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Abstract. As the largest terrestrial carbon pool, soil organic carbon (SOC) has the potential to influence and
mitigate climate change; thus, SOC monitoring is of high importance in the frameworks of various international
treaties. Therefore, high-resolution SOC maps are required. Machine learning (ML) offers new opportunities
to develop these maps due to its ability to data mine large datasets. The aim of this study was to apply three
algorithms commonly used in digital soil mapping – random forest (RF), boosted regression trees (BRT), and
support vector machine for regression (SVR) – on the first German agricultural soil inventory to model the
agricultural topsoil (0–30 cm) SOC content and develop a two-model approach to address the high variability in
SOC in German agricultural soils. Model performance is often limited by the size and quality of the soil dataset
available for calibration and validation. Therefore, the impact of enlarging the training dataset was tested by
including data from the European Land Use/Cover Area frame Survey for agricultural sites in Germany. Nested
cross-validation was implemented for model evaluation and parameter tuning. Grid search and the differential
evolution algorithm were also applied to ensure that each algorithm was appropriately tuned . The SOC content
of the German agricultural soil inventory was highly variable, ranging from 4 to 480 g kg−1. However, only 4 %
of all soils contained more than 87 g kg−1 SOC and were considered organic or degraded organic soils. The
results showed that SVR produced the best performance, with a root-mean-square error (RMSE) of 32 g kg−1

when the algorithms were trained on the full dataset. However, the average RMSE of all algorithms decreased
by 34 % when mineral and organic soils were modelled separately, with the best result from SVR presenting an
RMSE of 21 g kg−1. The model performance was enhanced by up to 1 % for mineral soils and by up to 2 % for
organic soils. Despite the ability of machine learning algorithms, in general, and SVR, in particular, to model
SOC on a national scale, the study showed that the most important aspect for improving the model performance
was to separate the modelling of mineral and organic soils.

1 Introduction

Soil organic carbon (SOC) is the largest terrestrial carbon
pool (Wang et al., 2020) and plays an essential role in agricul-
ture. As SOC influences various physical, chemical, and bi-
ological properties of soil (Reeves, 1997), numerous studies
recognise it as a crucial indicator of soil quality (Castaldi et
al., 2019; Meersmans et al., 2012a; Reeves, 1997); therefore,
its decline is identified as a threat that leads to soil degrada-

tion (Castaldi et al., 2019; Poeplau et al., 2020a). Moreover,
when considering carbon sequestration, the SOC pool pro-
vides the option for climate change mitigation (Meersmans
et al., 2012a; Ward et al., 2019). Thus, SOC monitoring is
important in the frameworks of various international treaties,
such as the European Union Soil Thematic Strategy and the
United Nations Framework Convention on Climate Change
(Meersmans et al., 2012b; Poeplau et al., 2020a), and there
is growing interest in understanding the spatial distribution
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of SOC at different scales in response to the increasing de-
mand for a better assessment of SOC (Minasny et al., 2013).
This is particularly important for agricultural land due to its
potential for carbon sequestration (Lal, 2004).

In digital soil mapping (DSM), a soil attribute is described
by an empirical quantitative function of seven factors: soil
properties, climate, organisms, topography, parent material,
time, and spatial position (McBratney et al., 2003). This
function, known as the SCORPAN model, can be applied to
spatially predict the soil property of interest (Minasny et al.,
2013). Within this framework, machine learning algorithms
aim to automatically extract information from the data for
predictive purposes (Behrens et al., 2005). This is of particu-
lar interest in view of the recent expansion of soil databases
and the vast amount of data available to approximate the
soil forming factors (McBratney et al., 2003; Wadoux et al.,
2020), thereby making DSM cost-effective, time-efficient,
and applicable over large areas with good results (Behrens
and Scholten, 2006; Camera et al., 2017).

Despite the advantages of DSM, it is crucial to note that
its application requires soil databases of an adequate sam-
ple size for training and testing. Furthermore, consistent and
quality-checked datasets are a prerequisite for DSM. Several
soil inventories and monitoring networks for SOC have been
established on a national scale in countries such as Sweden
(Poeplau et al., 2015), France (Belon et al., 2012; Arrouays
et al., 2002), Denmark (Taghizadeh-Toosi et al., 2014), and
Scotland (Chapman et al., 2013). However, the most criti-
cal shortcomings of soil inventories in Germany concern the
lack of large-scale, high-quality SOC monitoring (Wiesmeier
et al., 2012) with periodic and standardised sampling focused
on agricultural soils (Prechtel et al., 2009). These issues have
now been addressed in the first German agricultural soil in-
ventory (Poeplau et al., 2020a). This inventory was carried
out on a national scale considering a sampling depth of 1 m at
3104 sampling sites covering agricultural land. Furthermore,
on the European scale, the Land Use/Cover Area frame Sur-
vey (LUCAS), undertaken in 2009, is the first harmonised
topsoil survey with physico-chemical analyses of georefer-
enced topsoil samples from 23 European states (Tóth et al.,
2013). Therefore, by taking advantage of DSM and of both
the German agricultural soil inventory and the LUCAS sur-
vey, it is possible to regionalise from single-point measure-
ments to obtain high-resolution cover soil data nationwide
and, thus, provide a baseline for both SOC monitoring and
environmental and climatic modelling for Germany.

