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A B S T R A C T   

With novel developments in technology, eddy covariance flux measurements have become feasible for a variety 
of trace gases. While the statistical properties and gap-filling strategies have been well examined for carbon 
dioxide, these are much less understood for other gases. 

Here, we propose a universal methodology deploying multiple gap-filling techniques and artificial gap sce
narios to evaluate the techniques’ performances, infer the statistical flux properties, and fill the real gaps in eddy 
covariance datasets of any trace gas. The methodology was implemented in a gap-filling framework with tech
niques spanning from simple and diurnal interpolations, look-up tables, artificial neural networks, to an infer
ential model. For the new scheme of half-hourly and daily artificial gaps, each additional gap was superimposed 
one at a time (thus keeping the disturbance to a minimum) for the whole dataset and the scenarios were 
resampled by bootstrapping. The gap-filled sums were then estimated from the ensemble of well-performing gap- 
filling techniques. The gap-filling framework was applied to campaign data of three different trace gases (51 days 
of ammonia, 79 days of total reactive nitrogen, and 89 days of methane flux measurements). The aggregated 
fluxes are stated as ensemble ranges of multiple techniques plus the techniques’ uncertainties. Additionally, the 
framework was used to gap-fill a full year of carbon dioxide flux measurements yielding similar performances as 
previously reported. 

Based on a review of gap-filling comparison studies and on our findings, we suggest reconsidering the standard 
procedure of using one gap-filling technique for multi-site studies. Deploying multiple gap-filling techniques and 
providing ensemble results of gap-filled sums will help to minimize the influence of a single technique and thus 
lead to a more robust flux aggregation. Furthermore, the estimated overall uncertainty will be more realistic by 
accounting for the ensemble range of multiple techniques.   

1. Introduction 

Eddy covariance has become the preferred method for continuous 
long-term monitoring of carbon dioxide (CO2) and energy exchange 
between terrestrial ecosystems and the atmosphere and allows for an 
assessment of ecosystem metabolism over time scales from hours to 
decades (Baldocchi, 2019; Odum, 1969; Vernadsky, 1998). The inte
gration of eddy covariance datasets with biometeorological drivers en
ables researchers to investigate how plants respond to a number of 
environmental and biological forcings such as light, temperature, water 
availability, and phenology (Brümmer et al., 2012; Brümmer et al., 
2008; Keenan et al., 2014; van Dijk et al., 2005) as well as how the 
metabolism of whole ecosystems is responding to longer term trends in 
the environment; these include changes in atmospheric nitrogen depo
sition (Fernández-Martínez et al., 2014; Fleischer et al., 2013; Magnani 

et al., 2007), rising CO2 concentration and temperature (Keenan et al., 
2013), or rather episodic disturbances such as wind throws (Lindauer 
et al., 2014), insect infestation (Brown et al., 2010), and heat waves 
(Graf et al., 2020). 

A global network of long-term CO2 and water vapor flux measure
ments has existed since the late 1990s (Baldocchi et al., 2001) and flux 
towers are nowadays organized in continental-scale research in
frastructures like the Integrated Carbon Observation System (ICOS) in 
Europe (Heiskanen et al., 2022) or the National Ecological Observation 
Network (NEON) in the US (Metzger et al., 2019) using standardized 
processing tools (Pastorello et al., 2020). However, continuous eddy 
covariance measurements of other trace gases like methane (CH4) or 
nitrous oxide (N2O) and air pollutants like ammonia (NH3) or nitrogen 
oxides (NOx) have largely remained experimental due to the technical 
complexity and large equipment and operational costs involved 
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(Flechard et al., 2011). 
Recent technological advancements in the use of tunable diode laser 

absorption spectrometers (TDLAS) and quantum cascade lasers (QCL) 
resulted in accurate analytical devices with high precisions and fast 
response times, enabling eddy covariance measurements of field-scale 
N2O and CH4 fluxes (Denmead et al., 2010; Neftel et al., 2010; Tang 
et al., 2018). A steadily rising number of campaigns using harmonized 
setups and data processing (Nemitz et al., 2018) offers the opportunity 
to synthesize findings of Non-CO2 greenhouse gases (Knox et al., 2019) 
to improve the understanding of land surface-atmosphere interactions 
and ecosystem functioning in a broader context. 

Eddy covariance flux measurements of NH3 (Famulari et al., 2004; 
Sintermann et al., 2011; Zöll et al., 2016) and other reactive nitrogen 
(Nr) compounds (Ammann et al., 2012; Brümmer et al., 2013; Wintjen 
et al., 2022) have been extremely limited in numbers and are subject to 
substantial uncertainty due to challenging fast-response detection 
(Marx et al., 2012), issues regarding inlet design, sampling losses, and 
air column chemical reactions for highly reactive and soluble Nr species 
(Horii et al., 2006; Horii et al., 2004). With recent progress in accounting 
for high-frequency losses (Wintjen et al., 2020) and highlighting op
portunities for a more robust atmospheric deposition monitoring and 
modeling (Schrader et al., 2020), a closer coupling between research 
dealing with inert greenhouse gases and reactive nitrogen species is 
expected. 

Regardless of the species of interest, all eddy covariance measure
ments are subject to data gaps of various lengths. Gaps arise in all sit
uations where the basic assumptions of eddy covariance theory – such as 
fully turbulent fluxes, a uniform and horizontal footprint, the average of 
fluctuations equaling zero, and negligible density fluctuations (Aubinet 
et al., 2012) – are violated. Other reasons for missing data may be in
strument failures or implausible spikes in the data of unknown origin. 
The gaps in the eddy covariance datasets need to be filled in order to 
calculate sums of the fluxes over certain time periods. Reliable sums are 
required to provide accurate estimates of whole ecosystem greenhouse 
gas budgets, which form the basis for assessing land management 
practices and for developing climate-related conservation guidelines. 

For CO2, a multitude of gap-filling techniques has been developed 
with a first comparison of three methods in Falge et al. (2001), fifteen 
different techniques in Moffat et al. (2007), and nine techniques in a 
newer study by Mahabbati et al. (2021). With Non-CO2 eddy covariance 
measurements coming up and advances in computer science, the use of 
different machine learning techniques has been explored predominantly 
for CH4 (Irvin et al., 2021; Kim et al., 2019). Even for CO2, new 
gap-filling techniques are still being developed, usually not aiming 
purely at gap-filling the fluxes but also providing robust uncertainty 
estimates (e.g. Menzer et al., 2013; Vitale et al., 2019b; Wang et al., 
2015). The uncertainty of the measured eddy covariance fluxes is largely 
due to a random measurement error (Hollinger and Richardson, 2005). 
This error can be determined from the residuals of the gap-filled fluxes 
(Richardson et al., 2008). An additional source of uncertainty is induced 
by the gap-filling itself. 

Gap-filling means reconstructing the missing flux measurements in 
the time series. A gap-filling technique makes use of the information 
contained in the existing flux and ancillary measurements and the 
available techniques cover a wide range of methods such as interpola
tion, parameterization of semi-empirical equations, modeling of un
derlying processes, and machine learning. The main source of 
uncertainty and critical error for the sums of the gap-filled flux time 
series is the systematic error. Even small but systematic offsets in the 
gap-filled fluxes will add up linearly over the aggregated time period. 
The gap-filling performance of a single technique can be estimated by 
inserting additional artificial gaps (e.g. Falge et al., 2001; Moffat et al., 
2007; Richardson and Hollinger, 2007) or statistical inference (e.g. 
Menzer et al., 2013; Vitale et al., 2019b; Wang et al., 2015). However, 
the error bounds found for the techniques often underestimate the dif
ferences found between the gap-filled annual sums, see Appendix A.2.1. 

