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To successfully reduce atmospheric CO2 by sequestering additional soil carbon, it is

essential to understand the potential of a given soil to store carbon in a stable form.

Carbon that has formed organo-mineral complexes with silt and clay particles is believed

to be less susceptible to decay than non-complexed, or particulate, organic carbon.

Using direct measurements of mineral associated organic matter (MAOC) on a subset

of samples, and an approach developed previously for primarily allophanic soils, we

took a modeling approach to estimate MAOC for 537 samples of much coarser and

younger soils from 99 non-cultivated and agricultural sites in the Okanagan Valley, British

Columbia, Canada. Using specific surface area (SSA) or soil texture as indicators of the

mineral surface area available for sorption of organic matter, we used both Random

Forest (RF) and Stepwise Multiple Regression with Akaike Information Criterion (SMR)

to determine a best fit model for predicting MAOC. Random Forest modeling using SSA

in addition to total SOC, exchangeable calcium, exchangeable potassium, and soil pH

performed better than SMR for determining MAOC in these soils (R2: 0.790 for RF; R2:

0.713 for SMR). To determine if a MAOC deficit existed for these soils, we then applied

a quantile regression approach wherein the predicted 90th quantile of MAOC represents

the MAOC formation capacity. We determined that MAOC deficits were present in all

soils and increased with depth. Moreover, clay rich soils had greater MAOC deficits

(1.62 g kg−1 for 0–15 cm, 4.01 g kg−1 for 15–30 cm, and 5.80 g kg−1 for 30–60 cm), than

sandier soils (1.01 g kg−1 for 0–15 cm, 2.72 g kg−1 for 15–30 cm, and 3.69 g kg−1 for 30–

60 cm). Furthermore, the upper 30 cm of these soils have the potential to increase MAOC

stocks by 29% (48.0 million kg of MAOC over 8,501 ha) before they reach formation

capacity. This study highlights the variability in MAOC formation capacity of soils with

different physicochemical properties and provides a framework for estimating MAOC

concentrations and deficits for soils with a wide range of physicochemical properties.

Keywords: mineral associated organic C, carbon deficit, soil carbon (C) sequestration potential, soil carbon,

carbon stabilization, carbon saturation, perennial crop
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INTRODUCTION

Land-use change and land management practices have altered
the earth’s largest terrestrial carbon pool: soil carbon (1).
For example, since the advent of agriculture, conversion of
non-cultivated land has decreased global C stocks by ∼116
Pg (2), amounting to a loss of ∼5% of the current global
terrestrial carbon stock (3). There is a growing understanding
that agricultural management practices that promote soil carbon
sequestration provide benefits not only to crop productivity and
increased nutrient cycling, but also long term sequestration of
CO2 from the atmosphere (4–7). Agricultural soils have thereby
become a rallying point for carbon farming initiatives (8) as
well as broader-reaching net-zero carbon commitments, such as
Canada’s Strengthened Climate Plan, which is aimed at exceeding
Canada’s 2030 Paris agreement reduction goals and achieving
net-zero emissions by 2050 (9).

Soil organic matter (SOM) can be separated into two broadly
defined pools: particulate organic matter, and mineral-associated
organic matter (10–12). Particulate organic matter (POM) more
closely resembles the plant, animal, and fungal material it
originated from and tends to be unbound in the soil matrix
(7, 13–15). Mineral-associated organic matter (MAOM), by
contrast, is typically comprised of small molecular weight,
microbially processed compounds, and is sorbed to the surfaces
of mineral particles in the soil (12, 16–18). Here, we refer
to the carbon component of POM and MAOM as particulate
organic carbon (POC) and mineral-associated organic carbon
(MAOC), respectively. Given that it forms part of the unbound
organic matter in the soil, POC is more vulnerable to agricultural
management practices that cause disturbance to the soil (i.e.,
tillage), and is generally believed to have a relatively quick
turnover time (10, 18–21), whereas MAOC, which is physically
protected frommicrobial decay, can remain in soils for decades to
centuries (17, 22, 23). Furthermore, MAOC is far more resistant
to changes in decomposition rate as temperatures increase (24).
Therefore, from a climate change mitigation perspective, the
benefits of increasing MAOC are two-fold: first, residence times
of MAOC are greater than POC, and second, the vulnerability of
MAOC to rising global temperatures is lower than POC (23).

Global estimates of soil carbon sequestration capacity are
often limited to total soil carbon, rather than the more stable
MAOC fraction within the total soil carbon pool. That being
said, Chen et al. (25) and Wiesmeier et al. (26) applied the
Hassink (27) equation to estimate fine fraction C saturation
potential in French and southeastern German soils, respectively.
Chen et al. (25) concluded that cropland and vineyard/orchard
soils have fine fraction C saturation deficits of ∼36 and 57%,
respectively, while Wiesmeier et al. (26) concluded that cropland
soils have a fine fraction C saturation deficit of∼50%. Rather than
relying on the Hassink equation to estimate fine fraction SOC
(MAOC) concentration, we developed a model for estimating
MAOC concentrations that was parameterized using actual
measurements of MAOC conducted on a subset of our soil
samples. In order to focus carbon sequestration efforts on the
adoption of management practices that increase MAOC in
soils, it is important to identify soils that have not yet reached

maximum MAOC capacity. While carbon stabilization methods
have been discussed more frequently in recent years, there
are very few studies that attempt to quantify the potential for
additional carbon storage in specific soils beyond surface depths.

To quantify any potential for additional MAOC storage, two
measures must be determined for a given soil: the current
concentration ofMAOC in the soil, and themaximum achievable
concentration of MAOC for the soil (i.e., its “stabilization
capacity”). The difference between these two values is then
considered to be the “stable carbon deficit” (28, 29).

There is a general consensus thatMAOC formation is strongly
influenced by the fine fraction of the soil (27, 29). Clay and silt
particles account for the majority of the surface area available
for sorption of MAOC and, therefore, clay and silt content have
often been used to estimate current MAOC concentrations (29–
31). More recently, however, McNally et al. (29) found that
current MAOC was estimated more accurately by using the
specific surface area (SSA) of the soil coupled with extractable
aluminum concentrations rather than soil texture per se. The
New Zealand-wide soils database used in McNally et al. (29)
included primarily acidic soils of volcanic origin containing
fine-textured allophanes. By contrast, many agricultural soils
in the Northern Hemisphere are of glacial origin and are
often coarse-textured; furthermore, those in semi-arid regions
tend to be more alkaline (32). In acidic soils, aluminum- and
iron-oxides stabilize soil carbon by forming organo-mineral
complexes, whereas in alkaline soils, calcium forms divalent
cation bridges between fine soil carbon andmineral surfaces (33–
36). Differences in how MAOC is formed in soils with varying
pH, texture, and mineralogy highlights the importance of taking
a more mechanistic approach to MAOC estimation—one that
can accommodate individual differences in soil parent material
(29, 37). In order to do so, development of any model to estimate
MAOC must use predictor variables appropriate for the soil type
in the region.