Boosted regression trees (BRT), random forest (RF), and
support vector machine for regression (SVR) are among the
most widely used algorithms in DSM (Padarian et al., 2020).
For example, Martin et al. (2014) predicted topsoil SOC
on a national scale for France using the BRT algorithm by
comparing its results when the same algorithm was coupled
with a geostatistical approach. The above-mentioned authors
concluded that, due to the large distances between sampling
sites, spatial autocorrelation is unlikely in most national in-

ventories, and the BRT algorithm alone is sufficient for this
purpose. This algorithm has also been used on a national
scale in China for data from the 1980s and 2010s in order
to predict topsoil SOC and its spatial–temporal change as
well as the main drivers of its variability (Wang et al., 2021).
RF has also become more popular in DSM due to its rela-
tive simplicity and performance. For example, this algorithm
was implemented to map topsoil SOC on a national scale
in Madagascar and identify its main drivers (Ramifehiarivo
et al., 2017). Ramifehiarivo et al. (2017) concluded that the
uncertainty of the map generated by RF model training was
lower when compared with the maps that had formerly been
generated for the country. Moreover, this algorithm was com-
pared with the Cubist algorithm for mapping SOC at differ-
ent resolutions on a regional scale in China and was found to
outperform it (Li et al., 2021). Fewer studies have used SVR
than RF to predict SOC. Studies have mainly implemented
SVR on a regional scale with a limited number of samples
(Forkuor et al., 2017; Were et al., 2015) or on a national scale
(Switzerland) with very few samples (150 samples from the
European LUCAS survey) (Zhou et al., 2021). However, in
a study comparing different algorithms, including SVR and
RF, on a continental scale and within each country in Latin
America, the results indicated that the algorithm that showed
the best performance varied from country to country (Gue-
vara et al., 2018). The difference mainly depended on data
density, quality, representativeness, and country size, which
affect the heterogeneity of land use and environmental con-
ditions.

Another important consideration when applying machine
learning is the impact of the parameter-tuning strategy on al-
gorithm performance. This is particularly crucial when the
objective of the study is to compare different machine learn-
ing algorithms. Although some algorithms are less sensitive
to tuning, this step is more important for others, particularly
those with a higher number of parameters (Tziachris et al.,
2020; Wadoux et al., 2020). Furthermore, as algorithms dif-
fer by parameter type (continuous or discrete), the chosen
strategy should be aligned with this difference (Ließ et al.,
2021). For example, the performance of SVR and BRT has
been shown to be better and more stable when optimised by
a differential evolution (DE) algorithm than when tuned by
grid search (Zhang et al., 2011; Gebauer et al., 2020). De-
spite this importance, in a review of studies that have ap-
plied DSM, Wadoux et al. (2020) state that almost half of the
studies implemented parameter tuning, with grid search be-
ing the most common strategy applied for this purpose. This
finding indicates that the role of parameter tuning and opti-
misation is unfortunately undermined in DSM. This is par-
ticularly evident when the application of machine learning in
this field is compared with other fields, where various studies
have shown the impact of parameter-tuning strategies on the
performance of algorithms such as SVR and BRT (Liang et
al., 2011; Santos et al., 2021; Bhadra et al., 2012; Deng et al.,
2019).
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Therefore, the aims of the present study were as follows:
(i) to address the above-mentioned parameter-tuning issue
and, consequently, provide a true comparison of the perfor-
mance of BRT, RF, and SVR in modelling the SOC content
of German agricultural topsoils (0–30 cm); (ii) to assess the
impact of the training dataset size by extending the data of
the German agricultural soil inventory with LUCAS data for
model calibration; and (iii) to develop a two-model approach
to address the high variability in SOC in German agricultural
soils and compare it with a single-model approach.

2 Materials and methods

2.1 Soil data

The models were built using SOC content data from two soil
inventories. The first dataset was from the German agricul-
tural soil inventory, which is comprised of 3104 sites col-
lected along a 8 km× 8 km grid throughout Germany (Poe-
plau et al., 2020a). The sites were sampled and analysed for
different soil properties, including the SOC content measured
via dry combustion, for the upper 30 cm of the soil between
2012 and 2018. The second dataset was the European LU-
CAS survey that provides SOC content, similarly also mea-
sured via dry combustion, with the sampling depth limited to
0–20 cm (Tóth et al., 2013). For Germany, data collected on
agricultural soils cover 1223 sites. Therefore, in order to har-
monise the depths of both datasets, they were subdivided into
two classes – mineral and organic soils – according to a SOC
threshold value of 87.0 g kg−1. Accordingly, all soils above
this threshold were considered to be organic soils, compris-
ing peat soils and disturbed and degraded peat soils (Poeplau
et al., 2020a). Linear regression functions were derived for
both mineral, Eq. (1), and organic, Eq. (2), soil classes using
the data of the German agricultural soil inventory to relate
the SOC content of the 0–30 cm data to that of the 0–20 cm
data. These functions were then applied to the corresponding
soil class from the LUCAS data in order to estimate the 0–
30 cm topsoil SOC. The generated 0–30 cm LUCAS data and
the original 0–20 cm LUCAS data were then used by each al-
gorithm to check the effect of depth extrapolation.

y = 1.01+ 0.881x (1)
y = 1.6+ 1.02x (2)

2.2 Covariates

Covariates from multiple sources were included to ap-
proximate the SCORPAN factors throughout Germany. In
the case of multiple data products for one covariate, the
one with the best quality (fewer artefacts) and the highest
spatial resolution was added. These were then resampled in
ArcGIS (Esri, 2013) using the INSPIRE standard grid at a
100 m resolution (Eurostat grid generation tool for ArcGIS,
https://www.efgs.info/information-base/best-practices/

tools/eurostat-grid-generation-tool-arcgis/, last access:
10 December 2020). The resampling method was either the
nearest-neighbour technique for categorical covariates or the
bilinear interpolation technique for continuous covariates.
The same INSPIRE grid was also used to rasterise the vector
covariates. Finally, they were stacked and overlaid on SOC
databases in order to extract values at the sampling points.