The reason is that the gap-filling error is not only dependent on the 
general performance of the gap-filling technique but highly influenced 
by the specific characteristics of fluxes and real gaps in the dataset: the 
site properties (e.g. climate, footprint, sensors, and setup), the 
ecosystem (e.g. type, species, soil, seasonality, management), the flux 
characteristics (e.g. magnitude of the flux, noise level, diurnality, gas 
concentration, storage), the availability of ancillary data (e.g. mea
surements of air and soil meteorology, radiation, vegetation parame
ters), and the type of gaps (e.g. position, length, amount). Some of these 
factors vary not only from site to site but also from year to year. Besides, 
though the gap-filling techniques interpolate the fluxes in time, recon
structing the missing data may require extrapolating to conditions not 
represented in the measured data used for the gap-filling. Since each 
technique will be differently affected by the specific dataset character
istics and the degree of extrapolation, the choice of the gap-filling tech
nique has a large impact on the annual sum estimates. Falge et al. (2001) 
already emphasized the need to standardize gap-filling methods to 
improve the comparability of flux data products across sites. 

To improve the comparability of the gap-filled sums, one approach is 
to use the most suitable gap-filling technique for each dataset. A tech
nique geared specifically to the dataset characteristics mentioned above 
usually has the lowest error in absolute terms and hence yields very 
reliable sums. This is the main reason for many site PIs to develop their 
own gap-filling routines and also for the development of new techniques 
in general. Usually meta-comparisons across single site papers are based 
on sums obtained with different gap-filling techniques. 

Since this procedure is not feasible for large multi-site studies, the 
common practice for inter-site comparisons has been the approach to 
choose one gap-filling technique with an overall good performance and 
ease of implementation (e.g. in the two FLUXNET datasets Drought, 
2018; Pastorello et al., 2020). However, the comparability of the esti
mated sums is only improved if using one gap-filling technique reduces 
the relative error of the gap-filled annual sums between sites. 

Revisiting reported annuals sum estimates of CO2 of Moffat et al. 
(2007) in Appendix A.2.2 shows that the mean difference in annual sums 
for the same technique between sites is very similar to the mean dif
ference for the same site between techniques. The same gap-filling 
technique might even have a large underestimate one year and a large 
overestimate the next year at the same site. As far as we know, the po
tential advantage that using one technique reduces the relative errors 
has not been proven. 

Besides, even if the relative errors were reduced, the absolute values 
of the gap-filled fluxes and annual sums are usually used in the further 
analysis and discussed in the results. The reported uncertainty of the 
gap-filled sums needs to properly account for the gap-filling uncertainty. 
A more generic gap-filling error can only be quantified using a wide 
range of techniques and datasets. For CO2, Moffat et al. (2007) only 
quantified this error on a small subset of sites of six forested ecosystems. 
The effect of the position of longer gaps has been investigated on the 
same subset of sites but only for one gap-filling technique (Richardson 
and Hollinger, 2007). For CH4, Kim et al. (2019) quantified the 
gap-filling error spanning multiple techniques for each of the site years. 
Generally speaking, this generic gap-filling error needs to be quantified 
for a wider scope of sites differing in dataset characteristics or even 
better specifically for each dataset. Moreover, for a lot of the trace gases, 
the suitability of different gap-filling techniques has to be evaluated in 
the first place. 

To address these needs, we suggest that rather than to use only one 
technique for gap-filling, an ensemble of gap-filling techniques should be 
implemented. For this, we propose a methodology of a universal gap- 
filling framework which can be commonly applied to any kind of eddy 
covariance dataset. In this manuscript, the methodology has been 
implemented deploying different types of gap-filling techniques, boot
strapping artificial gap scenarios, and using model residuals for the 
statistical analysis. This allows evaluating the performance of the tech
niques, quantifying the generic gap-filling error for each dataset, and 
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reporting ensemble sums plus uncertainties. The usefulness and uni
versal applicability of such a gap-filling framework will be demonstrated 
on four eddy covariance datasets of different trace gases. The multiple 
gap-filling tool and code developed for this manuscript are publicly 
available at https://doi.org/10.18160/R6S5-47J1. 

2. Methods and materials 

2.1. Methodology 

Here, we propose a new methodology to gap-fill fluxes and estimate 
the uncertainty in any kind of eddy covariance dataset1. The term 
methodology is used since it describes a universal framework with an 
interchangeable set of specific methods. The steps of the methodology 
are as follows:  

1 Choice of data: Select the subset of half-hourly eddy fluxes with very 
high quality according to established quality control methods (e.g. 
Mauder and Foken, 2006) and flag the other data points in the time 
series as gaps. If discontinuities during the measurement period exist 
(such as significant modifications in the experimental setup, major 
changes in the ecosystem state e.g. due to harvest or fire, substantial 
gaps of more than two weeks), it may be advisable to split the dataset 
and fill the subsets prior and subsequent to the event separately.  

2 Suite of gap-filling techniques: To encompass the effect of the 
choice of the gap-filling technique on the specific dataset charac
teristics, choose a suite of techniques of different type and 
complexity like simple interpolations, look-up tables, regression 
methods, machine learning algorithms, or mechanistic models.  

3 Artificial gap scenarios: Generate multiple scenarios of artificial 
gaps and fill these with the suite of gap-filling techniques. 

4 Statistical properties: Analyze the model residuals, i.e. the differ
ence between the observed and predicted data points, to evaluate the 
performance of the gap-filling techniques and to infer the statistical 
properties of the eddy covariance dataset. The evaluation of the gap- 
filling technique depends on the purpose of the gap-filled dataset. For 
aggregating fluxes, the basic requirement of a gap filling technique is 
a small bias error centered around zero.  

5 Multiple gap-filling of real gaps: Use all gap-filling techniques with 
acceptable performance, i.e. fulfilling the basic requirements, to fill 
the real gaps in the dataset. The fluxes are aggregated over the 
designated periods for each technique.  

6 Ensemble results: Report the results of the gap-filling ensemble, i.e. 
of the multiple sums, plus the uncertainties.  

7 Scope of the results: The obtained results are trace gas and dataset 
specific and depend on the properties of each site (e.g. climate, 
footprint, sensors), the ecosystem (e.g. type, seasonality, manage
ment), the flux characteristics (e.g. magnitude, noise level, diurnal
ity), the availability of ancillary data (e.g. meteorology, gas 
concentration, ecosystem state), and the real gaps (e.g. position, 
length, amount). 

This manuscript describes an implementation of this methodology 
and its application to eddy flux datasets of four different trace gases. 

2.2. Dataset and site descriptions 

Eddy covariance flux datasets from measurement campaigns of three 
different trace gases were chosen as examples of the proposed meth
odology: ammonia (NH3), total reactive nitrogen (tNr), and methane 
(CH4). Additionally, one annual dataset of carbon dioxide (CO2) 

measurements from Moffat et al. (2007) was included for comparison 
with the former gap-filling results. Each dataset was set up and pro
cessed specific to its properties in the multiple gap-filling tool (see 
Appendix A.1). An overview with respect to their gap-filling properties 
and settings is provided in Table 1 and details on the distributions of 
gaps can be found in Fig. 2, 6, 10, and 14. The few short gaps in the 
ancillary micrometeorological and concentration measurements were 
pre-filled by linear interpolation. In cases where the datasets were 
separated into daytime and nighttime data, the threshold of the global 
radiation for daytime was set to 5 W m− 2. 

