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Abstract

Creatine is an amino acid derivate commonly found in vertebrate muscle tissue. Crea-

tine facilitates the recycling of adenosine triphosphate and thus contributes to the

energy supply of the muscles as well as the brain. Creatine is used as a supplement

for several reasons and its effects in humans, particularly in sports medicine, have

been studied excessively. Also, creatine supplementation has been studied for its

functions and benefits in terrestrial farm animals. Up to date, little is known about

the use of creatine as a supplement in fish nutrition. Yet, due to its many physiologi-

cal functions, creatine may serve as a valuable supplement in aquafeeds of farmed

aquaculture species. Indeed, creatine plays a pivotal role in the fish's muscle and may

help to enhance performance of fish reared in aquaculture systems. With regard to

swimming exercise, creatine may even amplify its metabolic effects. Upon supple-

mentation, creatine stimulates muscle growth increasing body mass and it has the

potential to improve feed utilisation particularly of plant-based diets. Also, creatine

plays a part in osmoregulation when fish adapt to changes in salinity. Furthermore, it

may improve product quality upon slaughter. Here, we compile what is known about

the many functions of creatine as well as its physiological effects in fish in compari-

son to mammals. We also highlight its potential beneficial effects as a supplement in

aquaculture and infer why creatine can help increase the sustainability of fish feeds.
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1 | INTRODUCTION

Creatine is a dietary supplement intensively used in sports to enhance

endurance and strength in athletes.1–5 It is available in the diet

through the consumption of milk, red and white meat, fish, molluscs

and crustaceans (Table 1). On average, a 70-kg man has a creatine

pool of 120–140 g (1.7–2 g kg�1).1,10 Approximately, 95% of the crea-

tine pool is located in skeletal muscle. The remaining 5% is stored in

the brain, liver and kidney.11 In fish, creatine content per body weight

is up to five times higher which is also attributed to a higher ratio of

the skeletal muscle to body weight in fish compared with terrestrial

animals. Naturally, creatine concentrations in fish muscle range

between 2 and 7 g kg�1 (Table 1).

Creatine has pleiotropic effects which are mostly based on the

functions of creatine kinase converting creatine to phosphocrea-

tine.10,12,13 In combination, creatine kinase and phosphocreatine

mainly function as an immediately available temporal energy buffer, a

spatial energy buffer or intracellular energy transport system and act

as a metabolic regulator.10,12 Creatine provides energy before glycoly-

sis and respiration start delivering energy for metabolic

processes.14–16 The aim of creatine supplementation is thus to

increase resting phosphocreatine as well as free creatine in the tissue,
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in most cases muscle tissue, with the ultimate goal to increase muscu-