Following the SCORPAN framework, 24 covariates in-
cluding x and y coordinates for spatial position were com-
piled. In order to represent the climate factor (C factor), pre-
cipitation (DWD, 2018c), sunshine duration (DWD, 2017),
summer days (DWD, 2018b), and minimum temperature
(DWD, 2018a) were applied according to the study of
Schneider et al. (2021). Using principal component analysis,
these four covariates were identified to be the most important
out of 34 available climate factors for SOC in the German
agricultural soil inventory dataset. Moreover, the agricultural
land use type is one of the main drivers of SOC variability on
a national scale (Poeplau et al., 2020a); therefore, the land
use map from the official Topographic–Cartographic Infor-
mation System (BKG, 2019) with its corresponding classes
according to the German agricultural soil inventory was ras-
terised and included. This is a categorical covariate, repre-
senting the organism factor of SCORPAN (O factor), which
distinguishes croplands from grasslands and captures their
spatial distribution throughout Germany.

The Digital Elevation Model over Europe (EU-DEM;
European Union Copernicus Land Monitoring Service and
EEA, 2016) with an original resolution of 25 m was re-
sampled to 100 m. Six covariates derived from the resam-
pled layer were also added to integrate the relief param-
eter (R factor). Slope, plan curvature, and profile curva-
ture, generated with the System for Automated Geoscien-
tific Analyses (SAGA; Conrad et al., 2015), were included
to capture the slope’s gradient, convexity–concavity, and
convergence–divergence. These factors influence the soil
distribution throughout the landscape (e.g. affecting flow
over the surface), thereby impacting SOC and its dynamic
(Ritchie et al., 2007). Moreover, slope exposition (aspect)
was calculated from the EU-DEM, as it influences soil devel-
opment and subsequently affects SOC (Carter and Ciolkosz,
1991). The circular variable was then decomposed into north-
ness and eastness. The topographic wetness index (TWI),
generated on SAGA, was also added because it captures the
soil moisture distribution of the landscape and some studies
have shown its direct correlation with SOC (Pei et al., 2010).
The “Geomorphographic Map of Germany” (BGR, 2007)
featuring 25 geomorphic categories was also used to distin-
guish between four different landscape areas of the country:
the North German Plain, the Central German Uplands, the
Alpine foothills, and the Alps.

Continuing with the framework, a large-scale soil land-
scape unit map (“Soilscapes” of Germany; BGR, 2008) com-
prising 38 classes was used. This covariate divides Germany
by various geographical factors that can be compiled into a
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map with 12 soil regions. Similarly, a soil-climate region map
(Roßberg et al., 2007) with 50 classes was added. Moreover,
the hydrogeological units were assigned according to the Hy-
drogeological map of Germany (BGR and SDG, 2019). The
hydrogeological map provides information about hydrogeo-
logically relevant attributes including consolidation, type of
porosity, permeability, type of rock, and geochemical classi-
fication. These categorical maps were rasterised and applied
to the model as the P factor of SCORPAN. Moreover, the soil
factor of the framework (S factor) was captured by eight co-
variates that represent different aspects of its properties: the
map of organic soils (Roßkopf et al., 2015) that distinguishes
mineral soils from organic ones and explains their spatial dis-
tribution throughout the country as well as the maps of ni-
trogen (Ballabio et al., 2019) and clay content (Ballabio et
al., 2016) because they directly correlate with SOC. As ni-
trogen is a crucial component of soil organic matter, regions
with higher total nitrogen have higher SOC (Ballabio et al.,
2019). Furthermore, with respect to clay content, different
studies have shown that coarser soil textures tend to have a
lower accumulation of SOC (Zhong et al., 2018; Hoyle et
al., 2011). The map of pH from Ballabio et al. (2019) was
included because soil pH directly impacts microbial activity
that influences the turnover of soil organic matter and, conse-
quently, negatively correlates with SOC (Malik et al., 2018).
Moreover, a map of available water capacity (Ballabio et al.,
2016) was used, as this soil property is another factor that
interacts with SOC via plant productivity and soil texture
(Burke et al., 1989; Yu et al., 2021). Soil erosion is also a
key factor in the SOC cycle (Li et al., 2019) and was added
through a map of Europe’s net soil erosion and deposition
rates (Borrelli et al., 2018). Based on the Water and Tillage
Erosion Model and Sediment Delivery Model (WaTEM/SE-
DEM), this map illustrates the potential spatial displacement
and transport of soil sediments due to water erosion (Borrelli
et al., 2018). Figure S1 in the Supplement provides a more
detailed view for better visualisation of the covariates that
were used in this study.

2.3 Boosted regression trees

Developed by Friedman et al. (2000), BRT is a tree-based al-
gorithm that applies boosting to improve accuracy. Boosting
relies on combining several approximate prediction models
rather than obtaining one highly accurate model (Schapire,
2003). Thus, the decision trees are grown sequentially so that
each decision tree predicts the residual of the previous one;
therefore, the number of trees influences the performance of
the algorithm and requires tuning. However, to incorporate
randomness in the model and subsequently increase the ro-
bustness of performance, the trees are grown on a randomly
selected data subset with no replacement (Friedman, 2002).
The size of this subset is controlled by a parameter known
as a bag fraction. Furthermore, the contribution of each new
tree to the final model is regularised by the learning rate, also

known as shrinkage (Hastie et al., 2009). Finally, the num-
ber of splits in each tree that divides the response variable
into subsets is optimised by the interaction depth. The BRT
model was built in R using the “gbm” package (Greenwell et
al., 2019).