Current concepts of carbon stabilization capacity revolve
around the notion of mineral saturation by fine fraction carbon;
that is, the point at which carbon is bound to all available mineral
surfaces such that no further binding of carbon is possible
(38, 39). Statistical methods offer insights into the theoretical
MAOC saturation threshold values, but the mechanisms behind
these values provide conceptual challenges. For example, any
values generated by MAOC saturation threshold models are
necessarily affected by current MAOC values, which are, in turn,
influenced by current soil conditions. As such, the resulting
MAOC saturation threshold determined by these models does
not necessarily represent “saturation,” but is instead a reflection
of the challenges imposed by the current climatic, agronomic,
and soil physicochemical conditions. If some combination of
those conditions change, the theoretical MAOC saturation
capacity is also likely to change over time. Further, it has been
shown that OM preferentially binds to rough mineral surfaces
and existing organo-mineral clusters, to the degree that <19%
of the visible mineral surface area of Luvisols during a 42 day
incubation experiment was occupied by OM (39). It follows
that the MAOC saturation threshold value generated by model
estimates is therefore a MAOC formation capacity under the
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current soil conditions, rather than a saturation threshold, per
se. Therefore, instead of the term “saturation,” we recommend
adopting the nomenclature “MAOC formation capacity,” as we
have here. This term makes no assumptions regarding the limits
of mineral saturation, and more accurately represents the values
estimated using carbon stabilization models.

The capacity for a soil to formMAOC is difficult to determine
with confidence. Several studies have used themass proportion of
fine soil particles (clay and fine silt) to predict MAOC formation
capacity directly using a least squares regression model (15, 27).
However, Six et al. (15) and Beare et al. (28), have shown
that this approach likely underestimates the MAOC formation
capacity due to limitations in the application of least squares
regression (30). Two such limitations stand out in particular.
First, there is an underlying assumption in these regression
models that soil mineralogy has no effect on C stabilization
(15, 30). Second, themaximum capacity regression line generated
by such models relies on the assumption that all samples used
in the model are near their maximum C stabilization capacity
(30). In light of these issues, McNally et al. (29) endeavored to
improve the statistical method by which the MAOC formation
capacity of New Zealand’s soils could be estimated. To account
for differences in mineralogy, current MAOC was estimated
using SSA and concentration of exchangeable aluminum in the
soils, and further, MAOC formation capacity was considered to
be the 90th quantile of MAOC in the samples, as calculated
using a quantile regression model (29). This method thereby
uses the upper range of measured MAOC values to estimate the
theoretically obtainable, upper threshold ofMAOC formation for
a soil.

The objective of the current study was to adapt the method
developed byMcNally et al. (29) for estimating the MAOC deficit
for fine textured, acidic soils of volcanic origin in New Zealand
so that it is appropriate for estimating the MAOC deficit for
predominantly coarse-textured, alkaline soils of glacial origin
in the Okanagan Valley, British Columbia, Canada. First, we
confirmed that different factors correlated with the accumulation
of C in the total SOC, and the POC and MAOC fractions by
examining the variables that best predicted their C contents. In
all subsequent analyses, we focused on MAOC only, because we
were particularly interested in looking at factors related to stable
soil C storage. After determining the best predictor variables to
include in the model to estimate current MAOC, and then select
an appropriate model algorithm. One of the most important
questions we sought to answer was whether soil texture or SSA
was a better predictor variable for these soils. We used previously
published chemical and texture data from a recent soil survey
conducted in orchards and vineyards in this region (7, 19), as
well as new data we collected on the specific surface area of the
same soils. The five soil groups included in this study represent a
range of textures, meaning the results may be used widely. Recent
work conducted on a subset of these soil samples showed that
the concentration of MAOC in the top 30 cm of soil has more
than doubled over several decades of perennial cropping relative
to adjacent non-cultivated soils, and has a current MAOC stock
of 168.0 million kg across 8,501 ha (7). However, such MAOC
accrual cannot be expected to continue indefinitely. Here, we

wanted to: (i) determine if there is still a MAOC deficit present
in these soils, given the large, relatively recent accumulation of
MAOC, and (ii) identify soil types with the greatest potential to
store additional MAOC. Because direct measurement of MAOC
is difficult and time consuming, we first needed to: (iii) determine
the best modeling approach for estimating current MAOC
concentrations using commonly measured soil characteristics,
which required (iv) determining the most efficient method for
estimating SSA. Hence, we generated candidate models for
estimation of MAOC and then, using the best performing model,
estimated missing MAOC values for our dataset. Next, we used
the 90th quantile approach established by McNally et al. (29)
to estimate MAOC formation capacity, by depth increment, for
each of the five soil groups.

MATERIALS AND METHODS

The multi-stage process by which MAOC deficits in the soils
Okanagan Valley perennial cropping systems were determined
involved the careful selection and assessment of both soil
physicochemical variables and modeling approaches. This
process can be roughly grouped into three overall stages: (i) data
acquisition and variable selection; (ii) model selection for MAOC
estimation; and (iii) MAOC deficit estimation (Figure 1).

Data Acquisition and Variable Selection
Okanagan Valley Soils Database
The Okanagan Valley resides along a 200 km-long temperature
and precipitation gradient, with 30-year annual daily
temperature and precipitation averages of 18.0◦C and 279.5mm
in the southern part of the Valley, and 15.0◦C and 383.5mm
in the north (40). The region is known for its cultivation of
woody perennial fruit crops, including wine grapes, apples,
and sweet cherries. Five groups of common soil types were
selected, based on the surficial parent material from which they
developed: (i) clayey glaciolacustrine sediments, (ii) sandy or
silty glaciolacustrine sediments, (iii) eolian veneer over morainal
deposits, (iv) gravelly fluvioglacial deposits, and (v) sandy or
silty fluvioglacial deposits (Figure 2). These soil groups represent
∼40% (8,501 ha) of the agricultural landbase in the Okanagan
Valley and were deliberately selected to capture a range of soil
textures from across the Valley, although most had sandy loam
to loamy textures.

