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i Executive summary 

The workshop on optimization of biological sampling (WKBIOPTIM4) was the fourth meeting 

of a series of workshops aiming at collaborating on fish sampling optimisation processes across 

ICES Member States. It aimed primarily at providing an update on the development of the 

different simulation approaches presented and tested during the third workshop 

(WKBIOPTIM3), at working on shared indicators across these tools, and at creating an R package 

for end users.  

Multiple simulation approaches were discussed during the first three workshops, developed as 

R scripts, and also contributed by separate projects (STREAM and FishPi2). The focus of 

WKPBIOPTIM4 was on the following tools: [1] two STREAM tools, BioSimTool and SDTool; [2] 

the Fishpi4WKBIOPTIM package; [3] SampleReferenceLevel (ADV); and [4] SampleOptim. 

While there is no current follow-up on the FishPi2 project that the group was made aware of, 

progress has been made on the other approaches aforementioned: a project called STREAMline 

is expected to build upon the outputs of STREAM; SampleOptim is being further developed and 

applied in Portugal; and the SampleReferenceLevel (ADV) approach was published 

(Wischnewski et al., 2020).  

Over the week of the workshop, one subgroup focused on the development of an R-package for 

indicators, with the objective of making the outputs of simulations comparable across 

approaches and facilitating interpretation for end-users through documentation. A second 

subgroup worked on testing the comparativeness of these tools in order to feed into this process 

of comparison and interpretation across tools. Additionally, the effect of simulating sampling 

with and without replacement on model outputs was discussed and some investigation was 

conducted in two case studies: one using the SampleOptim tool with blue whiting data and the 

other using data from a simulated population. Finally, a third subgroup focused on a significant 

upcoming change which will affect the data input of the tools being developed, i.e. the move 

from the current Regional Database (RDB) to the new Regional Database and Estimation System 

(RDBES).   

Future work on the WKBIOPTIM tools should include continuing development and testing, the 

R-package development, and adaptations to accommodate the sampling schemes from the dif-

ferent RDBES hierarchies.  

 



ICES | WKBIOPTIM4; OUTPUTS FROM 2021 MEETING   2022 | iii 
 

 

ii Expert group information 

Expert group name Workshop on Optimization of Biological Sampling (WKBIOPTIM 4) 

Expert group cycle Annual 

Year cycle started 2021 

Reporting year in cycle 1/1 

Chairs Isabella Bitetto, Italy 

 Gwladys Lambert, UK 

 Patrícia Gonçalves, Portugal 

Meeting venue and dates 15-19 November 2021, online (11 participants) 

 

 



ICES | WKBIOPTIM4; OUTPUTS FROM 2021 MEETING   2022 | 1 
 

 

 

1 Introduction 

The Fourth Workshop on Optimization of Biological Sampling (WKBIOPTIM 4) chaired by Isa-

bella Bitetto (Italy), Gwladys Lambert (UK) and Patrícia Gonçalves (Portugal) met online, from 

15th to 19th of November 2021, to: 

a) Develop further indicators of length and age frequency data by i) testing the different 

indicators and quality thresholds using simulations and ii) preparing an R package with 

the functions used to calculate them; (Science Plan codes: 3.3);  

b) Consolidate and update existing open source code used in previous workshops (BIOP-

TIM1-3) and generalize for wider use, package code and document tools, and assess 

compatibility of tools with use of standard data formats and sources; (Science Plan codes: 

3.2);  

c) Continue to provide support on the use of WKBIOPTIM tools with the aim of a future 

optimization at national/stock/regional levels. (Science Plan codes: 3.2 and 3.3).  

1.1 WKBIOPTIM 4 participants and agenda 

The list of participants and the agenda for the workshop can be found in Annex 1 and Annex 2, 

respectively. 

1.2 Background to WKBIOPTIM 4 and work organization 

The WKBIOPTIM series aims to develop tools in R that evaluate if sampling effort for biological 

parameters (and associated resources) can be optimized without compromising the quality of 

final estimates. The need for those tools had been highlighted by several ICES EG’s (e.g. 

PGCCDBS 2012, PGDATA 2015, WKCOSTBEN 2016) that suggested that oversampling in the 

lower stages of national sampling programs (e.g., number of trips, hauls within trips, fish within 

hauls), combined with inefficient sampling effort distribution, may not be providing significant 

additional information on the population. In response to this, some national labs started devel-

oping statistical tools with the aim of analysing and optimizing biological sample sizes. The aim 

was to assess the impact of reducing sampling effort on age or length distribution estimates in 

clear-cut cases of excessive sampling, or of increasing sampling effort where the information 

collected may not be sufficient. This work was presented at the first WKBIOPTIM and jointly 

developed by its participants thereafter.  

All WKBIOPTIM R scripts are based on commercial sampling data extracted in the RDB format1. 

Scripts for conversion of the DATRAS format to the RDB format have also been developed to 

allow some of the WKBIOPTIM tools to run on research survey data (ICES, 2019a). Overall, the 

main part of the preparation/development of the scripts was made prior to the WKs themselves, 

with discussions and improvements being made during the WKs, and the final consolidation of 

the work (code and case studies) being carried out in the days during/after the WK. The code is 

already being used by some institutes to assess potential for improvements in sampling (e.g. by 

reducing oversampled species or evaluate how to increase sampling in other that are under sam-

pled) (ICES, 2017, ICES, 2019a, ICES, 2019b). The R scripts were made available to the partici-

pants through the GitHub (ICES, 2019b) or the Sharepoint. The work performed during the 

workshops has been presented in several groups and ICES working groups (STECF, WGBIOP, 

                                                           

1 https://www.ices.dk/marine-data/Documents/RDB/RDB%20Exchange%20Format.pdf 

https://www.ices.dk/marine-data/Documents/RDB/RDB%20Exchange%20Format.pdf
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WGCATCH, etc.) and have received positive feedback and good incentives to continue. How-

ever, in order for the WKBIOPTIM tools to be useful in the long-run, the data inputs will have to 

move from the RDB format to RDBES. This will further add the possibility to make use of the 

information contained in RDBES regarding the sampling designs in the simulations.  

The fourth WKBIOPTIM aimed to continue working on the R scripts presented in previous work-

shops. During the workshop, the practical work was divided between three subgroups:  

1. Developers: this group started to format the tools for compatibility within an R package, 

together with documenting the functions; also started to develop functions for quality 

indicators [TOR a); TOR b)]. 

2. Testing group: this group tested the tools available in WKBIOPTIM3 on other case stud-

ies and gave ideas on possible integrations and improvements. Sampling with and with-

out replacement was also tested [TOR a); TOR b)]. 

3. RDBES group: this group focused on the steps towards using the RDBES format [TOR 

c)]. 

1.3 R-tools description and new developments  

Updates on new developments of a number of R tools considered in previous workshops were 

presented to the group. Those were: Admissible Dissimilarity Value (ADV or SampleRefer-

enceLevel) (Section 1.4.1); STREAMline optimization tools (Section 1.4.2); SampleOptim (Section 

1.4.3); and FishPi2 (Section 1.4.4). 

The slides from the presentations are included in Annex 3. 

1.3.1 Admissible Dissimilarity Value (ADV)2 (JW) 

The proposed framework (ADV or SampleReferenceLevel), as well as the corresponding R tool, 

was discussed at the third Workshop on Optimization of Biological Sampling (WKBIOPTIM3) 

(ICES, 2019b), and then published in Wischnewski et al. (2020). The approach aims to identify a 

reduced but still informative sample (subsample) and to quantify the (dis)similarity between 

reduced and original samples. At the core of the approach is the concept of reference, or bench-

mark, subsample, which is the minimal representative subsample preserving a reasonably pre-

cise length frequency distribution (LFD) for a selected species. An iterative deterministic sub-

sampling procedure, based on defined conditions, returns a reference subsample, quantifies the 

difference between the original sample and the reference subsample and provides a threshold 

value. This threshold is called an admissible dissimilarity value (ADV).  

The LFD always displays a range of modal length classes or modes (bumps, spikes) and anti-

modal length classes or antimodes (gaps, dips). Generally, LFD is difficult to quantify. The stand-

ard bandwidth ∆ = 1 cm, recognized in standard Regional Database (RDB) Format, obviously 

delivers the maximal number of modes and antimodes present in the data set, and can cause 

some “spurious” modes and antimodes. The definition below helps to find a formal way to verify 

the dissimilarities between LFDs of original sample and subsample. 

Definition 1. Let 𝑀⃗⃗ = (𝑀1, 𝑀2, … )𝑇  be modes and 𝐴 = (𝐴1, 𝐴2, … )𝑇  be antimodes of some LFD 

with bandwidth 1 cm, and 𝑀⃗⃗  𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 = (𝑀1
∆, 𝑀2

∆, … )𝑇 be modes and 𝐴  𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 = (𝐴1
∆, 𝐴2

∆, … )𝑇  be 

antimodes of the same LFD with selected bandwidth ∆ > 1 cm, where ∆ = ∆ (max species length). 

We define a mode 𝑀𝑖 ∈ 𝑀⃗⃗  as a robust mode, if  

                                                           

2  SampleReferenceLevel 
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(1) 𝑀𝑘
∆ ≤ 𝑀𝑖 < 𝑀𝑘

∆ + ∆   
(2)  𝑀𝑖 = max

(𝑀1,𝑀2,… )∈[𝑀𝑘
∆;𝑀𝑘

∆+∆[
(𝑀1,𝑀2, … ) 

(3)  𝑓(𝑀𝑖) > 0.01  max(𝑓(𝑀1), 𝑓(𝑀2),…). 
 

In the same way, an antimode 𝐴𝑗 ∈ 𝐴  is a robust antimode, if  

(1)  𝐴𝑟
∆ ≤ 𝐴𝑗 < 𝐴𝑟

∆ + ∆ 

(2) 𝐴𝑗 = min
(𝐴1,𝐴2,… )∈[𝐴𝑟

∆;𝐴𝑟
∆+∆[

(𝐴1, 𝐴2, … ). 

 

This definition helps to identify the so-called robust modes and antimodes, which continue to be 

present in the subsample despite length class smoothing and, therefore, are not suspect to sam-

pling artefacts, “contaminating” the distributional shape. 

The next definition provides the formal requirements of statistical-biological similarity between 

original and subsampled LFDs. 

Definition 2. Let 𝑀⃗⃗ = (𝑀1, 𝑀2, … )𝑇  and 𝑚⃗⃗ = (𝑚1, 𝑚2, … )𝑇 be robust modes and 𝐴 = (𝐴1, 𝐴2, … )𝑇 

and 𝑎 = (𝑎, 𝑎2, … )𝑇  be robust antimodes of LFD of the original 𝑆𝑜𝑟𝑖𝑔 = 𝑆0 and reduced 𝑆𝑛 sam-

ples, respectively. We define 𝑆0 and 𝑆𝑛 as similar, if: 

(1) they have the same number of robust modes and antimodes revealed under chosen 

bandwidth ∆, i.e. dim(𝑚⃗⃗ ) = dim(𝑀⃗⃗ ) and dim(𝑎 ) = dim(𝐴 ); 

(2) for each corresponding pair 𝑚𝑖 , 𝑀𝑖 and 𝑎𝑗 , 𝐴𝑗 : 

|𝑚𝑖 - 𝑀𝑖|≤ 𝜀 and |𝑎𝑗 - 𝐴𝑗|≤ 𝜀, where 𝜀 = 𝜀 (max species length) 

(3) amplitudes ratio  
|𝑔(𝑚𝑖)−𝑔(𝑎𝑗)|

|𝑓(𝑀𝑖)−𝑓(𝐴𝑗)|
 ≥  , where 𝑓(∙), 𝑔(∙) are the values of the original and 

reduced sampled LFDs at a point, respectively; 𝑗 ∈ {𝑖;  𝑖 + 1}, 𝑖 ∈ ℕ, 0< ≤1. 