2.4 Random forest

Similar to BRT, RF is another tree-based algorithm. RF uses
bootstrap sampling of the dataset for growing a decision tree.
Subsequently, by aggregating the results of a large number
of decision trees, the bias and variance of the final model can
be reduced (Breiman, 2001). The method of bootstrapping in
conjunction with aggregating, known as bagging, increases
the robustness and stability of RF. However, the trees from
different bootstraps may form a similar structure if all co-
variates participate in a split of each node. Thus, the variance
cannot be reduced optimally via the bagging process (Kuhn
and Johnson, 2013). In order to avoid this tree correlation,
a random subset of covariates (i.e. predictors) is selected at
each split. The parameter mtry defines the number of pre-
dictors included in this subset and should be tuned (Kuhn
and Johnson, 2013). The RF algorithm was implemented by
setting the number of trees to 1000 and using the “Ranger”
package (Wright and Ziegler, 2017) in R.

2.5 Support vector regression

SVR is a form of support vector machine adopted for re-
gression. From all possible solutions (i.e. estimation func-
tions) for the problem, SVR tries to obtain an estimation
function that has at most ε deviation from the response val-
ues of the training data while minimising model complexity
(Smola and Schölkopf, 2004). Thus, a symmetrical tolerance
threshold, ε-insensitivity zone, is created around the estima-
tion function (Awad and Khanna, 2015). The data vectors of
the samples that lie on the boundary of the ε-insensitivity
zone are called support vectors. The vectors lying within
the insensitivity zone are not penalised. ε is an optimisable
parameter that controls the width of ε insensitivity, alters
the model complexity, and inversely impacts the number of
support vectors (Cherkassky and Ma, 2004). Moreover, the
trade-off between model complexity and tolerance of ε de-
viation is controlled by a parameter named C (Smola and
Schölkopf, 2004; Cherkassky and Ma, 2004). Optimising the
C parameter has a crucial impact on SVR performance be-
cause a high C can lead to overfitting, whereas a low C can
cause underfitting (Kuhn and Johnson, 2013). The use of ker-
nel functions makes SVR a powerful tool for nonlinear prob-
lems. By implementing these functions, SVR can map the
data space to a higher-dimensional space where a nonlinear
problem can be solved linearly. In this study, the radial ba-
sis function (RBF) kernel was used with gamma (γ ) as its
tuneable parameter. This parameter affects the generalisation
performance of SVR by inversely controlling the influence
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of support vectors (Battineni et al., 2019). SVR was imple-
mented from the “e1071” package in R (Hornik et al., 2021).

2.6 Performance evaluation

When training a predictive model, it is important to evaluate
its generalisation performance on unseen data of the same
type (Hawkins et al., 2003). However, as the number of avail-
able samples is usually a limiting factor, the evaluation pro-
cess is often done by k-fold cross-validation (CV). There-
fore, the dataset is divided into k folds: k− 1 folds are used
for training the model, and 1 fold is used for testing. This
process is repeated k times so that each fold participates in
training and testing. However, to ensure the robustness of the
model, each model training step should be performed within
the CV. This includes finding the best parameter sets for the
chosen algorithm (Varma and Simon, 2006). Thus, the algo-
rithms in this study were applied on a stratified nested CV.

First, to ensure that the SOC distribution was represented
in the CV scheme, Germany was divided into 50 strata
using a 100 km× 100 km INSPIRE grid. Random samples
from each stratum were then taken and compiled into a
fold. This procedure was continued to create five folds and
was repeated five times, forming the outer loop of CV used
for model evaluation. A long distance between neighbour-
ing samples, 8120 m on average, prevents training and test
data from being spatially autocorrelated. As the aim was to
tune the algorithms’ parameters, the training set of the outer
loop of CV was nested, creating five folds as the inner loop
on which the parameter tuning was performed. To evalu-
ate the performance of algorithms, the root-mean-square er-
ror (RMSE; Eq. 3), the mean absolute error (MAE; Eq. 4),
and the mean absolute percentage error (MAPE; Eq. 5),
were used. Furthermore, Akaike information criterion (AIC;
Eq. 6), the Bayesian information criterion (BIC; Eq. 7), and
the percentage bias (%BIAS; Eq. 8) are also included in Ta-
ble S2 in the Supplement for a more detailed comparison.

RMSE=

√√√√1
n

n∑
i=1

(Pi −Oi)2 (3)

MAE=
1
n

n∑
i=1

(Pi −Oi) (4)

MAPE=
1
n

n∑
i=1

∣∣∣∣Pi −OiOi

∣∣∣∣× 100 (5)

AIC=−2ln(L)+ 2k (6)
BIC=−2ln(L)+ log(n)k (7)

%BIAS=
1
n

n∑
i=1

(Pi −Oi)
Oi

× 100 (8)

Here, n is the number of samples, L is likelihood, k is the
number of parameters, and Pi and Oi are the respective pre-
dicted and observed values.

Table 1. Modelling approaches.

Dataset 1: Dataset 2:
German German
agricultural agricultural
soil inventory soil inventory

and LUCAS

One-model approach AP1 AP1L

Two-model approach AP2 AP2L

2.6.1 Parameter tuning

As mentioned previously, choosing a suitable strategy for pa-
rameter tuning is a crucial step in machine learning, particu-
larly when comparing the performance of algorithms. There-
fore, two strategies were applied depending on the algorithm:
(1) a grid search for RF and (2) optimisation with the DE al-
gorithm for BRT and SVR. One major problem with applying
the grid search strategy for algorithms that comprise contin-
uous parameters such as BRT and SVR is that it is impossi-
ble to consider the whole continuous parameter space. Thus,
the parameter combination for testing should be determined.
However, this is not problematic for tuning RF in the present
case because mtry is a parameter with discrete values. The
DE algorithm however, is a stochastic approach to solve an
optimisation problem that can be applied to both continuous
and discrete parameters. This method is described in more
detail by Storn and Price (1997). Therefore, SVR and BRT
are optimised using this strategy, as the former algorithm has
continuous parameters and the latter one has both continu-
ous and discrete parameters. For the optimisation task in the
present study, the “DEoptim” R package was applied (Peter-
son et al., 2021). Table S1 shows the parameters and their
tuning range for each algorithm.