2.2.1. NH3 – Bourtanger Moor 
Turbulent exchange fluxes of ammonia (NH3) were measured above 

an ombrotrophic peatland in Northwestern Germany (“Bourtanger 
Moor”) at 52◦39′21′ ′ N and 7◦11′00′ ′ E from February to May 2014 using 
the eddy covariance technique. Vegetation at the site mainly consisted 
of bog heather (Erica tetralix), purple moor-grass (Molinia caerulea), 
cotton grass (Eriophorum vaginatum, E. angustifolium), and a few birches 
(Betula pubescens) and Scots pines (Pinus sylvestris). Further site details 
are given in Hurkuck et al. (2014) and Hurkuck et al. (2016). 

Fast response (10 Hz) NH3 mixing ratios were measured with a 
quantum cascade laser (Mini QC-TILDAS-76, Aerodyne Research, Inc, 
Billerica, MA. USA) and vertical wind velocities with a 3D sonic 
anemometer (R3-50, Gill Instruments, Lymington, UK). A detailed 
description of the measurement setup and data processing steps is given 
in Zöll et al. (2016). 

2.2.2. tNr – Bavarian Forest 
The eddy covariance measurements of total reactive nitrogen (tNr) 

were taken above a mixed forest stand in the Bavarian Forest National 
Park, Germany, at 48◦56′33′ ′ N and 13◦25′11′ ′ E from July to September 
2016. Vegetation at the site was dominated by spruce (Picea abies, ~80% 
of the flux footprint area) and beech (Fagus sylvatica, ~20%). 

A TRANC system (Total Reactive Atmospheric Nitrogen Converter; 
Marx et al., 2012) at 30 m above ground at 10 Hz frequency using a 
custom-built converter system to nitrous oxide in conjunction with a 
chemiluminescence detector (CLD 780 TR, ECO PHYSICS AG, Dürnten, 
CH) were used to measure tNr concentrations at a frequency of 10 Hz. 
The TRANC converts all reactive nitrogen compounds to nitrogen 
monoxide (NO), which is finally analyzed in the CLD. The fast time 
response of both converter and analyzer and high conversion efficiency 
of the TRANC allowed for eddy-covariance flux estimations in combi
nation with a 3D sonic anemometer (R3-50, Gill Instruments, Lyming
ton, UK) for the vertical wind velocities. Additional information on the 
site and measurements is given in Zöll et al. (2019) and Wintjen et al. 
(2022). 

2.2.3. CH4 – Skjern Wetland 
The methane (CH4) fluxes were measured from March to May 2010 

at a site located on a floodplain close the mouth of the Skjern River in 
Western Denmark at 55◦54′46′ ′ N and 8◦24′17′ ′ E. The footprint area of 
the micrometeorological measurements is almost entirely covered by a 
restored wetland consisting of meadows, wetlands, lakes, and 
meandering water courses. The meadows are managed by both grazing 
and hay making. 

Eddy flux measurements of CH4 have been conducted at the Skjern 
site since 2008 at 7 m height with a 3D sonic anemometer (R3-50, Gill 
Instruments, UK) and a DLT-100 gas analyzer (Los Gatos Research Inc., 
Mountain View, CA, USA) which is based on the ‘off-axis integrated 
cavity output spectroscopy’ technology (OA-ICOS). Further details 
about the site, vegetation, and instrumentation can be found in Herbst 
et al. (2011). 

2.2.4. CO2 – Hainich Forest 
The eddy covariance measurements of carbon dioxide (CO2) were 

taken above a deciduous broadleaf forest at Hainich, Germany, in the 

1 The basic principles of the methodology may be applied also to flux datasets 
obtained with other technologies such as the aerodynamic gradient method for 
reactive gases. 
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year 2000. The same dataset was used in the gap-filling comparison by 
Moffat et al. (2007). 

The Hainich forest is dominated by beech (Fagus sylvatica, 65%), ash 
(Fraxinus excelsior, 25%), and maple (Acer pseudoplantanus and Acer 
plantanoides, 7%) with the flux tower located at 51◦04′46′ ′ N and 
10◦27′08′ ′ E. 

The turbulent exchange of CO2 is measured above the canopy at 43.5 
m with a 3D sonic anemometer (R3-50, Gill Instruments, Lymington, 
UK) and a LI-6262 infrared gas analyzer (LICOR, Lincoln, Nebraska, 
USA) located at the base of the tower. Further details on the instru
mentation and vegetation can be found in Knohl et al. (2003) and 
Kutsch et al. (2008). 

2.3. Gap-filling techniques 

Gap-filling techniques make use of the obvious and hidden re
lationships between the flux measurements and the ancillary data. One 
key requirement of the proposed methodology is to use different types of 
gap-filling techniques to exploit different characteristics of the datasets. 
For our analysis, we used interpolation methods, look-up tables, artifi
cial neural networks, and an inferential model. A summary with ab
breviations of the gap-filling techniques used herein can be found in 
Table 2. 

2.3.1. Simple interpolation methods 
One of the simplest methods for gap-filling is linear interpolation 

(IP_lin) between the previous and next existing data point. For small gaps 
(≤12 half-hours), the gaps are linearly interpolated. For longer gaps, a 
pure linear interpolation between half-hourly data points may lead to 
very unrealistic estimates and offsets. Therefore, longer gaps are filled 
by linear interpolation between daily means. 

Another simple interpolation is the moving average (IP_mov). The 
gaps are filled by averaging (rolling) over a window, here five half-hours 
at a time. If there are not enough data points (n<2) within the five half- 
hours, the window size of adjacent half-hours is increased in steps of two 
(5, 7, 9, 11, …) and IP_mov reapplied for the whole dataset. 

The simple interpolation methods have the advantage that any 
measurement series can be filled independently of ancillary information. 
The time series is treated as pure consecutive half-hours hhi (with index i 
= 1, …, N where N is the total number of data points). The only un
derlying assumption is that there is some relationship between the 
consecutive data points, which in a first order approximation is linear. 

2.3.2. Diurnal interpolation methods 
The main difference between the simple interpolation methods and 

the diurnal interpolation methods is that the information of the time of 
day is included. The time steps are indexed for the day d (with d = 1, …, 
Nd where Nd is the total number of days) and time of day t (with t = 1,..., 
48 for each half-hour), i.e. hhd,t . To fill larger gaps, the window size is 
not extended to adjacent half-hours but rather to half-hours at the same 
time of the previous and next day(s). 

The weighted daylight mean (WDM) was used in the analysis of the 
gap-filling comparison for estimating daily sums from incomplete data 
(Moffat et al., 2007) and will be tested here as a gap-filling technique. 
The gaps are filled with the mean of the daylight fluxes during daytime 
and with the mean of the nighttime fluxes during nighttime. The win
dow size starts with the current day. If there are not enough data points 
(n<2) in the current day, the window is increased to adjacent days in 
steps of ±1 day. 