 

Roughly speaking, this definition states that the subsampled data set has to preserve the struc-

ture and specific patterns of the original data set, namely: 1) reveals the same number of robust 

modes and antimodes; 2) allows the locations of modes and antimodes for larger specimens to 

vary in some small interval defined by parameter 𝜀; 3) keeps distinguished differences between 

adjacent modal/antimodal values, controlled by the parameter . If conditions (1)-(3) are satis-

fied, two data sets are indistinguishable in both integrated statistical-topological and biological 

sense. 

Next, a dissimilarity between the original sample and subsample needs to be measured in one 

number. The following distance, delivering the dissimilarity between original sample 𝑆0 and its 

reduced subsample 𝑆𝑛 with corresponding cumulative distribution functions (CDF) 𝐹 and 𝐺, is 

proposed: 

𝐷(𝑆0, 𝑆𝑛) = 𝐿1(𝐹, 𝐺) + 

𝑐1 ⋅ 𝟙 {dim(𝑣 ) ≠ dim(𝑉⃗ )} + 

𝑐2 ⋅ ∑ max(0, |𝑣𝑖  - 𝑉𝑖| − 𝜀 )

𝑑𝑖𝑚(𝑉⃗⃗ )

𝑖=1

⋅ 𝟙  {dim(𝑣 ) = dim(𝑉⃗ )} + 

 

𝑐3 ⋅ ∑ max (0, 𝜃 −
|𝑔(𝑣𝑖)−𝑔(𝑣𝑖−1))|

|𝑓(𝑉𝑖)−𝑓(𝑉𝑖−1))|
)

𝑑𝑖𝑚(𝑉⃗⃗ )

𝑖=2 ⋅ 𝟙  {dim(𝑣 ) = dim(𝑉⃗ )} , 

where  
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𝐹(𝑙𝑗) and 𝐺(𝑙𝑗) are the CDFs values in length class 𝑙𝑗, 

 𝐿1(𝐹, 𝐺) = ∑ |𝐹(𝑙𝑗) − 𝐺(𝑙𝑗)|𝑗  is a 𝐿1-distance (also called 1-Wasserstein distance), 

𝑓(𝑙𝑗), 𝑔(𝑙𝑗) are the LFD counts at the length class 𝑙𝑗, 

𝑉⃗ = 𝑠𝑜𝑟𝑡(𝑀⃗⃗ , 𝐴 ) and 𝑣 = 𝑠𝑜𝑟𝑡(𝑚⃗⃗ , 𝑎 ) are the sorted increasing sequences of the robust 

modes and antimodes of the original sample and subsample, respectively, 

 𝟙 {𝛹}: 𝛹 → {0; 1} is indicator function, i.e. 𝟙 {𝛹} = 1 if 𝛹 is true and 𝟙 {𝛹} = 0 otherwise, 

𝑐1, 𝑐2 and 𝑐3 are some constants. 

The first term is the 𝐿1-distance between two CDFs as mentioned above, and the three next terms 

represent penalties, which are imposed for violation of constraints (1)-(3) in Definition 2. So, if a 

number of robust critical points in the subsample is different from this number in the original 

sample (violation of the condition (1)), then 𝟙 {dim(𝑣 ) ≠ dim(𝑉⃗ )} = 1 and the distance magnitude 

equals to 𝐷 = 𝐿1(𝐹, 𝐺) + 𝑐1, so a constant penalty is applied to infeasible LFD of subsample. In 

the same way, even by the equal number of modes/antimodes, the penalty term restrains their 

shifts: if the shift |𝑣𝑖  - 𝑉𝑖| between some 𝑣𝑖 and  𝑉𝑖 exceeds 𝜀 (violation of the condition (2)), then 

max(0, |𝑣𝑖  - 𝑉𝑖| − 𝜀 ) = |𝑣𝑖 - 𝑉𝑖| − 𝜀 , and the distance magnitude increases, 𝐷 = 𝐿1(𝐹, 𝐺) + 𝑐2 ⋅

(|𝑣𝑖 - 𝑉𝑖| − 𝜀 ). The constants 𝑐1, 𝑐2 and 𝑐3 are introduced to define a hierarchy on constraints 

violation, although they can be put equal to 1. 

Obviously, for 𝑆𝑛 ≡ 𝑆0 we obtain the lower bound 𝐷 = 0. The upper bound can be provided by 

a minimally permitted reference subsample representing “the worst case”. This is a reference 

subsample 𝑆𝑟𝑒𝑓 , which still reveals the patterns of the original distributional shape for given pa-

rameter values (∆, 𝜃, 𝜀) (i.e. meets conditions (1)-(3)), but cannot be reduced anymore because 

further subsampling will change the LFD shape. We will call the corresponding distance 

𝐷(𝑆0, 𝑆𝑟𝑒𝑓), where 𝐺𝑟𝑒𝑓  is the empirical CDF of 𝑆𝑟𝑒𝑓 , the admissible dissimilarity value (ADV). It 

represents a threshold (upper limit) to decide on acceptable and unacceptable dissimilarities be-

tween LFDs when reducing sampling effort. Thus, all subsamples 𝑆 = {𝑆𝑛} with 

𝐷(𝑆0, 𝑆𝑛)[0; ADV] can be considered as representative ones in relation to the original target sam-

ple, thus, suitable to access the original length distribution information. It’s easy to see that 

ADV= 𝐷(𝑆0, 𝑆𝑟𝑒𝑓) = 𝐿1(𝐹, 𝐺𝑟𝑒𝑓), since all penalty terms are equal to 0.  

Note that the set of parameters (∆, 𝜃, 𝜀) that we apply for construction of the reference subsample, 

can be extended. One can introduce the following additional (optional) parameter 𝛾, 𝛾 < 𝜃, 

which indicates a minimally required number per length class in a reference subsample. This 

parameter reflects the requirements of official national sampling programs in a certain sense (e.g. 

minimal fish number per length class needed for aging). Of course, the parameter  𝛾 can be also 

set to zero (i.e. ignored). 

One can also consider only some part of length classes 𝑙𝐼 (important length classes) for subsam-

pling. For example, this can be just a middle part of the LFD, without large and small length 

classes. 

Formally, the iterative algorithm scheme can be described as follows: 

1) Use the standard RDB data with length rounded to 1 cm as basic input data. 

2) Select bandwidth ∆ and important length classes 𝑙𝐼 if desired, identify corresponding 

robust modes/antimodes in the original sample under ∆ on the set 𝑙𝐼. 

3) Set remaining parameters {𝜃, 𝛾, 𝜀} . 

4) Remove one length measurement from each length class in 𝑙𝐼 and see whether conditions 

(1)-(3) are satisfied. If yes, repeat the step. If no, go back to the previous subsample and 

stop. If a number of length measurements in some length class reaches value 𝛾, 
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subsampling of this length class stops either, but subsampling of other length classes 

proceeds further until the conditions are met.  

 

1.3.1.1 R-script 
The corresponding generic iterative algorithm was implemented in the R-5.3.1 software. This R 

tool contains 4 functions, namely: 

1) 01_set_RDB_Data: data manipulation function. The input is the required RDB tables 

(HL, CA, HH, SL). The function merges and filters the tables (e.g. selects species, years, 

areas etc.), and then transforms into a single table that’s easier to work with for further 

analysis.  As an example, a R-function translating the RDBES format into RDB is availa-

ble at Annex 4. A graphical output contains the histogram of the result dataset. 

2) 02_find_modes_antimodes: the function returns information on LFD structure of the 

sample, i.e. a list including: 

• All modes and antimodes; 

• Smoothed modes and antimodes for the desired bandwidth parameter ∆; 

• Robust modes and antimodes; 

• Vector of amplitudes. 

This function illustrates a setting of the Definition 1. 

3) 03_minimal_reference_subsample_construction: the purpose of the function is a deter-

mining of the reference subsample. The input is the original sample (output of the func-

tion 1), robust modes and antimodes as well as amplitudes between them (output of the 

function 2), desired parameters set. The iteration procedure based on the Definition 2 

produces a reference subsample as the function output. A graphical output is also incor-

porated, particularly, both histograms of the original sample and reference subsample. 

4) 04_compute_distance: the function computes ADV between the original sample and ref-

erence subsample obtained as an output of the function 3. A graphical output displays a 

plot of both empirical CDFs of the original sample and reference subsample. 

 

The case study presented in Section 4.1 demonstrates the application of the ADV-approach. 

1.3.2 STREAMline (IB) 

SDTool and BioSim tools were presented at WKBIOPTIM3 and a detailed description of both 

approaches, with some applications, can be found in the report (ICES 2019b).  

SDTool was implemented for the first time in the MARE/2014/19 Med&BS project, and further 

improved as part of the STREAM project (MARE 2016/22). This tool allows to resample historical 

data, using bootstrap, for different stratifications (spatial, temporal, technical), with trips as the 

primary sampling unit. It produces a Coefficient of Variation (CV), raised LFDs, and the Earth 

Mover Distance (EMD) estimate.  

BioSim Tool was implemented for the first time in the STREAM project (MARE 2016/22), based 

on the work carried out by WKBIOPTIM. This tool allows to resample historical data, using boot-

strap, and to derive possible sub-samples of length measurements and an optimal number of 

individuals to be sampled for sex, maturity and age (the latter stratified by length class) by spe-

cies. It produces a Coefficient of Variation (CV) and the Earth Mover Distance (EMD) estimate. 

New developments will take place in the STREAMline project (MARE/2020/08): 

1. Development of additional quality indicators to the ones developed and tested in 

STREAM taking into account:  
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2. the work carried out in ICES WKBIOPTIM3 

3. the Admissible Dissimilarity Value (ADV), as a measure of sampling reliability 

(Wischnewski et al., 2020) 

4. Evaluation of the variability of relevant estimates (e.g. von Bertalanffy parameters, size 

at first maturity) and identification of a satisfactory sub-sampling strategy;  

5. Development of SDTool and BioSim Tool to allow the extraction of samples from the 

dataset used for the case study, according to combinations of technical, time and spatial 

characteristics that could be relevant for specific case studies in order to draft a Regional 

Work Plan (e.g. Country-Geographical Sub-Area, sensu GFCM). The sampling design 

could be set according to a sampling hierarchy (e.g. from individual fish to trip) 

indicating what sampling levels are included in the multi-stage sampling of the 

commercial catches and how they are (hierarchically) related to each other, in line with 

the RDBES concept. 