2.6.2 Variable importance

Variable importance was assessed by permutation (Ließ et
al., 2021). The values of a particular covariate in the test set
were shuffled prior to applying the respective model to elimi-
nate any predictor–response relationship present with regards
to that predictor. The variable importance corresponds to the
relative increase in the test set RMSE. This procedure was re-
peated 10 times for each covariate. The resulting values were
averaged Thus, the variable importance of each covariate in
terms of relative change in RMSE was obtained.

2.7 Modelling approaches

We followed a two-by-two strategy, resulting in four mod-
elling approaches to test the performance of the algorithms
(Table 1).

On the one hand, we only used the SOC data from the
German agricultural soil inventory and corresponding values
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from the covariates to train the models (AP1). Due to the
high variability in SOC in the agricultural soils of Germany,
we then trained two separate models for organic and min-
eral soils (AP2) to identify whether this could improve model
performance. Accordingly, the German agricultural soil in-
ventory was subdivided into mineral and organic soils using
a threshold of 87 g kg−1.

The impact of enlarging the training dataset on model per-
formance was then examined for both AP1 and AP2. Thus,
1223 depth-extrapolated samples of the LUCAS data were
added to the training sets of AP1. The corresponding mod-
elling approach was named AP1L. Moreover, the above-
mentioned threshold (87 g kg−1) was used to subdivide this
dataset, and each soil class was included in the training set
of the corresponding soil class of AP2. This modelling ap-
proach was then named AP2L.

The test sets for the model performance evaluation re-
mained the same for all four approaches to make the results
comparable. The results of the AP1 approach served as a
baseline on which the model improvement for each algorithm
in the other approaches was assessed.

3 Results and discussion

3.1 Comparison of algorithms using data from the
German agricultural soil inventory (AP1)

The range of the topsoil SOC content for the German agricul-
tural soil inventory dataset was 4 to 480 g kg−1, with a mean
of 27 g kg−1 and a median of 16 g kg−1. Figure 1 shows the
spatial distribution of the data. For the first approach (AP1),
BRT, RF, and SVR were applied to model SOC using data
from the German agricultural soil inventory. The RMSE and
MAPE indicated that SVR had a better general performance
than the other two algorithms (Fig. 2). In this respect, the
RMSE of SVR was 5 % lower than that from RF and 4 %
lower than that from BRT. Furthermore, its MAPE was 3 %
and 7 % lower than that from RF and BRT respectively. How-
ever, despite the difference in overall performance, the spatial
distribution of relative residuals indicated that all three al-
gorithms were less accurate in northern Germany compared
with the central and southern regions of the country (Fig. 3a).
This can be explained by the characteristics of the northern
region and its higher SOC variability. The northern part of
Germany is lowland that is dominated by a sandy soil tex-
ture from Pleistocene sedimentation with geomorphological
structures such as ground moraines, terminal moraines, and
aprons (Roßkopf et al., 2015). Despite general geomorpho-
logical and pedological similarities throughout the region,
(1) organic soils under agricultural use are mainly located
in the north, and (2) mineral soils with the lowest and high-
est SOC contents are located in the north-east and north-west
respectively. Therefore, the northern region of Germany has
the widest SOC range.

Consequently, the variable importance (Fig. 4a) indicated
that the map of organic soils was the most important covari-
ate. The value of the variable importance for this covariate
was 65 % in SVR, 72 % in RF, and 84 % in BRT. These val-
ues show (1) the crucial role of the map of organic soils
for the algorithms in explaining the variability in SOC and
(2) the comparatively greater importance of this predictor
and the lower variable importance of other predictors in the
BRT model compared with the SVR model. Despite the im-
portance of the organic soil map, the scatterplots (Fig. 5a)
show that all three algorithms underpredicted the SOC of or-
ganic soils and had similar heteroscedasticity patterns in their
residuals. Thus, while most residuals from mineral soils fol-
lowed the 1 : 1 line, they became more scattered in soils with
a higher SOC content. The underprediction of SOC in or-
ganic soils can be explained by their small sample size, re-
sulting in a dataset with a wide SOC range and a unimodal
distribution that leaves these soils in the tail. Consequently,
the organic soils were under-represented, and the results were
systematically pulled towards mineral soils, irrespective of
the choice of algorithm. Different studies have shown that
predicting soil properties with mineral and organic soils com-
bined can lead to an underprediction or overprediction of
one soil class, depending on the distribution of the dataset
(de Brogniez et al., 2015; Guio Blanco et al., 2018; Mulder
et al., 2016).