Composite soil samples were taken at three depths (0–15,
15–30, and 30–60 cm) from the drive rows and crop rows of
four woody perennial cropping systems: drip-irrigated apples and
grapes, and micro-spray-irrigated apples and cherries in each of
the five soil groups. Non-cultivated, adjacent areas under native
vegetation [typically grassland and shrubland, e.g., Ponderosa
pine (Pinus ponderosa), sagebrush (Artemisia spp.), yellow
rabbitbrush (Chrysothamnus viscidiflorus), bluebunchwheatgrass
(Elymus spicatus)] with similar soil classification, elevation,
climatic conditions, and aspect were also sampled (7). Data from
537 soil samples collected from 99 sites were used for the current
study (18 uncultivated sites × 3 depths; 81 cultivated sites × 3
depths for drive- and crop-row samples; three individual samples
were inaccessible at the 30–60 cm depth); the soil sampling and
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FIGURE 1 | Outline of the MAOC deficit determination process. Light gray sections denote the data acquisition and variable selection stage, middle gray denotes the

model selection for MAOC estimation process, and dark gray denotes the MAOC deficit calculation process.
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FIGURE 2 | Soil texture composition of all 537 samples separated by the five soil groups used in this study. Soil groups are defined by their surficial deposit

classifications. Modified from Midwood et al. (19).

analysis protocol was outlined in detail in Midwood et al. (19).
Briefly, soil samples were collected from between 10 and 20
randomly chosen points over an approximate area of 0.25–0.5
ha and composited by depth increment. In agricultural sites,
separate composite samples were collected, by depth, from the
crop rows and the drive rows (strips of herbaceous vegetation
between the crop rows). Composite samples were then sieved
to 8mm to remove large stones and roots, air-dried, and then
further sieved to 2mm prior to further analysis.

Each sample was analyzed for soil texture (% sand, % silt,
and % clay); exchangeable Ca (meq 100 g−1 dry soil), Mg
(meq 100 g−1 dry soil), K (meq 100 g−1 dry soil), and Na
(meq 100 g−1 dry soil); total N (%); soil organic and inorganic
carbon (SOC, %; SIC, %); mean δ13C composition (‰); and
soil pH. Details on the specific methods applied can be found
in Midwood et al. (7, 19). Mineral-associated organic carbon
(MAOC) was measured on a subset of 216 samples, chosen
to represent a cross-section of all soil types, cropping systems,
and soil depths sampled, such that the subset matched the
soil property representation of the larger dataset as closely as
possible. The soil fractionation process is outlined in greater
detail in Midwood et al. (7) and follows the method described
in Poeplau et al. (18) as “Par+Den5.” Briefly, this method uses a
combination of flotation and repeated wet sieving to produce a
series of mechanistically distinct fractions. Overall, fractionation
resulted in good recovery with the average accumulated weight
of the two fractions accounting for 94.3% of the initial soil

weight (low of 90.8%, high of 96.8%). More detail on the
efficiency and recovery of the method used to separate POM
and MAOM is provided in Midwood et al. (7). The resulting
soil fractions were simplified, following the approach used by
Cotrufo et al. (16), into the two soil carbon fractions used
in this analysis: MAOM (<50µm fraction = silt + clay) and
POM (>50µm fraction). Here, MAOC refers to the C content
measured from the <50µm fraction. This fractionated subset
(216 soil samples) was used to develop a model that estimated
current MAOC concentrations using other soil variables, with
the best performing model being used to fill in missing MAOC
values for the remaining 321 soil samples for which MAOC was
not directly measured.

Methods of Estimating Specific Surface Area
Specific surface area (SSA) represents the surface area of
minerals (Figure 3) available for binding small molecular weight,
microbially processed carbon (28, 29); consequently, we wanted
to include SSA in the models to estimate MAOC, but these data
had not previously been measured on the Okanagan Valley soil
samples. Specific surface area analyses of soils can be difficult
and time consuming; therefore, we used three approaches for
measuring SSA: (i) direct measurement of SSA on a small
number of samples using specialized equipment based on the
Brunauer, Emmett, and Teller theory (BET); (ii) interpolation of
the remainder of the samples based on the BET results obtained
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FIGURE 3 | Comparison of SSAproxy (measured using moisture loss as in Equation 2) and soil texture variables for 537 samples collected from orchards, vineyards,

and under native vegetation. Each soil sample has three points on the figure: one for Clay % vs. SSAproxy (p < 0.001; R2: 0.74), a second for Silt % vs. SSAproxy (p <

0.001; R2: 0.14), and a third for Sand % vs. SSAproxy (p < 0.001; R2: 0.53).

in (i); and (iii) measurements of water mass loss after drying soils
at 120◦C as per Beare et al. (28), described below.

The BET theory of gas adsorption to solid particles (41) is
used to directly measure SSA. Because this technique requires
specialized equipment, and is time consuming and expensive
to conduct, we selected only 10 samples for direct SSA
measurement. The samples were selected across the full textural
range of our entire 537 sample dataset, and were analyzed using a
TriStar II Plus, surface area and porosity analyser (Micrometrics
Instrument Corp, Norcross, GA, USA). We then used a simple
trend line of BET (i.e., actual SSA) to interpolate values between
measured points to determine SSAinterpolated for the remaining
527 samples when ranked by moisture loss after oven drying
(see below).

As a less expensive alternative to the BET method for
measuring SSA, the mass of water lost when air-dried soils are
oven dried can be used as a reasonable approximation of BET
(28). We assessed the utility of this method using sieved (2mm),

air-dried soil samples held at 30◦C and 30% humidity for at least 1
week in a controlled environment chamber (Conviron PGCFLEX
model; Controlled, Environments Ltd., Winnipeg, MB, Canada),
then oven dried at 120◦C to a constant mass. We used the
difference between the air-dried and oven-dried mass of the soil
samples to estimate the mineral surface area available for binding
carbon in soils, as was done for Allophanic, Brown, and Recent
soils in New Zealand, using the following equation (42):

SSAproxy (m
2 g−1) = 2 x air − dry water content (g kg−1) (1)

We then plotted the SSAproxy values against our measured and
interpolated values of SSA (which relied on the BET method)
and found that Equation (1) greatly overestimated the SSA of
the 432 soil fractions in the training set (Supplementary Figure 1

in Supplementary Materials). We therefore calculated a new
equation to estimate SSA using the “moisture loss” method for
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soils in the Okanagan Valley as follows:

SSAproxy (m
2 g−1) = 0.61 x air − dry water content

(

g kg−1)

(2)