1.3.3 SampleOptim (PG) 

SampleOptim has been designed and implemented based on the Portuguese National 

Programme for Biological Sampling (EU Data Collection Framework). The main objective is to 

determine the optimal number of fish per length class to sample in order to produce input data 

(e.g. ALKs – age length keys and MO – maturity ogive) for species stock assessment. 

SampleOptim’s main feature is the ability to perform simulations allowing the consideration of 

some stratification conditions based on: temporal (annual, semester or quarter), ports (uniformly 

selection of ports/randomly ports selection or gears) and sexratio (setup the sexratio of 

subsample).  

The simulation process works at the sample level. It relies on a dataset that represents the 

“whole” population, and the simulations are based on randomly subsampling without 

replacement (although there is a built-in option for the user to choose to sample with replacement 

- see on Section 4.2. an example comparing the results from applying those two types of 

subsampling). ALKs and MOs estimates are produced and compared, based on a reduction of 

the number of individuals sampled by length class. However, in cases where the original sample 

size is not enough, the functions in the algorithms will not converge, which could indicate some 

bias in the original data sampling. 

A series of quality indicators are estimated to evaluate the different scenario tested and to help 

the decision process of finding the optimum sample size by length class, accounting that ALKs 

and MOs are of interest for stock assessment purposes. The following variables are produced to 

compare the original versus simulated datasets: mean length-at-age, mean age-at-length, 

coefficient of variation length-at-age, coefficient of variation age-at-length, standard deviation 

length-at-age, standard deviation age-at-length, the parameters of the von Bertalanffy growth 

model (Linf, t0 and k) and the maturity ogive parameters (L25, L50 and L75). Besides the latter 

quality indicators, the root mean squared prediction error (RMSPE), mean squared prediction 

error (MSPE or MSE) and mean average percentage error (MAPE) are also calculated. 

SampleOptim was presented at WKBIOPTIM3 (see for details: ICES, 2019 - Section 2.3 and Annex 

3A). An outline of the approach is presented in Figure 1.4.3. 
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Figure 1.4.3. SampleOptim flowchart showing the optimization procedure with the indication of the different R scripts, 
steps, type of options to setup the subsamples simulations and the different quality indicators used to assist the user 
with making a decision in the optimum sample size. 

 



8 | ICES SCIENTIFIC REPORTS 4:69 | ICES 
 

 

1.3.4 FishPi2 (GL) 

The R package of FishPi2 WP3, which aimed at simulating length sampling, was initially devel-

oped based on the main simulation framework of the FishPi project, which aimed at testing re-

gional sampling designs to estimate landings. Some adaptations were made during the third 

workshop WKBIOPTIM3 to produce simulation outputs comparable with the other approaches 

presented. These were all included in an R package called FishPi4WKBIOPTIM. At this stage, no 

further developments have been made on this package which remains available to the group and 

which still has great potential to be built upon in line with future directions of work in the field.  

1.4 Quality indicators 

Each tool produces some descriptive and inferential statistics, referred to as indicators. See sum-

mary of the WKBIOPTIM3 case studies that aimed at comparing tool outcomes (Table 1.5.1) and 

corresponding indicator overviews (Table 1.5.2).   

The application of different tools using the same input data, in the WKBIOPTIM3 case studies, 

highlighted the fact that the outputs of the different approaches were not easily comparable. In 

some cases, the statistical outputs could even be challenging to interpret for users not involved 

in developing the methods. This issue was addressed during WKBIOPTIM4 with the premises 

of a common R package. Table 1.5.3 provides information on the data requirements for each 

indicator, what they are used for, and which other tool might be able to produce it.  

Table 1.5.1. List of case studies from WKBIOTPIM 3, main tools applied and outputs produced. 

Case study Tool 1 Tool 2 Indicators 

Plaice (ICES Div. 27.4.b) 
Haddock (ICES Div. 27.7.e) 
Plaice (ICES Div. 27.7.d) 

SampleReferenceLevel   - Admissible Dissimilarity Value (ADV) 

Greece purse seine fleet WKBIOPTIM2 Multi-
level analysis  

SDTool Weighted CV (WCV) 

Mullus barbatus (Southern 
Adriatic Sea) 

SampleOptim BioSim Tool SampleOptim: Mean absolute 
percentage error (MAPE), CV 
BiomSim Tool: CV 

Mullus barbatus (Southern 
Adriatic Sea) 

SDTool FishPi4WKBIOPTIM SDTool: CV  
FishPi4: Relative Standard Error 
(RSE), mean length 

Sandeel (greater North 
Sea) 

FishPi4WKBIOPTIM SDTool SDTool: CV 
FishPi4: RSE, mean weigthed 
(MWCV) 

Mullus barbatus (Aegean 
Sea- Greece) 

SampleOptim BioSim Tool SampleOptim: MAPE, Mean 
Squared Prediction Error (MSPE), 
Root Mean Squared Prediction Error 
(RMSPE), CV. 
BioSim Tool: CV 
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Table 1.5.2. Indicator, type of statistics produced, description of what it does, and the corresponding tool that originally 
produces it 

Indicator Type What it does Which tool it is originally 
an output of 

mean, median, minimum 
and maximum length 

Descriptive Describes some aspects of the simu-
lated sampled length distribution 

BioSimTool 

Mean Weighted CV 
(MWCV) 

Descriptive Provides a description of the precision 
over the entire range of a length fre-
quency distribution 

BioSimTool 

Earth Mover’s Distance 
(EMD) 

Inferential Provides an estimate of the similarity 
between 2 distributions; the sample 
and the population 

BioSimTool  

SDTool  

(function from R package 
emdist) 

CV sex ratio at length, 
maturity at length, ALK 

Descriptive Description of precision BioSimTool 

CV per length class and 
total 

Descriptive Provides a description of the precision 
over the entire range of a length fre-
quency distribution taking into ac-
count the sampling stratification. 

SDTool – function from 
the COST library 

mean length-at-age, 
mean age-at-length 

Descriptive Describes some aspects of the simu-
lated sampled length at age distribu-
tion 

SampleOptim 

parameters of the VB 
growth model 

Descriptive Provides an estimate of the parame-
ters from the von Bertalanffy growth 
model (t0, k, Linf). 

SampleOptim 

maturity ogive parame-
ters 

Descriptive Provides estimates of maturity at 
length, mainly: L25, L50 and L75 

SampleOptim 

Root Mean Squared Pre-
diction Error (RMSPE) 

Inferential Provides an estimate of the standard 
deviation of the residuals (prediction 
errors). 

SampleOptim 

Mean Squared Prediction 
Error (MSPE) 

Inferential Provides an estimate of the standard 
deviation of the residuals (prediction 
errors). 

SampleOptim 

Mean Average Percent-
age Error (MAPE) 

Inferential Provides an estimate of the standard 
deviation of the residuals (prediction 
errors). 

SampleOptim 

Admissible Dissimilarity 
Value (ADV) 

Inferential Estimate of dissimilarity between 
original and sampled length distribu-
tion  

SampleReferenceLevel 

Relative Standard Error 
(RSE) 

Descriptive Calculated as the standard deviation 
over the mean of estimates (across 
simulation replicates) 

FishPi4WKBIOPTIM 
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Table 1.5.3. Information on data requirements and objectives of the indicators, and what other tool could produce it. 

Indicator Data required Meaning/objective Which R-tool can it be 
applied to 

mean, median, minimum and 
maximum length 

Length data of sample and 
population 

Compare with the original 
population sampled used as a 
reference level. 

Any tool 

Mean Weighted CV (MWCV) Length data of sample and 
population 

The smaller the CV the better. Any tool 

Earth Mover’s Distance (EMD) Length data of sample and 
population 

The smaller the EMD the better.  

EMD measure the distance be-
tween two probability distribu-
tions (e. g. sample and popula-
tion) 

Any tool 

CV sex ratio at length, maturity 
at length, ALK 

Sex, maturity, age-length 
data of sample and popu-
lation. 

The smaller the CV the better. 

The precision of the sample for 
sex, maturity and age is evalu-
ated versus the total of individu-
als sampled for the length, by 
length class. 

ALKs from the subsample are 
used to compare with the origi-
nal population sampled (used as 
a reference). The precision is 
evaluated by the age length dis-
tribution obtained on the sub-
samples from the simulations.  

BioSim, SampleOptim  

CV per length class and total Length frequency distri-
bution of sample and pop-
ulation 

The smaller the CV the better. Any tool 

mean length-at-age, mean 
age-at-length 

Lengths and ages of sam-
ple and population. 

Compare with the original popu-
lation sampled used as a refer-
ence level (population). 

BioSim, SampleOptim  

parameters of the VB growth 
model 

Lengths and ages of sam-
ple and population. 

Compare with the original popu-
lation sampled used as a refer-
ence level. 

BioSim, SampleOptim 

maturity ogive parameters Maturity and lengths of 
sample and population. 

Compare with the original popu-
lation sampled used as a refer-
ence level. 

BioSim, SampleOptim 

Root Mean Squared Prediction 
Error (RMSPE) 

 Used as a measure of precision 
to decide on the optimum sam-
ple size. 

Any tool 

Mean Squared Prediction Error 
(MSPE) 

 Used as a measure of precision 
to decide on the optimum sam-
ple size. 

Any tool 

Mean Average Percentage Er-
ror (MAPE) 

 Used as a measure of precision 
to decide on the optimum sam-
ple size. 

Any tool 

Admissible Dissimilarity Value 
(ADV) 

Length data of sample and 
population 

 Any tool 

Relative Standard Error (RSE)   Any tool 
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1.5 R-package 

1.5.1 Process  

An R-package has been created and the source code is hosted on GitHub at: 

https://github.com/ices-eg/WKBIOPTIM4 

Hosting in this way allows the tools to be easily available, well documented, and compatible, 

able to be installed on Mac/PC/Linux OS’s and any version of R.  

GL and NC have acted as the maintainers. GitHub allows the use of separate ‘branches’ which 

has enabled other contributors to work on adding tools, data, documentation and functions in-

dependently before these are merged to a main branch. Use of the ‘roxygen2’ package has 

streamlined the adding of documentation and examples.  

1.5.2 Functions description 

During the workshop, the developers’ sub-group started to code the functions for the indicators. 

Table 1.6.2 reports the state of completion of these functions, as off the end of the workshop 

week. Four functions were written up to be added to the GitHub repository: MWCV, maturity 

ogive parameters, CV of ALK and summary indicators. The description of those functions and 

the type of the input data needed for each function is presented in sections 1.6.2.1 to 1.6.3.4. 

Table 1.6.2. State of completion of the indicators’ functions during the workshop. 