Although the map of organic soils was able to distinguish
between the two soil classes (i.e. between mineral and or-
ganic soil), it could not separate the mineral soils with a
low SOC content in the north-east from those with a high
SOC content in the north-west. The spatial distribution of the
residuals (Fig. 6a) showed that SVR and BRT generally un-
derpredicted the mineral soils in the north-west part of Ger-
many, whereas RF overpredicted them. Furthermore, unlike
RF and SVR, BRT appreciably overpredicted the SOC of
north-east Germany’s mineral soils, which have the lowest
SOC content (< 10 g kg−1). This result indicates that the al-
gorithms differed in their performance in mineral soils. This
difference was mainly due to the information that they ob-
tained from the land use map. As the second most impor-
tant covariate for all three algorithms (Fig. 4a), the variable
importance value for this covariate was 22 % in SVR, but it
was only 11 % in RF and 9 % in BRT. Thus, SVR exploits
more information from this covariate than RF and, partic-
ularly, BRT. Land use is one of the main drivers of SOC
variability on a national scale due to the higher SOC con-
tent in grasslands compared with croplands (Poeplau et al.,
2020a). Therefore, this covariate was able to differentiate be-
tween the soils of the north-east, which are under cropland,
and those in the north-west, which are more under grassland.
Consequently, the reliance of BRT on the map of organic
soils at the expense of land use could explain why this al-
gorithm overpredicted SOC in croplands in the north-east.
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Figure 1. Soil organic carbon content in the topsoil of two soil inventories: (a) the German agricultural soil inventory (0–30 cm) and
(b) LUCAS at its original sampling depth (0–20 cm) and (c) after depth extrapolation (0–30 cm).

3.2 Enlarging the dataset with additional soil inventories
(AP1L)

A larger soil dataset may provide additional information and,
consequently, improve model performance. This possibility
was explored in the AP1L approach by adding LUCAS data.
The SOC content of LUCAS data at their original depth
ranged from 4 to 500 g kg−1, with a mean of 30 g kg−1 and a
median of 18 g kg−1. After extrapolating the depth to 30 cm,
the new range was from 5 to 512 g kg−1, with a mean of
28 g kg−1 and a median of 17 g kg−1. The spatial distribu-
tion of LUCAS data at their original and extrapolated depths
is shown in Fig. 1.

A statistical test was performed on the residuals of mod-
els built on LUCAS data with the original and extrapolated
depths. This was done to identify whether extrapolating the
depth of LUCAS data to that of the German agricultural
soil inventory would significantly affect model performance
after their inclusion in the training set. With the Shapiro–
Wilk test rejecting the normality assumption of residuals
of all corresponding algorithms at 20 and 30 cm, the non-
parametric Kruskal–Wallis test showed no significant differ-
ence between the residuals at either depth. Thus, the extrapo-
lation of soil depth had no significant impact on data quality
when regionalising the SOC. As a result, any further change
in the performance of the algorithms after adding LUCAS
data was due to enlargement of the training dataset. The re-
sult of the algorithms at both depths can be found in the Sup-
plement (Fig. S3).

After enlarging the training set from 2278 to 3501 sam-
pling points, BRT obtained the lowest RMSE (Fig. 2a1) and
MAE among the algorithms (Fig. 2b1). A comparison of
the error metrics of corresponding algorithms from the AP1
approach with those from the AP1L approach showed that

BRT had the highest error reduction: 7 % in the MAPE and
5 % in the RMSE and MAE. Furthermore, although the er-
ror metrics of RF did not improve as much as those of BRT,
additional training points were still beneficial for this algo-
rithm. However, SVR did not follow any systematic change
using the AP1L approach. Despite a 2 % decrease in the
MAPE, the RMSE increased by 3 %, and MAE remained
unchanged. To explore the potential explanation for this be-
haviour by SVR, the residuals of mineral soils were separated
from those of organic soils. Additional samples reduced the
RMSE in mineral soils for all algorithms by between 9 %
and 13 %. However, this error increased by 9 % in the or-
ganic subset for SVR, whereas it increased by just 1 % for
RF and even decreased by 1 % for BRT. This indicated that
enlarging the training set using data with similar character-
istics had a greater influence on the systematic error of the
under-represented soil class in SVR. This influence is un-
derstandable when considering the higher optimised ε in the
AP1L approach compared with that of AP1 approach. The
higher value of ε means that the hyperplane for the training
set is less complex (Cherkassky and Ma, 2004) and, thus,
more suitable for predicting most soil samples (i.e. mineral
soils). Thus, when this hyperplane was fitted to the same test
set as that used in the AP1 approach, the generalisation per-
formance was hindered because it could not capture the vari-
ability in samples with higher SOC values (i.e. organic soils).

Further evaluation revealed that, regardless of the change
in error metrics, the relative residuals of the three algorithms
had a similar spatial pattern to their counterpart from AP1.
Thus, they all showed lower accuracy in the northern region
of Germany for similar reasons (Fig. 3b). Moreover, the scat-
terplots had a similar pattern with underpredicted organic
soils (Fig. 5b). This confirmed that, when organic soils are
modelled with mineral soils, enlarging the training set does
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Figure 2. Performance indicators of the three algorithms: the (a) the RMSE (g kg−1), (b) the MAE (g kg−1), and (c) the MAPE (%) for
the one-model approach (without LUCAS data, AP1, and with LUCAS data, AP1L) versus the two-model approach (AP2 and AP2L). The
whiskers of the boxplots show 1.5 times the interquartile range. Please note that the y axis is shortened for better visibility and does not
display a zero. The abbreviations used in the figure are as follows: BRT – boosted regression trees, RF – random forest, and SVR – support
vector regression.

not provide enough information for BRT nor RF to capture
the high variability in SOC, particularly in the north of Ger-
many.