lar performance. Indeed, cells with high energy demand rely on the

creatine-phosphocreatine energy buffer system to recycle adenosine

triphosphate (ATP) from adenosine diphosphate (ADP).14 For example,

muscle cells store sufficient phosphocreatine and ATP for 10 s of

high-intensity activity.1 Thereafter and when these reserves are

exhausted, recycling of phosphocreatine from creatine is required

which in turn phosphorylates ADP to ATP.14

The basic unit of muscle is the myofiber which is derived from stem

cell myoblasts. Normally, protein biosynthesis and degradation rates of

myofibers are in a relatively balanced state.17,18 When protein synthesis is

higher than degradation, muscle mass increases.18 This equilibrium may be

modulated by shifts in gross nutrient composition, nutritional regulation,

exercise or nutrient interventions such as creatine supplementation.17

Muscle growth may result from both hyperplasia and hypertrophy.19–21

Among those genes that regulate the development of skeletal muscle, the

myogenic regulatory factors (MRFs) play a key role. The MRFs include four

transcription factors, myogenic determining factor (MyoD), myogenic fac-

tor5 (Myf5), muscle regulatory factor-4 (Mrf4) and myogenin (Myog) (see

Table 2). Key factors in the development of skeletal muscle have been

shown to be stimulated by creatine supplementation.22–24

While the biosynthesis of creatine, its application, dosage and the

effects of creatine supplementation were intensively studied in

humans, different model organisms and several terrestrial livestock

species, our understanding of creatine in fish is very limited. Only a

small number of studies investigated the effects of creatine supple-

mentation as well as supplementation with its precursor guanidinoa-

cetate (GAA) in fish so far (see Tables 3 and 4). Based on the effects

observed in humans and several terrestrial species, creatine supple-

mentation in fish is a promising research field.25,27,32 Indeed, consider-

ing that the aquatic environment challenges organisms differently

than the terrestrial habitat, creatine might play a prominent role as

metabolic regulator which is not yet discovered. The study of creatine

in fish might provide new insights into the various functions of crea-

tine in aquatic animal species. Creatine supplementation might turn

out to be beneficial for the cultivation of aquatic species in aquacul-

ture, particularly with regard to the utilisation of carbohydrates and

the adaptation of reared fish to modern husbandry systems and pro-

duction cycles. Via its potential to upgrade aquafeeds for carnivorous

species or supplement deficient diets, creatine might also help in

reducing the limited meat- and fish-meal resources in aquaculture

feeds and improve sustainability of fish nutrition.12,27,32,34

2 | BIOSYNTHESIS

In fish, the concentration of creatine in muscle tissue is much higher

than in mammals.8,9,41 In mammals, reptiles and birds (Figure 1), there

is only a negligible biosynthesis of creatine in the muscle.10,42–44

Instead, arginine and glycine are transformed to GAA by the enzyme

arginine:glycine amidinotransferase (AGAT, EC:2.1.4.1). This biosyn-

thesis occurs predominantly in the kidney and liver at approximately

TABLE 2 Key genes involved in muscle growth (for references refer to text)

Gene Function

Myogenic regulatory factors (MRFs) MyoD Myogenic determining factor Differentiation myogenic cells

Myf5 Myogenic factor5 Differentiation myogenic cells

Mrf4 Muscle regulatory factor-4 Differentiation myoblasts

Myog Myogenin Differentiation myoblasts

Transforming growth factors Mstn Myostatin Promotion protein degradation, inhibition protein

synthesis

Mef2 Myocyte enhancer factor 2 Differentiation myoblasts

Growth hormones Gh Growth hormone Myocyte proliferation, stimulation of protein synthesis,

hypertrophy, hyperplasia

Igf1 Insulin-like growth factor Myocyte proliferation, hypertrophy, hyperplasia,

proliferation muscle satellite cells, stimulation of

glucose uptake

TABLE 1 Content of creatine in raw meat and animal products

Food source g kg�1 mass Reference

Herring, fillet (Clupea harengus) 6.5–10.0 6, 7

Yellowtail (Seriola quinqueradiata) 5 8

Salmon (Salmo salar) 4.5 6, 7

Tuna 2.7–6.5 6, 7

Hake (Merluccius merluccius) 5 9

Cod (Gadus morhua) 3–4.4 6, 7

Alaska pollock (Gadus chalcogrammus) 4.7 9

Blue whiting (Micromesistius poutassou) 3.7 9

Saithe (Pollachius virens) 3.4 9

Plaice (Pleuronectes platessa) 2 6, 7

Shrimp (Penaeus sp.) 0.7 9

Blue mussel (Mytilus edulis) 0.08 9

Cockle (Cerastoderma edule) 0.05 9

Pork 5 6, 7

Beef 4.5 6, 7

Milk 0.1 6, 7
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TABLE 3 Creatine supplementation in aquaculture fish species

Species Optimal dosage [range assessed] Duration (days) Effect Reference

Clarias gariepinus 40 g kg�1 [0, 10, 20, 30, 40 g kg�1] 84 Growth " 25

FCR !
Moisture #
Protein "
Lipid #

Dicentrarchus labrax [0, 20, 50, 80 g kg�1] 91 Growth ! 26

FCR !
Protein !
Lipid !

Ictalurus punctatus (fry) [0, 20 g kg�1] 56 Growth " 27

FCR !
Moisture !
Protein !
Lipid !

[0, 20 g kg�1] 70 Growth ! 27

FCR !
Moisture !
Protein !
Lipid !

Morone chrysops � Morone saxatilis 20, 40 g kg�1 [0, 10, 20, 40 g kg�1] 84 Growth " 28

FCR !
Moisture !
Protein !
Lipid !

Oreochromis sp. 0.4 g kg�1 56 Growth ! 29

FCR !
Moisture !
Protein "
Lipid !

0.4 g kg�1 [0.4, 0.8, 1.2 g kg�1] 56 Growth " 30

FCR #
Moisture #
Protein "
Lipid #

1.2 g kg�1 [0, 0.8, 1.2 g kg�1] 84 Growth " 31

FCR #
Moisture !
Protein "
Lipid !

Sciaenops ocellatus 40 g kg�1 [0, 5, 10, 15, 20, 40 g kg�1] 49 Growth " 32

FE "
Moisture !
Protein !
Lipid !