To reduce the measurement noise, the Non-CO2 fluxes can be aver
aged over fixed time periods. Here, a fixed diurnal average (FDA_6hh) of 
three hours (0:00–03:00, …, 21:00–24:00) will be used for filling the 
gaps with the mean of these six half-hour intervals. The window size 
starts with the current day. If there are not enough data points (n<2) in 
the current day, the window is increased to adjacent days in steps of ±1 
day. 

For the moving diurnal average (MDA_5hh), the gaps are first filled 
with the moving average of ±1 hour, i.e. 5 half-hours in total. 
The window size starts with the current day and in this case is the same 
as IP_mov described above. If there are not enough data points (n<2) in 
the current day, the window size is increased to adjacent days in steps of 
±1 day. MDA is part of the marginal distribution sampling (MDS) 
(Reichstein et al., 2005) which combines this technique with a look-up 
table (see next section). 

The mean diurnal course (MDC_d3) after (Falge et al., 2001) con
siders solely the current half-hour and starts with a window size of ±3 
days. If there are not enough data points (n<2) in these seven half-hours, 
the window is increased in steps of ±3 days. Additionally, the same 
algorithm is performed with a window size of ±7 days (MDC_d7). 

All these methods take advantage of the fact that the observed net 
fluxes are the result of biological processes that often exhibit a diurnal 
course. These techniques are based on the time stamp and can be used 
without any ancillary measurements. Only WDM additionally needs the 
information of daylight; though if no radiative measurements are 
available, the potential radiation calculated from latitude and longitude 
can also be used. 

Essentially, the diurnal interpolation methods are simple look-up 
tables with the fluxes binned to certain times of day(s). 

2.3.3. Look-up tables 
A more sophisticated approach to “look-up” the values is by binning 

the fluxes depending on correlated variables (Falge et al., 2001; Reich
stein et al., 2005). For the look-up table (LUT) with one independent 
variable V1, the gaps are filled with the mean (i.e. bin-average) of all 
fluxes within a certain range of V1 and a window size of ±3 days 
(LUT_V1_d3). If there are not enough data points (n<2) in these seven 
days, the window size is increased in steps of ±3 days. Additionally, the 
same algorithm is performed with a window size of ±7 days 
(LUT_V1_7d). As a refinement of the look-up, the number of independent 
variables is increased to two (LUT_V1V2_3d & LUT_V1V2_7d) and then 
three (LUT_V1V2V3_3d & LUT_V1V2V3_7d). 

The look-up tables exploit the correlations between the fluxes and 
the ancillary measurements of gas concentrations and climatic condi
tions. The best choices of the independent variables are the ones with 
highest correlation and only little gaps. For carbon fluxes, light, tem
perature, and humidity are sufficient variables since these are the main 
drivers of ecosystem respiration and photosynthesis. For Non-CO2 gases, 
the main drivers of the fluxes may not be known and other variables like 
concentration might be correlated but not necessarily drivers. Here, the 
variables with highest (nonlinear) correlations were pre-determined for 
each dataset using the ANN approach described in Moffat et al. (2010).2 

The choice of input variables for the four datasets is provided in Table 1. 
Using more dependent variables for the look-up table means more 
similar conditions during the flux measurements but less available data 
points for filling the gap. The bin width is also a trade-off between the 
similarity of the conditions and the availability of flux measurements. 
Analog to typical margins used for CO2, (e.g. in the MDS algorithm 
described below), the total range of a variable divided by roughly 
sixteen was taken as the bin width. 

The MDS algorithm (Reichstein et al., 2005; Wutzler et al., 2018) is a 
gap-filling scheme based on two gap-filling techniques, LUT and 
MDA_5hh (Section 2.3.2). The first two steps of the MDS sampling 
scheme are a look-up table with three independent variables 

2 The principles for finding input variables with the highest correlations 
described in Moffat et al. (2010) based on ANNs can be adopted using this 
gap-filling framework based on LUT: The higher the correlation between vari
ables and fluxes, the higher the R2 gap-filling performance (Eq. 2) of the LUT. 
By systematically using different sets of depending variables and determining 
the LUT R2 performance, the input variables yielding the highest correlations 
may be identified. 
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(LUT_V1V2V3_d7) with first ±7 and then ±14 days. This is followed by 
steps of LUT_V1_d7, several MDA_5hh and again LUT_V1V2V3_d7 for 
pre-defined time windows (of up to ±210 days). MDS is used as a 
standard gap-filling technique in FLUXNET (e.g. Drought, 2018; Pas
torello et al., 2020) and in the freely available REddyProc tool. For 
comparison with MDS, the same LUT variables and ranges (Rg ±50, Ta 
±2.5, VPD ±5.0)3 as in the online REddyProc tool4 were also applied to 
each dataset in LUT_MDS. 

The MDS algorithm is very flexible in term of missing data not only in 
the fluxes but also in the three independent ancillary variables. How
ever, if these variables are complete, then the gaps in the fluxes are 
mainly filled during the first step of the MDS algorithm plus a few more 
during the second step, i.e. with a look-up table LUT_V1V2V3_d7. Since 
for the four trace gas datasets the ancillary variables have been pre- 
filled, almost all artificial and real gaps were filled during the first 
(>96%) and then second (>98.5%) step. Hence, applying LUT_MDS very 
closely resembles applying the full MDS algorithm for the datasets pre
sented here. 

For some techniques, a few (longer) gaps could not be filled. These 
half-hours were excluded from the performance statistics to compare the 
same subset of data points. Generally, to optimize the gap-filling per
formance and to overcome problems like unfilled gaps, the different 
techniques can be combined as in the REddyProc tool. However, since 
for this study, our goal was to test their applicability in the first place, 
each gap-filling technique was applied individually. Only in the end, 
when calculating the total sums, the still missing half-hours were filled 
with MDA_hh5 as the default technique. 

2.3.4. Artificial neural networks 
An artificial neural network (ANN) is a purely empirical nonlinear 

regression model and can also be considered a look-up table with mul
tiple independent variables and continuous bins but one window for the 
full dataset. The ANN algorithm used is based on the classical back- 
propagation algorithm. The training of each network is performed by 
propagating the input data through the nodes via the weighted con
nections and then back-propagating the error and adjusting the weights 
so that the ANN output optimally approximates the fluxes. Each ANN 
training was repeated ten times and the modeled results were averaged. 
Details on the training algorithm and the C++ framework can be found 
in Moffat (2012). 

For a better comparison with LUT, the ANNs were first trained with 
the same three variables as used for LUT_V1V2V3 (see Table 1). 
Additionally, the ANNs were trained with all available input variables 
(ANN_all). (No additional inputs like fuzzies for the season were 
generated, since the three Non-CO2 datasets were spanning only two to 
three months.) 

After having been trained on a specific dataset, an artificial neural 
network maps the underlying dependencies of the fluxes from the pro
vided input variables. No prior knowledge is required for these self- 
learning algorithms but ANNs have the disadvantage that complete 
and evenly scalable input data is required. Other machine learning al
gorithms could be added to the suite of gap-filling techniques, e.g. 
support vector machines or random forests. The latter are more flexible 
in dealing with gaps or outliers in the input data and have been shown to 
match or even outperform ANNs on CH4 (e.g. Irvin et al., 2021). 