Indicator Status 

MWCV  √ 

Earth Mover's Distance (EMD)  emd2 package 

CV per length class and total    

Mean age-at-length   

Parameters of the von Bertalanffy growth model     

Maturity ogive parameters √ 

Mean squared prediction error (MSPE)   

Mean average percentage error (MAPE)   

Admissible Dissimilarity Value   

Relative standard error (RSE) FishPi4WKBIOPTIM package 

CV of ALK by age and total √ 

Summary statistics (mean length, median, se, min, max, number of sampled 
classes) 

√ 

 

  

https://github.com/ices-eg/WKBIOPTIM4
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1.5.2.1 MWCV (mean weighted CV) calculation 
 

MWCV {BIOPTIMtools} R Documentation 

Description 

MWCV (mean weighted CV) calculation 

Usage 

MWCV(df1, variable) 

Arguments 

df1: data frame of sampled data by length class in CA format (RDB) (individual measurements) 

variable: name of the column containing the length measurements (as character) 

Value 

MWCV 

Examples 

MWCV(example_samples,"lenCls") 

 

1.5.2.2 Maturity ogive parameters estimation (L25, L50, 75) 
 

Maturity_ogive {BIOPTIMtools} R Documentation 

Description 

Maturity ogive parameters estimation (L25, L50, L75) 

Usage 

Maturity_ogive(data) 

Arguments 

Data: Dataframe with information from the simulations, containing the following variables: 

length, maturity (0- immature; 1 - mature); IDsim (identification of the number of the sim-

ulation run); type (number of individuals selected in the current simulation, e.g. 10, 20, 30, 

...). 

Value 

L25 (length at which 25 percent of the individuals are mature) 

L50 (length at which 50 percent of the individuals are mature) 

L75 (length at which 75 percent of the individuals are mature) 
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1.5.2.3 Age-Length Key CV (by age and total) 
 

CV_ALK {BIOPTIMtools} R Documentation 

Description 

Function to calculate CV on ALK 

Usage 

CV_ALK(DF) 

Arguments 

DF: dataframe with lengths in the first column and ages on the other columns 

Value 

CV by age class and total CV 

Examples 

CV_ALK(example_ageLength) 

 

1.5.2.4 Make_summary_numeric 
 

Description 

Summary statistics calculation: mean length, se, median, min, max, n classes sampled 

Usage 

make_summary_numeric(df1, variable, a, b) 

Arguments 

df1: data frame of sampling data 

variable: "lenCls" 

a: coefficient of length-weight relationship 

b: coefficient of length-weight relationship 

Value 

table reporting the different estimates 

Examples 

make_summary_numeric(example_samples,"lenCls",a=0.0006,b=3) 
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2 RDBES 

2.1 Brief overview of RDBES data model 

In this section, the text was adapted and summarized from “Documentation of the Regional Da-

tabase and Estimation System - RDBES Data Model doc. v. 1.19.2 (23 September 2021)”. 

RDBES is the new Regional Database and Estimation System that is currently being developed 

by ICES and, in the longer term, it will replace both the current RDB and InterCatch systems, 

providing a single platform for countries to produce statistical estimates of quantities of interest, 

to be used as inputs for the assessment groups.  

 

The aims of the RDBES are: 

 

1) To ensure that data can be made available for the coordination of regional fisheries data 

sampling plans, in particular for the EU DC-MAP Regional Coordination Groups (RCGs); 

2) To provide a regional estimation system such that statistical estimates of quantities of inter-

est can be produced from sample data; 

3) To increase the data quality, documentation of data and ensuring of approved estimation 

methods are used; 

4) To serve and facilitate the production of fisheries management advice and status reports; 

5) To increase the awareness of fisheries data collected by the users of the RDBES and the 

overall usage of these data. 

The RDBES data model allows the accommodation of different designs present in the national 

sampling programmes and it includes a number of different hierarchies, representing the differ-

ent sampling techniques that are used in practice. Two categories of hierarchies are used in the 

model - the upper hierarchy describes how a sample is selected, and the lower hierarchy that 

describes what type of length-frequency or biological variables are measured for that sample. 

The RDBES documentation can be found in: https://github.com/ices-tools-

dev/RDBES/blob/master/Documents/RDBES%20Documenta-

tion%20of%20the%20Data%20Model.docx 

• Hierarchies, general: p. 14 

• Hierarchies, detailed: Annex 1, p. 28 

• Stratification: Section ‘Stratification ‘, p. 19 

• Commercial Landings (CL) and Commercial Effort (CE): Section ‘Aggregated Commer-

cial Landings (CL) and Commercial Effort (CE)’, p. 7 

 

The RDBES data model links:  

• Commercial Landings (CL) and Commercial Effort (CE): https://github.com/ices-tools-

dev/RDBES/blob/master/Documents/RDBES%20Data%20Model%20CL%20CE.xlsx 

• Commercial Sampling (CS): https://github.com/ices-tools-dev/RDBES/blob/master/Doc-

uments/RDBES%20Documentation%20of%20the%20Data%20Model.docx & 

https://github.com/ices-tools-dev/RDBES/blob/master/Documents/RDBES%20Documentation%20of%20the%20Data%20Model.docx
https://github.com/ices-tools-dev/RDBES/blob/master/Documents/RDBES%20Documentation%20of%20the%20Data%20Model.docx
https://github.com/ices-tools-dev/RDBES/blob/master/Documents/RDBES%20Documentation%20of%20the%20Data%20Model.docx
https://github.com/ices-tools-dev/RDBES/blob/master/Documents/RDBES%20Data%20Model%20CL%20CE.xlsx
https://github.com/ices-tools-dev/RDBES/blob/master/Documents/RDBES%20Data%20Model%20CL%20CE.xlsx
https://github.com/ices-tools-dev/RDBES/blob/master/Documents/RDBES%20Documentation%20of%20the%20Data%20Model.docx
https://github.com/ices-tools-dev/RDBES/blob/master/Documents/RDBES%20Documentation%20of%20the%20Data%20Model.docx
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https://github.com/ices-tools-dev/RDBES/blob/master/Docu-

ments/RDBES%20Data%20Model%20VD%20SL.xlsx 

 

a) More comprehensive description of the lower hierarchies 

i. Lower hierarchies include four types of collecting biological samples and they all link 

to the Upper Hierarchies with the SA table (sample). The tables included in these hierar-

chies are the frequency measure (FM) and biological variable (BV). 

1. Lower Hierarchy A: Length stratified biological samples - both FM and BV tables 

are present 

2. Lower Hierarchy B: Only length frequency data is taken from sample(s)/subsam-

ple(s) - only FM table is present 

3. Lower Hierarchy C: All individuals in the sample/subsample are biologically ana-

lysed - only BV table is present 

4. Lower Hierarchy D: No length measurements or biological analyses - no tables pre-

sent 

 

b) Brief description of the main differences between the two formats: 

There are major differences for the Commercial Sampling (CS) information between the 

two formats. In RDB, there are five common tables (TR (trip), HH (station/haul), SL 

(species list), HL (haul length) and CA (catch aged)) that are used by countries for all 

types of commercial sampling data (onboard, onshore, and biological sampling). In the 

RDBES the structure is more complex and the number and kind of tables present is de-

pendent on the type of sampling, and also accommodates the sampling design (hie-

rarchy) used by each country. This means that the information present in one table from 

the RDB can be present in different types of tables from the RDBES, according to the 

hierarchy adopted. An example for compiling the information present in the CA table in 

RDB using the new RDBES format is presented in Table 2.1.1 (upper hierarchies) and 

Table 2.1.2 (lower hierarchies). The complexity presented in these tables showed how 

difficult would be to convert the RDB to the RDBES format. 

 

https://github.com/ices-tools-dev/RDBES/blob/master/Documents/RDBES%20Data%20Model%20VD%20SL.xlsx
https://github.com/ices-tools-dev/RDBES/blob/master/Documents/RDBES%20Data%20Model%20VD%20SL.xlsx
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Table 2.1.1. Example of an attempt to convert the CA table variables from RDB into the RDBES format, accounting for the upper hierarchies. 

 
 
[information can be extracted from this variable]

(optional table/field)

Information from SA table is common to all hierarchies

No information  
 

  

RDBTable RDBVariable

RDBESTable RDBESVariable RDBESTable RDBESVariable RDBESTable RDBESVariable

CSCA CS_TripId FT FTid FT FTid FT FTid

CSCA SamplingType FT FTsamplingType FT FTsamplingType FT FTsamplingType

CSCA LandingCountry FT [FTarrivalLocation] FT [FTarrivalLocation] FT [FTarrivalLocation]

CSCA VesselFlagCountry VD VDflagCountry (link to VD from VS | FT) VD VDflagCountry (link to VD from FT) VD VDflagCountry (link to VD from VS | FT)

CSCA Year DE DEyear DE DEyear DE DEyear

CSCA Quarter

CSCA Month

CSCA Project DE DEsamplingScheme DE DEsamplingScheme DE DEsamplingScheme

CSCA Trip FT FTsequenceNumber FT FTsequenceNumber FT FTsequenceNumber

CSCA StationNo FO,  OS,  LE
FOsequenceNumber,  

OSsequenceNumber, 
FO FOsequenceNumber FO FOsequenceNumber

CSCA Species SA SAspeciesCode, (SAspeciesCodeFAO)

CSCA Sex SA SAsex

CSCA CatchCategory SA SAcatchCategory

CSCA LandingCategory SA SAlandingCategory

CSCA SizeCategoryScale SA SAcommSizeCatScale

CSCA SizeCategory SA SAcommSizeCat

CSCA Area SA SAarea

CSCA StatisticalRectangle SA SArectangle

CSCA Subpolygon SA SAgsaSubarea

RDB

Hierarchy 1 Hierarchy 3Hierarchy 2

RDBES Upper hierarchies

FT, FO
[FTarrivalDate], [FOstartDate], 

[FOendDate]

[FTarrivalDate], [FOstartDate], 

[FOendDate]

[FTarrivalDate], [FOstartDate], 

[FOendDate]
FT, FO FT, FO
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Table 2.1.1. (continued). Example of an attempt to convert the CA table variables from RDB into the RDBES format, accounting for the upper hierarchies. 

 
 

[information can be extracted from this variable]

(optional table/field)

Information from SA table is common to all hierarchies

No information  

 

RDBTable RDBVariable

RDBESTable RDBESVariable RDBESTable RDBESVariable RDBESTable RDBESVariable

CSCA CS_TripId FT FTid (FT) (Ftid) FT FTid

CSCA SamplingType FT FTsamplingType (FT) (FTsamplingType) FT FTsamplingType

CSCA LandingCountry LE LEcountry LE LEcountry FT [FTarrivalLocation]

CSCA VesselFlagCountry VD VDflagCountry (link to VD from FT | LE) VD VDflagCountry (link to VD from LE) VD VDflagCountry (link to VD from FT)

CSCA Year DE DEyear DE DEyear DE DEyear

CSCA Quarter

CSCA Month

CSCA Project DE DEsamplingScheme DE DEsamplingScheme DE DEsamplingScheme

CSCA Trip FT FTsequenceNumber (FT) (FTsequenceNumber) FT FTsequenceNumber

CSCA StationNo OS, LE
OSsequenceNumber, 

LEsequenceNumber
OS, LE

OSsequenceNumber, 

LEsequenceNumber
OS, FO

OSsequenceNumber, 

FOsequenceNumber

CSCA Species

CSCA Sex

CSCA CatchCategory

CSCA LandingCategory

CSCA SizeCategoryScale

CSCA SizeCategory

CSCA Area

CSCA StatisticalRectangle

CSCA Subpolygon

OS, FT, (LE)
[OSsamplingDate], [FTdepartureDate], 

[FTarrivalDate], [LEdate]

RDB RDBES Upper hierarchies

Hierarchy 4 Hierarchy 5 Hierarchy 6

OS, FT, LE
[OSsamplingDate], [FTdepartureDate], 

[FTarrivalDate], [LEdate]
OS, (FT), LE

[OSsamplingDate], [FTdepartureDate], 

[FTarrivalDate], [LEdate]
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Table 2.1.1. (continued). Example of an attempt to convert the CA table variables from RDB into the RDBES format, accounting for the upper hierarchies.  