20 g kg�1 [0, 20 g kg�1] 56 Growth " 33

FE !
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1 g day�1, corresponding to 1.5%–2% of the creatine pool.10,42,45

Glycine can be synthesised in fish while it is conditionally indispens-

able in mammals which can synthesise arginine that is conditionally

indispensable in fish.46,47 It is known that creatine supplementation

down-regulates AGAT, both at the transcriptional and activity level in

animals.10 Therefore, supplementation of creatine slows down endog-

enous creatine synthesis. Recently, it has been suggested that the

bacterial flora in a healthy gut may accelerate the synthesis of GAA by

secreting the enzyme guanidinoacetase, interlinking the synthesis of

GAA and the microorganisms of the gastrointestinal tract.17,45,48

In a second step, GAA is methylated by guanidinoacetate N-

methyltransferase (GAMT, EC:2.1.1.2) using an activated methyl

donor, S-adenosyl methionine (SAM).17 In mammals, creatine is

released into the plasma, transported to the muscle and taken up via

the creatine-specific transporter Slc6a8.49,50 In contrast, in trout and

several other fish species (Figure 1), gene expression levels of both

enzymes AGAT and GAMT are predominantly found in muscle tissue,

suggesting that the complete creatine synthesis is mainly localised to

the muscle.16,44 The presence of creatine transporters in fish muscle,

however, confirms that creatine is also imported from the feed. Con-

siderable differences of Slc6a8 expression between muscle, liver and

kidney were found between fish species.16,44 To date, there is still a

discussion on the creatine-phosphocreatine system in the brain as

there are indications that, at least to some extent, there is a creatine

biosynthesis in the central nervous system and that some indepen-

dence of creatine import exists.51,52 Finally, creatine as well as phos-

phocreatine are spontaneously converted to creatinine which is

excreted via the kidneys.17,53 By injecting 14C-creatine Danulat and

Hochachka documented that overall creatine turnover is relatively

slow in fish muscle as compared with mammals,54 which furthermore

suggests a great potential of creatine supplementation in fish.

3 | APPLICATION FORM OF CREATINE

In addition to the endogenous biosynthesis, creatine can also be

obtained exogenously, for example from the feed. In human applica-

tions, creatine monohydrate powder (CAS No.: 6020-87-7) is the

most commonly used form since the early 1990s.23,49,55 Other formu-

lations include creatine hydrochloride and, recently, a co-amorphous

formulation of creatine and citric acid, which has a better solubility in

water.56 In fish as well as humans, creatine anhydrous (CAS No.:

57-00-1) has equally been used.1 Other forms such as creatine salts,

creatine complexed with other nutrients, creatine dipeptides, creatine

nitrate or creatine ethyl esters have been claimed to be more effec-

tive, but data-based evidence is often missing.55 Recently, increased

bioavailability has been documented for a colloidal creatine formula-

tion in humans.57

TABLE 3 (Continued)

Species Optimal dosage [range assessed] Duration (days) Effect Reference

Moisture !

Protein !
Lipid !

40 g kg�1 [0, 5, 10, 15, 20, 40 g kg�1 (5 ppm salinity)] 56 Growth " 27

FE "
Moisture !
Protein !
Lipid !

20 g kg�1 [0, 20 g kg�1 (3–15 ppm salinity)] 84 Growth " 27

FE "
Moisture !
Protein "
Lipid !

Sparus aurata 50, 80 g kg�1 [0, 20, 50, 80 g kg�1] 69 Growth ! 23

Muscle A "
[0, 20, 50, 80 g kg�1] 69 Growth ! 34

FCR !
Litpoenaeus vannamei 5.12, 8.28 g kg�1 [0, 1.23, 2.58, 5.12, 8.28, 14.12,

24.49 g kg�1]

46 Growth ! 35

FCR !
Moisture !
Protein "
Lipid !

Abbreviations: FCR, feed conversion ratio; FE, feed efficiency.
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The origin of the creatine is utmost important as alternative synthe-

sis methods exist and may lead to contamination with up to 5.4%

dicyandiamide, 0.09% dihydrotriazine, 1.3% creatinine, dimethylsul-

phate, thiourea and/or concentrations of heavy metals like mercury.58

To exclude adverse effects of contaminants, a German-sourced creatine

has been recommended for research in sports medicine55 and should

congruently also be used in animal nutrition research to avoid charge-

specific effects and improve reproducibility. Creatine monohydrate

powder shows no degradation into creatinine over years, even upon

storage at high temperatures.59 Still, in solution, creatine degrades fast

into creatinine, particularly at low pH and higher temperatures, which

needs to be considered in dietary supplementation in fish. In the intes-

tine, at very low (<2.5) or very high pH (>12.1), degradation is

substantially reduced or haltered.59 Therefore, with regard to the mod-

erate pH in the digestive tract offish, particularly in herbivores, degrada-

tion needs to be considered higher than in mammals.