2.3.5. Inferential model 
Complex models can also be used for gap-filling biosphere-atmo

sphere fluxes. As an example, we included modeled fluxes of NH3 using 
an inferential model after Nemitz et al. (2001). For the unmanaged site 

Bourtanger Moor, the ground-layer of the two-layer canopy compensa
tion point model was switched off and the model was run in a one-layer 
configuration. The average annual total (wet and dry) N input, as a 
driving parameter for the stomatal emission potential, was estimated to 
be around 25 kg N ha− 1 yr− 1 (Hurkuck et al., 2014). The aerodynamic, 
quasi-laminar, and cuticular resistances were parameterized as 
described in Massad et al. (2010) for “semi-natural/moorland ecosystem 
type”, and the stomatal resistance was parameterized after Wesely 
(1989). The modeled NH3 fluxes at Bourtanger Moor are further dis
cussed and compared to measurements in Zöll et al. (2016). Meteoro
logical drivers (air temperature, relative humidity, shortwave radiation, 
atmospheric pressure, friction velocity, and Obukhov length) and NH3 
concentrations necessary to run the model were measured at the site and 
averaged to half-hourly values as described in detail by Zöll et al (2016). 
Relative humidity was estimated from IRGA measurements due to a 
malfunction of the dedicated relative humidity sensor. Wind speed at the 
reference height was calculated from the friction velocity and the log
arithmic wind profile for internal consistency of the model. Air tem
perature and relative humidity at the notional mean height of trace gas 
exchange were extrapolated from measured values at the reference 
height and their respective turbulent fluxes as described in Nemitz et al., 
2009. Seasonal averages of leaf area index (LAI) and canopy height were 
taken from Table 6 in Massad et al. (2010). 

As the inferential model (Model_NH3) was parameterized indepen
dently of the NH3 flux data measured at the Bourtanger Moor site, the 
artificial gap scenarios (see Section 2.4) would not influence any 
modelled results. Hence, these could be taken directly as the secondary 
dataset for the ‘hhs’ and ‘days’ scenarios. 

More types of gap-filling techniques could potentially be added to 
the analysis. One big group are nonlinear regression methods based on 
semi-empirical equations. However, these are highly trace gas specific 
(e.g. equations of respiration and photosynthesis for CO2). For other 
trace gases with sporadic flux bursts such as N2O, filling gaps in the 
datasets remains challenging (Nemitz et al., 2018). The simple and 
diurnal interpolation methods have the advantage that these require no 
additional input data as the availability of ancillary measurements in 
campaigns might be limited or the driving processes of the fluxes might 
be unknown or not directly measurable. 

2.4. Artificial gap scenarios 

To be able to compare gap-filled (predicted) with measured 
(observed) fluxes, artificial gaps are superimposed on the datasets which 
already have real gaps in their measurements. In Moffat et al. (2007), the 
position of ten percent artificial gaps were prescribed in five different 
artificial gap length scenarios with ten permutations each. Despite the 
ten permutations, the position of the additional gaps still influenced that 
analysis and only ~65%5 of the data were sampled. 

Here, we used a new procedure for superimposing the artificial gaps. 
To keep the influence of the additional artificial gaps as small as 
possible, only one artificial gap at a time is superimposed on the dataset 
and then gap-filled. Starting at the first data-point, the next artificial gap 
is placed adjacent to the previous one until the whole dataset has been 
scanned. The result is a secondary dataset where each data point in the 
time series (including the real gaps) has been gap-filled (Fig. 1). This 
way, rather than prescribing the position of the artificial gaps, all data is 
sampled and replaced with artificial gaps, i.e. 100% of the available 
data. 

Two lengths of artificial gaps were chosen: single half-hours (‘hhs’) 
and single days (‘days’). For ‘hhs’, each half-hour individually was set to 
be an artificial gap and filled. For ‘days’, each day individually set to be 
an artificial gap and filled (i.e. all the half-hours of one day). This 

3 For NH3, relative humidity was not available. Therefore, only Rg and Ta 
were used.  

4 The R package of REddyProc provides the option to also choose other 
variables and ranges. 

5 The coverage of sampling 10 times 10% of the data with replacement leads 
to a binomial distribution of: 1 − (1 − 10%)

10
=0.65 
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resulted in two secondary datasets (one for ‘hhs’ and one for ‘days’) for 
each of the gap-filling techniques. The filling of real gaps is included in 
the ‘hhs’-scenario since either an artificial gap or a real gap is filled with 
no additional artificial gaps super-imposed. 

The maximum artificial gap length was chosen to be a single day 
since this framework was primarily developed for campaign datasets 
which are typically short (weeks to months) and mostly continuous (few 
long gaps). To fill annual datasets, longer gap lengths of several days 
may be added to the artificial gap-filling scheme, again super-imposing 
one artificial gap at a time and moving through the dataset in one day 
steps to include the bias of the exact placement of the longer gap in the 
analysis. 

This scheme of superimposing only one artificial gap at a time is easy 
to implement for all gap-filling techniques where the algorithm is 
centered on the gap and filled with the surrounding information or for 
certain time windows. For algorithms based on the whole dataset for 
parameterization like ANNs (Section 2.3.4), re-training might be 
required each time. 

Here, for the ‘days’-scenarios, new ANNs were trained for each 

scenario with one day removed (strapped). As an example, for the CH4 
dataset with 89 days of data times the ten training repetitions, this 
resulted in 890 trained ANNs. However, for the ‘hhs’-scenarios, the re
sults modeled from ANNs trained on the full dataset were taken since 
dropping a single half-hour would not have changed the modeled re
sults. Each repetition of the training results in a different network and 
slightly different outputs. These differences are larger than the effect of 
dropping one out of over 1000 data points. 

2.5. Statistical properties 

2.5.1. Performance metrics 
The performance of the gap-filling techniques and the uncertainties 

of the fluxes can be estimated from the model residuals (pj − oj) where pj 

is the predicted flux and oj the observed flux of each half-hour j. An 
important metric of performance for gap-filling is the systematic error 
(bias error BE) summed over the number of predicted half-hourly fluxes 
Np: 

Fig. 2. Gap distribution for NH3 sorted by gap length. The histogram denotes the frequency of occurring gaps (gray bars), their data percentage (red bars), and the 
accumulated total gap percentage (dotted line). 

Fig. 1. Artificial gap-filling scheme.  
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BE =
1

Np

∑

Np

(
pj − oj

)
. (1) 

The coefficient of determination (R2) describes how much of the 
variance can be predicted by the techniques: 

R2 =

{∑(
pj − p

)(
oj − o

)}2

∑(
pj − p

)2 ∑(
oj − o

)2 (2)  

with overbars denoting the arithmetic mean of a variable. 
Since the probability density function of the flux residuals follows a 

Laplace distribution rather than a Gaussian (for details see Richardson 
et al., 2012; Vitale et al., 2019a), the standard deviation (SDev) was 
calculated from the mean absolute error (MAE): 

SDev =
̅̅̅
2

√
⋅MAE =

̅̅̅
2

√

Np

∑

Np

⃒
⃒pj − oj

⃒
⃒. (3)  

2.5.2. Flux errors 
The observed flux oi is the actual (true) value F plus a systematic 

error δo and a random error ϵo in the measurement (after Lasslop et al., 
2008) for each measured half-hour i: 

oi = Fi + δo,i + ϵo,i . (4) 

The predicted (gap-filled) flux pj can be stated accordingly where F is 

the true flux and δp and ϵp are the systematic and random error of the 
gap-filling technique for each predicted half-hour j: 

pj = Fj + δp,j + ϵp,j (5) 

The aggregated flux FluxSum is the sum of observed (measured) and 
predicted (gap-filled) fluxes: 

FluxSum =
∑

No

oi +
∑

Np

pj (6)  

with No denoting the number of observed half-hourly fluxes and Np the 
number of predicted half-hourly fluxes. To calculate the total uncer
tainty totUnc of the aggregated fluxes: 

totUnc = δ + ϵ , (7)  

the errors need to be propagated differently for systematic and random 
errors. 