 
 

[information can be extracted from this variable]

(optional table/field)

Information from SA table is common to all hierarchies

No information  

  

RDBTable RDBVariable

RDBESTable RDBESVariable RDBESTable RDBESVariable RDBESTable RDBESVariable

CSCA CS_TripId (FT) Ftid

CSCA SamplingType (FT) FTsamplingType

CSCA LandingCountry OS [OSlocode] (FT) [FTarrivalLocation] LO [Lolocode]

CSCA VesselFlagCountry VD VDflagCountry (link to VD from LE) VD VDflagCountry (link to VD from VS | LE) VD VDflagCountry (link to VD from LE)

CSCA Year DE DEyear DE DEyear DE DEyear

CSCA Quarter

CSCA Month

CSCA Project DE DEsamplingScheme DE DEsamplingScheme DE DEsamplingScheme

CSCA Trip FT FTsequenceNumber

CSCA StationNo OS, (LE)
OSsequenceNumber, 

(LEsequenceNumber)
LE LEsequenceNumber LO, TE

LOsequenceNumber, 

TEsequenceNumber

CSCA Species

CSCA Sex

CSCA CatchCategory

CSCA LandingCategory

CSCA SizeCategoryScale

CSCA SizeCategory

CSCA Area

CSCA StatisticalRectangle

CSCA Subpolygon

RDB RDBES Upper hierarchies

Hierarchy 7 Hierarchy 8 Hierarchy 9

OS, (LE) [OSsamplingDate], [LEdate] LE, (FT)
[LEdate], [FTdepartureDate], 

[FTarrivalDate]
(LE)  [LEdate]
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Table 2.1.1. (continued). Example of an attempt to convert the CA table variables from RDB into the RDBES format, accounting for the upper hierarchies. 

  

[information can be extracted from this variable]

(optional table/field)

Information from SA table is common to all hierarchies

No information  

 

  

RDBTable RDBVariable

RDBESTable RDBESVariable RDBESTable RDBESVariable RDBESTable RDBESVariable RDBESTable RDBESVariable

CSCA CS_TripId FT FTid FT FTid (FT) Ftid (FT) Ftid

CSCA SamplingType FT FTsamplingType FT FTsamplingType (FT) FTsamplingType (FT) FTsamplingType

CSCA LandingCountry FT [FTarrivalLocation] LO, FT
[LOlocode], 

[FTarrivalLocation]
LO, (FT)

[LOlocode], 

[FTarrivalLocation]
(FT) [FTarrivalLocation]

CSCA VesselFlagCountry VD
VDflagCountry (link to 

VD from VS | FT)
VD

VDflagCountry (link to 

VD from FT | LE)
VD

VDflagCountry (link to 

VD from LE)

CSCA Year DE DEyear DE DEyear DE DEyear DE DEyear

CSCA Quarter

CSCA Month

CSCA Project DE DEsamplingScheme DE DEsamplingScheme DE DEsamplingScheme DE DEsamplingScheme

CSCA Trip FT FTsequenceNumber FT FTsequenceNumber (FT) FTsequenceNumber (FT) FTsequenceNumber

CSCA StationNo FO FOsequenceNumber LE LEsequenceNumber LE LEsequenceNumber FO FOsequenceNumber

CSCA Species

CSCA Sex

CSCA CatchCategory

CSCA LandingCategory

CSCA SizeCategoryScale

CSCA SizeCategory

CSCA Area

CSCA StatisticalRectangle

CSCA Subpolygon

RDB RDBES Upper hierarchies

Hierarchy 10 Hierarchy 11 Hierarchy 12 Hierarchy 13

LE, (FT)

[LEdate], 

[FTdepartureDate], 

[FtarrivalDate]

FO, (FT)

[FOstartDate], 

[FOendDate], 

[FTdepartureDate], 

[FTarrivalDate]

FT, FO

[FTdepartureDate], 

[FTarrivalDate], 

[FOstartDate], 

[FOendDate]

FT, (LE)

[FTdepartureDate], 

[FtarrivalDate], 

[LEdate]
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Table 2.1.2. Example of an attempt to convert the CA table variables from RDB into the RDBES format, accounting for the lower hierarchies. 

  
[information can be axtracted from this variable]

(optional table/field)

:: - "droplist" selection for type of variable

Not present in RDBES  
 

 

 

 

RDBTable RDBVariable

RDBESTable RDBESVariable RDBESTable RDBESVariable RDBESTable RDBESVariable RDBESTable RDBESVariable

CSCA Species [SA]
SAspeciesCode, 

(SAspeciesCodeFAO)
[SA]

SAspeciesCode, 

(SAspeciesCodeFAO)
[SA]

SAspeciesCode, 

(SAspeciesCodeFAO)

CSCA Sex BV BVtypeMeasured::Sex BV BVtypeMeasured::Sex

CSCA LengthCode BV Bvaccuracy BV Bvaccuracy

CSCA AgingMethod BV BVmethod BV BVmethod

CSCA LengthClass FM FMclassMeasured FM FMclassMeasured BV

BVtypeMeasured::LengthTotal (+ 

other type length 

measurements)

CSCA Age BV BVtypeMeasured::Age BV BVtypeMeasured::Age

CSCA AgePlusgroup

CSCA OtolithWeight BV

BVtypeMeasured::InfoOtolithMo

rphometrics BV

BVtypeMeasured::InfoOtolithMo

rphometrics 

CSCA OtolithSide BV

BVtypeMeasured::InfoOtolithMo

rphometrics BV

BVtypeMeasured::InfoOtolithMo

rphometrics 

CSCA Weight BV

BVtypeMeasured::WeightMeasur

ed BV

BVtypeMeasured::WeightMeasu

red

CSCA MaturityStagingMethod BV BVmeasurementEquipment BV BVmeasurementEquipment

CSCA MaturityScale BV BVvalueUnitOrScale BV BVvalueUnitOrScale

CSCA MaturityStage BV BVtypeMeasured::Maturity BV BVtypeMeasured::Maturity

CSCA SingleFishId BV BVfishId BV BVfishId

No data

No data

No data

Hierarchy D

RDB RDBES Lower hierarchies

Hierarchy A Hierarchy B Hierarchy C
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c) Changes to the Commercial Landings (CL) and Effort (CE) 

1. The CL and CE tables are to collect aggregated data from national commercial fisheries. 

Both tables have the same structure between the two formats but the one from RDBES 

presents more detailed information namely it allows for both official and scientific esti-

mates of landings and effort to be presented, and also includes uncertainty indicators 

(RSE or qualitative bias) when estimates are provided. 

 

2.2 Transition to RDBES model 

The importance of using the RDBES data in these tools mainly relates to the benefits in consid-

ering the sampling design in the optimization procedures, because the data provided by RDBES 

is more complete and detailed (e.g. different types of measures), also aiming to reproduce the 

exact way the sampling was performed.  

The translation of the RDB format related tools into the RDBES will become a need also because 

it is expected that historical data will be reported in the new RDBES format. However, that trans-

lation is not very easy and straightforward to accomplish at this stage, especially for the Sam-

pling Level R-tools, that will need an adaptation to include/accommodate the type of sampling 

design (Upper Hierarchies) adopted. This transition to the new format will not be easy for some 

of those tools and, probably, can only be developed after the estimation procedures for the 

RDBES (WKRDB-EST2) ICES, 2022) are implemented, and by combining efforts between the two 

groups (estimation and optimization). Regarding the Sample Level R-tools, it will probably be 

more easy to adapt because they’re only accounting for information from the Lower Hierarchies 

but, anyway, the code will still need to be adjusted according to the Lower Hierarchy considered. 

2.3 Linkage of the different hierarchies to the R-tools 

The group discussed how the different hierarchies could be related to each of the WKBIOPTIM 

tools. For some of the tools the upper hierarchy can be ignored (e.g. BioSim, SampleOptim and 

SampleLevelOptim) but not the lower one (A, B and C for BioSim, B for SampleOptim and Sam-

pleLevelOptim). For others, it was possible to identify a category candidate for the upper hier-

archy to use (e.g upper hierarchies H1 for SampleReferenceLevel, H2 for SDTool and SimPop 

and H1, H2, H4 for Fishpi4WKBIOPTIM; and H12 for the sample collection on SampleOptim). 

Table 2.3 presents a summary of the WKBIOPTIM R-tools, including some additional details on 

the RDBES hierarchies (lower and upper) “assignment”. 

In the table below the main characteristics and features of the R-tools developed and/ or applied 

under WKBIOPTIM are presented (Table 2.3). 

 



22 | ICES SCIENTIFIC REPORTS 4:69 | ICES 
 

 

Table 2.3. WKBIOPTIM tools main characteristics and features. 

R-toools SDtool BioSim Tool Fishpi4WKBIOPTIM SimPop SampleOptim SampleLevelOptim SampleReferenceLevel

R_developers Isabella Bitetto Isabella Bitetto Glwadys Lambert Laurent Dubroca Patrícia Gonçalves Nuno Prista Julia Wischnewski

Landings (or discards or catch) No No No No No No No

Mean length No No Yes No No yes No

Length distribution Yes Yes Yes Yes Yes Yes Yes

Mean age at length No No No No Yes No, but can be extended No

Age distribution No Yes No No Yes Yes No, but can be extended

Sex ratio No Yes No No Yes Yes No

Maturity at age No Yes No No Yes Yes No

Inference on sample [1] or population 

(raised within the tool) [2] data
1 1 1 2 2 1 2

H2 with hauls (FO) 

aggregated at the trip 

level

H1 with hauls (FO) 

aggregated at the trip 

level

# Trip/haul - ? H4 

If the upper hierachy is ignored in the 

resampling is it then done within a sampling 

unit present e.g. haul, landing event

Fish within a original 

sample for length. For 

other biological 

measurements are 

picking from a pool of 

all fish

RDBES lower hierachies

Need to find the 

length, but need to 

take A (only using the 

FM), B and C into 

account

A  B, C

Not relevant - All 

length frequencies are 

raised to the trip level 

in input data. The 

function translating 

the RDB data into the 

input will require 

some work

A, B and C A (only using the BV) B (random sample of fish)

Requires length stratified of biological 

raised to LD?
Not relevant ? Not relevant Not relevant 

Assumes random sample of 

biological measurements

Not relevant, when only 

lengths

Handling of length stratified sampling of 

other biological measurements. In the 

present RDB this is not apparent in the data, 

but it is possible to check

Not relevant Not relevant Not relevant 

how is the length 

stratification in the 

original data handled?