Variable Selection
Because SOC is more frequently measured than POC andMAOC
in studies of soil C, we performed correlation analyses to
determine whether correlates of soil C storage differed among
each carbon fraction. In order to determine the strongest
predictors of MAOC concentrations across soil types in the
Okanagan Valley soils, we used Pearson correlation analyses
to examine the relationships among measured soil properties
(MAOC; SOC; SSAproxy; POC; % sand, % silt, and % clay;
exchangeable Ca, Mg, K, and Na; total N; SIC; mean δ13C
composition; C:N ratio; and soil pH) in order to determine the
strongest predictors of MAOC, POC, and SOC concentrations
(Supplementary Figure 2 in Supplementary Materials). Based
on the results of correlation analysis, we parsed the variables
down to SOC concentration, SSAproxy, exchangeable Ca,
exchangeable K, % clay, % silt, and % sand, %N, C:N ratio,
and soil pH (Figure 4). Because soil texture varies among soil
groups, “soil group” is autocorrelated with the % sand, % sild,
and % clay; thus, “soil group” was not included in the model.
Specific surface area proxy and soil texture variables (% clay, %
silt, and % sand) were included as indicators of the mineral area
available for soil C binding, while exchangeable Ca was selected
due to its strong correlation with MAOC in the more neutral
soils of the Okanagan Valley (32). While soil pH did not correlate
well with current MAOC in our samples, it has previously been
identified as an important factor in MAOC storage dynamics in
the literature that formed the basis for our modeling approach
(28) and variable selection process (32). Exchangeable K, soil C,
soil N, and C:N ratio were similarly identified as strong predictors
of MAOC stocks in European soils using Random Forest models
analogous to those used in this study (16).

Model Selection for MAOC Estimation
Two model algorithms were chosen for estimating current
MAOC concentrations using the selected variables: stepwise
multiple regression with AIC, because of its predominance in
generating pedotransfer functions (28); and random forest, a
relatively new, non-parametric machine learning approach with
the potential to produce more accurate MAOC estimates (16).
Given the close relationship between SSAproxy and soil texture
found in the literature, we generated two model iterations using
either SSAproxy or soil texture in addition to all of the selected
variables mentioned above, for each of the two algorithms: (i)
stepwise multiple regression with AIC using SSAproxy values but
no % clay and % silt; (ii) stepwise multiple regression with AIC
using % clay and % silt but no SSAproxy; (iii) random forest
algorithmwith SSAproxy but no% clay and% silt; and (iv) random
forest algorithm with % clay and % silt but no SSAproxy.

Stepwise Multiple Regression With AIC
The data used in the analysis (SOC, exchangeable Ca and K,
SSAproxy, % clay, % silt, % sand, % N, soil pH, and C:N ratio)

were largely skewed to the right, suggesting that there were few
extremely high values in the samples (43). To normalize the
data for use with stepwise multiple regression, values were log-
transformed (natural log) prior to applying stepwise multiple
regression. Akaike’s Information Criterion was used to select the
best-fit model (29, 44). Stepwise multiple regression with AIC
was carried out using the stepAIC package including 10-fold cross
validation via the caret package (45, 46) in R version 4.1.1 (47).

Random Forest Modeling
The same data (SOC, exchangeable Ca and K, SSAproxy, % clay, %
silt, % sand, % N, soil pH, and C:N ratio) were used to estimate
current MAOC via random forest modeling. Random forest
models work by combining a large number of regression trees,
trained using bootstrap aggregation, to build a robust predictive
model that is resistant to noise in the data (48). The randomForest
base package was used alongside caret for hyperparameter tuning
and R2 determination (mtry) and 10-fold cross validation (46,
47). Model fit was determined from the fittedmodels via the cross
validated R2.

Model Performance
The performance of the models developed to estimate MAOC
concentrations were evaluated based on the R2 performance
metric, carried out using 10-fold cross validation, for each of
the model types. Linear models that compared the estimated
MAOC values from each of the four estimation models
with the MAOC values measured on the 216-sample subset
highlighted the difference in relative performance across the
range of MAOC values (Figure 5). The model with the highest
model performance metric was selected to estimate the current
MAOC concentrations for the 321 samples for which MAOC
concentrations had not been directly measured.

MAOC Deficit Estimation
We estimated MAOC deficits as the difference between current
MAOC concentrations and the MAOC formation capacity of
each soil sample. Current MAOC concentrations had either been
measured directly (216 samples) or estimated as described in
Section Model Selection for MAOC Estimation (321 samples).

We used the multivariate quantile regression method
described byMcNally et al. (29) to estimate theMAOC formation
capacity. According to this method, the 90th quantile of current
MAOC concentrations was designated as the formation capacity
for the entire population of soil samples; 90th quantiles of
current MAOC concentration were calculated separately for each
of the five soil groups included in the dataset. The carbon
deficits were then calculated as the difference between the current
measured (or estimated) value of MAOC concentration for each
individual sample and the mean 90th quantile of MAOC for all
samples within each soil group. Confidence intervals (95%) were
calculated using a root mean square approach (29).

MAOC deficits were subsequently compared among soil
groups and depths using a two-factor ANOVA with means
separation using Tukey’s Honestly Significant Difference (Tukey’s
HSD) test.
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FIGURE 4 | Correlation matrix of soil characteristics measured on the 216 measured samples included in the models and for discussion. Numbers in each cell are the

Pearson correlation coefficient between the two variables. Shade intensity is representative of the strength of the correlation, and hashed boxes represent negative

correlations. Relationships in white cells with italicized correlation coefficients were not statistically significant (p > 0.05). SSA interpolated values are specific surface

area values calculated using the Brunauer, Emmet, and Teller (BET) theory and values interpolated using a best fit line. Mineral associated organic carbon (MAOC) is

the C concentration in the <50µm fraction, while Particulate organic carbon (POC) is the C concentration in the >50µm fraction. Soil organic carbon (SOC) is the

total organic carbon present in the soil sample. Specific surface area proxy (SSAp;roxy) is the mineral surface area as measured using the moisture loss method as in

Equation (2).

Calculating MAOC Stocks and Stock
Deficits
MAOC stocks (Mg ha−1) were calculated from MAOC
concentrations (g kg−1) using an adjusted soil bulk density value
(BD). This adjusted BD value was determined by correcting the
whole soil bulk density (7) for the fine fraction portions of the soil
in which the MAOC is found. The adjusted BD and the resultant
MAOC stock values were therefore calculated as follows:

BDadjusted = BDwhole soil × proportion of silt + clay (3)

MAOCstock (Mg MAOC ha−1) =

MAOCconc. × BDadjusted × t × 0.1 (4)

where MAOCconc. is mineral-associated organic carbon
concentration in g kg−1; BDwhole soil is the measured, whole
soil bulk density, in g cm−3; BDadjusted is the bulk density
adjusted for the silt and clay soil fraction, in g cm−3; t is the
thickness of the depth increment (cm), and 0.1 is the conversion
factor for Mg ha−1 .

