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A B S T R A C T   

Extreme weather events frequently cause severe crop yield losses, affecting food security and farmers’ incomes. 
In this paper, we aim to provide a holistic assessment of these impacts across various extreme weather events and 
multiple crops. More specifically, we estimate and compare the impact of frost, heat, drought and waterlogging 
on yields of winter wheat, winter barley, winter rapeseed and grain maize production in Germany. We analyse 
423,815 farm-level yield observations between 1995 and 2019, and account for extreme weather conditions 
within critical phenological phases. Furthermore, we monetarize historical yield losses due to extreme weather 
events on a spatially disaggregated level. We find that drought is a main driver for farm-level grain yield and 
monetary losses in German agriculture. For instance, a single drought day can reduce winter wheat yields by up 
to 0.36%. It is estimated that during the period 1995–2019, summer drought led to yield losses in winter wheat, 
which, on average, caused annual revenues to sink by over 23 million Euro across Germany. We find that the 
impacts of extreme weather events vary considerably across space and time. For example, only the most 
important winter rapeseed production region in the North of Germany was prone to winter rapeseed yield losses 
due to heat during flowering. Moreover, waterlogging and frost are generally less relevant from an economic 
point of view, but can nevertheless cause crop- and regional-specific damage. Our analysis provides stakeholders 
with information for weather-related risk management and adaptation strategies.   

1. Introduction 

Extreme weather events like droughts, waterlogging due to heavy 
rain, heat waves and frosts frequently cause severe crop yield and in
come losses on a global scale (Lesk et al., 2016; Lobell et al., 2011; 
Powell & Reinhard, 2016; Schlenker & Roberts, 2009). This also applies 
to European agriculture (e.g. Beillouin et al., 2020) and, for example, the 
heat and droughts in 2003 and 2018 led to massive yield losses for 
several crops in various regions (BMEL, 2018; Ciais et al., 2005; Webber 
et al., 2020). 

Quantifying the economic impacts of extreme weather events is a key 
factor when assessing famers’ risk exposure and informing decisions in 
up- and downstream industries and public policies. This information 
also allows the agricultural sector to tailor adaptation strategies to cope 
with climate change (Global Commission on Adaptation, 2019; Olesen 

et al., 2011). There are numerous viable options including farm man
agement practices such as e.g., diversification, crop/variety choice and 
input intensity, technological developments, breeding research and off- 
farm risk management like weather insurance (e.g. Bailey-Serres et al., 
2019; Smit & Skinner, 2002; Yadav et al., 2011). 

Farmers and agricultural advisory services need detailed information 
about the impacts of extreme weather events on crop production on the 
basis of which they can derive effective and regionally adapted risk 
management strategies. This information must allow specific inferences 
across crops, weather extremes and regions. In addition, governments 
require empirical insights and evidence when discussing and designing 
effective and efficient policies to support agricultural risk management 
(OECD, 2021). The monetary losses suffered by farmers due to extreme 
weather events must be quantified on a regional basis and then esti
mated for the whole country. This information is essential for policy- 
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makers when deciding how to support the adaptation of agriculture to 
weather extremes and climate change. 

In this paper, we use 423,815 farm-level crop yield observations 
from German agriculture for the period 1995–2019 to estimate the ef
fects of extreme weather events such as drought, waterlogging due to 
excess rainfall, heat and frost on yield levels of winter wheat, winter 
barley, winter rapeseed and grain maize. We quantify the effects of these 
events on crop yields, explore their economic significance and scale up 
their estimated impact on yields to obtain an assessment of monetary 
losses at regional and national levels. This can help policy-makers to 
prioritize public support for adaptation measures and assess the (long- 
term) public costs of weather-risk related policy interventions like ad- 
hoc payments and the support of on– and off-farm risk management. 

Previous research identified that extreme weather events cause se
vere crop yield losses (e.g., Lesk et al., 2016; Lobell et al., 2011; Powell & 
Reinhard, 2016; Schlenker & Roberts, 2009). These analyses usually 
focus on specific crops and the extreme weather events to which they are 
particularly susceptible (Albers et al., 2017; Lobell et al., 2013; Lüttger 
& Feike, 2018; Mäkinen et al., 2018; Tack et al., 2015). There are very 
few holistic assessments and comparisons of the effects of various 
extreme weather events on different crops (Schlenker & Roberts, 2009; 
Webber et al., 2018). However, a holistic assessment across differing 
weather extremes and crops is essential to inform agriculture and policy 
(e.g., Webber et al., 2020). 

Earlier research also found that empirical approaches estimating 
yield/weather effects often face several data- and model-related chal
lenges. For example, since weather extremes in one region are not 
automatically considered extreme in another, the definition of temper
ature and soil moisture thresholds is not straightforward and it is 
therefore important to describe threshold-decisions comprehensibly (e. 
g. Peterson et al., 2008; Zhang et al., 2011). Furthermore, since extreme 
weather events do not occur frequently and the timeframe of the 
available data is usually limited, yield effects could be over- or under
estimated and, therefore, distort the risk assessment (Goodwin, 2015). 
In addition, the spatial and temporal aggregation of yield and weather 
data has important implications for the validity of the model (Auff
hammer et al., 2013; Blanc & Schlenker, 2017; Conradt et al., 2016). 
Crop yield data at more aggregated levels (e.g., county-level) have 
different risk characteristics than at the farm level. In particular they 
exhibit a lower variance and less negative skewness of crop yields (e.g., 
Finger, 2012; Marra & Schurle, 1994). Different aggregation levels of 
yield data also result in differences in crop yield effects of weather ex
tremes (D’Agostino & Schlenker, 2016), and thus may limit inference for 
the relevant level of individual farms. Furthermore, extreme weather 
events may be blurred or even vanish if e.g., monthly averages of rainfall 
or temperature are used. Besides, spatial and temporal aggregations 
interact due to the fact that crops need certain weather conditions 
during different phenological phases, which do not start and end 
simultaneously across a region or country. 

This paper presents a holistic assessment of extreme weather impacts 
on crop production in Germany based on a rich dataset (N = 423,815) of 
farm-level yields, covered by 25 years of observations (1995–2019). We 
consider the most important weather risks in German and European crop 
production, i.e., drought, waterlogging due to excess rainfall, heat and 
frost (Barlow et al., 2015; Gömann et al., 2015; Heidecke et al., 2017; 
Peichl et al., 2019; Pullens et al., 2019; Trnka et al., 2014) and we focus 
on their impact on the most relevant crops, i.e., winter wheat, winter 
barley, winter rapeseed and grain maize (BMEL, 2019). Since Germany 
is the second largest cereal producer in Europe (2019, ca. 44.3 million 
tonnes, 6.5 bn. Euro ≈ 7.3 bn. USD currently; BMEL, 2020a), a close 
examination of its crop production provides insights into an economi
cally highly relevant case study. In this analysis, we operationalize 
extreme weather events in our model using flexible time windows by 

tapping on rich crop phenology data (see also Bucheli et al, 2021; Dal
haus et al., 2018; Vroege & Finger, 2020). This allows to account for the 
large variation of potentially vulnerable phenological phases of the cash 
crops analysed over space and years. We provide several split sample 
analyses, e.g., splitting by regions and time periods, which allow to 
detect whether impacts of weather extremes have become more pro
nounced in recent years due to climate change. Finally, we provide an 
assessment of the economic relevance of the effects of extreme weather 
events on crop yields. In this way, our approach aids prioritization of 
efforts designed to cope with extreme weather events in agriculture, at 
both industrial and political levels. 

We find that most of the extreme weather events analysed regularly 
cause yield losses across German crop production, whereby these effects 
are heterogeneous over space, time and crops. We show that extreme 
droughts represent the greatest and economically most relevant risk for 
German crop production. Winter wheat, winter barley and grain maize 
yields suffered noticeably from the impact of droughts, with a high 
spatial variation. For instance, summer drought during the phenological 
phases Fruit Formation & Ripening of winter wheat caused on average 
yearly revenue losses of 7.50 Euro/ha. Aggregated over the whole 
country, this implies that summer droughts caused, on average over the 
period 1995–2019, winter wheat yield losses amounting to over 23 
million Euro per year, although variations over time and space were 
considerable. Spring droughts caused losses in winter barley yields 
amounting to a country-wide average of 3.37 Euro/ha per year. Espe
cially Northern and Eastern Germany suffered from drought-related 
losses, e.g. in winter wheat and winter barley. Moreover, we find that 
waterlogging on winter wheat and winter barley, e.g., during Shooting 
& Flowering, had a significantly negative effect on yields of up to 1.50 
Euro/ha across Germany. Waterlogging-related losses, however, 
occurred mainly in the South of Germany. We find that maize especially 
suffered from summer droughts, resulting in a country-wide average 
revenue loss of 7.64 Euro/ha per year. In the North of Germany, heat 
caused average yearly monetary losses in winter rapeseed yields 
amounting to approximately 21.18 Euro/ha. 

