technological

Advancement
Time Savings

(MPmin) *

UAV Walking (40 m) Field Fixed UAV storage and
take-off 0.68

UAV
Installing and

uninstalling of UAV
and supplies

Field Fixed UAV storage and
take-off 5.72

UAV Flight planning Field Automated flight
planning and take-off 4.14

UAV
Setting up the sensor

calibration and
capturing metrics

Field Automated flight
planning and take-off 1.57

UAV Image data backup Farm

Automated image
transfer (WLAN) and

automated data upload
to a database followed
by image analysis via a

commercial service

22.26

NIRS Documenting data Field and farm Smartphone app 4.91

NIRS Data storage Farm Browser platform 4.03

NIRS Data visualization Farm Browser platform 1.64
The work elements through which the time is saved are detailed in Table A4. * Under the conditions of the
standardized farm.

Another 5.7 MPmin (−18.8%) of job closing time spent on the farm could be saved
by automating data storage, preparation, and visualization (−3.1% of the total labor time
requirement). So far, the user manually exports the analysis results of the NIRS and creates
an overview of the analyzed paddocks and the associated herbage quality values by means
of table calculation software. Only then does the user derive the adequate feeding strategy.
A user-friendly digital platform that clearly presents the analysis results on a farm map
and communicates with the app would significantly reduce the time requirement for data
storage, preparation, and visualization.

4. Discussion
4.1. Studies on Labor Input

At the present time, scientific studies on labor time requirements of smart farming tools
are rare. Reasons for the lack of scientific investigations may be the novelty of the smart
farming tools, the little knowledge on best-practice workflows, and the lack of commercial
implementation of the tools. Overall, the topic of precision grazing management has found
little application in practice but is gaining more and more focus in agricultural research.
Because the development of precision grazing systems is still in progress, there is even less
research on the subject of labor input.

A study by Deming et al. [16] determined a labor input of 0.23–0.35 h per cow and year
for herbage measurements in Irish dairy farming. Nevertheless, there are no figures for
the labor input involved in a one-time execution that could be compared with our results.
In addition, it remains unclear which tools farmers used to measure herbage. Presumably,
they cut samples or used the RPM, with both work procedures being promoted by the state
agency [51].

Two other studies have addressed the labor time requirements of the RPM and cutting
fresh herbage samples [10,53]. However, the estimated times of both studies were not
based on time studies with a determination of generally valid values (in our case the
standard times).



Sustainability 2022, 14, 7490 15 of 23

The time values for cutting samples in Lantinga et al. [10] were collected under specific
conditions during grassland and pasture experiments. They were not statistically validated
and are therefore not generalizable to other conditions.

The time estimation from Murphy et al. [53] is much lower (0.09 h/ha) than that of
the present model (0.22 h/ha; one paddock of 1 ha). The authors calculated the labor time
requirement for RPM measurements based on the average human walking pace and the
manufacturer-recommended distance between measuring points. The work operations
before and after measuring were not included. In the present study, when execution time
is considered separately from other times before and after execution (i.e., only the work
elements “walking with RPM on field” and “sampling RPM point”; Table A1), the time
estimate of 0.06 h/ha is close to that of Murphy et al. [53].

In a follow-up study, Murphy et al. [54] developed a model that calculates the ideal
sampling route, in terms of time saving and measurement quality, for an unbiased sampling
point selection. This new approach is useful when, owing to homogeneous pastures
(spatially and botanically), few measurement points are sufficient to obtain a meaningful
measurement result. In the present study, the number of measurement points was set
to 45, regardless of the paddock size and homogeneity. However, fewer measurement
points can be taken in small paddocks if pasture conditions permit, because reducing the
number of measurement points without losing measurement quality is highly dependent
on pasture heterogeneity.

4.2. Methodological Reflections

The chosen modeling approach, based on the REFA work element method, has great
strengths. First, however, we would like to point out some weaknesses.

The sample size of the present study was sometimes small, owing to the novelty of
the studied work procedures. Furthermore, some of the individual work element times
depended on the response time of the user and on intellectual labor time. In these cases, the
coefficient of variation and the epsilon value sometimes exceeded the desired maximum
thresholds of 25% and 10% at maximum, respectively [37,49]. However, the standard
times of work elements that could be characterized by technical conditions showed very
small variations (e.g., work element “HarvestLab analysis”; coefficient of variation: 11.72%;
epsilon value: 3.11%). By measuring the work element times and creating the labor input
models, it was nevertheless possible to gain informative insights for further development
of the novel smart farming tools.