Fish - picks samples with a 

sample e.g. a fishing trip - 

lower hierachy B and C, a box of 

fish. How this works with 

length stratified vs. none

Fish 

# Trip -  H2 with hauls 

(FO) aggregated at the 

trip level

# Trip

# Trip/haul
Fish

# Trip

# vessel/Trip

# site-day/ Trip

Ignored

Ignored - picking from 

a pool with all fish 

sampled (the samples 

used in development 

are coming from 

hierachy 12)

Not relevant - resampling 

within a sample and results at 

the level of the sample

VARIABLE(S) OF 

INTEREST 

(what the precision is 

estimated for)

SAMPLING LEVELS

RDBES upper hierachies

PSU/SSU/TSQ/QSU

(examples)

H2

Trip/haul Trip, vessel, metier

H1
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Table 2.3. (continued). WKBIOPTIM tools main characteristics and features. 

R-toools SDtool BioSim Tool Fishpi4WKBIOPTIM SimPop SampleOptim SampleLevelOptim SampleReferenceLevel
1: Single level unstratified

2: Single level stratified

3: Multi-level

Technical (eg metier) Yes N/A Yes Yes
Yes (by selecting 

specific metiers)
yes (choice of specific metiers)

yes (choice of specific 

metiers)

Spatial (eg GSA, ICES areas) Yes N/A Yes Yes

Yes (by selecting 

specific an ICES area, 

or GSA)

yes (choice of specific ICES 

area)

yes (choice of specific ICES 

area)

Temporal (eg year) Yes N/A No Yes

Yes (by selecting 

specific quarter, 

semester, year)

yes (choice of specific year and 

quarter)

yes (choice of specific year 

and quarter)

other (specify) N/A N/A N/A
Vessel paramters (length, 

GT...)
Sexratio,  port

any biological variable (e.g, 

length, sex)

choice of specific sampling 

type

RDBES (free text for all sampling unit levels) Fixed options N/A

Stratification is free 

text at the PSU level, 

but the input need to 

be in the input data  - 

to be checked

Stratification is free text 

at the PSU level, but the 

input need to be in the 

input data 

Fixed
Not relevant - resampling 

within a single sample

Stratification is free text at 

the PSU level

1: all species in sample

2: can select which species to sample

3: can select mulitple species but will run 

one by one

4: one species at a time

RDB
RDB (CS, CA, TR, HH, 

HL, CL)
RDB (CA, HH) RDB (HL, HH, SL, TR)

RDB (CS, CA, TR, HH, HL, 

CL)
RDB (CA, HH) Yes (CA, HH)

RDB: HL, HH, HL (for length). 

Can be added: CA (for age), 

CL (for raising of LFD to 

metier level)

Other format
Cost objects (CS and 

CL)
N/A FishPi data call No N/A

Datras, HH (after conversion to 

CA format)
Datras

1, 2 1, 21, 21 1,2

3 3 3 44

INPUT DATA

STRATIFICATION 

OPTIONS

SAMPLING HIERARCHY

CONCURRENT 

SAMPLING
4

3 1

1 & 4
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Table 2.3. (continued). WKBIOPTIM tools main characteristics and features. 

R-toools SDtool BioSim Tool Fishpi4WKBIOPTIM SimPop SampleOptim SampleLevelOptim SampleReferenceLevel

OUTPUTS Quality indicators (eg EMD) EMD, CV

MWCV, EMD, Number 

of size/age/sex 

classes sampled, 

Number of modes.

RSE, MWCV (raw 

outputs allow to 

calculate user-defined 

outputs)

EMD, CV, MWCV
see section 2.3 of 

WKBIOPTIM3
see section 2.1 of WKBIOPTIM1 L1-distance (ADV)

Example_Question

Would the precision 

of the sampling have 

been very different if 

we had sampled more 

trips mantaining the 

same number of 

individuals 

measured?

Would the precision 

of the sampling and 

the derived biological 

information (sex 

ratio, maturity ogive, 

age structure) have 

been very different if 

we had sampled less 

individuals per 

sample?

What would be the 

precision in length 

estimations for a given 

species with a given 

sampling design (with 

a given choice of strata 

and sampling effort at 

the trip level) for a 

domain of interest 

(e.g. at the stock 

level)?

What is the effect of 

decrease the number of 

samples on population 

estimates?

Would the precision 

of the sampling and 

the derived biological 

information (maturity 

ogive, age-at-length) 

have been very 

different if we had 

sampled less 

individuals (e.g. per 

sample, quarter, port, 

metier/fleet)?

Would the results of a sample 

(or set of samples) have been 

very different if we had 

sampled less individuals?

Would it be possible to 

reduce the number of 

metiers/trips/hauls/measure

d individuals in area/domain 

X without significant 

affecting the LFD for species 

Y? The underlying LFD 

depends on chosen 

aggregation level (raising at 

metier level, trip level etc.) 

and is defined by practical 

goals (e.g. we compare our 

national LFD for species Y in 

area X with corresponding 

LFD of all EU states).
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2.3.1 Stratification 

In the RDB format, no information on stratification is available at any of the sampling levels. In 

the RDBES it is possible to declare stratification on all the sampling levels. The field for stratifi-

cation is a free text field, so it is possible to support the variety of stratification being used in 

commercial catch sampling e.g. size sorting categories, distance to sampling facilities and 

big/small harbours. 

Most of the tools in the WKBIOPTIM suite have a fix set of possible stratification e.g. time, space 

and gear selectivity, which do not always fit the stratification needed in real sampling programs, 

so it would be beneficial to make the stratification options more generic in the future e.g. free 

text.  

Further, when using past samples for optimization it is important to take the stratification used 

in the past into account, e.g. it is tricky to combine age samples from random sampling with age 

samples from length stratified sampling. Only a couple of the tools in the WKBIOPTIM suite take 

the past sampling design, including stratification, into account and it would be beneficial to im-

plement the possibility to do so. 



26 | ICES SCIENTIFIC REPORTS 4:69 | ICES 
 

 

3 Sampling with and without replacement 

To think about resampling with or without replacement, assume a dataset (S0) was collected 

from a larger population (P). If S0 were infinitely large, then every estimator (e.g. mean or length 

frequency distribution) from P would be known with perfect precision and no uncertainty. In 

general, for any size S0, the statistics about S0 can be calculated with a perfect precision, e.g. 

because the mean of S0 is known. However, because S0 is not infinitely large, we do not know 

the exact mean (and other estimators) of P. To calculate the uncertainty of statistics for P, it is 

necessary to resample with replacement (i.e. bootstrap) the S0 dataset, to represent the distribu-

tion of P that we don’t know but is assumed to be similar to S0. Therefore, if it is necessary to 

make inference about P, then the resampling should be done with replacement.  Alternatively, if 

the scope of inference is S0 (i.e. S0 is the extent over which the inferences are to apply), then we 

have all the information in that sample, S0. We can ask what might happen if we had collected a 

dataset smaller than S0 by looking at random subsets/subsamples of S0, i.e. resample without 

replacement.  If we want to ask what would happen if we repeated the process of taking a sample 

from P that was smaller, then we would need to resample with replacement. 

3.1 Literature review 

The bootstrapping technique was first considered in a systematic manner by Efron (1979). 

The essence of bootstrapping is the idea that, in absence of any other knowledge about a 

population, the distribution of values found in a random sample of size n from the population is 

the best guide to the distribution in the population (Manly, 1997). 

The infinite population that consists of the n observed sample values, each with 1/n probability 

to be extracted, is used to model the unknown real population. The sampling is with 

replacement, which is the only difference in practice between bootstrapping and randomization 

in many applications. 

When we sample with replacement, the two sample values are independent. Practically, this 

means that what we get on the first one doesn't affect what we get on the second. Mathematically, 

this means that the covariance between the two is zero.  

In sampling without replacement, the two sample values aren't independent. 

The Recycling Rate (RR) is an indicator of the percentage of re-use of the same sample when 

running the bootstrap; in the sampling with replacing, the RR is more affected. 

In cases of a huge number of samples to be re-sampled the 2 approaches (with and without 

replacement) are expected to provide similar results, because the probability of extraction of each 

sample in the cases become very similar (1/n similar to 1/(n-1) when n is big). The test on a 

simulated population has been carried out to explore how the 2 approches work on the same 

artificial dataset, on which the real characteristics were known. 
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3.2 Case studies applying a subsampling with and without 
replacement  

A case study applying SampleOptim to test the sampling with and without replacement, in 

order to compare the outputs of sampling optimisation output on real sample data, is pre-

sented in section 4.2. 

A preliminary simulation study, using simulated data, was performed applying different sub-

sampling designs (with and without replacement) to evaluate the accuracy of the estimates of 

mean and standard deviation for length-at-age. The results from this application are presented 

in section 4.3. 
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4 Case studies 

4.1 Admissible Dissimilarity Value (ADV)3 – The case study 
of Red Mullet in the Aegean Sea (GSA 22) 

The ADV analysis was performed on Red Mullet in the Aegean Sea (GSA 22) for the year 2019 

and for the 1st quarter. The data were collected as part of the Greek Data Collection Framework 

onboard sampling. For bottom – trawlers, biological data are collected through onboard sam-

pling and the sampling scheme is based on fishing trips. Both landings and discards are recorded 

for catches and individual lengths are recorded for almost all species caught. 

ADV is a tool described in Wischnewski et al. (2020) for comparing an LFD with sub-samples of 

itself in order to calculate the minimum subsample that holds the same properties as the original 

one.  

4.1.1 Construction of the reference subsample 

In order to minimize the number of samples needed to be taken and at the same time preserve 

the characteristics of the original LFD we need to construct a theoretical reference sub sample. 

This sub sample is constructed as follows: 

First we need to choose the bandwidth of the LFD in a way that the new LFD will not lose the 

characteristics of the original one. 

We also need to define a parameter γ which is a threshold up to which we can reduce the number 

of individuals in each length class, e.g. if γ = 0.2 we are allowed to reduce each length class up to 

20% of each original number of individuals.  

A proper value for the parameters ε and θ must also be chosen. The parameter ε depends on the 

species and it sets a threshold for the maximum distance that the modes (or antimodes) of the 

original sample from the modes (or antimodes) of the reference sample are allowed to have. θ is 

the maximum value of the amplitude ratio (Wischnewski et al. 2020). 

For the case of Red Mullet in GSA 22 for 2019 and 4th quarter a bin width (Δ) = 2cm was selected. 

The ε is 0, γ = 0.2 and θ = 0.9. The following figures (Figure 4.1.1.1. and 4.1.1.2) present the original 

LFD and the LFD with bin width = 2cm, respectively. 

                                                           

3 SampleReferenceLevel R-tool 
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Figure 4.1.1.1. Histogram of length frequency distribution (LFD) of red mullet in GSA22 in 4th quarter, raised to the total 
catch with Δ = 1cm. 
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Figure 4.1.1.2. Histogram of length frequency distribution (LFD) of red mullet in GSA22 in 4th quarter, raised to the total 
catch with Δ = 2cm 

 

Table 4.1.1. Results of find_modes_antimodes function for Δ= 1 and 2 cm. 