For systematic errors δ, the fluxes are biased above or below the true 
value (accuracy), hence these errors sum up over all gap-filled half- 
hours in an ordinary sum. 

Since unknown biases in the measurements δo (e.g. through advec
tion or instrument errors) cannot be retraced afterwards, only the sys
tematic error of the predicted fluxes δp can be estimated for all gap-filled 
half-hours: 

Fig. 3. Performance measures for the ‘hhs’ (left) and ‘days’ (right) scenarios of NH3 for all gap-filling techniques. The boxplot is composed of the median (solid line), 
mean (star symbol), lower and upper quartile bounds (box), 10th and 90th percentile (whiskers), and all outliers (dots) from the 999 bootstrapping samples. 
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Fig. 4. Total sums of observed and predicted NH3 fluxes for all gap-filling techniques (left) with the sum of the observed fluxes as a baseline (blue dotted line) and for 
the ensemble only (right). The sums are plotted with bias errors (black whiskers) and random uncertainties (gray whiskers) and with the range of the ensemble sums 
(dark gray box) and their uncertainties (light gray box). 

Fig. 5. Daily sums of observed (blue) and predicted NH3 fluxes (top) and cumulated daily sums (bottom) for the gap-filling technique ensemble.  
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δ→δp =
∑

Np

δp,j . (8) 

For random errors ϵ, the fluxes are equally likely to be higher or 
lower than the true value (precision). The random errors add in quad
rature, also called ordinary least squares. The total random error on the 
FluxSum is: 

ϵ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

No

ϵ2
o,i +

∑

Np

ϵ2
p,j

√

. (9) 

As shown in Richardson et al. (2008) for CO2, the statistical prop
erties of the random uncertainty of the measurements ϵo can be inferred 
from the model residuals of the gap-filling techniques ϵp: 

ϵo ≈ ϵp . (10) 

To get an estimate of the uncertainties, the random uncertainty will 
be inferred using Eq. 10 also for the Non-CO2 fluxes. This leads to a total 
random error of: 

ϵ ≈

̅̅̅̅̅̅̅̅̅̅̅̅̅∑

N
ϵ2

p,j

√

. (11) 

The error propagation in Eq. 9 is assuming independent random 
errors. However, the random errors of the eddy covariance fluxes are 
probably auto-correlated as has been shown for CO2 e.g. in Lasslop et al. 
(2008) and Menzer et al. (2013) using suitable statistical methods. When 
accounting for auto-correlation, the random error estimates were twice 
to three times higher than without auto-correlation (Menzer et al., 
2013). Hence, calculating the errors from the model residuals without 
being able to account for measurement biases and for auto-correlations 
in errors, poses a lower limit on the estimated uncertainties. 

2.5.3. Bootstrapping 
Having secondary datasets with each half-hour as artificial gaps al

lows to explore any number of scenarios by bootstrapping sub-samples 
(Efron and Tibshirani, 1994). One bootstrap sample is one artificial 
gap scenario. Here, rather than having 10 fixed permutations as in 

Fig. 6. Gap distribution for tNr sorted by gap length. The histogram is drawn as 
in Fig. 2. 

Fig. 7. Performance measures for the ‘hhs’ (left) and ‘days’ (right) scenarios of tNr for all gap-filling techniques. The boxplot is drawn as in Fig. 3.  
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Fig. 8. Total sums of observed and predicted tNr fluxes for all gap-filling techniques (left) with the sum of the observed fluxes as a baseline (blue dotted line) and for 
the ensemble only (right). For details on the plot see Fig. 4. 

Fig. 9. Daily sums of observed (blue) and predicted tNr fluxes (top) and cumulated daily sums (bottom) for the gap-filling technique ensemble.  
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Moffat et al. (2007), 999 artificial gap scenarios were randomly sampled 
with replacement. The size of the subsets affects the variance between 
bootstrapping samples; fifty percent was chosen as a rough typical 
percentage of gaps in a dataset. 

When bootstrapping the ‘hhs’- scenarios, randomly distributed half- 
hours were picked for the sub-samples. To include the effect of daily 
gaps in terms of placement and length, the half-hours of randomly 
distributed full days were picked for the ‘days’ scenarios. The boot
strapping was performed on three subsets of data: only ‘daytime’ data, 
only ‘nighttime’ data, and all data (‘fulltime’). This resulted in two 
(‘hhs’, ’days’) times three (‘daytime’, ’nighttime’, ’fulltime’) times 999 
bootstrap samples. For each of these artificial gap scenarios, the three 
performance metrics described in Section 2.5.1 were calculated from the 
model residuals of the gap-filling technique. 

As mentioned in Section 2.3.3, a few (longer) gaps could not be filled 
by some of the techniques. These data points were removed from the 
analysis in order to compare the same (sub)set of data across all tech
niques. Hence, only artificial gaps filled with the complete suite of gap- 
filling techniques were used for bootstrapping. 

2.5.4. Uncertainties of the aggregated fluxes 
To get estimates of the uncertainty for the aggregated fluxes, the total 

random uncertainty ϵ on the FluxSum (Eq. 11) was calculated from the 
mean of the standard deviation SDev of the model residuals obtained 
from bootstrapping artificial gap scenarios:6 

ϵ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

N⋅SDev2
√

. (12) 

Since the random error estimation requires an optimal model per
formance (where the deviation is mainly caused by the random error of 
the measurements), the SDev of the ‘hhs’ scenarios were used. 

The systematic error δ of the gap-filled fluxes was calculated from 
10% or 90% percentiles of the bootstrapping samples as in Moffat et al. 
(2007): 

δ = Np⋅max(BE10,BE90). (13) 

To account for the influence of gap length, the bias error of the ‘hhs’ 
scenarios was taken for small gaps (≤12 half-hours) and the bias error 
from ‘days’ for all longer gaps. 

2.5.5. Ensemble results of the sums 
To calculate the sums of the measured and gap-filled fluxes over the 

whole period, the real gaps in the dataset were filled. These aggregated 
fluxes were calculated for all gap-filling techniques. The gap-filling 
techniques showing a medium to good performance in terms of high 
R2, low SDev, and small BE centered around zero were used to calculate 
the ensemble results. (For MDC and LUTs with minor variants in window 
size, only the variant with ±7 days (_d7) was included in the ensemble of 
gap-filling techniques.) 