Alternatively, driven by lower prices and better stability in

water,22,45,60 GAA as a creatine precursor has also become a popular sup-

plement used today.49 Still, its administration is rather unexplored. More

importantly, an increase in serum homocysteine after GAA administration

is regarded critically and needs to be prevented. It has been shown that

co-administration with methyl donors such as vitamin B12, choline or ser-

ine helps control hyperhomocysteinaemia and is hence strongly recom-

mended.61,62 Hyperhomocysteinaemia increases risks such as

cardiovascular malfunction,63–65 neurodegenerative disorders65,66 and

osteoporosis in humans.67 Still, GAA as a food supplement has been used

TABLE 4 Guanidinoacetate (GAA) supplementation in aquaculture fish species

Species Optimal dosage [range assessed] Duration (days) Effect Reference

Ctenopharyngodon idella 0.3 g kg�1 [0, 0.15, 0.3, 0.45, 0.6 g kg�1] 60 Growth " 36

FE "
Moisture #
Protein "
Lipid "

Cyprinus carpio 0.25, 0.5, 1 g kg�1 Growth ! 37

Feed intake !
Moisture !
Protein !
Lipid !

Oreochromis niloticus 1.8 g kg�1 [0, 0.6, 1.2, 1.8 g kg�1] 60 Growth " 38

FCR !
Moisture !
Protein !
Lipid "

[0, 0.6, 1.2, 1.8 g kg�1] 60 Growth ! 39

FCR !
Moisture !
Protein !
Lipid !

1.2 g kg�1 [0, 0.8, 1.2 g kg�1] 84 Growth " 31

FCR #
Moisture !
Protein "
Lipid #

0.6 g kg�1, �50 kcal [0, 0.6 g kg�1] (decreasing energy) 60 Growth " 40

FCR !
Sciaenops ocellatus [0, 5, 10 g kg�1] 56 Growth ! 33

FCR !
Moisture !
Protein !
Lipid !

Abbreviations: FCR, feed conversion ratio; FE, feed efficiency.
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for chickens and pigs to improve growth, breast meat yield and feed con-

version ratio.68–71 In Nile tilapia (Oreochromis niloticus [Linnaeus]), GAA

increased growth rates at 0.6–1.8 g kg�1 after 60 days of supplementa-

tion.38 Nevertheless, in a similar study at the same concentrations, GAA

did not increase growth performance or feed efficiency in this species.39

Stites et al.33 even reported decreased weight gain, increased whole

body lipid and protein as well as feed efficiency at much higher concen-

trations (5–20 g kg�1) in Red drum (Sciaenops ocellatus [Linnaeus]). Still,

GAA supplementation increased weight gain, feed intake and feed effi-

ciency already at concentrations between 0.15 and 0.6 g kg�1 in Grass

carp (Ctenopharygodon Idella [Valenciennes]) over a 60-day period.36

Taken as a whole, effects of GAA are rather controversial. In fish, methyl

donors to prevent hyperhomocysteinaemia have rarely been used.

4 | DOSAGE

In general, dietary supplementation with creatine increases muscle

creatine content.28 Still, in fish, the process until maximum concentra-

tions are realised is generally slower than in humans and requires

higher dosages. The ideal dosing of creatine supplementation has

been subject to controversial discussion. Indeed, there are two

opposing strategies, established for the supplementation in sports.

The first approach favours a high dosage, a short time loading phase

(20–25 g day�1 or 0.3 g kg�1 day�1 for 5–7 days in athletes)

followed by a maintenance phase at a lower dose for a prolonged

period (3–5 g day�1 for usually 4 weeks), whereas the second

approach favours a continuous, lower dosing strategy up to

12 weeks.1,55 Green et al. found that creatine supplementation and

combined ingestion of a simple carbohydrate improved creatine accu-

mulation in the muscle.72 This was attributed to a stimulatory effect

of insulin release on muscle creatine transport. In a recent review, Hall

and Trojian recommend 0.03 g kg�1 day�1 as a maintenance dose for

4–6 weeks.4 In fish (Tables 3 and 4), supplementation is usually carried

out at higher dosages of 20–80 g kg�1 dry feed (mostly 20–40 g kg�1)

in a continuous manner.23,25,32 Due to a slower saturation, prolonged

supplementation of up to 12 weeks have been carried out25,32 and

minor effects have been reported in cases, where application was rela-

tively short (<12 weeks).23,33 Indeed, Ramos-Pinto did not observe sig-

nificant growth effects during a relative short feeding trial of 69 days,

although high creatine concentrations (80 g kg�1) were administered.

Similarly, in Red drum, Stites et al.33 observed minor improvement of

weight gain and feed efficiency at creatine supplementation of

20 g kg�1 over a period of 8 weeks. Consequently, longer exposure

times should be considered when supplementing fish with creatine.

At present, little is known about the content of creatine in animal-

source feedstuffs.73 In common aquaculture-related feeding trials, the

creatine content of the diet is rarely considered or analysed.74–76 Differ-

ent sources of feedstuff show a wide variation in their creatine content

ranging from 1 ± 0.03 mg kg�1 in feather meal to 127 ± 2.9 mg kg�1 in

fish meal.73 Still, in fish meal derived from different species, variations by

a factor >9 may occur.73 As creatine is highly soluble in water, fish meal

processing techniques might affect the creatine content in the final prod-

uct further. Creatine in control diets (without creatine supplementation)

has been determined in very few studies,25,27,28,32,35 and most studies

present nominal concentrations. From the data available creatine ranges

at approximately 1 mg kg�1 at 120–290 mg kg�1 fishmeal.