The remainder of this paper is organized as follows. In section 2, we 
describe the econometric and economic framework of our analysis. In 
section 3, we present an overview of the data and describe how we 
operationalize those extreme weather events whose characteristics are 
potentially detrimental to the yields of the four crops analysed. Section 4 
contains the results of the regression analyses and describes the eco
nomic relevance of the different weather events. Finally, we discuss our 
findings against the background of recent research and highlight caveats 
of our analyses. 

2. Econometric and economic framework 

We aim to identify the effects of extreme weather events on yield 
levels by using unbalanced farm-level panel data of crop yields. Our 
econometric approach accounts for farm-level and year fixed effects. 
Farm-level fixed effects account for invariant unobserved heterogeneity 
such as differences in environmental conditions and soil quality. The 
inclusion of year fixed effects captures all systemic shocks, which occur 
across all farms in a specific year and possibly affect crop yields (Dalhaus 
et al., 2020). For example, it accounts for changes in policies and market 
conditions that affect all farms across years and also captures the impact 
of technological change on crop yields.1 Controlling for this year-fixed 
effect also implies that we ‘only’ recognize extreme weather effects as 

1 The effects of technological changes are non-linear in European crop pro
duction. Thus, after a long period of steady yield increases, a number of Eu
ropean agricultural sectors were faced by declining, or even stagnating, crop 
yields (e.g. Ray et al., 2012; Brisson et al., 2010; Finger, 2010). The inclusion of 
year-fixed effects is therefore more effective than linear trend estimates to 
capture yield developments over time. 
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deviating from the general state in a specific year. This means that ef
fects of systemic events like droughts may be underestimated.2 

We estimate various specifications of the following relationship: 

Log(yjit) = βwj*WEwjit +Fi +Yt + εjit (1) 

where Log(yjit) is the natural logarithm of crop yield j (dt/ha) of farm 
i in year t = 1995–2019. βwj are weather- and crop-specific yield effects 
of the different extreme weather events to be estimated (see section 3 for 
details). WEwjit represents the vector of different crop-specific extreme 
weather events. Fi denotes the farm-level fixed effect, Yt is the year-fixed 
effect and εjit is an idiosyncratic error term. Extreme temperature pa
rameters (black frost and heat) are expressed through degree days, 
which considers a sinusoidal temperature distribution during the day. 
To this end, we follow the approach of D’Agostino & Schlenker (2016) to 
estimate the daily sinusoidal temperature distribution based on the daily 
tmax and tmin temperatures and calculate degree days between or above 
certain temperature ranges. This, in turn, is based on Snyder (1985) and 
Schlenker & Roberts (2009) (see more details in the Supplementary 
Material section S4). Waterlogging and drought parameters are 
expressed as the number of days above (waterlogging) or under 
(drought) a critical soil moisture threshold. Since we assume that the 
error term is heteroskedastic, spatially correlated within each year, and 
temporally correlated on each farm during the observation period, we 
use heteroscedasticity robust standard errors clustered by year and farm 
(Cameron et al., 2011; Dalhaus et al., 2020). 

We start estimating equation (1) for each crop separately and include 
all weather events as explanatory variables simultaneously. Next, we 
provide a number of robustness checks by estimating further variations of 
equation (1). Firstly, we estimate the yield effects for each crop and 
weather event separately. Secondly, we estimate the effects for all crops 
jointly, i.e., accounting for possible correlation of error terms across crops 
using a seemingly unrelated regression approach.3 Thirdly, since obser
vations indicate that extreme weather events are often regionally specific 
(e.g., Webber et al., 2020), we adopt split sample approaches and estimate 
equation (1) separately for four regions (see details below). To this end, we 
apply the definition of soil/climate regions in Germany advanced by 
Roβberg et al. (2007), which were aggregated to the four main production 
regions North, East, West and South by the Julius-Kuehn-Institute (JKI, 
2009) (see Appendix A1 for details). Fourthly, we implement a sample 
split across time, i.e., 1995–2006 and 2007–2019. This allows us to 
investigate whether the relationship between crop yields and extreme 
events changed over time (e.g., Miller et al., 2021). Fifthly, we include an 
additional variable in equation (1) that provides information about 
weather conditions, which are beneficial for crop growth in the specific 
year and location of the farm. More specifically, we add the temperature 
range between 8 ◦C and 28 ◦C as an optimal growing temperature range 
(see section S9).4 Sixthly, we implement a long-difference approach based 
on the cross-sectional observations of the time periods 1995–1999 and 
2015–2019 to estimate the impact of extreme weather and to detect if 

agricultural adaptation to these severe conditions has taken place during 
our observation period.5 This approach allows us to quantify farmers’ 
behaviour in response to longer-term climate change as opposed to 
shorter-term adaptation by comparing the size of estimated coefficients of 
the long-difference and panel estimations (Dell et al., 2012; Burke & 
Emerick, 2016, Miller et al., 2021). Seventhly, we estimate the main 
specifications excluding organic farms from the sample, as their potential 
to adapt to extreme weather events may differ from non-organic farms (e. 
g. Scialabba & Müller-Lindenlauf, 2010). We then estimate the main 
specifications excluding farms which have irrigation systems, as irrigation 
could change estimation results of drought effects (see section S10). 

We not only estimate the effects of extreme weather events on crop 
yields, expressed as relative yield losses in physical quantities (as 
described in Equation (1)), but also provide three assessments of the 
economic relevance of these effects across space and time. This allows 
industrial and political actors to prioritize their efforts towards coping 
with extreme weather events in agriculture. Based on an estimation of 
Equation (1) including all available information (βwj, WEwjit, Fi and Yt), 
we quantify the estimated yield in each year when a relevant extreme 
event occurred. Subsequently, we estimate three different counterfac
tuals: Firstly, we estimate yield losses based on the hypothetical coun
terfactual assumption that a respective extreme weather event had not 
occurred in any year (WEwjit = 0) in order to derive the hypothetical 
annual yields farmers would have achieved in the absence of the 
respective event. Secondly, we calculate the impacts on yields of a one- 
standard deviation increase in the frequency/severity of site- (i.e., mu
nicipality) and crop-specific extreme weather events. Thirdly, we esti
mate the site-specific reduction in yields associated with the marginal 
change of extreme weather events. Subsequently, we combine the esti
mated yield effects of the three approaches with average crop prices of 
2016–2020 (AGMEMOD, 2021) to illustrate drops in revenues across 
space and time. Finally, revenue losses obtained using the hypothetical 
counterfactual approach (WEwjit = 0) and a one-standard deviation in
crease are aggregated to the national level by considering total areas 
under cultivation. 

Our analyses are conducted in SAS and R. The code is provided in the 
supplementary material. 

3. Data and definition of extreme events 

Our yield data is taken from the German Farm Accountancy Data 
Network6 (see e.g., BMEL, 2020b). Farm-level crop yields for the years 
1995 to 2019 are available for winter wheat, winter barley, winter 
rapeseed and grain maize. The sample is unbalanced, and comprises 
423,815 observations.7 See section S1 for an overview of the observa
tions available per year, crop, region and average number of observa
tions per farm. The coherent and consistent data collection in the 
German Farm Accountancy Data Network ensures that crop yield data is 

2 Yet, we find that the occurrence of extreme events is largely heterogeneous 
across Germany (see Supplementary Material sections S6 + S7 and also Webber 
et al., 2020).  

3 The highly unbalanced panel data set across equations only allows a 
seemingly unrelated regression estimation (SURE) on a very reduced set of 
observations. SURE of this reduced data set only resulted in small differences in 
parameter estimations.  

4 The temperature range between 8◦C and 28◦C was expressed in degree days 
and considered in the robustness check through linear and quadratic terms to 
account for nonlinear yield effects. 

5 Cross-sectional observations of the two time periods considered were 
derived by calculating the 5-year average farm-level yield and corresponding 5- 
year average extreme weather observations. Furthermore, fixed effects of the 
federal states in Germany (Bundesland) were included in the long-difference 
estimations to account for any unobserved federal state-level trends (see 
detailed working steps in Appendix A2).  

6 The German Farm Accountancy Network is the German source of the Farm 
Accountancy Data Network provided by the European Union. The advantages of 
the German Farm Accountancy Network are a larger sample as well as addi
tional information about the municipality of each farm, which improves the 
matching of yield, weather and phenology data (see BMEL, 2020b). 

7 An accuracy check on the yield data was implemented by using a plausi
bility program provided by the Federal Ministry of Food and Agriculture 
(BMEL, 2020c). 
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comparable across farms, crops and years.8 Fig. 1 illustrates the yield 
data density of the four crops analysed in the dataset exemplarily for 
2007 on the municipality level. In Fig. 1, if the crop analysed was 
cultivated by more than one farm in the same municipality, yield data 
were weighted by the farm area under cultivation. 