 Δ = 1cm Δ = 2cm 

modes 10, 15, 20 10, 15, 20 

antimodes 11, 19 11, 19 

amplitudes 308, 545, 547, 2 308, 545, 537,  2 

smoothed modes 10, 15, 20 10, 14 

smoothed antimodes 11, 19, 21 12 

robust modes 10, 15, 20 10,15 

robust antimodes 11, 19 12 

robust amplitudes 308, 545, 537, 2 308, 545 
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Figure 4.1.1.3. ADV of original sample and the reference subsample. 

 

The ADV was calculated for the reference subsample as 0.1785 (Figure 4.1.1.3 and 4.1.1.4). The 

number of individuals in the original sample is 2616 while in the reference subsample 2180. 

 

  

Figure 4.1.1.4. Original sample of red mullet in GSA22 in 4th quarter (left) and reference sub sample (right). 
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4.1.2 Reducing sampling effort by eliminating sampling units (fishing 
trips) 

During the 4th quarter of 2019, six different trips were sampled. Namely trips: 9301, 9302, 11446, 

11448, 11450 and 11456. We examine the effect on the sample by removing one, two and three 

trips. 

In the case of removing one trip we will examine the effect of each trip in the sample size while 

for two and three we will simply remove randomly two and three trips from the original sample. 

This results in eight different scenarios: S1,j where j are the fishing trips and S2 and S3 are the 

subsets of the original sample obtained by subtracting two and three trips respectively (Table 

4.1.2). 

 

Table 4.1.2. Results of different scenarios eliminating sampling units of the original sample. 

Scenario Eliminated Sampling Units Distance D Sample size 

S1,1 Trip 9301 12.2305 700 

S1,2 Trip 9302 0.0199 2607 

S1,3 Trip 11446 0.0391 2589 

S1,4 Trip 11448 0.0081 2607 

S1,5 Trip 11450 22.76224 1970 

S1,6 Trip 11456 0.0199 2607 

S2 Trips 9301 & 11456 12.1846 691 

S3 Trips 9302, 11450, 11456 22.81054 1952 

 

In the case study of Red mullet in the Aegean Sea the samples are not equally distributed be-

tween trips. So the effort reduction by removing trips from the original sample has effect on the 

distance mainly based on the number of individuals measured on each trip. There are several 

trips that have almost no effect on the main characteristics of the LFD, but all of them contain 

very few individuals. The interesting part of this analysis is the effect of fishing trip 11450 on the 

distance. Although as a trip consists of fewer sampled individuals than trip 9301 the effect of 

removing it is much higher. 

4.2 SampleOptim – The case study of Blue Whiting in ICES 
Division 27.6.a, a comparison of sampling with or with-
out replacement   

The aim of this case study was to investigate the effects of resampling strategy with replacement 

and without replacement on precision and bias of optimisation results, using real sample data. 

In the case of sampling with replacement, all samples are independent as the selection of one 

sample does not affect the selection of another sample. When sampling without replacement, 

samples are not independent as the selection of one sample removes it from the sample pool 

available for subsequent sample selection. 

The sampling optimisation approach SampleOptim was used, and quality indicators were gen-

erated to assess the optimal sample size for age-length keys.  
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Sampling optimisation was applied to age sample data of blue whiting (Micromesistius poutassou), 

stock whb.27.1-91214, from the 2021 spring season in ICES area 27.6.a. 

4.2.1 Methods 

The SampleOptim R-tool was run without replacement (scenario WOR) and with replacement 

(scenario WR) using the same input data. The input parameters for both scenarios are shown in 

Table 4.2.1.1. Only length classes that were sufficiently sampled (>30 age samples; 240-340 mm; 

Table 4.2.1.2) were selected for testing. The sample sizes tested were 2, 4, 6, 8, 10, 20 and 30 ages 

per length class; with sample sizes of 20 and 30 very close to the population size. No stratification 

was applied to the data. For each scenario, 1000 simulations were run to ensure stable output.  

The output of the scenarios was compared by addressing two questions: i) Do the different sce-

narios result in significantly different output values? and ii) Do differences in the output of the 

two scenarios lead to different conclusions on sample size optimisation?  

To compare the output values of mean lengths per age from the two scenarios, individual simu-

lation output values were grouped by sample size and age (e.g. sample size 2 & age 2), and the 

results from each scenario was compared using an independent samples t-test. An alpha level of 

0.01 was used for all statistical tests. 

Bertalanffy parameter output values (Linf, K and t0) were not normally distributed, so the non-

parametric independent 2-group Mann-Whitney U Test was used to compare the output results 

from the sample size groupings (e.g. sample size 2) of each scenario. 

A visual assessment of the graphical output of the SampleOptim tool is used to make judgements 

on sample size optimisation. Therefore, the graphical outputs from the two scenarios were com-

pared to assess for any differing conclusions of optimal sample sizes. 
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Table 4.2.1.1. Input parameters. 

Variable 
name 

Mandatory Variable.values Definition 

species y WHB CODE_FAO 

AREA y   

AGE_ONLY y TRUE TRUE- only statistical analysis for age; FALSE - includes age and 
maturity data analysis 

PORT n  FALSE Uses Port stratification for subsampling (TRUE); do not take into 
account the Port Stratification (FALSE) 

distUniPorto n FALSE Uniform distribution of subsamples by Port (TRUE); random dis-
tribution of subsamples by Port (FALSE) 

TIME_STRATA y A A - year; S- semester; T - quarter 

SEX_RATIO y -1 0 - only males; 1 - only females; -1 no sex data 

MIN_LC y 240 minimum length class  

MAX_LC y 340 maximum length class 

interval_LC y 10 length class step  

MIN_age y 1 minimum age 

MAX_age y 10 maximum age 

MIN_OTOL y 2 minimum number of individuals by length class in the simula-
tion setup 

MAX_OTOL y 10 maximum number of individuals by length class in the simula-
tion setup 

inter-
val_OTOL 

y 2 interval number of individuals by length class in the simulation 
setup 

EXTRA_OTOL n 20 30 extra otoliths that are not within MIN_OTOL and MAX_OTOL 

Linf y 45 Von Bertalanffy growth model parameter - Linf. Used as a start-
ing value to adjust VBGM. 

K y 0.1 Von Bertalanffy growth model parameter - k. Used as a starting 
value to adjust VBGM. 

t0 y -3 Von Bertalanffy growth model parameter - t0. Used as a starting 
value to adjust VBGM. 

year_start y 2021 first year data subset to run simulations 

year_end y 2021 last year data subset to run simulations 

stage_mature y 2 define the maturity stages that correspond to mature stages (to 
allow to determine the proportion of immatures and matures)  

n y 1000 define the number of simulations (bootstrap runs) 
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Table 4.2.1.2. Selected input data for all simulations, corresponding to the input parameters (Table 4.2.1.1). 

Length 
Class 

240 250 260 270 280 290 300 310 320 330 340 

N. Oto 35 56 65 75 76 79 80 73 63 40 31 

 

4.2.2 Results and Discussion 

T-test results comparing the mean length output, grouped by sample size and age, for scenarios 

WOR and WR showed that there were only two cases in which statistically significant differences 

(p≥0.01) in mean length when samples sizes were 10 or fewer per length class. However, for 

sample sizes of 20 and 30, differences in the mean length were statistically significantly between 

the WOR and WR scenarios for all ages (p<0.01), except age 3 for a sample size of 20 (p>0.01) 

(Table 4.2.2.1).   

Comparison of the von Bertalanffy growth parameter Linf generated for the WOR and WR sce-

narios showed a statistically significant difference in values for samples sizes of 4, 8, 20 and 30 

(p< 0.01). Statistically significant differences in K value between the WOR and WR scenarios was 

found for sample sizes of 4, 20 and 30 (p< 0.01), and no significant differences were found be-

tween the t0 values generated in each scenario (Table 4.2.2.2). 

Visual inspection of the SampleOptim results is used to judge the point at which values stabilise, 

indicating that a sufficient sample size has been reached. For both the WOR and WR scenarios, 

the plotted results of the mean length at age stabilised at 8-10 otoliths (Figure 4.2.2.1). Similarly, 

the results of the von Bertalanffy growth parameter results showed that collecting about 8-10 

otoliths would sufficiently stabilize the estimates of Linf, K and t0, for both the WOR and the WR 

scenarios (Figure 4.2.2.2). 

The results of this case study show that applying the sample optimisation tool SampleOptim 

with and without replacement can have a significant effect on the calculation of both the mean 

length at age and the von Bertalanffy parameters Linf and K, particularly when the sample size 

is close to the maximum available in samples. This result is not surprising given that sampling 

without replacement places greater constraint on the pool available to be sampled as sample 

sizes get closer to the size of the population being sampled. As all samples are independent when 

sampling with replacement, there is no such constraint of sample sizes being near the sampled 

population size. 

However, despite differences in output values at large sample sizes, the case study also showed 

that the resulting selection of optimal sample size was unaffected by the application of sampling 

with or without replacement.    
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Table 4.2.2.1. T-test results comparing mean length per sample size and age for scenarios WOR and WR for sample sizes. 
Age 10 is excluded from calculations because only one single otolith was available for this age.  

Sample size Age T df P-value Scenario WOR  

Mean length  
(standard error) 

Scenario WR  

Mean length  
(standard error) 

2 

2  0.7 1963.4 0.495 247.29 (±0.20) 247.10 (±0.19) 

3  -0.2 1980.3 0.806 266.44 (±0.35) 266.56 (±0.34) 

4  -0.3 1977.3 0.767 291.15 (±0.46) 291.34 (±0.48) 

5  -0.6 1990.8 0.537 304.81 (±0.36) 305.12 (±0.34) 

6  0.9 1931.9 0.382 303.76 (±0.44) 303.21 (±0.45) 

7  0.7 1839.8 0.481 312.85 (±0.49) 312.36 (±0.50) 

8  -1.2 1004.9 0.242 312.83 (±0.82) 314.19 (±0.82) 

9  1.7 502.8 0.087 319.88 (±0.93) 317.66 (±0.90) 

4 

2  -0.1 1992.7 0.914 247.86 (±0.13) 247.89 (±0.14) 

3  -0.1 1991.7 0.940 266.88 (±0.23) 266.91 (±0.22) 

4  0.6 1999.0 0.541 291.35 (±0.31) 291.08 (±0.31) 

5  -1.3 1998.1 0.211 304.55 (±0.23) 304.97 (±0.24) 

6  1.3 1992.7 0.195 304.19 (±0.30) 303.66 (±0.28) 

7  2.0 1982.6 0.050 313.35 (±0.34) 312.42 (±0.33) 

8  0.6 1520.8 0.530 314.25 (±0.59) 313.71 (±0.61) 

9  0.5 857.4 0.640 318.25 (±0.65) 317.82 (±0.66) 

6 

2  0.3 1993.7 0.792 247.89 (±0.11) 247.85 (±0.11) 

3  -0.9 1993.3 0.370 266.80 (±0.17) 267.02 (±0.18) 

4  1.0 1993.6 0.338 291.56 (±0.23) 291.24 (±0.24) 