3.3 Subdividing soil inventories into mineral and organic
subsets (AP2 and AP2L)

As outlined in the sections above, the modelling of the SOC
content when mineral and organic soils were combined led to
a systematic underprediction of soils with higher SOC values
by all three algorithms, irrespective of the number of train-
ing samples. Therefore, by implementing the AP2 approach
with two models, one for mineral soils and one for organic
soils, a noticeable improvement in the performance of all al-
gorithms was observed (Table S3B), with SVR showing the
best error metrics (Fig. 2a6, b6, c6). This meant a 34 % lower
RMSE, a 30 % lower MAE, and a 32 % lower MAPE than
when this algorithm was trained using the AP1 approach with

one model for all soils. As the high variability in SOC was
initially hard to capture, the subdivision of the dataset pro-
vided a range that better represented each soil class. This was
particularly beneficial for mineral soils (ranging from 4 to
85 g kg−1) because the number of samples did not decrease
drastically (only by 99 samples). Thus, the algorithms could
better capture the relationship between SOC and covariates.
Consequently, the overall performance improved when the
under-represented soil class was modelled separately. This is
in line with the study of Rawlins et al. (2009), who recom-
mended the separate modelling of mineral and organic soils.

Nonetheless, following the AP2L approach with addi-
tional data, the RMSE and MAPE of the algorithms im-
proved by less than 2 % compared with AP2 (Table S3E).
However, the greatest change was observed in the MAE of
SVR, which showed a 2 % improvement. Therefore, addi-
tional training samples did not greatly influence the perfor-
mance because the majority of these samples were in mineral
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Figure 3. Spatial distribution of relative residuals for (a) the AP1 approach, (b) the AP1L approach, (c) the AP2 approach, and (d) the AP2L
approach. The abbreviations used in the figure are as follows: BRT – boosted regression trees, RF – random forest, and SVR – support vector
regression.
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Figure 4. Variable importance in terms of average relative change (%) in RMSE for (a) AP1, (b) a mineral soil subset of AP2, and (c) an
organic soil subset of AP2. The full name for each abbreviation on the y axis is presented in Table S4. The abbreviations used in the headings
are as follows: BRT – boosted regression trees, RF – random forest, and SVR – support vector regression.
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Figure 5. Scatterplot of residuals for (a) the AP1 approach and mineral and organic soils of AP2 and for (b) the AP1L approach and mineral
and organic soils of AP2L. The abbreviations used in the figure are as follows: BRT – boosted regression trees, RF – random forest, and SVR
– support vector regression.
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Figure 6. Spatial distribution of residuals for (a) the AP1 approach, (b) the AP1L approach, (c) the AP2 approach, and (d) the AP2L
approach. The abbreviations used in the figure are as follows: BRT – boosted regression trees, RF – random forest, and SVR – support vector
regression.
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soils, while the limiting factor was the high variability in or-
ganic soils combined with the low number of samples for
this soil class. However, an improvement was noted in rela-
tion to all error metrics of SVR in the AP2L approach. This
contrasted with when the training set was enlarged without
subdividing the data (i.e. AP1L). Therefore, it further con-
firmed that it is more important for SVR (than for BRT or
RF) to model the soil classes separately when the training set
is enlarged by datasets with similar characteristics.

Furthermore, the improvement in the algorithms in AP2
and AP2L was particularly noticeable in their relative resid-
uals. By comparing these results with those from AP1 and
AP1L, it was evident that the greatest improvement was ob-
served in the northern region, and the spatial distribution
of relative residuals was more homogenous throughout the
country for all algorithms, although particularly for RF and
SVR (Fig. 3c, d). This is understandable because, by sub-
dividing the data, the algorithms can no longer exploit any
information from the map of organic soils regarding the spa-
tial variability in SOC in mineral soils. Thus, they obtain in-
formation from other covariates for this soil class (Fig. 4b).
Although land use and total nitrogen were still among the
most important variables for the algorithms in mineral soils,
the importance of the predictors representing the SCOR-
PAN C and P factors increased in the absence of an organic
soil map. This was to be expected because north-east Ger-
many, for example, has a continental climate (Roßkopf et
al., 2015) and young moraine landscapes, whereas the north-
west has a more oceanic climate (Roßkopf et al., 2015) with
old moraine landscapes.

It is unsurprising that all the algorithms still relied on
the map of organic soils to explain SOC in the organic soil
class. However, while SVR and RF obtained information
from other covariates, the variable importance value of this
map alone was 93 % in BRT (Fig. 4c), which makes this al-
gorithm prone to greater errors, as can be seen from its er-
ror metrics (Table S2). Similar to mineral soils, the order of
covariates was different between the algorithms in organic
soils. In other words, in AP1, the three algorithms obtained
almost all of the information from the map of organic soils,
land use, and total nitrogen in that order of importance. In
contrast, after subdividing the data, the algorithms differed
from each other with respect to the order of the variable im-
portance of covariates (Fig. 4).

A comparison of the error metrics of each soil class in AP2
with their respective counterparts in AP2L revealed that the
additional 1177 samples had a minor influence on the per-
formance (from 0 to a maximum of 2 %) of the algorithms in
mineral soils (Table S2). These results indicated that the Ger-
man agricultural soil inventory offers a good representation
of the spatial variability in SOC in mineral soil under agri-
cultural use throughout the country and that the inclusion of
more sample points did not provide additional information
about SOC variability in this soil class.

Table 2. Means of the error metrics of the three models for each
approach.