Information about the municipal location of each farm allows us to 
match crop yield observations with spatially explicit information on 
weather data, crop-specific phenology data and crop-specific soil 
moisture data for the 0–60 cm layer (winter wheat and winter barley 
from one soil moisture dataset, winter rapeseed and grain maize).9 We 
use interpolated weather, phenology and soil moisture data provided by 
the German Meteorological Service on a 1x1 km raster across Germany 
(see DWD, 2021, for details). The spatial resolution of our farm-specific 
yield data is, however, only available at the municipality level. Thus, we 
aggregate weather, phenology and soil moisture data to the municipality 
level.10 

Site- and crop-specific phenology data are based on observations sent 
to the German Meteorological Service (DWD) by more than 1,000 re
porters all over Germany. Some phenological phases are derived by 
adding a certain number of days to the observed data, based on e.g., 
averaged historical time-distances between two consecutive phenolog
ical phases. In exceptional cases, the phenological phase of a certain 
crop is derived from observation data of another crop’s phenological 
phase, if their phenological phases showed a high correlation in the past 

(further information is provided in section S2). 
Site- and crop-specific soil moisture data are obtained from the 

German Meteorological Service and are based on a statistical model. 
More specifically, the AMBAV model combines information of daily 
weather, evaporation and crop specific phenological phases to derive 
daily soil moisture information (see also Friesland & Löpmeier, 2007; 
Herbst et al., 2021; Löpmeier, 1983). We chose to express drought and 
waterlogging by means of the variable soil moisture accounting for site-, 
year- and crop-specific phenological phases across the country. This 
option offers considerable advantages compared to other approaches, e. 
g., using the total amount of precipitation over a period that is fixed over 
year, crop or space: Firstly, the AMBAV soil moisture model used here 
accounts for the daily water in-flows through precipitation and out- 
flows through the crop-specific evapotranspiration which depends on 
the phenological stage of the respective crop.11 Secondly, the AMBAV 
model also considers regional variations in soil quality and type which 
influence regional water storage capacities. Therefore, the model rec
ognizes that changes in soil moisture in response to (a lack of) precipi
tation depend on soil types. For example, soil moisture decreases faster 
in response to drought in regions with extremely sandy soils. Thirdly, if 
drought and waterlogging are expressed in terms of soil moisture rather 
than cumulative precipitation, water in- and outflows prior to a plant’s 
critical growth phase can also be monitored. In fact, soil moisture re
flects the reserves of water “stored” in the soil on which plants can draw 
during their growth (Bucheli et al., 2021; Vroege et al., 2021; Senevir
atne et al. 2010). 

3.1. Definition and calculation of extreme weather events 

Several studies have identified frost, heat, drought and waterlogging 
as yield damaging events for the cash crops analysed (e.g., Barlow et al., 
2015; Gömann et al., 2015; Heidecke et al., 2017; Mäkinen et al., 2018; 
Trnka et al., 2014; Peichl et al., 2019; Pullens et al., 2019). However, it is 
not easy to define these events precisely as what is regarded as an 
extreme weather incident in one region of the world is not automatically 
considered a threat elsewhere. Hence, we apply statistical approaches 

Fig. 1. Crop yields – spatial distribution of farm yield data in 2007 on the municipality level. Notes: (1) Own illustration based on e.g., BMEL (2020b). (2) dt/ 
ha – decitonnes per hectare. 

8 However, the comprehensive Farm Accountancy Data Network has limits in 
regard to the crop-specific assignment of farming measures on the farm-level. 
For instance, irrigation is defined as the annual total irrigated area per farm 
or fertilization as the annual amount of fertilization per farm. Hence, it is not 
possible to attribute irrigation and other farming practices correctly to the 
different crops cultivated on a farm. Overall, irrigation is of little importance in 
Germany; in the past, <5% of the utilized agricultural area was irrigated. 
Irrigation systems are mainly purchased by farms which cultivate high-value 
crops like potatoes or sugar beet and these fields are preferentially irrigated. 

9 Municipality codes are normed to the year 2007 due to changes of munic
ipal borders during the observation period.  
10 No information is available regarding the exact location of the crop-specific 

plots on each farm in Germany due to private data protection regulations. 
Therefore, there is a natural variation of the weather and phenological variables 
across municipalities, which cannot be accounted for in our analyses since it is 
impossible to obtain information on crop-specific plot yields. 

11 For instance, winter wheat and grain maize "consume" different amounts of 
water on the same day of the year, also because of their temporally different 
phenological phases. 
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using percentiles of the frequency distribution to define thresholds for 
country-specific growing conditions (e.g., Peterson et al., 2008; Zhang 
et al., 2011; Seneviratne et al., 2021). 

In Table 1, we define crop-specific thresholds for potentially extreme 
weather events during critical phenological phases. We refer to in
terviews with German cash crop experts conducted by Heidecke et al. 
(2017) to establish the critical phenological phases and the corre
sponding potentially yield damaging extreme weather events. Temper
ature thresholds were derived from the 1st percentiles (black frost, 
spring chill) of the daily tmin-values and 99th percentiles (heat) of the 
daily tmax-values during the critical phenological phases between 1995 
and 2019 in each municipality and then averaged across all 12,502 
municipalities. Soil moisture thresholds were derived from the 1st per
centiles (drought days) and 99th percentiles (waterlogging days) of the 
daily soil moisture (expressed as % of the usable field capacity) during 
the critical phenological phases between 1995 and 2019 in each mu
nicipality and averaged across all 12,502 municipalities. 

Subsequently, we approximate the intra-day temperature distribu
tion as sinusoidal distribution by using daily maximum and minimum 
temperatures based on D’Agostino & Schlenker (2016).12 Black frost, 
spring chill and heat are expressed in degree days as temperature sums 
below (black frost and spring chill) or above (heat) the derived thresh
olds (see section S4). Drought and waterlogging are expressed as the 
number of days when the soil moisture lies below or above the derived 
soil moisture threshold (see e.g. Bucheli et al., 2021; Vroege et al., 2021; 
Seneviratne et al. 2010). A comprehensive overview of the crop-specific 
weather events presented in Table 1 is provided in summary tables 
(section S5), time series plots (section S6) and graphical distributions 
across Germany (section S7). 

4. Results 

Results are divided into three parts. In the first part, we present the 
main estimation results on effects of weather extremes on crop yields 
based on the complete dataset. In the second part, we provide analyses 

for spatial and temporal sample splits and investigate regional differ
ences in weather effects on yields. In addition, as part of a series of 
robustness checks, we analyse if weather effects on yields relate directly 
to the observation period and also discuss the results obtained from the 
long-difference approach. The third part presents the spatial distribution 
of the economic impacts of selected extreme weather events in relation 
to crop prices and historical incidences of these incidents. The estimated 
revenue losses are then aggregated to report overall average losses for 
Germany as a whole. 

4.1. Key results 

4.1.1. Drought regularly decrease yields of all crops 
Fig. 2 shows the regression results of all crop-specific weather effects 

on yields from the joint (blue) and separate (red) estimations.13 On 
average, one drought day during the phenological phases Shooting & 
Flowering reduced the winter wheat yield level by 0.36 % and one 
drought day during Fruit Formation & Ripening also led to the same loss 
(0.36 %). The winter barley yield level fell by 0.48 % due to a drought 
day during Shooting & Flowering. In the case of grain maize, a drought 
day during Emergence & Stem Elongation reduced the yield level by 
0.52 % and during Flowering & Fruit Formation by 0.69 %. We find that 
drought also had a negative impact on rapeseed yield levels, but the 
effect is not unambiguously significant across specifications. 

A day of waterlogging during Shooting & Flowering caused winter 
wheat yield levels to fall by 0.28 % and by 0.23 % during Fruit For
mation & Ripening. One waterlogged day during Shooting & Flowering 
lowered winter barley yield levels by 0.40 % and by 0.24 % if water
logging occurred during Fruit Formation & Ripening. However, the ef
fects of waterlogging on winter rapeseed and grain maize yield levels 
were not statistically significant at the 1 % level. 

In the estimations of the whole sample, the effects of black frost on 
the winter crops, the impacts of spring chill on winter rapeseed and 
grain maize, and the effects of heat on the yield levels of all the crops 

Table 1 
Weather events with crop-specific time-windows and thresholds in ◦C for temperature and % of usable field capacity (fc) for soil moisture.  