5  0.1 1998.6 0.922 304.37 (±0.18) 304.35 (±0.18) 

6  0.6 1999.9 0.573 304.07 (±0.22) 303.89 (±0.22) 

7  1.6 1992.2 0.118 312.89 (±0.27) 312.31 (±0.26) 

8  1.1 1750.1 0.270 313.96 (±0.49) 313.18 (±0.51) 

9  0.3 1165.9 0.732 318.59 (±0.53) 318.33 (±0.55) 

8 

2  -1.2 1993.7 0.221 247.87 (±0.09) 248.03 (±0.09) 

3  -0.4 1999.9 0.720 267.14 (±0.15) 267.22 (±0.15) 

4  0.7 1996.9 0.497 291.54 (±0.20) 291.34 (±0.21) 

5  2.8 1999.8 0.005 304.73 (±0.16) 304.10 (±0.16) 

6  1.5 1986.6 0.137 303.78 (±0.18) 303.38 (±0.20) 

7  1.4 1993.2 0.154 312.85 (±0.21) 312.41 (±0.23) 

8  1.2 1868.8 0.229 314.20 (±0.42) 313.47 (±0.44) 

9  1.6 1393.6 0.107 318.90 (±0.47) 317.80 (±0.49) 

10 

2  -2.6 1975.1 0.008 247.81 (±0.08) 248.12 (±0.09) 

3  -1.3 1999.7 0.182 266.96 (±0.13) 267.20 (±0.13) 

4  1.3 1984.4 0.191 291.69 (±0.16) 291.37 (±0.18) 

5  1.4 1991.2 0.158 304.60 (±0.13) 304.32 (±0.14) 
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Sample size Age T df P-value Scenario WOR  

Mean length  
(standard error) 

Scenario WR  

Mean length  
(standard error) 

6  2.4 1996.3 0.016 304.00 (±0.16) 303.46 (±0.16) 

7  1.6 1994 0.108 312.34 (±0.18) 311.91 (±0.20) 

8  1.5 1931.7 0.133 313.69 (±0.37) 312.88 (±0.40) 

9  1.7 1499.5 0.096 319.36 (±0.43) 318.31 (±0.46) 

20 

2  -9.6 1894.9 <0.001 247.91 (±0.05) 248.68 (±0.06) 

3  -2.2 1977.5 0.026 267.16 (±0.08) 267.41 (±0.09) 

4  3.3 1977.4 0.001 291.78 (±0.10) 291.29 (±0.11) 

5  8.4 1958.9 <0.001 304.58 (±0.08) 303.57 (±0.09) 

6  7.7 1982.5 <0.001 304.07 (±0.10) 302.98 (±0.10) 

7  8.4 1944.9 <0.001 312.38 (±0.11) 310.96 (±0.13) 

8  4.2 1920.8 <0.001 313.97 (±0.21) 312.58 (±0.26) 

9  4.6 1880 <0.001 320.06 (±0.29) 318.05 (±0.33) 

30 

2  -13.8 1766.1 <0.001 248.07 (±0.03) 248.93 (±0.05) 

3  -6.3 1798.5 <0.001 267.16 (±0.05) 267.67 (±0.07) 

4  7.9 1776.9 <0.001 291.76 (±0.06) 290.96 (±0.08) 

5  16.6 1875.5 <0.001 304.56 (±0.06) 303.06 (±0.07) 

6  11.3 1856.1 <0.001 303.95 (±0.06) 302.75 (±0.09) 

7  16.2 1798 <0.001 312.52 (±0.07) 310.57 (±0.10) 

8  8.3 1725.4 <0.001 313.80 (±0.13) 311.89 (±0.19) 

9  7 1722.2 <0.001 319.95 (±0.17) 317.85 (±0.25) 
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Figure 4.2.2.1. Comparison of the variability of mean length at age, standard deviation (sd) at age and coefficient of 
variation (CV) of sampling 2,4,6,8,10,20 and 30 otoliths per length interval, without replacement (WOR scenario; figures 
on the left) and with replacement (WR scenario; figures on the right). Note: a single sample contributed to age 10. 
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Table 4.2.2.2. U-test results comparing von Bertalanffy growth parameters Linf, K and t0 for scenarios WOR and WR at 
sample sizes 2, 4, 6, 8, 10, 20 and 30.  

Sample size Linf K t0 

W P-value W P-value W P-value 

2 4528 0.080 3365 0.100 3335 0.083 

4 6597 0.007 4267 0.008 4350 0.014 

6 8106 0.149 6466 0.117 6642 0.213 

8 12001 0.001 8391 0.047 8763 0.153 

10 10945 0.374 10090 0.747 10468 0.832 

20 17596 <0.001 9797 0.002 11577 0.369 

30 7524 <0.001 2688 <0.001 3710 0.054 
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Figure 4.2.2.2. Comparison of the variability of von Bertalanffy coefficients of sampling 2,4,6,8,10,20 and 30 otoliths per 
length interval, without replacement (figures on the left) and with replacement (figures on the right). 
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4.3 Simulated population - applied to two different sub-
sampling designs (with and without replacement) 

A preliminary study using a simulated population has been performed to evaluate the accuracy 

on the estimates of mean and standard deviation for length-at-age by applying different subsam-

pling designs, with and without replacement. 

4.3.1 Methods 

First, a population with a total of 10,000 fish per age, for ages 0 to 10, was simulated. Each fish 

was given a different value of Linf from a lognormal distribution with CV 0.05. This represents 

the population available to be caught. Then, length-at-age was calculated deterministically for 

each fish based on the von Bertalanffy growth model (Figure 4.3.1): 

 

Figure 4.3.1. Simulated lengths at age. The population contains 10,000 individuals per age and individuals vary in their 
Linf parameter with a CV = 0.05. The other parameters of the von Bertalanffy growth model were t0=-0.2, k = 0.3, and 
mean Linf = 180. 

 

A catch (S0, i.e. haul or landing) of size 50, 1000, or 10,000 fish were randomly sampled from the 

population described above. Then the catch was divided into 10 cm length classes.  From each 

length class, nsamp (2, 5, 10, or 50) fish were randomly sampled with or without replacement, 

unless there were fewer than nsamp fish available and then only the number available were 

sampled.  Based on these samples, the mean and standard deviation of the length-at-age were 

calculated. The procedure was repeated 1000 times for each sampling design (with and without 

replacement), i.e. 1000 replicate simulations per combination of S0 size and nsamp.  Replicate 
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simulations with the same S0 size used the same fish, i.e. the catch did not change, only the 

samples taken from the catch changed.  

4.3.2 Results 

All sampling designs produced fairly accurate estimates of mean length-at-age (Figure 4.3.2.1). 

 

Figure 4.3.2.1. Mean length-at-age (mu). Black dots represent the true value based on the true 

growth model underlying the simulated data. S0_size varies by column and is the size of the 

catch or haul that was being sampled. Rows vary nsamp which is the number of samples per 

length class. Red and green boxplots show the values of 1000 replicates for each sampling design 

(without and with replacement). 

 

Estimates of the standard deviation (sd) of length-at-age were mixed and sometimes biased (Fig-

ure 4.3.2.2). With a catch size of 50, there were too few samples to accurately estimate sd. With a 

catch size of 10,000, and nsamp equal to 10 or 50, estimates were inexplicably biased upward for 

higher age classes; more investigation is needed to confirm and explain this fact. With nsamp = 

2 or 5, some of the replicates had too few samples in some age classes to be able to estimate a 

standard deviation for those age classes. 
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Figure 4.3.2.2. Standard deviation (sd) of length-at-age. Black dots represent the true value based on the true growth 
model underlying the simulated data. S0_size varies by column and is the size of the catch or haul that was being sampled. 
Rows vary nsamp which is the number of samples per length class. Red and green boxplots show the values of 1000 
replicates for each sampling design (without and with replacement). 

4.3.3 Discussion 

On the current study, the same number per age group were simulated but, in future work, it 

potential consequences and an alternative approach should be evaluated. 

More investigation is needed to make sure that these results are valid and to understand the bias 

of standard deviation estimates. Future work could also investigate age-length keys derived 

from this type of simulated data. The same analysis shown here for mean length-at-age should 

hold for mean weight-at-age, but this could be discussed at a future WKBIOPTIM meeting. 
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4.4 BioSim Tool – The case study of Mullus barbatus in GSA 
22 

4.4.1 Methods  

BioSim Tool has been applied to the sampling data of Mullus barbatus in GSA 22 (Aegean Sea) on 

sex and maturity by length class. Sampling data from 2014 to 2020 have been utilized. 

The focus of the analysis is on the sampling optimization of sex and maturity data; BioSim Tool 

was used for this analysis to have an idea of the impact on sampling precision by changing the 

number of individuals for which sex and maturity are collected by trip. The impact of different 

scenarios, from 10 to 100 sampled individuals by trip, is evaluated also on the sex ratio and ma-

turity by length, compared with the original one in the data used as reference (population).  

The number of simulations considered is 50 and the samples considered representative of the 

population has been set to have at least 20 individuals. 

4.4.2 Results and discussion 

The results showed that, in the hypothesis of an annual sampling, the precision in length com-

position is comparable to the one of the original sample already with 60 individuals measured 

by trip (Figure 4.4.2.1).  
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Fig 4.4.2.1 – CV of the length distribution in the hypothesis of 10, 20, …100 individuals sampled per trip. 
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On the other hand, the results of the sex showed that sampling about the same number (55-60 

individuals) for the sex would produce a precision in the sex ratio very similar to the one of the 

original sample (Figure 4.4.2.2). Similar results are shown by the sex ratio at length (Figure 

4.4.2.3). 

 

 

Figure 4.4.2.2 – CV of the sex ratio by length class in the hypothesis of 10, 20, …100 individuals sampled per trip for the 
sex. 
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Figure 4.4.2.3 –Sex ratio by length class in the hypothesis of 10, 20, …100 individuals sampled per trip for the sex. 

 

For length and sex variables the results of BioSim tool showed that a reduction of the number of 

individuals sampled for the length and for the sex would return a comparable precision and sex 

ratio estimate by length class.  
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5 Next steps 

The next steps of the WKBIOPTIM’s work will include: 

[a] Continue working on the development and testing of the R-tools developed with the aim of 

providing support on fish sampling optimisation at national/stock/regional level; 

[b] Evaluate the use of the R-tools for different sampling designs and where under-sampling 

may be occurring (e. g. small scale fisheries); 

[c] Evaluate the compatibility between the different WKBIOPTIM R-tools, with the use of stand-

ard data formats and sources; 

[d] Continue the R-package development; 

[e] Working on the adaptation of the R-tools to accommodate the sampling schemes from the 

different hierarchies from the RDBES.  
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Annex 3: Presentations 

1. SampleReferenceLevel (ADV) (Section 1.4.1) 
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2. STREAM R-tools (BioSim Tool and SDTool) (Section 1.4.2) 
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3. SampleOptim (Section 1.4.3) 
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4. FishPi4WKBIOPTIM (Section 1.4.4) 
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Annex 4: R-function to transform RDBES data ta-
bles to RDB format 

Author: Julia Wischnewski 
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