A great strength of the modeling approach used is the identification of the time saving
potentials at the work element level. Thus, labor time requirements can be modeled
for workplaces, conditions, or workflows that do not yet exist and used for planning
purposes [36].

Another advantage of the work element method and the labor time models estab-
lished is the simulation of different farm conditions such as sizes, structures, and animal
numbers [41]. Thus, in the present study, it could be shown for which farm sizes and graz-
ing managements (i.e., the duration of rotation cycles via the splitting of a given milking
platform) each tool is most suitable.

4.3. Suitability of Tools for Use on Different Farms

One aspect that influences the suitability of a tool is the farm-specific conditions it
is applied under. For example, Hart et al. [48] have shown that the UAV is less suitable
on a farm with widely distributed paddocks because of the long travelling distances and
relatively short battery capacity. Therefore, it is more suitable for farms with compact
milking platforms.

The heterogeneity of the grassland can also play a role in the suitability of a work
procedure. Because the resolution of the UAV measurement is in the centimeter range and
extends over the entire area of interest, spatial differences in herbage quantity and quality
can potentially be detected very well. In contrast, NIRS measurement resolution is tied
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to the number of cut samples, and thus always a point sampling that either represents
the area well or not. Because an increase in the number of cut samples increases the
labor time requirement (Figure 4), this work procedure is best suited for botanically and
topographically homogeneous grasslands.

In the present study, we hypothesized that, despite increasing paddock size, a constant
number of samples per paddock (two samples in the case of NIRS) was sufficient to
make a statement about herbage mass and quality. Therefore, the increasing paddock size
had hardly any influence on the labor time requirement for NIRS and direct observation
(Figure 2). Our assumption was based on a study by Nakagami [45], who found that if it is
possible to sample the areas with the most and the least herbage masses within a paddock,
the herbage mass of the entire paddock can be estimated with an acceptable accuracy for
practical farming. This requires a farmers’ experience and good knowledge of the spatial
growth of grasslands as well as an elevated site to survey it [45]. The issue here is that
the measurement is likely to be inaccurate if the farm is botanically and topographically
heterogeneous, especially with increasing paddock sizes, and therefore more samples
should preferably be taken.

An alternative to the variant of NIRS modeled here would be to determine herbage
mass using direct observation or the RPM, and randomly taking grab samples of fresh
herbage while walking across the paddock for subsequent grass quality analysis with
mobile NIRS. However, although using grab samples might save a certain amount of
time compared with cutting samples, the problem of pasture heterogeneity still has to be
addressed by cutting samples following a sampling route across the paddock and collecting
a representative sample. That is again time intensive.

When making a purchase decision for an herbage measurement tool, other aspects
should be considered besides the differences in the labor time requirement between tools;
for example, the costs, the technology affinity, and the personal preferences of the user play
a major role in the decision for or against a tool. While almost no skills are required for the
use of the RPM, except the almost self-evident operating skills for using a smartphone, the
UAV requires knowledge for the installation of the sensitive technology (training via tutorial
videos), as well as the operation of a controller for flight control, the download of image
data, and general handling on the desktop. Flying over the grassland with a UAV requires
attention and patience, whereas walking across the paddocks with an RPM and sampling
the paddocks by cutting fresh matter for NIRS analysis is more physically demanding.

In addition, possible supplementary benefits of a tool could play a role in the purchase
decision. For example, the RPM measures distances on a farm with the integrated Global
Positioning System module besides measuring herbage mass. During the RPM farm walk,
users can check fences, inspect water troughs, and undertake small maintenance jobs. At
the same time, or via the farm map generated by the UAV procedure, the quality of the
pastures can be assessed, and decisions can be made regarding necessary mowing after
grazing events, over-seeding, or fertilizer application. In contrast, the UAV and NIRS have
the advantage of measuring parameters of grass quality, which is not yet possible with the
RPM. This is especially important for farms with supplementary feeding, because they can
use this information to control their concentrate allocation according to animal demands.

4.4. Opportunities of Precision Farming

Precision farming holds great potential to drive agro-ecological change and makes
agricultural systems more ecologically and economically sustainable [55,56]. The goal of
the investigated smart farming tools is to increase the efficient use of grasslands, and subse-
quently to reduce the use of concentrates in dairy farming that may compete with human
diets. Such a transformation of grazing systems contributes to Goal 12.2 of the Sustainable
Development Goals, aiming to achieve sustainable management and efficient use of natural
resources by 2030 [1]. To pursue this goal and use grassland efficiently, it must be optimally
managed. For this, knowledge on labor input becomes necessary. However, technical
solutions are available to support labor and reduce the time requirement if implemented
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in optimized systems (workflows and farm conditions). In this way, a system can satisfy
the Sustainable Development Goals 12 and 8. These are aimed at promoting occupational
health and safety, as well as economic productivity and technological upgrading.