5 | EFFECTS OF CREATINE AND GAA
SUPPLEMENTATION

5.1 | Growth performance

One of the observed effects of creatine supplementation is increased

body mass. A meta-analysis revealed that approximately 60% of

F IGURE 1 Creatine biosynthesis in trout (a) and mammals (b). AGAT, arginine:glycine amidinotransferase; CK, creatine kinase; GAA,
guanidinoacetate; GAMT, guanidinoacetate methyltransferase; SAM, S-adenosyl-methionine, SLC6A8 creatine transporter (solute carrier family
6 member 8)
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studies noted a statistically significant increase in body mass or body

composition in humans upon creatine supplementation.2 Without par-

ticipation in an exercise programme, increases in body mass are sug-

gested to be a result of increased intracellular water due to the

osmotic activity of creatine. In conjunction with an exercise pro-

gramme, greater increases were observed, though. Congruently, in

fish, several studies reported an enhanced growth performance upon

feeding creatine supplemented diets (Tables 3 and 4). Other studies

found creatine to enhance growth when used to supplement in plant-

based diets.25,26 Still, some reports do not reflect such effects,26,34

others are controversial.39 In hybrid Striped bass (Morone chry-

sops � Morone saxatilis) reared in freshwater, no growth promotion or

improved feed efficiency was observed, but, in fish transferred to

brackish water, Burns and Gatlin reported slightly increased weight

gain but no effect on feed efficiency or fillet ratio.28 When Red drum

was reared in hypoosmotic and isosmotic water, creatine supplemen-

tation improved weight gain.27 In Pacific white shrimp (Litopenaeus

vannamei [Boone]) reared in fresh water, creatine supplementation at

levels from 1.23 to 24.49 g kg�1 did not affect growth.35

Improved growth may furthermore be a result of increased appe-

tite, palatability25 and, ultimately, food consumption whereas some

studies reveal an improved feed conversion upon supplementation.

Often, this growth is expressed in an increased muscle growth and fil-

let ratio as a result of increases in muscle protein.25,27 Correlated

decreases in lipid content have been assigned to a protein-sparing

effect of dietary creatine.30,77,78 When comparing studies, it does not

seem that the effects of creatine supplementation on lean muscle

mass are strictly dose-dependent.1,3 In addition, when creatine is sup-

plemented, methionine, arginine and leucine, required for creatine

synthesis, could subsequently be used for protein synthesis and

growth.12,78 Due to the high creatine content in fish muscle, this spar-

ing effect might be significant.

Several endocrine growth promotors and modulators have been

upregulated upon creatine supplementation (Table 2), including

IGF122,30 and growth hormone (Gh),23 which directly stimulates pro-

tein synthesis in the muscle via the Gh receptor in athletes.79 Also,

creatine has been shown to increase muscle-related genes such as

myogenic differentiation 1 (Myod1),23 calpain genes (capn1, capn1a,

capn3),23 Type I and II myosin heavy chain (mhc),80 and, most impor-

tantly MRFs (Myo-D, Myog, Mfr-4, Myf5).22,24 The primary MRFs

MyoD and Myf-5 are required for myogenic determination, whereas

Myog and myf-4 are downstream transcription factors involved in

muscle differentiation.81 Since muscle fibre recruitment continues into

the adult stages, creatine supplementation is a promising way to

enhance muscular growth.81 Also, creatine may reduce myostatin and

thereby prevent muscle atrophy.