Though the gap-filling techniques were pre-chosen to be based on 
different methods, the selection was still arbitrary. Besides, their 
workings are not independent and variants have been included. There
fore, general statistics such as calculating the median cannot be applied 
and the ensemble of results are stated as the range of the sums estimated 
by the ensemble gap-filling techniques t : 

[min(FluxSumt), max(FluxSumt)]. (14) 

The difference between the lowest sum estimate and the highest sum 
estimate will be called Delta and used as a measure of the generic gap- 
filling error spanning multiple gap-filling techniques: 

Delta = max(FluxSumt) − min(FluxSumt). (15) 

For the uncertainties, the overall lowest and highest limits of the 
techniques within the ensemble were used as the confidence intervals 
(CI): 

Lower limit CI = min(FluxSumt − totUnct), (16)  

Upper limit CI = max(FluxSumt + totUnct). (17) 

Since the lower and upper limit of the sums and uncertainties are 
posed by different techniques, the lower and upper CIs are not 
symmetric. 

3. Results and discussion 

3.1. Trace gas specific gap-filling performance 

The performance of the gap-filling techniques will first be evaluated 
separately for each of the four trace gases. The main criteria for a good 
gap-filling technique are a high R2, low SDev, and small bias error 
centered around zero. Since the four different trace gas datasets have 
such different site and flux characteristics, the performance measures 
vary in absolute numbers, unit, and behavior and are not comparable 
between datasets. Therefore, the gap-filling performances have been 
rated individually in relative terms (best, medium, and low). The per
formances of the gap-filling techniques for the four trace gases can be 
found in Fig. 3, Fig. 7, Fig. 11, and Fig. 15. Details on the gap-filling of 
the artificial ‘hhs’- and ‘days’-scenarios such as time series of the 
observed and predicted fluxes, error measures when bootstrapping with 
the dataset split into daytime and nighttime data, or scatterplots for each 
gap-filling technique can be found in the supplements. 

For NH3 (Fig. 3), LUT_V1V2V3, ANN_CTR, and ANN_all have the best 
performance. These three techniques explain up to 60% of the vari
ability in the fluxes for the ‘hhs’- and ‘days’-scenarios, a mean standard 
deviation around 15 ng N m− 2 s− 1, and a bias error with 10/90-percen
tiles inside ±2.5 ng N m− 2 s− 1 centered around zero. ANN_all performs 
better than ANN_CTR hinting at (hidden) relationships with other 
drivers. 

Medium performance is shown by the following techniques: IP_lin, 
IP_mov, WDM, FDA, and MDA work well for the ‘hhs’-scenarios but have 
a lower R2 and higher SDev for the ‘days’-scenarios. 

Low performances with lowest R2, highest Sdev, and clear bias offsets 
are exhibited by MDC and LUT_MDS for the ‘hhs’- and ‘days’-scenarios 
when split into daytime and nighttime during bootstrapping (see Fig. 
S1.3 and Fig. S1.7). LUT_V1 and LUT_V1V2 also have quite large offsets 
in the bias errors when the dataset has been split. 

Fig. 10. Gap distribution for CH4 sorted by gap length. The histogram is drawn 
as in Fig. 2. 

6 This equation is essentially the same as the square-root-of-time rule used in 
Vitale et al. (2019b) as an estimate of uncertainty. 
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Fig. 12. Total sums of observed and predicted CH4 fluxes for all gap-filling techniques (left) with the sum of the observed fluxes as a baseline (blue dotted line) and 
for the ensemble only (right). For details on the plot see Fig. 4. 

Fig. 11. Performance measures for the ‘hhs’ (left) and ‘days’ (right) scenarios of CH4 for all gap-filling techniques. The boxplot is drawn as in Fig. 3.  
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For tNr (Fig. 7), the differences between techniques are less pro
nounced and even the best technique, ANN_all, explains only up to 40% 
of the variability. Overall, the two ANNs and the two LUT_V1V2V3 show 
the best performance for the ‘hhs’- and ‘days’-scenarios with a mean 
standard deviation between 17 and 25 ng N m− 2 s− 1 and bias errors with 
10/90-percentiles inside ±2 ng N m− 2 s− 1 centered around zero. 
ANN_all performs notably better than ANN_CRU hinting again at other 
(hidden) relationships. 

Medium performances have LUT_V1V2, FDA, and MDA with a small 
but clear negative offset in the bias of the ‘days’ scenario. The R2 per
formances are quite low for both, the ‘hhs’ and ‘days’ scenarios. 

Low performance is observed for the IP_lin, IP_mov, WDM, MDC and 
LUT_MDS with clear negative bias offsets. LUT_V1 with the 

concentration of tNr as the only independent variable has almost no bias 
offsets if all the data is bootstrapped, but when looking at daytime and 
nighttime separately, there is a strong bias in the ‘hhs’- and ‘days’-sce
narios (Fig. S2.3 and Fig. S2.7). The offsets disappear if radiation is 
included as an additional LUT variable which indicates that tNr fluxes 
display diurnal patterns. Though concentration measurements can be 
used for gap-filling, radiation also needs to be included as a controlling 
variable (see also Zöll et al., 2019). 

For CH4 (Fig. 11), the best overall performance is achieved by 
ANN_WTU and ANN_all with similarly good results for the ‘hhs’ and 
‘days’-scenarios. The two techniques could explain 30% to 45% of the 
variability in the fluxes, with a mean standard deviation between 7.5 
and 9 nmol m− 2 s− 1 and a bias error with 10/90-percentiles inside ±1 

Fig. 14. Gap distribution for CO2 sorted by gap length. The histogram is drawn as in Fig. 2.  

Fig. 13. Daily sums of observed (blue) and predicted CH4 fluxes (top) and cumulated daily sums (bottom) for the gap-filling technique ensemble.  
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Fig. 15. Performance measures for the ‘hhs’ (left) and ‘days’ (right) scenarios of CO2 for all gap-filling techniques. The boxplot is drawn as in Fig. 3. 
For comparison, the results from (Moffat et al., 2007) of their very short artificial gap scenarios of single half-hours have been added to the ‘hhs’ scenarios (left): the 
mean (red star) and 10th- and 90th-percentiles (red whiskers) over 10 scenarios and 18 gap-filling techniques. 

Fig. 16. Total sums of observed and predicted CO2 fluxes for all gap-filling techniques (left) with the sum of the observed fluxes as a baseline (blue dotted line) and 
for the ensemble only (right). For details on the plot see Fig. 4. 
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nmol m− 2 s− 1. 
Medium performances have IP_lin, IP_mov, WDM, FDA, and MDA. 

Though in the ‘hhs’-scenarios all five techniques even have slightly 
better performance metrics than the two ANNs (highest R2, lowest Sdev 
and small bias errors centered around zero), their performance is below 
average in the ‘days’-scenarios. The good performance in the ‘hhs’-sce
narios of these interpolation techniques indicates that the fluxes are 
gradually changing with little fast responses to driving factors. 

Low performances are found for MDC and LUT_MDS with the lowest 
R2 and highest Sdev. The fact that LUT_MDS has small bias errors but 
such a low R2 indicates that the diurnal pattern in the fluxes is not due to 
radiation but other drivers (such as ustar which reduces the bias offsets if 
taken as the third variable in LUT_V1V2V3). When the dataset is split 
into daytime and nighttime during bootstrapping (Fig. S3.3 and Fig. 
S3.7), LUT_V1, LUT_V1V2, LUT_V1V2V3, and also ANN_WTU exhibit 
large offsets in the bias errors. 