Weather Events 1 Unit Winter Wheat Winter Barley Winter Rapeseed Grain Maize 

Black Frost 2,3 Degree Days 1st of January to Start of  
Shooting; ≤ – 12.8 ◦C; 
Snow-layer < 5 cm 

1st of January to Start of  
Shooting; ≤ – 12.9 ◦C; 
Snow-layer < 5 cm 

1st of January to Start of Stem  
Elongation; ≤ – 13.6 ◦C; 
Snow-layer < 5 cm 

Not relevant for maize  
(sown in spring) 

Spring Chill 2 Degree Days Not relevant Not relevant Stem Elongation & Flowering; 
≤ − 3.1 ◦C 

Sowing & Emergence; 
≤ 0.5 ◦C 

Heat 4 Degree Days Flowering; ≥ 32.6◦ C Flowering; ≥ 30.6 ◦C Flowering; ≥ 29.3 ◦C Stem Elongation & Flowering; ≥ 33.7 ◦C 

Spring Drought 5 Days Shooting & Flowering; 
≤ 14.4 % fc 

Shooting & Flowering; 
≤ 28.0 % fc 

Stem Elongation & Flowering; 
≤ 26.6 % fc 

Emergence & Stem Elongation; 
≤ 33.5 % fc 

Summer Drought 5 Days Fruit Formation & Ripening; 
≤ 7.8 % fc 

Fruit Formation & Ripening; 
≤ 7.9 % fc 

Fruit Formation & Ripening; 
≤ 21.7 % fc 

Flowering & Fruit Formation; ≤ 8.7 % fc 

Spring Waterlogging 6 Days Shooting & Flowering; 
≥ 115.3 % fc 

Shooting & Flowering; 
≥ 116.4 % fc 

Stem Elongation & Flowering; 
≥ 115.5 % fc 

Emergence & Stem Elongation; 
≥ 118.7 % fc 

Summer Waterlogging 6 Days Fruit Formation & Ripening; 
≥ 111.6 % fc 

Fruit Formation & Ripening; 
≥ 108.8 % fc 

Fruit Formation & Ripening; 
≥ 111.5 % fc 

Flowering & Fruit Formation; 
≥ 112.7 % fc 

Notes: 
1 In section S2, phenological phases are translated into averaged days of the year (DOY) across all years and municipalities to improve transparency. Furthermore, 

the spatial variation of the start dates of each time-window analysed is illustrated using the example of winter wheat in the year 2007. 
2 Averaged 1st municipality percentiles of daily tmin. 
3 Snow-layer estimated based on Trnka et al., 2010; see section S3. 
4 Averaged 99th municipality percentiles of daily tmax. 
5 Averaged 1st municipality percentiles of daily crop-specific soil moisture. 
6 Averaged 99th municipality percentiles of daily crop-specific soil moisture. 

12 See also Snyder (1985) and Schlenker & Roberts (2009). 

13 Following interpretations refer to the joint estimation results (blue) and 
highlight the results with a 1% significance level. 
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analysed were not statistically significant on a 1 % level. 

4.2. Robustness checks 

As robustness checks, spatial and temporal splittings are exemplarily 
illustrated in the main text for two selected weather events for each crop. 
The results of spatial and temporal splitting of the remaining weather 
events are illustrated in section S8. Furthermore, the results, including a 
temperature variable of the degree days between 8 ◦C and 28 ◦C as a 
positive growth variable (section S9), support the results of the joint 
estimations presented here. Therefore, controls carried out relating to 
favourable weather events do not modify the conclusions presented here 
regarding the effects of extreme weather events. Subsequently, we 

discuss the results of the long-difference approach (Appendix A2).14 

4.2.1. Yield effects of extreme weather events vary considerably between 
regions and observation periods 

4.2.1.1. Winter wheat. We find that drought damage in winter wheat 
production was most severe in Eastern Germany. More specifically, on 
average, one drought day during the phenological phases Shooting & 
Flowering reduced winter wheat levels in the East by 0.76 %, which is 
more than twice the average sample effect of 0.36 % (Fig. 3: 1.1). 
Temporal splitting reveals that the regional yield effects of a drought day 
during Shooting & Flowering in the North, East and West changed from 
insignificant in the period 1995–2006 (Fig. 3: 1.2) to significant on a 1 % 

Fig. 2. Results of the joint estimations of crop-specific weather events on yields, i.e. all weather events (blue) and separate, individual extreme weather 
events only (red). Notes: (1) Due to the considerable differences in the sizes of the marginal effects, the illustrations present 99 % confidence intervals of the 
estimated coefficients and are subdivided into yield effects of degree days (black frost, spring chill and heat) and drought/waterlogging days. (2) fc = usable 
field capacity. 

14 Moreover, the subset of conventional farms only and of farms without 
irrigation systems support our main findings (section S10). 
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level in the period 2007–2019 (Fig. 3: 1.3). Thus, the verifiability of 
drought related losses in winter wheat increased over time. The average 
effect of a waterlogged day during Shooting & Flowering was − 0.28 % 
(Fig. 3: 2.1). Temporal splitting shows that the yield effect of a water
logged day during 1995–2006 was only significant on a 1 % level in the 
Western region (Fig. 3: 2.2). Similar results can be observed for the 
remaining drought and waterlogging variables (see section S8: Figure 
S32). Furthermore, black frost only had significant effects on the winter 
wheat yield in the Northern and Western regions for the observation 

period 2007–2019. Although heat did not reduce winter wheat yields on 
a 1 % significance level in our analyses, the high standard errors in the 
Northern region during the observation period 2007–2019 suggest that 
there is nevertheless a risk of considerable yield losses (see section S8: 
Figure S32: 2.3). 

4.2.1.2. Winter barley. One drought day during Shooting & Flowering 
in the East led on average to a 1.07 % decrease in winter barley yield 
level, which is larger than the effect in the North (-0.63 %) or South 

Fig. 3. Winter wheat - exemplary results of spatial and temporal splitting of the joint (blue) and separate (red) estimations. Notes: (1) Spatial sample 
splitting is based on the main production regions illustrated in Appendix A1. ‘All’ corresponds to all regions together. (2) Results are illustrated as 99 % confidence 
intervals. (3) Thresholds of the respective crop-specific weather events: 1days with ≤ 14.4 % of usable field capacity (fc); 2days with ≥ 115.3 % fc. 

Fig. 4. Winter barley - exemplary results of spatial and temporal splitting of the joint (blue) and separate (red) estimations. Notes: (1) Spatial sample 
splitting is based on the main production regions illustrated in Appendix A1. ‘All’ corresponds to all regions together. (2) Results are illustrated as 99 % confidence 
intervals. (3) Thresholds of the respective crop-specific weather events: 1days with ≤ 28.0 % of usable field capacity (fc); 2days with ≤ 7.9 % fc. 
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Fig. 5. Winter rapeseed - exemplary results of spatial and temporal splitting of the joint (blue) and separate (red) estimations. Notes: (1) Spatial sample 
splitting is based on the main production regions illustrated in Appendix A1. ‘All’ corresponds to all regions together. (2) Results are illustrated as 99 % confidence 
intervals. (3) Thresholds of the respective crop-specific weather events: 1degree days ≥ 29.3 ◦C; 2days with ≤ 21.7 % of usable field capacity. 

Fig. 6. Grain maize - exemplary results of spatial and temporal splitting of the joint (blue) and separate (red) estimations. Notes: (1) Spatial sample splitting 
is based on the main production regions illustrated in Appendix A1. ‘All’ corresponds to all regions together. (2) Results are illustrated as 99 % confidence intervals. 
(3) Thresholds of the respective crop-specific weather events: 1degree days ≥ 33.7 ◦C; 2 days with ≤ 8.7 % of usable field capacity. 
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(-0.51 %) (see Fig. 4: 1.1). Regional effects during 1995–2006 showed 
comparatively high variations for both drought variables (Fig. 4: 1.2 and 
2.2). Moreover, a drought day during Fruit Formation & Ripening 
reduced the winter barley yield level on average by 0.70 % in the East 
and by 0.19 % in the South (Fig. 4: 2.1). The results of temporal and 
spatial splitting for the remaining weather events are illustrated in 
section S8 (Figure S33). The comprehensive analyses show that sub
sampling can generate highly significant results. For instance, although 
black frost shows no significantly negative effect on yield over the whole 
sample, between 2007 and 2019, one degree day of black frost reduced 
the winter barley yield level by 1.45 % in the Western region. 

4.2.1.3. Winter rapeseed. In the North, a degree day of heat lowered 
winter rapeseed levels by an average of 20.59 % (see Fig. 5: 1.1) in the 
observation period 1995–2019, by 19.89 % between 1995 and 2006 and 
by 37.89 % during the period 2007–2019. The 95 %-percentile of all 
heat observations during flowering of winter rapeseed in our sample was 
0.54 degree days (99 %-percentile = 1.21 degree days). A drought day 
during Fruit Formation & Ripening caused the yield level to fall by 0.31 
% in the East during the observation period 2007–2019 (Fig. 5: 2.3). 
Regional sample splitting in section S8 shows that a degree day of black 
frost reduced winter rapeseed yield levels in the North by 1.94 % and in 
West by 2.22 % (Figure S34: 1.1). The effects of spring chill, drought 
during Stem Elongation & Flowering and waterlogging (Figure S34) are 
mainly insignificant on a 1 % level. 

4.2.1.4. Grain maize. The observation period 1995–2006 (Fig. 6: 1.2: 
All) shows that the grain maize yield level dropped by an average of 
12.17 % due to one degree day of heat during Stem Elongation & 
Flowering. Furthermore, a drought day during Flowering & Fruit For
mation caused the grain maize yield level in the Eastern region to fall by 
1.35 % during 1995–2019, which is approximately twice the sample 
effect of 0.69 % (Fig. 6: 2.1). Spring chill (Figure S35: 1.1 – 1.3) and 
waterlogging (Figure S35: 3.1 – 4.3) did not cause yield effects on a 1 % 
significance level with the exception of a waterlogged day during 
Emergence & Stem Elongation in the subsample 1995–2006 in the South 
(-0.94 %). 