5.2 | Aerobic endurance and anaerobic sprint

Sustained swimming in fish is driven by red muscle and characterised

by aerobic processes fuelled by glucose.82 Burst activity and exercise

to exhaustion, in contrast, are primarily driven by white muscle

resulting in the rapid anaerobic consumption of energy stores such as

phosphocreatine and ATP.82–84 Phosphocreatine and ATP stores are

rapidly exhausted when white muscles are mobilised.85 In Rainbow

trout Oncorhynchus mykiss (Walbaum), a single tail-flip is sufficient to

decrease the phosphocreatine content of white muscle by 50%.21,85

When fish are exercised to exhaustion for 5 min, muscle phosphocre-

atine concentration decrease between 50% to near depletion.86–88

Recovery, however, may be rapid and replenishment was observed

within minutes or less than 1 h post-exercise.86,87 When exercised

juvenile Rainbow trout were supplemented with creatine, endurance

in a fixed velocity test increased.89 Exercise itself can increase the

amount of phosphocreatine in the muscles as well. Solstorm et al.90

observed an increase in phosphocreatine when Atlantic salmon (Salmo

salar [Linnaeus]) post-smolt were reared at water velocities of

1.5 BL s�1 over a 6-week trial period. This was referred to as an up-

regulation of the phosphocreatine shuttle, compensating for an

increased demand for ATP transport from the mitochondria, as

observed in humans.91

Studies at the beginning of the last century revealed the impor-

tance of carbohydrate as a fuel during exercise in humans.92,93 Since,

the importance of muscle glycogen has been confirmed in numerous

studies. It is also recognised that glycogen is more than a store, but

acts as a regulator of many signalling pathways. In Rainbow trout,

90% of the musculature is white muscle,94 which is characterised by

poor vascularisation,95 low mitochondrial density94 and low myoglo-

bin content.96 It is fuelled, primarily, by anaerobic glycolysis derived

from glycogen stores in the muscle. The link between glycogen deple-

tion and impaired muscle function during fatigue is not well under-

stood. Each glycogen granule has its own metabolic machinery with

glycolytic enzymes and regulating proteins. Indeed, the ability of the

muscle is compromised when glycogen is reduced to low levels, which

impairs ATP regeneration. Following prolonged glycogen-depleting

exercise, decreases in phosphocreatine and increases in ADP are

observed. This energy deficiency theory is challenged since even after

recovery periods where ATP levels are restored, decreased muscle

function is observed.92 Here, the relationship between muscle glyco-

gen content and the Ca2+ release rate seems responsible for pro-

longed fatigue.92 In muscle fibres, where global ATP can be kept high

and constant, low glycogen levels are associated with an irreversible

force depression.97,98

There is accumulating evidence that commencing endurance

exercise with low muscle glycogen content enhances the transcription

rate of several genes involved in the training adaptation such as heat

shock protein Hsp72, interleukin Il6, pyruvate dehydrogenase kinase

Pdk4 and uncoupling protein Ucp3.99–101 This is probably because

several transcription factors contain glycogen-binding domains, and

when muscle glycogen is low, these factors are released and associate

with different target proteins involved in glycogen synthesis.102 It has

also been shown that creatine reduces myostatin, which inhibits mus-

cle growth and protein biosynthesis required for muscle fibres. Myos-

tatin is equally decreased within hours following endurance or

resistance training.103,104 Myostatin seems to be a key target for

understanding myofiber growth by creatine. Creatine
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supplementation increased glycogen stores in humans by 20%.105

Upon endurance training over 7 days, glycogen increases by 30% in

the muscle of Rainbow trout have been reported.89

During endurance training creatine kinase activity increases, doc-

umenting a higher need for phosphocreatine.106 At the same time,

hydroxyacyl CoA dehydrogenase activities in white and red muscle

increased, indicating an enhanced capacity for fatty acid catabolism

with training. Indeed, there is a crosstalk between glycogen and lipid

metabolism. Feeding a high-fat diet increases hepatic glycogen stores

due to increased expression of the glycogenic scaffolding protein

Ptg/r5 via the mTORC1/SREBP1 pathway.107 Ptg overexpression dra-

matically increases glycogen stores which in turn shifts energy stores

to lipogenesis by induction of lipogenic genes.107

5.3 | Osmoregulation

Safdar et al. showed that short-term supplementation for 10 days

increased the expression of several genes involved in osmotic regulation

in young men.108 Creatine also promoted muscle water retention, induc-

ing changes in cell osmolarity.108 In African catfish (Clarias gariepinus

[Burchell]) creatine supplementation resulted in a decrease in moisture,25

indicating the osmoregulatory activity of the creatine molecule in the

plasma. Increased intracellular osmolarity subsequently induces cellular

swelling, which activates cell-volume sensitive signalling cascades. For

example, cell swelling is a potent stimulus of glycogen synthesis in muscle

and liver. This may explain the effect of creatine on glycogen stores. In

hybrid Striped bass transferred to higher salinity, increases in growth per-

formance have been reported, suggesting that creatine supplementation

energetically assisted in osmoregulation.28 Remarkably, effective dose of

creatine (4% of dry food, 5%–7% feeding ratio, corresponding approxi-

mately to 2–2.8 g kg�1 body weight) was very high compared to the dos-

age used for application in humans. The phosphocreatine/creatine kinase

shuttle seems to coordinate the extra energy demand of the Na+-K+-

ATPase to pump out excess ions under hyperosmotic conditions.109 Dur-

ing times of osmotic stress, creatine kinase activity increases, suggesting

that creatine supplementation has ergogenic benefits.109–111 With this in

mind, creatine supplementation could be of great benefit in specialised

feeds administered before or during the critical periods of the transition

between freshwater and seawater, such as smoltification. During smoltifi-

cation, the fish experience hypo-osmotic stress112 which is being com-

pensated by Na+-K+-ATPase activity.113–115 A temporary switch to

creatine supplemented feed might assist the adaptation of the fish,

enhancing osmoregulatory capacities when there are foreseen or unfore-

seen fluctuations in salinity, for example due to changes in external condi-

tions or planned measures. However, no research has been done so far.