As with MAOC concentrations, MAOC stock (Mg ha−1)
formation capacities were calculated using the 90th quantile
method, but applied to values of MAOC stock. The MAOC stock
deficit was calculated on a per-sample basis as the difference
between the MAOC stock upper limit for each soil type, and the
current MAOM stock.

RESULTS

Carbon Fractions and Soil Properties
The first step in developing a model to estimate current MAOC
concentrations was to determine the most appropriate predictor

variables for the soil samples in our dataset. We conducted
correlation analyses among the measured MAOC concentrations
(determined for 216 of the 537 soil samples collected for
the aforementioned Okanagan Valley soil survey) and other
variables measured on the same soil samples (see Section Model
Selection for MAOC Estimation). Correlation analyses were
also conducted for POC and SOC using the same dataset to
compare differences in the drivers of soil C storage among each
carbon fraction.

Correlations Between Measured MAOC and Other

Soil Variables
Mineral-associated organic carbon showed the strongest positive
correlations with concentrations of SOC and exchangeable Ca
in the whole (unfractionated) soil (Figure 4). Mineral-associated
organic carbon also correlated positively with those factors most
associated with increased SSA (i.e., SSAinterpolated, SSAproxy, %
clay, and % silt) and with exchangeable K and % nitrogen.
Mineral-associated organic carbon was negatively correlated with
% sand, and was not correlated with soil pH nor C:N ratio.

Correlations Between Measured POC and Other Soil

Variables
Storage of soil carbon as MAOC and POC were driven
by different soil properties (Figure 4). Other than positive
correlations with concentrations of SOC, % N, exchangeable Ca,
and SSAproxy in the whole (unfractionated) soil, POC was not
positively correlated with the same variables as MAOC. Instead,
POC was negatively correlated with soil pH and % clay and
showed no relationship with exchangeable K, SSAinterpolated, %
silt, % sand, or C:N ratio.
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FIGURE 5 | Values of MAOC from predictive models using SSAproxy as the mineral surface area availability metric (A,B), or texture (%clay and %silt) as the mineral

surface area availability metric (C,D) plotted against measured MAOC values (C concentration in the <50µm fraction) on the same 216 samples. (A,C) use Random

Forest predictive algorithms (A R2: 0.790; C R2: 0.788) while (B,D) are from Stepwise Multiple Regression with AIC algorithms (B R2: 0.713; D R2: 0.717). The black

line shows a 1:1 relationship.

Correlations Between Measured SOC and Other Soil

Variables
The concentration of SOC in the whole soil was most strongly
positively correlated with exchangeable Ca, SSAproxy, and % N,
with weaker (but still positive) correlations with SSAinterpolated

and % silt. Soil organic carbon was negatively correlated with %
sand and soil pH, and was not related to exchangeable K, % clay,
and C:N ratio (Figure 4).

Predicting Current MAOC: Model
Comparison
Following the correlation analyses, the variables shown in
Figure 4 were then used to generate the four model types
outlined in section Section Model Selection for MAOC

Estimation, that is: (i) stepwise multiple regression with AIC
using SSAproxy values but no % clay and % silt; (ii) stepwise
multiple regression with AIC using % clay and % silt but
no SSAproxy; (iii) random forest algorithm with SSAproxy but
no % clay and % silt; and (iv) random forest algorithm with
% clay and % silt but no SSAproxy. Based on comparisons
of values of MAOC concentration predicted by the model
vs. measured values of MAOC (C concentration in the <

50µm fraction; Section Data Acquisition and Variable Selection),
random forest (Figures 5A,C) performed better than stepwise
multiple regression with AIC (Figures 5B,D) for estimating
MAOC concentrations (Table 1). The random forest model
containing SSAproxy as an input variable explained the most
variance (R2: 0.790), followed very closely by the random forest
containing soil texture as an input variable (R2: 0.788). Variable
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TABLE 1 | Model performance metrics for MAOC estimation.

Plot Model variation Model performance p-value

Ab Random Forest - SSAproxy R2: 0.790 NAa

Bc Stepwise Multiple Regression with AIC - SSAproxy R2: 0.713 <2.2e-16

Cb Random Forest - texture R2: 0.788 NAa

Dc Stepwise Multiple Regression with AIC - texture R2: 0.717 <2.2e-16

SSAproxy is specific surface area determined using the moisture loss method.
aRandom Forest models do not produce a p-value or equivalent metric.
bVariables included in Random Forest model A were SSAproxy , SOC, exchangeable Ca, exchangeable K, % N, soil pH, and C:N ratio. Variables included in Random Forest model C

were soil texture (% clay and % silt), SOC, exchangeable Ca, exchangeable K, % N, soil pH, and C:N ratio.
cVariables selected by AIC for model B were SSAproxy , total SOC, exchangeable Ca, and soil pH. Variables selected by AIC for model D were % clay, % silt, total SOC, and

exchangeable Ca.

TABLE 2 | Pedotransfer functions produced from best-fit stepwise multiple regression with AIC models using either soil texture variables (% clay and silt; Equation 5) or

SSAproxy (Equation 6).

Pedotransfer function

log(MAOCconc. ) = 0.719 + 0.627. log(SOCconc.) + 0.134. log(Ca) + 0.013.clay + 0.004.silt (5)

log(MAOCconc. ) = −0.460 + 0.483. log(SOCconc.) + 0.164. log(Ca) + 0.470. log(SSAproxy ) + 0.046.pH (6)

MAOC and SOC are measured in g C kg−1, Ca is exchangeable calcium measured in meq 100 g−1 of dry soil, SSAproxy is specific surface area determined using the moisture loss

method, pH is soil pH, and clay and silt are measured in percent soil texture composition.

importance plots identified total SOC, exchangeable Ca, and
SSAproxy as the most impactful variables for estimating MAOC
(Supplementary Figure 3 in Supplementary Materials).