4.2.2. The long-difference approach reveals an increase of spring drought 
susceptibility of winter wheat and winter barley 

In the case of the long-difference approach, we estimated the impact 
of extreme weather based on the cross-sectional observations of the time 
periods 1995–1999 and 2015–2019.15 Subsequently, we compared the 
results of the long-difference and panel model. In addition, we checked 
for sample effects of our unbalanced panel by re-estimating the panel 
model with the reduced farm sample used in the long-difference model 
(see Appendix A2: (3) Limited Panel). Long-run adaptation is indicated if 
the coefficient of a crop-specific weather event in the long-difference 
specification is smaller than in the panel model (Burke & Emerick, 
2016). 

Winter wheat exhibits a slight decrease in susceptibility to summer 
drought, while winter barley shows considerably higher negative yield 
effects due to spring drought and summer waterlogging in the long- 
difference approach than in the panel estimation. In contrast, summer 
drought did not generate any negative yield effects on winter barley in 
the long-difference approach, which could be a sign that winter barley 
producers are engaged in long-term adaptation to summer droughts (e. 
g., via adjustment of production systems and/or varieties used). Winter 
rapeseed and grain maize show evidence of higher susceptibility to
wards heat in the long-difference approach than in the panel estima
tions. This could indicate that the winter rapeseed and grain maize 
varieties cultivated in recent years have become more susceptible to 
extreme heat. 

4.3. Economic relevance of extreme weather events 

The regression results in Figs. 2-6 reveal the relative impact of 
weather events on yields. However, this does not allow to fully assess the 
potential economic consequences of the weather events for farmers. 

Fig. 7. Summer drought - estimated average yearly revenue losses in Euro/ha for winter wheat and grain maize based on the hypothetical counterfactual. 
Notes: (1) The illustration provides a municipality level overview across Germany and is weighted by the cultivated farm area if the crop is grown by more than one 
farm in the same municipality. (2) Thresholds of the respective crop-specific drought events: 1days with ≤ 7.8 % of usable field capacity (fc); 2days with ≤ 8.7 % fc. 
(3) Average product prices 2016–2020 based on AGMEMOD (2021): 3 winter wheat = 15.39 Euro/dt; grain maize = 16.04 Euro/dt. 

15 Cross-sectional observations of the two relevant time periods were derived 
by calculating the 5-year average farm-level yield and corresponding 5-year 
average extreme weather observations (see detailed working steps in Appen
dix A2). 
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Therefore, we monetarize historical yield losses by combining our esti
mation results with the historical incidences of weather events, crop 
prices and information about the locations at which the crops are pro
duced. We present results of three approaches to provide a compre
hensive analysis of the economic relevance of the different extreme 
weather events. This allows us to illustrate the spatial distribution of the 
economic significance through the “Average yearly losses in revenues in 
Euro/ha” on a municipality level.16 

4.3.1. Estimated revenue losses are heterogeneous across Germany 
The estimated revenue losses are collated with respect to the hypo

thetical situation in which the respective pre-defined extreme weather 
event did not occur during the whole observation period 1995–2019. This 
hypothetical counterfactual helps farmers in their risk management de
cisions and serves as basis for policy-makers during debates on political 
support for these measures.17 Figs. 7-9 illustrate the estimated average 
revenue losses based on the hypothetical counterfactual (WEwjit = 0). The 
selection is based on statistically significant sample effects in Fig. 2. In the 
case of winter barley (Fig. 5: 2.1 – 2.3 summer drought in the East) and 
winter rapeseed (Fig. 6: 1.1 – 1.3 heat during flowering in the North), 
effects were not statistically significant at the national level, and we ana
lysed the economic relevance based on robust sub-sample results. 

Our sample shows that drought days during summer (Fruit Forma
tion & Ripening) caused an estimated average annual fall in revenues 
from winter wheat of approximately 7.50 Euro/ha across the whole of 
Germany (based on Fig. 7: Winter Wheat). Given that the total area 
under winter wheat is relatively constant at approximately 3.1 million 
hectares (see BMEL, 2007a; BMEL, 2020a), this means that average 

Fig. 8. Country-wide spring drought (left) and summer drought in the East (right) - estimated average yearly revenue losses in Euro/ha for winter barley 
based on the hypothetical counterfactual. Notes: (1) Estimated revenue losses due to summer drought only refer to the Eastern sub-sample based on Appendix A1 
and the coefficient for the effects of summer drought on yield is based on Fig. 4: 2.1: East: Blue. (2) The illustration provides a municipality level overview across 
Germany and is weighted by the cultivated farm area if the crop is grown by more than one farm in the same municipality. (3) Thresholds of the respective crop- 
specific drought events: 1days with ≤ 28.0 % of usable field capacity (fc); 2days with ≤ 7.9 % fc. (4) Average product price 2016–2020 based on AGMEMOD (2021): 3 

winter barley = 14.05 Euro/dt. 

Fig. 9. Heat and winter rapeseed - estimated average yearly revenue 
losses in Euro/ha for Northern Germany based on the hypothetical 
counterfactual. Notes: (1) Estimated revenue losses only refer to the Northern 
sub-sample based on Appendix A1 and the coefficient for the effect of heat on 
yield is based on Fig. 5: 1.1: North: Blue. (2) The illustration provides a mu
nicipality level overview across Germany and is weighted by the cultivated 
farm area if the crop is grown by more than one farm in the same municipality. 
(3) Threshold: 1degree days with ≥ 29.3 ◦C. (4) Average product price 
2016–2020 based on AGMEMOD (2021): 2 winter rapeseed = 36.78 Euro/dt. 

16 If there are two farms in the same municipality, average yearly losses are 
weighted by the cultivated area of each farm.  
17 As previously described, the hypothetical counterfactual does not reflect 

reality, since realistic counterfactuals of the extreme weather events described 
are unequal to zero. Therefore, we complement this approach by estimating 
both the effects of a variation by one intra-municipality standard deviation and 
the effects of marginal changes in weather extremes. 
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yearly revenues fell by 23.2 million Euro due to winter wheat losses 
arising from summer drought. In contrast, average country-wide reve
nue losses from winter wheat due to waterlogging during Shooting & 
Flowering amounted to 1.50 Euro/ha and, on the overall national level, 
to approximately 4.6 million Euro per year (section S11: Figure S44). 
Furthermore, there are regional differences in revenue losses from 
winter wheat. For instance, in the North and East of Germany, drought 
can cause average yearly losses of over 25 Euro/ha for winter wheat 
while in the South waterlogging can lead to similar losses. 

Drought led to a fall in revenues in all the major German grain maize 
production regions. Summer drought days (Flowering & Fruit Forma
tion) caused average country-wide yearly revenue losses amounting to 
7.64 Euro/ha for this crop (based on Fig. 7: Grain Maize). Since 
approximately 0.4 million hectares are under grain maize (see BMEL, 
2007a; BMEL, 2020a), this implies that summer drought leads to 
average annual revenue losses of up to 3.1 million Euro. 

Between 1995 and 2019, spring drought caused average yearly 
revenue losses for winter barley of 3.37 Euro/ha across Germany (based 
on Fig. 8: Winter Barley - left). Given that the area under winter barley is 
relatively constant in Germany at roughly 1.2 million hectares (see 
BMEL, 2007a; BMEL, 2020a), this implies overall average spring 
drought related revenue losses for winter barley of up to 4.0 million Euro 
per year. In the Eastern sub-sample, summer drought led to a yearly 
average fall in revenues of 7.96 Euro/ha (based on Fig. 8: Winter Barley - 
right). Since the area used here for the cultivation of winter barley is 
relatively constant at 0.3 million hectares (see BMEL, 2019), this in
dicates that the summer drought related revenue losses for this crop 
amount on average to over 2.3 million Euro per year. Waterlogging 
during e.g., Shooting & Flowering of winter barley caused revenues to 
fall by an average of 1.54 Euro per hectare across Germany. However, 
this may be considerably higher in the South of Germany (section S11: 
Figure S45). 

In the case of winter rapeseed, we do not find any country-wide 
robust yield effects due to the weather events analysed. However, 
regional sub-sampling reveals that winter rapeseed yield levels in 

Northern Germany are negatively affected by heat during flowering 
(Fig. 5: 1.1 – 1.3). The Northern sub-sample (see Appendix A1) in our 
analyses encompasses the most important production region accounting 
for over one-third of Germany’s overall winter rapeseed production 
(BMEL, 2007b; BMEL, 2020a). This led us to analyse the economic 
relevance of heat for the Northern production area which revealed that 
heat during flowering caused estimated average yearly revenue losses 
amounting to approximately 21.18 Euro/ha for this sub-region (based 
on Fig. 9). Given that the production area under winter rapeseed is 
relatively constant at 0.4 million hectares in the Northern sub-sample 
(BMEL, 2007b; BMEL, 2020a: overall production area in the federal 
states Mecklenburg-Western Pomerania, Schleswig-Holstein and Lower- 
Saxony), this resulted in average yearly revenue losses of over 8.4 
million Euro for the region. 