5.4 | Product quality

Improving meat and overall product quality is an important task of a

sustainable agriculture production, in particular in high-priced prod-

ucts such as fish and seafood. Creatine supplementation stimulates

protein synthesis and may thus lead to an improved product quality

for the consumer. Some studies addressed the possibility to manipu-

late parvalbumin as major fish allergen (95% of cases reported,116) by

creatine supplementation.26,34 Nevertheless, no effects on the protein

level have been detected.26,34 In pork, creatine supplementation prior

to slaughter seems to affect post-mortem muscle metabolism

(decrease in pH) and improve overall meat quality.117 Creatine supple-

mentation affecting post-mortem muscle pH was also observed in Sea

bass (Dicentrarchus labrax [Linnaeus]).26 In freshwater reared Pacific

white shrimp creatine supplementation decreased myofiber diameter

and increased myofiber density overall leading to a more favourable

product quality in terms of muscular hardness and chewiness.35 In

contrast, increases in muscle fibre diameter may also have a negative

impact on the flesh texture.23 In Gilthead seabream (Sparus aurta [Lin-

naeus]), creatine increased calpains capn1 and capn2 which play a role

in myoblast fusion and affect flesh texture.23 Indeed, this group of

cysteine proteases has been suggested as potential markers of flesh

quality.118 Furthermore, creatine is a carninutrient which is only avail-

able via animal foodstuff (Table 1). Since creatine needs to be supple-

mented via the food, creatine content of the fish is a product quality

criterion. In Grass carp, GAA supplementation resulted in an increase

in muscle flavour nucleotide, flavour-related fatty acid and amino acid

contents.36 Also, GAA increased water-holding capacity and firmness

of the fillet.

5.5 | Carbohydrate utilisation

In animal and human studies, creatine supplementation together with

exercise training revealed beneficial effects on glucose metabolism.

This is particularly important in carnivorous fish species, which have a

low carbohydrate utilisation and a low ability to control hyperglycae-

mia. Therefore, creatine in combination with exercise may boost glu-

cose metabolism and help to explore new aquafeeds in aquaculture.

Carbohydrates are an excellent source of energy in feed formulations,

also in terms of low price. To illustrate this, the unit cost of carbohy-

drates is approximately three to five-fold less than that of lipids or

proteins. Furthermore, optimal inclusion of carbohydrates improves

retention of proteins, reduces nitrogen emissions, helps pellet binding

and increases floatability as well as stability of the pellet. In addition,

increased palatability is often observed.119,120 Taken as a whole, car-

bohydrates are often underrated ingredients in fish feeds and increas-

ing carbohydrate contents is highly desirable from a feed formulators

perspective.

With regard to the replacement of fishmeal by plant-based pro-

tein sources, increasing amounts of carbohydrates are inevitably

observed in the feed.121–124 Among the carbohydrates abundant in

plant ingredients, only glucose and starch have a nutritive value for

fish nutrition.125,126 Although fish including carnivorous species have

the biological machinery such as metabolic enzymes, endocrine regu-

lation, glucose sensing components and glucose transporters, there

are remarkable differences between fish and other livestock animals.

Particularly carnivorous fish have a low intestinal glucose uptake and
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a slow clearance rate of glucose from the blood and are thus less tol-