Like the random forest models, stepwise multiple regression
with AIC containing either SSAproxy or soil texture as input
variables produced similar results (Figure 5), with R2 of 0.717
using soil texture and 0.713 using SSAproxy data (Table 1). For
the model generated using SSAproxy data, variables selected by
the best-fit AIC were total SOC, exchangeable Ca, SSAproxy, and
soil pH. For the model using soil texture data, variables selected
by the best-fit AIC were total SOC, exchangeable Ca, % clay,
and % silt. Notably, exchangeable K, total N, and C:N ratio
were not selected for either model. While the stepwise multiple
regression models showed a greater spread in predicted MAOC
values than the random forest models, these models have the
advantage of providing coefficients for a simple pedotransfer
function. The pedotransfer functions for calculating MAOC,
when SOC, exchangeable Ca, clay, and silt concentrations, SSA,
and soil pH are known, were produced from the best-fit stepwise
multiple regression with AIC for both soil texture (Equation 5)
variables and SSAproxy (Equation 6), and are shown in Table 2.

Mineral-Associated Organic Carbon
Formation Capacity
Current concentrations of MAOC, as estimated using
the random forest model with SSAproxy, were highest
in soil samples taken from the top 15 cm of drive row
soils in all cropping systems (Supplementary Table 1 in
Supplementary Materials). Soils with surficial deposits
comprised of clayey glaciolacustrine sediments had the
highest capacity for MAOC formation as calculated using
the 90th quantile approach (9.9 g kg−1), while those of sandy
fluvioglacial deposits had the lowest (5.3 g kg−1) (vertical

lines, Figure 6). The remaining three soil groups had MAOC
formation capacities of 6.3, 7.1, and 9.0 g kg−1 for soils with
surficial deposits comprised of silty glaciolacustrine sediment,
morainal deposit, and gravelly fluvioglacial deposit soils,
respectively (Figure 6).

Deficits in MAOC: Concentrations
Deficits in MAOC concentration were present in all soil
groups (p < 0.001), and increased with depth (p < 0.001;
Supplementary Table 2, Figures 6, 7). Soils derived from clayey
glaciolacustrine sediment, showed similar MAOC deficits (1.62 g
kg−1 for 0–15 cm, 4.01 g kg−1 for 15–30 cm, and 5.80 g kg−1

for 30–60 cm) to both Morainal Deposit (2.91 g kg−1 for 0–
15 cm, 4.14 g kg−1 for 15–30 cm, and 5.02 g kg−1 for 30–60 cm)
and Gravelly Fluvioglacial Deposit (2.79 g kg−1 for 0–15 cm,
4.53 g kg−1 for 15–30 cm, and 6.03 g kg−1 for 30–60 cm) derived
soils, while soils derived from silty glaciolacustrine sediments
and sandy fluvioglacial deposits, showed smaller deficits [silty
glaciolacustrine sediments: 1.42 g kg−1 for 0–15 cm, 2.98 g kg−1

for 15–30 cm, and 3.74 g kg−1 for 30–60 cm; sandy fluvioglacial
deposits: 1.01 g kg−1 for 0–15 cm, 2.72 g kg−1 for 15–30 cm, and
3.69 g kg−1 for 30–60 cm (Table 3, Supplementary Table 2 in
Supplementary Materials)].

Deficits in MAOC: Stocks
Bulk density measurements were obtained as per Midwood et al.
(7) for only the 0–15 and 15–30 cm depths. Therefore, MAOC
stocks (Mg ha−1) and their resulting deficits were calculated only
for the upper 30 cm of the soil profiles. Across all soil groups,
the current MAOC stock was 11.34Mg ha−1 on average, for the
0–15 cm depth, and 8.43Mg ha−1 on average, for the 15–30 cm
depth. Across all soil groups, deficits in MAOC stocks were an
estimated 1.79Mg ha−1 for the 0–15 cm depth, and an estimated
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FIGURE 6 | Current MAOC concentration, as determined by MAOC modeling in combination with measured MAOC where available, and MAOC formation capacity as

determined using a quantile regression (τ = 0.90) model, separated by soil group and soil depth. Black dots represent the mean MAOC for each soil group and depth,

with the number of samples in each group shown above. Bars represent the standard error of the mean. The vertical gray dashed line is the MAOC formation capacity.

3.86Mg ha−1 for the 15–30 cm depth. When considered across
the 8,501 ha of agricultural land represented by these soil groups
across the Okanagan Valley, there is currently a MAOC stock of
168,065Mg C in the upper 30 cm of the soil profile, and a MAOC
stock deficit of 48,030 Mg C.

DISCUSSION

Variable Selection
Soil carbon modeling of the whole soil (total SOC) may be
less effective than modeling mechanistically distinct soil carbon
fractions. For example, our results showed that not only are
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there often different drivers of total SOC, POM, and MAOC,
but that % clay, a well-established factor affecting soil carbon
storage, is correlated in the opposite direction for MAOC and
POM (Figure 4). For example, % clay in the samples used for
this study had a significant positive correlation with MAOC,
and a significant negative correlation with POC, such that
the overall effect of % clay on total SOC was nearly neutral
and not significant. As such, it isn’t possible to make any
determinations regarding the mechanisms of SOC retention by
looking at the correlations between total SOC and these such
soil properties. While POC is an important indicator of soil
health, from a climate change mitigation standpoint, MAOC
offers greater benefits in the form of long term carbon storage
in soils.

One of the aims of this study was to provide a framework
for estimating MAOC stocks and predicting MAOC deficits
that could be applied to soils with a broad range of physico-
chemical properties. Selecting variables for inclusion in current
MAOC models should be done on a per-soil basis, as soil
properties often interact to form the conditions necessary for
MAOC storage. For example, the Okanagan Valley soils used
in this study developed from glacial outwash and debris left
behind by retreating glaciers ∼10,000 years ago (49). While
arable soils across the globe typically have > 50% of their
SOC in the form of MAOC (50, 51), soils in Okanagan Valley
orchards and vineyards have relatively low MAOC, averaging
only 27% of SOC across all plots. Meanwhile, Wiesmeier et
al. (26) estimated that the portion of fine-fraction carbon
present in the well-developed soils of cropland, grassland, and
forest in Bavaria were 77, 60, and 38%, respectively. This
difference may be attributed to the semi-arid climate, low
productivity of native plants, and relatively young, therefore
lightly weathered, soils (7, 52), and the short period of time
during which many of these soils have been actively managed
for agriculture (i.e., <70 years). The mineral weathering process
is responsible for the development of reactive (clay) surfaces
that bind and help protect MAOC from microbial decay,
thereby vastly increasing the residence time of soil C (53). It
follows that soils with different combinations of soil genesis,
soil age, climate, and native vegetation will result in unique
physicochemical conditions.