The economic relevance of the estimated losses resulting from these 
extreme weather events is highlighted when the fall in revenues is 
viewed in relation to the expected gross margins, which are currently 
estimated to be, on average, approximately 462 Euro/ha for winter 
wheat, 451 Euro/ha for winter barley, 468 Euro/ha for winter rapeseed 
and 690 Euro/ha for grain maize (KTBL, 2021). This implies, for 
instance, that summer drought related revenue losses narrow the ex
pected gross margins by an average of 1.1 % for grain maize and 1.6 % 
for winter wheat. In the hardest hit municipalities (≥95 % percentile fall 
in revenues), summer drought cut expected gross margins for grain 
maize by over 4.2 % (=loss of 29.05 Euro/ha for grain maize) and for 
winter wheat by over 4.1 % (=losses of 19.24 Euro/ha for winter wheat). 

4.3.2. The standard deviation approach considers historical variations of 
regional extreme weather observations 

We now consider the spatial variation of estimated revenue losses by 
describing the monetary effects of the increase of one intra-municipality 
standard deviation based on the balanced weather panel (see sections S7 
and S11). We find that some regions would be more strongly affected by 
such one-standard deviation increase in the frequency/severity of 
extreme weather events than it was indicated by previously reported 

Fig. 10. Summer drought - estimated revenue losses for winter wheat and grain maize in Euro/ha due to one intra-municipality standard deviation 
increase based on the balanced weather-data panel (annual municipality weather observations 1995–2019). Notes: (1) The illustration provides a munic
ipality level overview across Germany and is weighted by the cultivated farm area if the crop is grown by more than one farm in the same municipality. (2) 
Thresholds of the respective crop-specific drought events: 1days with ≤ 7.8 % of usable field capacity (fc); 2days with ≤ 8.7 % fc. (3) Average product prices 
2016–2020 based on AGMEMOD (2021): 3 winter wheat = 15.39 Euro/dt; grain maize = 16.04 Euro/dt. 
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average effects on revenues obtained using the hypothetical counter
factual approach. 

For instance, the average effect of summer drought on winter wheat 
in the North Sea regions is not severe (see Fig. 7, left). However, since 
variations are extremely pronounced in these maritime regions, an in
crease of one standard deviation in the drought indicator would lead to 
far higher losses (Fig. 10, left). In economic terms, this means that an 
intra-municipality-one-standard deviation increase for summer drought 
would trigger an average fall in revenues for winter wheat amounting to 
17.10 Euro/ha across Germany, which represents overall country-wide 
losses of 53 million Euro on average per year. A comparison of Fig. 7 
(right) and Fig. 10 (right) reveals that summer drought has a similar 
impact on grain maize in Eastern Germany. In the case of grain maize, an 
intra-municipality standard deviation increase of summer drought 
would cause an average drop in revenues across Germany of 38.46 Euro/ 
ha, representing an overall country-wide loss of 15.4 million Euro. 

Moreover, the impact of an increase of one-standard deviation for 
spring drought on winter barley had noticeable monetary consequences 
in the north-western and central-southern regions of Germany (see 
Figure S47, upper-left). On average, the impact of a one-standard de
viation increase of spring drought on winter barley would, for instance, 
lead to revenue losses of 8.64 Euro/ha (10.4 million Euro across Ger
many as a whole). In the cases of winter wheat and winter barley, the 
monetary consequences of a one-standard deviation increase in water
logging are felt hardest in the South of Germany (see Figures S46 and 
S47). 

4.3.3. Estimates of the marginal effects of crop-specific extreme weather 
events giving consideration to regional yield potentials 

Finally, we present exemplary estimations of revenue losses due to 
the impact of marginal changes in a summer drought day on winter 
wheat and grain maize. This allows us to consider regional yield levels 
and provides additional information regarding the average daily crop- 
specific damage potential of drought. This can be extremely useful, 
both for policy-makers when formulating ongoing forecasts of 

nationwide (drought induced) revenue losses and for farmers, as it can 
help them to adapt their input decisions during a current growing sea
son. In Fig. 11, we observe that the regions in Western and South-Eastern 
Germany generally experience the highest revenue losses per summer 
drought day (>4–6 Euro/ha/day for winter wheat; >10 Euro/ha/day for 
grain maize). 

5. Discussion 

In our analyses, we included year-fixed effects to account for sys
temic shocks occurring across all farms in a specific year with possible 
yield effects and to account for non-linear technological change effects. 
Hence, we ‘only’ recovered extreme weather effects as deviations from a 
general state in a specific year, whereby this can lead to the underesti
mation of systemic events, such as droughts. However, although higher 
annual average drought days were observed across Germany in some 
years (e.g., in 2018 and 2019, see section S6), the spatial variation in 
drought intensity was still high and did not result in the drought effects 
being completely ‘cancelled’ by the year fixed effects (see also Webber 
et al., 2020). In fact, we observed an increase of spatial variation of 
drought in 2018 and 2019, which even led to a clearer identification of 
drought effects in our main specification and temporal sub-samples (see 
e.g. Fig. 3: 1.2 & 1.3; Fig. 4: 1.2 & 1.3). Furthermore, given the limited 
time-frame in our analyses, the results of temporal split sample esti
mations should be interpreted with a degree of caution. In addition, we 
implemented the long-difference approach to detect if any agricultural 
adaptation measures had been adopted during the observation period to 
meet the extreme weather events analysed (see Dell et al., 2012; Burke & 
Emerick, 2016; Miller et al. 2021). 

We demonstrate that drought is a weather event which caused yield 
losses across winter wheat, winter barley and grain maize. The impact of 
drought became significantly more pronounced during the sub-period 
2007–2019, which rather suggests a potential increase in vulnerability 
to the effect of drought. This assumption is supported by findings of 
Webber et al. (2020), whose country-wide analysis of the observation 

Fig. 11. Summer Drought - estimated marginal revenue losses in Euro/ha for winter wheat and grain maize in Euro/ha of one additional summer drought 
day. Notes: (1) The illustration provides a municipality level overview across Germany and is weighted by the cultivated farm area if the crop is grown by more than 
one farm in the same municipality. (2) Thresholds of the respective crop-specific drought events: 1days with ≤ 7.8 % of usable field capacity (fc); 2days with ≤ 8.7 % 
fc. (3) Average product prices 2016–2020 based on AGMEMOD (2021): 3 winter wheat = 15.39 Euro/dt; grain maize = 16.04 Euro/dt. 
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period 1998–2018 showed that four of the five biggest yield failures of 
the crops they analysed occurred after 2007. In the cases of winter wheat 
and winter barley, the long-difference approach (see Appendix A2) also 
reveals that the spring drought susceptibility of both crops has 
increased, suggesting that the varieties of these two crops recently fav
oured for cultivation could have become more vulnerable to spring 
drought. 

The analyses of waterlogging underline that the investigation of 
regional crop- and weather-specific vulnerabilities benefits from 
combining estimated marginal effects with the information of observed 
incidences of extreme weather events. For instance, our results revealed 
that waterlogging caused particularly severe yield and monetary losses 
in winter wheat and winter barley in the South of Germany (see 
Figures S44 and S45). 

The effects of heat on the yield levels of the crops analysed in our 
sample were not statistically significant at the national level (Fig. 2). 
However, sub-sampling of winter rapeseed revealed statistically signif
icant heat effects indicating that unobserved regional conditions may 
influence the impact of heat on yields. Further research should be car
ried out in Central Europe to detect if the high standard deviation of 
yield effects of heat is due to non-linear yield effects (see Schlenker & 
Roberts, 2009), the interaction between heat and soil moisture (see 
Haqiqi et al. 2021) and/or other hitherto unobserved factors. The role of 
heat as a risk factor for yield losses needs to be better understood, 
especially in the context of rising temperatures due to climate change. 

None of the cash crops in our analyses showed any robust yield ef
fects due to black frost (in contrast to e.g. Fuller et al.,2007). The yield 
effects of black frost on winter crop yields are lower if these are hard
ened (i.e., have undergone cold temperatures in the period preceding 
the black frost; Mäkinen et al., 2018). However, this is not accounted for 
in the black frost temperature thresholds used in our analyses. Another 
potential explanation is that as there were no observations available for 
this variable, we used the estimation approach for the snow-layer (based 
on Trnka et al., 2010), which is not fully adapted to the natural condi
tions in Germany. Furthermore, since the German Farm Accountancy 
Data Network only considers the area actually harvested for each crop, 
the impact of weather extremes which result in complete crop failure 
can be blurred. In Germany, this applies mainly to severe black frost 
events, when farmers can limit economic losses by replanting the field 
with a summer crop. In addition, since farmers may decide that har
vesting a field after a drought, severe waterlogging or heat events is not 
worthwhile, yield losses may be under-estimated as only the area 
actually harvested is recorded (e.g. Cui, 2020). While extreme yield 
failures of this magnitude are unusual in Germany, this potential data 
limitation must be borne in mind when interpreting the estimation 
results. 