erant to carbohydrate-rich diets. In salmonids for example, maximum

inclusion is approximately 15%–25% of carbohydrates in the diet,

whereas up to 50% may be included in the feed of herbivorous

species.119,120

Creatine along with carbohydrates improves muscle creatine

retention compared to creatine alone.72 Furthermore, creatine stimu-

lates insulin secretion,29,127 increases muscle glycogen stores (see

above) and ameliorates hyperglycaemia. In addition, exercise induces

numerous metabolic benefits, including insulin-independent muscle

glucose uptake and insulin sensitivity.128 Therefore, it has been sug-

gested that creatine supplementation and exercise training synergisti-

cally improve glucose metabolism. The possible mechanism underlying

the effects of combined exercise and creatine supplementation is an

enhanced glucose transport into muscle cells by the glucose trans-

porter Glut4 translocation to the sarcolemma. Four modes of action

for the creatine-exercise induced effects on glucose homeostasis have

been described.128,129 First, creatine modestly increases insulin secre-

tion.30,127,130 Second, creatine induces Glut4 expression increasing

the cellular uptake of glucose.30 Third, creatine stimulates the energy

sensor Ampk that induces a modulation of glucose and fatty acid oxi-

dation. Amp-activated protein kinase is a key enzyme that mediates

between cellular energy status and diverse effector proteins. By phos-

phorylation of transcriptional regulators, enzymes and proteins related

to cellular structure, it can modulate energy metabolism.131 Finally, an

exercise-mediated effect has been suggested that synergistically

increases Ampk and Glut4.129 In pig, feeding creatine in combination

with a high glycaemic carbohydrate increased loin muscle area.132

Furthermore, creatine supplementation tended to increase the intra-

muscular fat content.133–135 Accelerated glycolysis during exercise

will supply acetyl-CoA molecules required for lipogenesis.136 Taken as

a whole, creatine seems to promote the inclusion of carbohydrates

particularly in carnivorous species.

5.6 | Brain functioning

Although most of the body's creatine is found in skeletal muscle, the

brain is also very active metabolically, accounting for up to 20% of

human energy consumption. A brain-specific isoform of the creatine

kinase (BB-CK) is expressed in brain neurons, suggesting that creatine

is relevant for energy storage and provision to the central nervous

system. In fact, creatine depletion leads to major mental disorders

such as mental retardation, learning delays, autism and seizures in

humans.52 While muscle relies on dietary ingestion and endogenous

synthesis from the liver, kidneys and pancreas in mammals and zebra-

fish, the brain can synthesise creatine. Indeed, the enzymatic machin-

ery required for the endogenous creatine synthesis is found in the

nervous system and creatine transporters are detected at the blood–

brain barrier, neurons and oligodendrocytes, suggesting that brain cre-

atine may be relatively independent.52,137 Still, if brain synthesis is lim-

ited due to a disfunction, dietary provision can establish normal

concentrations.51,138 Up to date the optimal supplementation strategy

to establish regular brain creatine concentrations is unknown,52 but

should be more prolonged than those strategies typically used to

increase muscle creatine.51 Since brain creatine relies less on exoge-

nous creatine than muscle, a down-regulation of brain creatine syn-

thesis upon supplementation may occur.52 Also, limitations in the

creatine transporter may turn supplementation less effective in the

brain.139 Interestingly, equimolar supplementation with guanidinoace-

tic acid (GAA) was more efficient than creatine in increasing brain cre-

atine content, suggesting that dietary GAA could be imported to the

brain through additional transporters and delivery routes. Neverthe-

less, effects on the cognitive performance remain controversial.52 The

role of creatine system in the brain might be particularly important in

conservation aquaculture when fish are produced for conservation

purposes such as restocking or stock enhancement.

6 | SAFETY CONCERNS

In humans, the International Society of Sports Nutrition states that

‘there is no scientific evidence that the short- or long-term use of cre-

atine monohydrate has any detrimental effects on otherwise healthy

individuals’. Nevertheless, contamination of creatine supplements has

been recorded, including heavy metals and toxic organic contami-

nants.58 Also, if GAA as creatine precursor is used as supplement (see

above), methyl donors such as vitamin B12, choline or serine should

be added to avoid hyperhomocysteinaemia. Interestingly, in several

studies in fish lacking a methyl donor, no effects on growth were

reported.36 This may already indicate malnutrition but has not been

studied in detail.

It has been concluded that feed supplementation with creatine

monohydrate at levels up to 50 g day�1 for 5 days prior to slaughter

does not increase the level of heterocyclic aromatic amines detected as

mutagenic activity formed upon frying of pork.140 However, dietary cre-

atine supplementation level at 24.49 g kg�1 increased muscular creati-

nine content and extensive retention of creatinine in the muscle may

constitute important precursors of heterocyclic amines that formed on

the surface of meat when cooked at high temperature,141 suggesting

that creatine supplementation should be in a proper level.35

7 | CONCLUSION

Creatine and GAA have been successfully supplemented in aquafeeds

to improve growth performance, physical performance and in order to

support osmoregulation. Still, experimental design, in particular dos-

age and duration vary substantially. Furthermore, effects on perfor-

mance parameters (growth, feed efficiency, protein and lipid content)

are often controversial, partly explained by species-specific responses

to supplementation. In most cases, physiological mechanisms were

not studied. With regard to an exploration of creatine and GAA in fish

nutrition, increased utilisation of carbohydrates – particularly in car-

nivorous species – has a great potential, improving the overall sustain-

ability of aquaculture production. Due to its instability and high costs,
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future research should focus on GAA supplementation, but hyperho-

mocysteinaemia needs to be considered. Here, co-administration of a

methyl-donor such as vitamin B may compensate adverse effects. In

carnivorous species, fishmeal-based feed usually ranges between

1 and 2 g kg�1 feed and beneficial effects are observed at higher

inclusions of up to 80 g kg�1. In plant-based diets, creatine is not pre-

sent and an inclusion seems advisable.
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