Promoting occupational health includes the reduction of the temporal workload of
farm managers and employees, which our study shows can be achieved in two ways:
firstly by using smart farming tools instead of the conventional approach, and secondly
by further developing two smart farming tools (NIRS and UAV), where labor time can
be saved through technological advancement and workflow optimization (Table 3). The
reduction in labor time, and thus labor costs, is associated with an economic advantage.

4.5. Limitations of the Study

By conducting herbage measurements, labor time is presumably reduced in other
areas of feeding, farm management, and documentation. However, these aspects could
not be quantified in our study because only the work operations for measuring herbage
but not the farm as a whole production system were modeled in terms of the labor time
requirement. Further time studies are needed to investigate the labor benefits of smart
farming tools at the farm level.

5. Conclusions

The labor input for the investigated smart farming tools for near real-time herbage
measurements on pastures is more favorable in contrast to the conventional approach of
direct observations, except for the NIRS tool. However, the different work elements of the
workflow are important to evaluate the labor input. For example, the number of sampled
spots used for NIRS is an important factor. Under the conditions studied, the time for
cutting two samples per paddock occupies about 83% of the total labor time requirement
for the NIRS work procedure. Thus, NIRS is not temporally competitive with the other
tools if two cut samples or more must be taken to determine the herbage quantity and
quality representatively of the area. Apart from that, the required spot sampling is less
advantageous in terms of measurement accuracy compared with RPMs or UAVs, making
the NIRS work procedure less attractive for farms with topographically and botanically
heterogeneous paddocks. It might be different if the NIRS and RPM tools were used in
combination and grab samples were taken during the paddock walk.

Another important factor influencing the labor input is the size of the milking platform,
where all work procedures require more time with increasing numbers of hectares to be
measured. However, UAVs require disproportionately more time than the other smart
farming tools for larger milking platforms (>80 ha) and are therefore not suitable for them.
This is because the battery life of the consumer quadcopter used is currently not sufficient.

Both smart farming tools, UAV and NIRS, have the potential to additionally reduce
labor input through further development and commercialization. The smart farming tools
could contribute to sociotechnological sustainability because they potentially improve the
work–life balance by reducing working hours.
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Figure A1. Illustrations and system specifications of the three smart farming tools to measure herbage:
(a) unmanned aerial vehicle with multispectral sensor, (b) rising plate meter, and (c) cut samples and
the near-infrared reflectance spectrometer for usage on-site. Under each system, the corresponding
visualization modes of the measurement results are shown as examples.

Table A1. Example of a workflow model for calculating labor time requirement in PROOF. The
workflow model is for the work procedure rising plate meter (RPM). The reference quantities relate
to the influencing factors and assumptions shown in Table 1.

Workflow including Work Elements Unit Standard Time
(cmin/Unit) Reference Quantity (n) Total Time (cmin)

Walking without load (traveling) m 1.8 672.9 1211.3
Taking/packing sampling tools Qty 5.8 2 11.6

Putting down sampling tools Qty 6.0 2 11.9
Turning on RPM Qty 10.8 1 10.8

Setting up app and Bluetooth connection Qty 24.5 1 24.5
Sensor calibration Qty 8.7 1 8.7

Walking with RPM on field (sampling route) m 1.0 6068.1 6068.1
Sampling RPM point Qty 2.1 900 1890.0

Single touch on smart device application Qty 2.8 49 137.2
Entering data at computer (decimal 2_2) Qty 9.8 1 9.8

Viewing grass height results on smart device Qty 15.0 1 15.0
Uploading measurement Qty 5.0 1 5.0

Turning off RPM Qty 13.4 1 13.4
Getting unnecessary tool out of the way Qty 7.3 1 7.3

Qty: quantity, cmin: centiminutes.
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Table A2. Available work elements from the Agroscope database that were used to model the
operation “herbage measurement,” their documented mean standard time per unit, and statistical
metrics.