As a second step, we adopt three approaches to obtain an assessment 
of the economic relevance of the weather events by combining yield 
effects with crop prices and historical incidences of these events. Our 
analyses show that estimated revenue losses vary considerably across 
Germany in terms of annual averages (hypothetical counterfactual 
approach), variation (standard deviation approach) and marginal ef
fects. Ideally, this information could flow into regional-specific risk 
management measures and policy actions. We are aware that the 
simplified estimation of the economic relevance relying on the average 
prices in 2016–2020 (AGEMOD, 2021) does not account for any (longer- 
term) price increases due to a potentially reduced supply. However, 
since Germany is a comparatively small producer and well-integrated in 
the world market, the ‘natural hedge’ at the farm level is relatively small 
for the crops analysed. Furthermore, the weather effect on an aggregated 
yield level e.g., the average yield of a federal state or Germany as a 
whole, is smaller than the yield effect of an extreme weather event at the 

farm level (see Finger, 2012), which further reduces the ‘natural hedge’ 
at the farm level. In addition, we did not consider any additional costs 
related to the weather events analysed, e.g., irrigation during a drought 
or planting a summer crop after a severe black frost, since the German 
Farm Accountancy Data Network only provides overall and not crop- 
specific costs of implementing these measures on the farm-level. 

6. Conclusion and policy implications 

In this paper, we compared the estimated yield effects of various 
extreme weather events during different critical phenological phases for 
winter wheat, winter barley, winter rapeseed and grain maize produc
tion in Germany. Based on these estimated effects, we calculated 
farmers’ revenue losses associated with these extreme weather events. 
We find that drought caused the highest yearly yield and revenue losses 
across winter wheat, winter barley and grain maize, with a high regional 
variation of impact severity. In some regions, we observed a statistically 
significant rapeseed yield shortfall due to heat. 

Our analyses revealed the high economic relevance of extreme 
weather events in German crop production. Our findings underline how 
vital it is to support farmers in their efforts to cope with, and adapt to, 
the challenges of these extreme events, especially given that they are 
likely to become more frequent due to climate change. This means that 
policy-makers should support the overall adaptation process and 
encourage robust production practices, especially in the vulnerable re
gions across Germany, and should avoid policies which hinder climate 
change adaptation. 

We also find a high variation in weather effects on yields across re
gions and crops. Thus, our results highlight the fact that farmers must 
adopt site- and crop-specific risk management practices to meet the 
differences in their exposure to a range of extreme weather events. For 
instance, the North and East of Germany was more prone to drought- 
related losses in winter grains whilst waterlogging caused above 
average losses of winter grains in the South. In addition, the most 
important winter rapeseed production region, located in the North of 
Germany, was vulnerable to yield losses due to heat during flowering. 
Our results provide agricultural policy-makers with an additional source 
of information regarding the weather-vulnerable regions. This means 
that risk management and adaptation measures can be tailored region
ally and explicitly, through e.g., irrigation, breeding, crop rotations or 
soil management, which in turn may enhance the cost-effectiveness of 
policy interventions. Farmers should be provided with spatially dis
aggregated information about their risk exposure and vulnerability to 
extreme weather events during different phenological phases of various 
crops so that they can develop regional- and crop-specific risk man
agement and adaptation strategies. Policy-makers can support this 
development by making the relevant data publicly available (Bucheli 
et al., 2021). 

Moreover, our results provide policy-makers with empirical insights 
which allow them to prioritize public support for adaptation measures 
and assess the (long-term) public costs of weather-risk related policy 
interventions. These comprise ad-hoc payments and the support of on– 
and off-farm risk management (e.g., use of irrigation, breeding and use 
of new varieties, crop insurance). For instance, our regional estimations 
of drops in revenues based on the hypothetical counterfactual offer an 
indication of crop- and weather-specific revenue losses and thus the 
compensation claims to be expected by insurance companies. Finally, 
our results on the revenue losses due to marginal changes in weather 
extremes can inform early warning systems regarding regional produc
tion shortages, or support farmers during ongoing production decisions 
like irrigation or fertilization. 

Further research should investigate the potential of risk management 
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measures, such as diversification, crop choice, irrigation or insurances to 
cope with the regional effects of extreme weather events on yields and 
income. Moreover, our results indicate that the susceptibility of yields to 
extreme weather events has persisted or even increased in the recent 
past. This underlines that climate change aggravates the risks faced by 
crop production under these extreme weather conditions (e.g., Ortiz- 
Bobea et al., 2021). More specifically, the frequency, severity and spatial 
extent of these events is expected to increase in several parts of the 
world, including Europe (Grillakis, 2019; Porter et al., 2014; Senevir
atne et al., 2021; Trnka et al., 2014; Webber et al., 2018). Therefore, 
further research should investigate the ongoing impact of climate 
change on local exposure to extreme weather events, both in frequency 
and intensity, the resulting economic implications and adaptation po
tential. Moreover, future research could improve the estimation of 
extreme weather effects by exploiting satellite-based information to 
allow cropland weather information, farm level yields and other crop
ping practices to be aligned more precisely. In addition, further research 
should investigate the role of non-linear yield effects of weather ex
tremes and interactions between the respective weather events in the 
context of compound extreme weather events. 
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Appendix A1. Spatial sample splitting 

Spatial-Splitting is based on the definition of soil-climate regions in Germany by Roβberg et al. (2007) and the aggregation of these soil-climate 
regions to the four main production regions North, East, West and South as illustrated in Fig. A1 derived from the Julius-Kuehn-Institute (JKI, 2009). 
Roβberg et al. (2007) used information regarding temperature, precipitation and soil quality on a county level for the clustering of soil-climate regions 
and the authors finally implemented further aggregations to 22 soil climate regions across Germany based on regional expert knowledge. The JKI 
further aggregated these regions into the four main production regions during several analyses regarding e.g. plant protection analyses and com
parisons across Germany (JKI, 2009). 

Fig. A1. Classification of main arable production regions in Germany. Note: based on JKI (2009).  
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Appendix A2. Long-difference estimations 

We follow Burke & Emerick (2016) by implementing the following steps: 
Step 1: we calculate the 5-year average farm-level yield and corresponding 5-year average weather observations for the two time periods 

1995–1999 (Yji95 and WEwji95) and 2015–2019 (Yji15 and WEwji15) and merge both datasets. Hence, we receive only the farm observations, for which 
we have yield observations in both time periods. 

Step 2: We adjust the long-difference specification of Burke & Emerick (2016) to the log-lin case of our main specification by considering for the 
dependent average farm-level yields: 

log
(
Yji15

)
− log(Yji95) = log(Yji15 /Yji95)

Further, we calculate the difference of the 5-year average weather observations between the two time periods: 

WEwji15 − WEwji95 = ΔWEwji 

Step 3: We additionally include a federal state (“Bundesland”) fixed effect (αfs), which controls for any unobserved federal state-level trends. 
Therefore, we eliminate any concerns regarding time-trending unobservables at the federal state level and the identification of effects comes only from 
the within-federal-state variation: 

log(Yji15 /Yji95) =
∑

βwj*ΔWEwji +αfs +Δεji 

Step 4: We additionally estimate the main specifications (see Tables A1-A4: (4) Whole Panel) with the sub-sample of farms, for which we have 
yield observations in both time periods for the long-difference approach ((see Tables A1-A4: (3) Limited Panel) to compare coefficients between the 
panel and long-difference estimations. 

Step 5: We interpret more positive long-difference coefficients compared to panel coefficients as an evidence of adaptation. In the case of a more 
positive long-difference coefficient, farmers could better adapt to long run changes in climate compared to short-run weather changes. 

Table A1 
Winter wheat – comparison of results of the long-difference estimations with the panel estimation (main specification – see Fig. 2 (blue)).  

Method: (1) Long diff (2) Long diff (3) Limited Panel (4) Whole Panel 

Black Frost − 0.0106*(0.0054) − 0.0048(0.0065) − 0.0029(0.0022) − 0.0041*(0.0019) 
Heat 0.2073(0.2397) − 0.0792(0.2472) − 0.0129(0.0275) − 0.011(0.0233) 
Spring Drought − 0.0053**(0.0017) − 0.0047**(0.0018) − 0.0037***(0.0007) − 0.0036***(0.0006) 
Summer Drought − 0.0028**(0.0011) − 0.0033**(0.0011) − 0.0035**(0.0011) − 0.0036**(0.0009) 
Spring Waterlogging − 0.0041*(0.0016) − 0.0044**(0.0016) − 0.0036***(0.0009) − 0.0028***(0.0007) 
Summer Waterlogging − 0.0114***(0.0019) − 0.0092***(0.0019) − 0.0031**(0.0009) − 0.0023**(0.0007) 
Fixed-Effects: None Federal state Farm & Year Farm & Year 
S.E.: Clustered – – by: farm & year by: farm & year 
Observations 2,694 2,694 57,499 165,602 

Notes: 
(1) ***, **, * and. indicate statistical significance at the 0.001, 0.01, 0.05 and 0.10 level. 
(2) Long-difference (Long diff) estimated with the two time periods 1995–1999 and 2015–2019. 