While % clay and SSA are both related to the mineral surface
area potentially available for adsorption of fine fraction OM,
models utilizing either soil texture or SSA tend to have varying
accuracy in different soil types. Nano-scale analyses of OM
surfaces; iron- and aluminum-oxides, and exchangeable calcium;
as well as mineral surfaces, have highlighted the availability of,
and mechanisms behind, mineral adsorption sites (54–57). In
acidic soils, aluminum- and iron-oxides play an important role
in MAOC formation by forming organo-metal complexes with
low molecular weight OM, while in alkaline soils, exchangeable
calcium serves a similar function by forming divalent cation
bridges (33, 35, 36). This results in uneven adsorption of OM
to mineral surfaces, and may partially account for differences
in the efficacy of using soil texture vs. SSA in previous fine
fraction C deficit modeling. Clay (%) alone cannot account for
unevenness in the binding capacity of clays, while SSA can at

least partially account for differences in clay mineralogy (54, 58).
In fact, while utilization of the SSAproxy (air-dry vs. oven-dry
weight) method used here may, strictly speaking, give a less
accurate measure of overall fine fraction surface area than direct
measurements of SSA obtained via the Brunauer–Emmett–Teller
(BET) isotherm, the SSAproxy may more accurately account for
the increased water holding capacity of the adsorbed OM (56).
If this is the case, then MAOC prediction models for soils
with predominantly 1:1 clays, low overall clay content, or low
MAOC will likely find that soil texture variables like % clay
and % silt serve as well as SSA in predicting MAOC, as we
have here.

Because Okanagan Valley soils tend to be more alkaline,
Exchangeable Ca plays an important role in MAOC formation;
the relationship between MAOC and exchangeable Ca in these
soils showed a correlation coefficient of 0.71, which is equivalent
to that between MAOC and overall total SOC (Figure 4).
Variable importance ranking also showed that exchangeable
Ca was the second-most important variable for estimating
MAOC in the random forest models [second only to total
SOC (Supplementary Figure 3 in Supplementary Materials)].
In addition to cation bridging (59–61), exchangeable calcium
plays an important role in SOC accumulation in neutral and
alkaline soils via entrapment of occluded SOC in Ca-promoted
aggregates (36, 54, 62). Calcium and low molecular weight
organic C molecules work with clay minerals to form organo-
clay complexes, by which carbon is bound to the edges and
surface of clay minerals (60). In addition to the stabilization
of carbon due to divalent cation bridging via Ca2+ (63), the
prevalence of micropores in clay-rich soils physically protects
trapped carbon from microbial interaction (60). The result
is that as exchangeable Ca levels increase in soil, MAOC
also increases, even if soil conditions favor oxidation of
SOM (63).

Prediction of Current MAOC Using
Stepwise and Random Forest Models
Measures of SSA can be employed in association with other
soil physico-chemical properties (such as exchangeable Ca and
soil pH) to accurately estimate current MAOC concentrations
in situations where it is not practical or affordable to measure
MAOC directly (27, 28, 64). However, the coefficient used to
estimate SSA in Beare et al. (28) grossly overestimated the SSA
of the younger, coarser-textured soils used here, as measured
using BET. We therefore adopted a smaller coefficient, which
more closely represented the SSAinterpolated values obtained for
these soils (Equation 2). In any case, the patterns of change
in SSAproxy and BET-derived SSAinterpolated values were very
similar (Supplementary Figure 1 in Supplementary Materials).
It follows that in order to accurately approximate the SSA
for a given soil using the SSAproxy approach, comparisons
with measured SSA values may need to be considered (as
we did using the BET method), and the coefficient may
need to be individually assessed for soils with divergent
physicochemical properties. That being said, when using the
resulting calculated SSAproxy value for MAOC estimation, the
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FIGURE 7 | Mineral-associated organic carbon deficits by soil group and depth, calculated as the difference between the MAOC formation capacity estimated using a

90th quantile approach and the current MAOC. Boxes show the 25th to 75th interquartile range, with the median shown as a black bar. Whiskers show the range of

data present for each box. Significant differences between samples from different depths within a soil type, determined using ANOVA with means separation using

Tukey’s Honestly Significant Difference (Tukey’s HSD) test are shown above each soil depth combination (ns, not significant; .: p ≤ 0.1; *p ≤ 0.05; **p ≤ 0.01; ***p ≤

0.001).

pattern of change and relative SSAproxy value are what drove
model predictions, particularly with non-parametric model types
such as Random Forest. As such, the SSAproxy approach to SSA
estimation remains appropriate for the purposes of modeling
soil parameters impacted by changes in the specific surface area
of soils.

A series of four models were created to compare the
efficacy of soil texture and SSAproxy to estimate MAOC in
perennial cropping systems of the Okanagan Valley, British
Columbia, Canada (Figure 5). The two random forest models
(one using SSAproxy and one using soil texture) performed
equally well (with R2 of ∼0.79); the two stepwise multiple
regression models (again, one using SSAproxy and one using
soil texture) also performed similarly (SSA with R2 of 0.71
and soil texture with R2 of 0.72). These results are in line
with previous studies that concluded that the mass proportion
of the fine fraction is the most quantitatively important
factor in controlling the storage of C in the MAOC fraction
(27, 30, 38). However, these results contrast with McNally
et al. (29), which concluded that SSAproxy was a much
better predictor of MAOC than soil texture. This difference
may be due, in part, to factors related to soil genesis and
clay characteristics discussed in Section Data Acquisition and
Variable Selection.

Mineral-Associated Organic Carbon
Formation Capacity
In order to estimate MAOC deficits, both current MAOC
and MAOC formation capacity must be known or estimated.
While it is possible to experimentally examine the mechanisms
behind MAOC storage in soils and to obtain accurate estimates
of current MAOC values, it is difficult to determine the
mechanisms and values behind the absolute capacity of a soil to
stabilize carbon.

Current “saturation” concepts of MAOC storage revolve
around the notion that maximum MAOC storage is achieved
when there is no more surface area available to bind small
molecular weight, microbially processed, carbon (38, 39).
However, it has been shown that OM preferentially binds not
only to the edges and rougher surfaces of mineral particles,
but also to existing MAOC clusters. As such, only a limited
portion of clay particles participate in MAOC formation, and a
majority of the available mineral surface area is left bare (39).
Further, estimation of the maximum capacity for soils to form
MAOC necessarily relies on measurements of current MAOC
content, which, in turn, is affected by environmental conditions,
agronomic practices, and soil physicochemical conditions. The
result is that current methods used to estimate the upper limit
of MAOC are not measuring an absolute upper limit per se, but
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TABLE 3 | Difference in whole profile MAOC values between soil groups.