Approach Mean RMSE Mean MAE Mean MAPE
(g kg−1) (g kg−1) (%)

AP1 32.6 12.3 49.0
AP1L 32.1 12.1 46.9
AP2 21.6 8.8 34.4
AP2L 21.3 8.7 34.3

However, 46 additional organic soil samples from the LU-
CAS dataset improved the MAPE and MAE by 12 % and 6 %
for SVR, by 10 % and 4 % for RF, and by 7 % and 2 % for
BRT respectively, but the RMSE of the three algorithms was
improved by less than 2 %. Thus, additional organic samples
mainly influenced the average magnitude of the error. This
could be explained by organic soils having a wide range of
SOC values and by the number of samples being limited.
Thus, the addition of LUCAS data to the training set gave
the algorithms more information about the spatial variability
in SOC in this soil class. Despite this limitation, SVR had the
best overall performance among the algorithms in AP2 and
AP2L. It should be noted that training samples must span
the complexity of the parameter space in order for the model
to be able to match the training data effectively and gener-
alise unseen data. Therefore, a small sample size can nega-
tively influence the predictive power of the algorithms. This
complexity can be addressed by structural risk minimisation
(SRM) (Al-Anazi and Gates, 2012). Implementation of SRM
makes SVR capable of performing well on such datasets.
Other studies have compared the performance of algorithms
on different sample sizes with respect to predicting soil prop-
erties and have shown that SVR is one of the best choices, if
not the best, when the number of samples is a limiting factor
(Al-Anazi and Gates, 2012; Khaledian and Miller, 2020). In
contrast, in a study by Zhou et al. (2021), 150 samples with
different sets of covariates at different resolutions were used
to compare RF, BRT, and SVR to predict the SOC content in
Switzerland. Their results showed that the algorithm with the
best performance varied depending on the resolution and co-
variates. However, the best performance throughout all sce-
narios was obtained by BRT. The discrepancy between their
results and the results of the present study may be due to the
parameter-tuning method of the algorithms, as they only used
grid search or other factors, including the spatial distribution
of samples or the chosen set of covariates.

Overall, the change in performance across different sam-
ple sizes, different algorithms, and different approaches (Ta-
ble S3) indicated that the most important aspect of mod-
elling the SOC content of German agricultural topsoil is a
two-model approach. Although combining soil inventories
for more training samples can possibly improve model per-
formance, the effect was not noticeable compared with when
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Figure 7. Spatial prediction of the SOC content (g kg−1) of German agricultural soils based on the two-model approach for the three
algorithms (BRT AP2L, RF AP2L, and SVR AP2L). The abbreviations used in the figure are as follows: BRT – boosted regression trees, RF
– random forest, and SVR – support vector regression. It is important to note that the provided spatial prediction of the SOC content must
not be used to identify the organic soils of Germany nor to determine their spatial distribution.

each soil class was predicted by its dedicated model (Ta-
ble S3B, D). The advantage of two-model approach can also
be seen in the average error metrics of the three models (Ta-
ble 2). While the average RMSE of the models decreases by
less than 1 g kg−1 after enlarging the training set, the same
error metrics decrease by more than 10 g kg−1 in AP2 and
AP2L (Table 2). Therefore, it is also recommended to con-
sider the two-model approach in soil landscape settings sim-
ilar to Germany or situations where a one-model approach
cannot have good predictive performance.

The map of organic soils was used to spatially distinguish
each soil class to map the SOC content of the class using its
corresponding model. Figure 7 shows the spatial distribution
of the SOC content using the AP2L approach for the three al-
gorithms. Although SVR captured a wider range of SOC (2
to 371.5 g kg−1) than BRT (8 to 341.1 g kg−1) and RF (7.7 to
354.6 g kg−1), all three algorithms showed a relatively sim-
ilar SOC content distribution across the country. In mineral
soils, a higher SOC content is mainly found in the north-
west and the south, particularly for BRT and RF, whereas the
north-east of the country shows a lower SOC content. As ex-
plained in the previous sections, one of the main reasons for
this distribution is land use, as high-SOC-content regions are
mainly under grassland, whereas low-SOC-content regions
are under cropland. As shown in Fig. 7, organic soils are
mainly distributed in the north. Most bog peat soils are lo-
cated in the north-west, whereas fen peat soils can be found

both in the north-west and in the north-east (Roßkopf et al.,
2015). Smaller areas of all types of organic soils can be found
in the moraine landscapes and the foothills of Alps in the
south. It is important to note that the provided spatial pre-
diction of the SOC content must not be used to identify the
organic soils of Germany nor to determine their spatial distri-
bution. One reason for this is the low sample size of organic
soils and the systematic underestimation of their SOC con-
tent, which leads to an underestimation of their spatial extent.
Furthermore, the present analysis is limited to the topsoil, but
organic soils might have been mixed with mineral soil (i.e.
due to deep ploughing) or feature a mineral soil cover. Thus,
organic soils might be present despite the presence of a min-
eral topsoil. Finally, some of the data used for the derivation
of the map of organic soils are subject to improvement; thus,
modifications in spatial distribution are expected. Therefore,
this study cannot (nor does it intend to) delineate or classify
organic soils.

4 Conclusions

The three algorithms most commonly used in DSM were
applied to predict the SOC content of German agricultural
soils using different approaches. Suitable tuning strategies
for each algorithm ensured optimum parameter tuning and
made their performance truly comparable. Machine learning
was shown to be powerful at modelling SOC on a national
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scale. However, the study showed that separate modelling of
mineral and organic soils was a better approach for modelling
SOC compared with just one model. Thus, this approach
takes priority over the choice of algorithm and number of
training samples. Further testing of this approach is recom-
mended in countries and regions that cover both of these soil
classes. Nonetheless, SVR had a better performance than RF
and BRT, except when the number of samples in training
was increased by additional dataset. This was disadvanta-
geous for SVR and advantageous for BRT unless mineral
and organic soils were modelled separately. In general, in-
creasing the number of training samples led to a limited im-
provement in performance. Therefore, when adopting this
approach, consideration should be given to the algorithm and
the characteristics of the data. Furthermore, the better perfor-
mance of SVR compared with that of RF and BRT was par-
ticularly highlighted when predicting SOC in organic soils.
The good performance of SVR suggests that this algorithm
should be taken into greater account in DSM.
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