Table A2 
Winter barley – comparison of results of the long-difference estimations with the panel estimation (main specification – see Fig. 2 (blue)).  

Method: (1) Long diff (2) Long diff (3) Limited Panel (4) Whole Panel 

Black Frost − 0.0167**(0.0064) − 0.0139.(0.0076) − 0.0045(0.0027) − 0.0044.(0.0024) 
Heat − 0.2797(0.0901) − 0.2334*(0.0921) − 0.0872(0.0904) − 0.0979(0.0649) 
Spring Drought − 0.0137***(0.0030) − 0.0151***(0.0032) − 0.0050***(0.0013) − 0.0048***(0.0012) 
Summer Drought − 0.0007(0.0012) − 0.0004(0.0013) − 0.0035**(0.0011) − 0.0031*(0.0011) 
Spring Waterlogging − 0.0029(0.0028) − 0.0021(0.0029) − 0.0042**(0.0015) − 0.0039**(0.0013) 
Summer Waterlogging − 0.0089***(0.0015) − 0.0075***(0.0016) − 0.0031***(0.0008) − 0.0024**(0.0007) 
Fixed-Effects: None Federal state Farm & Year Farm & Year 
S.E.: Clustered – – by: farm & year by: farm & year 
Observations 2,363 2,363 48,932 144,386 

Notes: 
(1) ***, **, * and. indicate statistical significance at the 0.001, 0.01, 0.05 and 0.10 level. 
(2) Long-difference (Long diff) estimated with the two time periods 1995–1999 and 2015–2019. 
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Appendix B. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.foodpol.2022.102359. 
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Takáč, J., Bezák, P., Ventrella, D., Ruget, F., Capellades, G., Kahiluoto, H., 2018. 
Sensitivity of European wheat to extreme weather. Field Crops Research 222, 
209–217. 

Marra, M.C., Schurle, B.W., 1994. Kansas wheat yield risk measures and aggregation: a 
meta-analysis approach. Journal of Agricultural and Resource Economics 69–77. 

Miller, N., Tack, J., Bergtold, J., 2021. The impacts of warming temperatures on US 
sorghum yields and the potential for adaptation. Am. J. Agric. Econ. 103 (5), 
1742–1758. 

OECD (2021). Design Principles for Agricultural Risk Management Policies. Paper 
N◦157. 

Olesen, J.E., Trnka, M., Kersebaum, K.C., Skjelvåg, A.O., Seguin, B., Peltonen-Sainio, P., 
Rossi, F., Kozyra, J., Micale, F., 2011. Impacts and adaptation of European crop 
production systems to climate change. Eur. J. Agron. 34 (2), 96–112. 

Ortiz-Bobea, A., Ault, T.R., Carrillo, C.M., Chambers, R.G., Lobell, D.B., 2021. 
Anthropogenic climate change has slowed global agricultural productivity growth. 
Nat. Clim. Change 11 (4), 306–312. 

Peichl, M., Thober, S., Samaniego, L., Hansjürgens, B., Marx, A., 2019. Climate impacts 
on long-term silage maize yield in Germany. Sci. Rep. 9 (1), 1–12. 

Peterson, T.C., Zhang, X., Brunet-India, M., Vázquez-Aguirre, J.L., 2008. Changes in 
North American extremes derived from daily weather data. Journal of Geophysical 
Research: Atmospheres 113 (D7). 

Porter, J.R., Xie, L., Challinor, A.J., Cochrane, K., Howden, S.M., Iqbal, M.M., Lobell, D.B. 
& Travasso, M.I. (2014). Food security and food production systems. In: Climate 

Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral 
Aspects. Contribution of Working Group II to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, 
K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. 
Genova, B. Girma, E.S. Kissel, A.N. Levy, S. Mac-Cracken, P.R. Mastrandrea, and L.L. 
White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New 
York, NY, USA, pp. 485-533. 

Powell, J.P., Reinhard, S., 2016. Measuring the effects of extreme weather events on 
yields. Weather Clim. Extremes 12, 69–79. 

Pullens, J.W.M., Sharif, B., Trnka, M., Balek, J., Semenov, M.A., Olesen, J.E., 2019. Risk 
factors for European winter oilseed rape production under climate change. Agric. 
For. Meteorol. 272, 30–39. 

Ray, D.K., Ramankutty, N., Mueller, N.D., West, P.C., Foley, J.A., 2012. Recent patterns 
of crop yield growth and stagnation. Nat. Commun. 3 (1), 1–7. 

Roßberg, D., Michel, V., Graf, R., Neukampf, R., 2007. Definition von Boden-Klima- 
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Trnka, M., Kocmánková, E., Balek, J., Eitzinger, J., Ruget, F., Formayer, H., Hlavinka, P., 
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Semenov, M.A., 2014. Adverse weather conditions for European wheat production 
will become more frequent with climate change. Nat. Clim. Change 4 (7), 637–643. 

Vroege, W., Finger, R., 2020. Insuring Weather Risks in European Agriculture. 
EuroChoices 19 (2), 54–62. 

Vroege, W., Bucheli, J., Dalhaus, T., Hirschi, M., Finger, R., 2021. Insuring crops from 
space: the potential of satellite-retrieved soil moisture to reduce farmers’ drought 
risk exposure. European Review of Agricultural Economics 48 (2), 266–314. 

Webber, H., Ewert, F., Olesen, J.E., Müller, C., Fronzek, S., Ruane, A.C., Bourgault, M., 
Marte, P., Ababaei, B., Bindi, M., Ferrise, R., Finger, R., Fodor, N., Gabaldón-Leal, C., 
Gaiser, T., Jabloun, M., Ker-sebaum, K.C., Lizaso, J.I., Lorite, I.J., Manceau, L., 
Moriondo, M., Nendel, C., Rodríguez, A., Ruiz-Ramos, M., Semenov, M.A., 
Siebert, S., Stella, T., Stratonovitch, P., Trombi, G., Wallach, D., 2018. Diverging 
importance of drought stress for maize and winter wheat in Europe. Nat. Commun. 9 
(1), 4249. 

Webber, H., Lischeid, G., Sommer, M., Finger, R., Nendel, C., Gaiser, T., Ewert, F., 2020. 
No perfect storm for crop yield failure in Germany. Environ. Res. Lett. 15 (10), 
104012. 

Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.J., 2011. Crop 
adaptation to climate change. John Wiley & Sons. 

Zhang, X., Alexander, L., Hegerl, G.C., Jones, P., Tank, A.K., Peterson, T.C., Blair, T., 
Zwiers, F.W., 2011. Indices for monitoring changes in extremes based on daily 
temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Change 2 (6), 
851–870. 

J. Schmitt et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0306-9192(22)00128-2/h0135
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0135
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0140
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0140
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0145
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0145
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0145
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0145
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0150
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0150
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0165
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0165
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0170
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0170
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0175
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0175
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0185
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0185
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0200
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0200
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0205
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0205
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0210
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0210
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0210
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0220
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0220
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0220
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0225
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0225
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0225
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0225
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0225
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0230
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0230
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0235
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0235
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0235
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0245
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0245
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0245
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0250
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0250
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0250
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0255
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0255
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0260
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0260
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0260
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0270
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0270
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0275
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0275
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0275
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0280
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0280
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0285
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0285
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0285
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0290
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0290
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0290
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0295
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0295
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0300
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0300
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0300
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0310
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0310
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0315
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0315
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0320
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0320
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0325
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0325
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0325
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0325
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0330
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0330
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0330
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0335
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0335
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0340
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0340
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0340
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0345
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0345
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0345
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0345
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0345
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0345
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0345
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0350
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0350
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0350
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0355
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0355
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0360
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0360
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0360
http://refhub.elsevier.com/S0306-9192(22)00128-2/h0360

	Extreme weather events cause significant crop yield losses at the farm level in German agriculture
	1 Introduction
	2 Econometric and economic framework
	3 Data and definition of extreme events
	3.1 Definition and calculation of extreme weather events

	4 Results
	4.1 Key results
	4.1.1 Drought regularly decrease yields of all crops

	4.2 Robustness checks
	4.2.1 Yield effects of extreme weather events vary considerably between regions and observation periods
	4.2.1.1 Winter wheat
	4.2.1.2 Winter barley
	4.2.1.3 Winter rapeseed
	4.2.1.4 Grain maize

	4.2.2 The long-difference approach reveals an increase of spring drought susceptibility of winter wheat and winter barley

	4.3 Economic relevance of extreme weather events
	4.3.1 Estimated revenue losses are heterogeneous across Germany
	4.3.2 The standard deviation approach considers historical variations of regional extreme weather observations
	4.3.3 Estimates of the marginal effects of crop-specific extreme weather events giving consideration to regional yield pote ...


	5 Discussion
	6 Conclusion and policy implications
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A1 Spatial sample splitting
	Appendix A2 Long-difference estimations
	Appendix B Supplementary material
	References