Soil type comparison Difference (mg C g−1 soil) p-value

MDc-CGSa 0.20158 0.9643

MDc-SFDe 1.550131*** 0.00000

MDc-SGSb 1.309291*** 2.00E-04

MDc-GFDd −0.37832 0.7482

CGSa-SFDe 1.348551*** 2.00E-04

CGSa-SGSb 1.107711** 0.0033

CGSa-GFDd −0.5799 0.3599

SFDe-SGSb −0.24084 0.9423

SFDe-GFDd −1.92845*** 0.00000

SGSb-GFDd −1.68761*** 0.00000

Significant differences between soil group means, as determined using ANOVA with

means separation using Tukey’s Honestly Significant Difference (Tukey’s HSD) test are

noted next to each difference (.: p ≤ 0.1; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001).
aClayey glaciolacustrine sediments.
bSilty glaciolacustrine sediments.
cMorainal deposits.
dGravelly fluvioglacial deposits.
eSandy fluvioglacial deposits.

rather the capacity for the soil to form MAOC under the current
conditions. Therefore, while availability of mineral surface area is
undoubtedly an important factor in the formation of MAOC, it is
only one of a number of factors that potentially limit the MAOC
formation capacity of a given soil.

Mineral-Associated Organic Carbon
Deficits in Okanagan Valley Soils
All soil groups in our Okanagan Valley dataset showed
mean concentrations of MAOC below the theoretical upper
storage limit. Soils with greater % clay, and at greater depths,
tended to have greater MAOC deficits. Our models show that
MAOC storage capacity increases with increasing clay content
(Figure 6). Further, clay content tends to increase with depth
(Figure 2), likely due to downward translocation of clay particles
as irrigation and rainwater move through the soil profile (6, 65,
66). There also tends to be more MAOC at the surface, due to
overall higher SOM via deposition of above ground plant litter,
rhizodeposition and root turnover, and organic amendments
(19, 67). In particular, the surface soils of the drive row spaces
in cherry orchards irrigated with micro-sprinkler irrigation had
the highest overall MAOC of all of our cropping systems. This
is likely due to the relatively large root systems of the Mazzard
rootstock commonly used for cherry trees in the Okanagan
Valley, and the similarly large amount of detritus resulting from
tree trimmings, grass mowings, etc., left on the undisturbed
soils of the drive row spaces (19). The resulting MAOC deficit,
therefore, is likely underestimated at the soil surface because
there is an underlying assumption that some soils have achieved
themaximumpossible concentration ofMAOC, and even further
underestimated at depth, where inputs of plant litter and roots are
relatively low while concentrations of clay, due to the downward
translocation of clay particles, is relatively high.

While perennial cropping systems in the Okanagan valley
already have significantly elevated soil C when compared to

adjacent, non-cultivated areas under natural vegetation (7), this
research shows that there is still room to store additional soil
C as MAOC. Therefore, efforts made toward increasing MAOC
in these soils will not go to waste. Hereafter, the challenge is in
further optimizing the agricultural management practices already
in place to promote further accumulation of MAOC, while not
impacting the productivity of the orchards and vineyards. To
this end, the drive-row spaces (the unmanaged spaces between
crop rows) offer a promising focus. Passive OM inputs from
pruning litter, and increased groundcover productivity due to
over-spray from crop irrigation sources has inadvertently created
spaces where soil C, including MAOC, increases at a rate beyond
that of the managed crop rows (19). Actively managing these
spaces to further enhance soil C input has the potential to not
only increase site-wide MAOC stocks but also positively affect
soil characteristics related to soil health and good soil hydrology.
Further, by limiting herbicide use on the crop rows, and instead
using soil amendments (i.e., organic mulches) or cover crops to
limit competitive weed growth, there is the potential to further
increaseMAOC input, and enhance soil moisture retention in the
crop row. Improved water-use efficiency is a critical concern with
this semi-arid region, where irrigation is required to maintain
crop productivity, and the availability of water is limited. Thus,
such changes could simultaneously enhance irrigation water-
use efficiency, increase MAOC stocks, and improve agricultural
productivity (7, 19).

Limitations of 90th Quantile Deficit
Modeling and Specific Surface Area
Estimations
Despite having comparatively low % clay and % silt, soils derived
from gravelly fluvioglacial deposits showed MAOC deficits
comparable to the most clay heavy soils in our dataset. This runs
counter to our expectations and highlights both the strength and
limitations of determining the MAOC formation capacity using
real soil values.

While using real soil measurements to model MAOC
formation capacity provides confidence that the formation
capacity estimates are within attainable limits, it is also certain
to underestimate the true potential MAOC formation capacity
of these soils. For the gravelly fluvioglacial deposit derived
soils in this study, current MAOC concentrations were quite
variable, with a few samples that were very high in MAOC.
As a consequence, the estimated MAOC formation capacity for
this soil group was also unexpectedly high. Given the low mean
current MAOC concentrations for most samples of this gravelly
soil, the resultant MAOC deficit is disproportionately large.

CONCLUSION

As the world’s largest terrestrial carbon pool, and one we
manage daily for our own food and other resource needs,
soils are increasingly recognized as one of our best options for
sequestering carbon to combat climate change. Estimating the
capacity for soils to stabilize carbon from the atmosphere is the
first step in ensuring that climate mitigation efforts are successful
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in the long term. This study has shown that MAOC for soils
under perennial cropping systems, growing on a range of soil
types, can be accurately determined by utilizing a random forest
model with either SSA (estimated by measuring the mass loss
following oven-drying of soil) or the % of clay + silt, alongside
concentration of SOC and exchangeable Ca. Furthermore, the
stabilization capacity of soils with different surficial deposit types
can be estimated using data on current MAOC concentrations
and a quantile regression model (τ = 0.90). Not only were there
MAOC deficits in all representative soil groups, but soils with
greater % clay tended to have both greater MAOC formation
capacity and greater MAOC deficits, with the exception of soils
derived from gravelly fluvioglacial deposits.

This study provides further insight into the applicability of an
established method of determining the stabilization capacity of
soils, and highlights the importance of continued research into
the mechanisms, and capacity of different soil types to sequester
soil carbon over the long term. By providing estimates of MAOC
deficits at the soil group level, this approach may be used to
help prioritize farmer’s efforts for increased carbon capture by
calling attention to soils that have the potential to store additional
carbon. Further, because MAOC tends to be more persistent,
knowing where application of additional OM will increase
persistent soil carbon is important to environmental efforts.
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