Work Element Code Unit Standard Time
(cmin/Unit) n/Unit CV (%) Epsilon (ε) (%)

Walking without load AE_GEHE001 m 1.8 10 14.7 10.48
Riding in car AE_FAHR_001 m 0.1 10 0.0 0.00

Turning on computer AE_BÜRO009 Qty 140.8 10 12.9 9.20
Turning off computer AE_BÜRO010 Qty 48.1 10 16.0 11.38

Opening file on computer AE_BÜRO011 Qty 13.6 10 20.6 14.66
Saving and closing file AE_BÜRO012 Qty 11.6 10 15.7 11.17

Launching Internet Explorer AE_BÜRO013 Qty 13.3 10 28.3 20.12
Closing Internet Explorer AE_BÜRO014 Qty 7.3 10 25.7 18.26

Email program login AE_BÜRO015 Qty 25.1 10 10.0 7.09
Email program logout AE_BÜRO016 Qty 18.0 10 21.0 14.92

Opening attachment in email AE_BÜRO021 Qty 9.1 10 15.8 11.22
Reading document/email

(cover letter) AE_BÜRO022 Qty 54.3 10 14.7 10.45

Entering data at computer
(decimal 2_2) * AE_BÜRO054 Qty 9.8 10 29.7 21.11

Entering text at computer (1–5 words) AE_BÜRO079 Qty 13.6 10 20.0 14.18
Making selection (5_10) + AE_BÜRO089 Qty 82.9 10 17.2 12.25

Qty, quantity; cmin, centiminutes; n, number; CV, coefficient of variation. * Two-digit number with two decimal
places. + Selection is made according to five criteria from ten elements.

Table A3. Work elements of the operation “herbage measurement” using three different work
procedures, their mean standard time per unit, and their statistical metrics. Work elements in bold
fulfill the required statistical limits defined by REFA [49].

Work Element Unit Standard Time
(cmin/Unit) n/Unit CV (%) Epsilon (ε) (%)

Setting up app and Bluetooth connection Qty 24.5 10 19.46 13.82
Turning on RPM Qty 10.8 8 19.10 15.72
Plate calibration Qty 8.7 7 34.74 31.37

Sampling RPM point Qty 2.1 479 41.35 3.71
Walking with RPM on field m 1.0 480 6.64 0.60

Turning off RPM Qty 13.4 7 21.00 18.96
Viewing grass height results on smart device Qty 15.0 3 33.33 62.50

Single touch on smart device application Qty 2.8 9 5.36 4.08
Uploading measurement Qty 5.0 2 28.28 90.71

Flight planning on smart device Qty 103.6 15 30.63 16.96
UAV landing manually at runway Qty 22.5 13 35.11 21.18

Starting UAV Qty 37.6 19 31.61 15.25
UAV take-off to 50 m flight height Qty 33.9 11 15.69 10.49

UAV landing from 50 m flight height Qty 54.5 9 33.40 25.41
Setting up camera software Qty 20.4 9 35.95 27.35
Installing UAV and supplies Qty 314.9 9 31.51 23.97

Uninstalling UAV and supplies Qty 256.9 7 39.51 35.68
Placing calibration plate horizontally Qty 43.5 12 35.35 22.39

Setting up calibration in app Qty 68.5 14 57.01 32.88
Calibrating multispectral camera above plate Qty 43.7 15 24.18 13.39

Checking photos Qty 58.0 1 n/a n/a
UAV image capturing time ha 186.3 8 25.40 20.91

Battery change UAV Qty 45.7 6 31.60 31.93
Copying large amounts of data (images) n img 0.9 5 1.69 1.97

Deletion process of large amounts of data (images) n img 0.02 5 17.91 20.86
Marking files in computer folder and giving command Qty 9.1 7 33.07 29.86

Creating new file folder on computer Qty 8.0 4 10.21 14.39
Pasting files to folder on computer Qty 7.0 6 36.14 36.52

Disconnecting USB card reader from computer Qty 15.2 5 28.45 33.13
Entering date and 2 words at computer Qty 29.8 5 21.41 24.93

Removing card reader with memory card from computer Qty 13.5 4 25.30 35.66
Opening folder on computer Qty 7.4 12 23.32 14.77

Control view over copied data Qty 21.8 4 7.85 11.06
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Table A3. Cont.

Work Element Unit Standard Time
(cmin/Unit) n/Unit CV (%) Epsilon (ε) (%)

Connecting memory card with card reader to computer Qty 19.3 4 19.15 26.99
Waiting time due to the loading process of computer Qty 196.8 4 3.92 5.52

Waiting time until computer is shut down Qty 20.8 4 28.48 40.14
Filling plant material into bag 1

4 m2 25.7 52 48.74 13.59
Cutting herbage with electric shear 1

4 m2 74.3 47 43.92 12.92
Choosing representative area Qty 4.6 47 64.12 18.86

Taking/packing sampling tools Qty 5.8 64 69.43 17.37
Cleaning electric shear Qty 6.5 14 32.51 18.75
Labeling sample bag Qty 28.1 9 25.99 19.77

Putting down sampling tools Qty 6.0 47 46.95 13.81
Weighing sample in bag with electronic hanging scale Qty 49.6 10 38.28 27.19

Lifting all four pieces of instrument equipment
to/from table Qty * 45.8 12 34.58 21.90

Placing/taking weight plate Qty 3.0 89 41.12 8.67
Turning instrument on/off Qty 3.9 29 35.28 13.44

Filling material in dish Qty 25.4 20 41.46 19.43
Placing/taking dish on/from measurement instrument Qty 4.6 65 39.71 9.85

HarvestLab analysis Qty 36.9 57 11.72 3.11
Exporting analysis results Qty 22.2 15 43.18 23.90

Turning on computer Qty 4.8 13 34.40 20.75
Disposal of material Qty 27.3 19 45.55 21.98

Mixing material Qty 9.8 40 41.35 13.25
Cleaning of dish with glass cleaner spray and

paper towel Qty 53.0 17 24.57 12.64

Entering password at computer (5–10 characters) Qty 14.8 16 31.75 16.92
Finishing analysis Qty 35.1 17 28.12 14.47

Saving file at different storage location Qty 27.2 13 28.84 17.39
Waiting time due to a loading process of an

electronic system Qty 31.7 27 65.54 25.97

Entering text at computer (5 words) Qty 16.3 54 35.46 9.69
Starting analysis (second/third) Qty 4.1 35 50.97 17.54
Opening software on computer Qty 10.0 46 35.73 10.63

Getting unnecessary tool out of the way Qty 7.3 51 32.36 9.11
Closing window/file on computer Qty 5.0 41 30.25 9.56

Turning off computer Qty 10.0 12 32.47 20.57
Viewing measurement results Qty 29.0 1 n/a n/a

Starting analysis (first) Qty 12.2 18 16.26 8.09
Estimating herbage mass ◦ Qty 50.0 n/a n/a n/a

Determining herbage category ◦ Qty 166.7 n/a n/a n/a
Determining the phenological stage ◦ Qty 500.0 n/a n/a n/a

CV, coefficient of variation; Qty, quantity; cmin, centiminutes; img, images; n, number; n/a, not applicable. *
Within 1.5 m radius. ◦ Determined by an expert.

Table A4. Sub-operations and corresponding work elements that can potentially be saved through
technological development.

Sub-Operation with Time Saving Potential Work Element Saved Time (MPmin) *

UAV: Walking Walking without load 0.68

UAV: Setting up the sensor calibration and
capturing metrics

Setting up calibration in app 1.37

Setting up camera software 0.20

UAV: Flight planning Flight planning on smart device 4.14

UAV: Installing and uninstalling of UAV
and supplies

Installing UAV and supplies 3.15

Uninstalling UAV and supplies 2.57

UAV: Image data backup

Turning on computer 0.05

Entering password at computer (5–10 characters) 0.15

Waiting time due to the loading process of computer 1.97

Connecting/disconnecting memory card with card
reader to computer 0.39

Opening file on computer 0.15

Creating new file folder on computer 0.08
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Table A4. Cont.

Sub-Operation with Time Saving Potential Work Element Saved Time (MPmin) *

Entering text at computer (1–5 words) 0.30

Marking files in computer folder and giving command 0.27

Pasting files to folder on computer 0.07

Copying large amounts of data (images) 16.96

Control view over copied data 0.22

Deletion process of large amounts of data (images) 0.38

Disconnecting USB card reader from computer 0.15

Removing card reader with memory card from computer 0.14

Saving files at different storage location 0.27

Closing window/file on computer 0.15

Email program logout 0.18

Closing Internet Explorer 0.07

Turning off computer 0.10

Waiting time until computer is shut down 0.21

NIRS: Documenting data

Labeling sample bag 2.81

Opening file on computer 0.14

Entering data at computer 1.96

NIRS: Data storage

Exporting analysis results 1.33

Closing window/file on computer 0.10

Saving file at different storage location 1.63

Marking files in computer folder and giving command 0.55

Pasting files to folder on computer 0.42

NIRS: Data visualization
Opening file on computer 0.82

Entering text at computer (1–5 words) 0.82
* Under the conditions of the standardized farm.
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