For CO2 (Fig. 15), over 80% of the variability in the fluxes can be 
explained by the gap-filling techniques. Most techniques have such a 

high R2 for the ‘hhs’- and ‘days’-scenarios with a mean standard devi
ation below 4 umol m− 2 s− 1. The bias errors have 10/90-percenticles 
inside ±0.2 umol m− 2 s− 1 but all variants of LUT exhibit clear offsets 
if split into daytime and nighttime for bootstrapping (Fig. S4.3 and Fig. 
S4.7). The R2 and SDev performances of WDM are quite low but it is the 
only technique with bias offsets centered around zero for the daytime 
and nighttime subsets. 

The two techniques IP_lin and IP_mov have a low performance with 
clear bias offsets which are even larger if split into daytime and night
time for the ‘days’-scenarios (Fig. S4.7). 

3.2. General gap-filling performance 

Though the performance of each gap-filling technique differs for the 
four different trace gas datasets (Fig. 3, Fig. 7, Fig. 11, Fig. 15), some of 
the findings can be attributed to the workings of the technique. 

The two simple linear interpolation techniques, IP_lin and IP_mov, can 
be recommended for filling small gaps (i.e. several half-hours) in 

Fig. 17. Daily sums of observed (blue) and predicted NH3 fluxes (top) and cumulated daily sums (bottom) for the gap-filling technique ensemble.  

Table 1 
Overview of gap-filling specific properties of the datasets and variables used for the look-up tables (LUTs, Section 2.3.3) and for the artificial neural networks (ANNs, 
Section 2.3.4) using the same three inputs as in the LUTs. Naming of ANN_XYZ based on first letters of the three variables used.  

Properties NH3 tNr CH4 CO2 

Days of (half-hourly) data 51 79 89 365 
Percentage of gaps 54.5 26.0 31.4 34.6 
Variable 1 C_NH3 C_Nr Wind_Direc Rg 
LUT bin width ±5.0 ppb ±0.6 ppb ±22.5◦ ±50 W m− 2 

Variable 2 Rg Rg Ts_20 Ta 
LUT bin width ±50 W m− 2 ±50 W m− 2 ±1.25◦C ±2.5◦C 
Variable 3 Ts_20 Ustar Ustar VPD 
LUT bin width ±1.25◦C ±0.1 m s− 1 ±0.1 m s− 1 ±2.0 hPa 
ANN naming ANN_CRT ANN_CRU ANN_WTU — 

(C_NH3 – concentration of NH3, C_Nr – concentration of total reactive nitrogen, Rg – global radiation, Ta – air temperature, Ts_20 – soil temperature in 20 cm depth, 
Ustar – friction velocity, VPD – vapour pressure deficit). 
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datasets with fluxes with little or no diurnal cycle and non-sporadic 
fluxes. However, for fluxes with a strong diurnal cycle such as CO2, 
the two techniques are not suitable, exhibiting strong offsets in the bias 
errors. For the three other trace gases, these two techniques are among 
the best in the ‘hhs’-scenarios (high R2, low SDev, and small, centered 
bias errors). For NH3 and CH4, they even show a medium performance 
for the ‘days’-scenarios (though with a strong drop in performance 
compared to ‘hhs’). 

The WDM technique has been included as a new gap-filling tech
nique. The method is too simple to capture the variability of the fluxes. 
However, the bias error is as small or even a bit smaller than for the 
other diurnal interpolation methods for all four trace gas dataset, for the 
‘hhs’- as well as the ‘days’-scenarios, and also if separated into daytime 
and nighttime for bootstrapping. Since a low and centered bias error is 
crucial for a reliable aggregation of the fluxes, the weighted diurnal 
mean might be a useful technique for quick estimates of daily sums and 
can even be recommended for annual sums especially for trace gases 
with a diurnal cycle. 

The diurnal interpolation techniques differ in their performances. 
FDA and MDA, are among the best techniques for the ‘hhs’-scenarios and 
medium for the ‘days’-scenarios. In contrast, the performance of MDC is 
lowest for all three Non-CO2 trace gases (low R2, high SDev, clear bias 
error offsets). This technique cannot be recommended as a gap-filling 
technique for noisy fluxes with little diurnal cycle. The two variants of 
MDC with a window size of ±3 and ±7 days show only little differences. 

The fact that the performance of the simple interpolations, IP_lin and 
IP_mov, is better than the diurnal interpolation with MDC means that the 
correlation of the missing data (gap) to the preceding and succeeding 
half-hours (basic principle of IP_lin, IP_mov) is higher than to the half- 
hour at the same time of day from the preceding and succeeding day 
(basic principle of MDC). By combining these two principles, the MDA 
technique matches or outperforms the other interpolation methods for 
all datasets. The performance of FDA is comparable to MDA and its good 
performance indicates that FDA may be deployed to reduce the noise 
and fill the gaps in the data at the same time. 

The LUTs work well (high R2, low SDev, small Bias) for the ‘hhs’- and 
‘days’-scenarios on all four datasets when the independent variables are 
pre-selected to have high correlations (see Section 2.3.3). The 

differences between LUT_V1V2 and LUT_V1V2V3 are small, though 
using only one variable, LUT_V1, may yield unstable results. Again, little 
difference in performances is observed between the variants ±3 and ±7 
days. 

As the MDS algorithm has been developed for CO2, LUT_MDS and 
LUT_V1V2V3 with the same set of standard variables7 show the best LUT 
performances for CO2. However, for the other three trace gases, 
LUT_MDS exhibits the lowest R2 of all LUT, the highest SDev and the 
largest bias error offset for tNr. Equivalent findings are reported using 
the MDS algorithm with different predictor subsets for CH4 (Irvin et al., 
2021; Kim et al., 2019). These results should be taken into account when 
using the online REddyProc with default variable settings2 for Non-CO2 
trace gases. 

The artificial neural networks with all drivers (ANN_all) outperform 
the other gap-filling techniques for the ‘hhs’- as well as ‘days’-scenarios. 
They were used for the Non-CO2 trace gases herein and have already 
been shown to perform best for CO2 (Moffat et al., 2007). The ANNs with 
a subset of drivers perform almost as well. The subsets were based on the 
same three drivers as LUT_V1V2V3. The two types of techniques (LUTs 
and ANNs) show similarly high performance for the ‘hhs’-scenarios of 
CH4 and NH3 but the ANNs are better for all the ‘days’-scenarios high
lighting their strength for longer gap sizes. The overall good perfor
mance of ANNs is very promising since the exact drivers of Non-CO2 
trace gases can often not be generalized due to differences in atmo
spheric composition, gas reactivity, and ecosystem dependent charac
teristics. For CH4, a variety of machine learning algorithms including 
ANNs have already been successfully deployed (e. g. Irvin et al., 2021; 
Kim et al., 2019). 

The NH3 dry deposition inferential model exhibits the largest bias 
error of all techniques and relatively low performance in the other 
metrics (comparable to the interpolation-based techniques). To a certain 
degree, a large bias error can be expected since the model was applied 

Table 2 
Overview of gap-filling techniques.  

Gap-filling technique Abbreviation Short description  

Simple interpolations (Section 2.3.1): 
Linear interpolation IP_lin Linear interpolation between previous and next existing data point 
Moving average IP_mov Moving average of five half-hours at a time  

Diurnal interpolations (Section 2.3.2): 
Weighted daylight mean WDM Mean of the daylight and mean of nighttime half-hours 
Fixed diurnal average FDA Average in steps of fixed half-hours 

(FDA_6hh, 0:00–03:00, …, 21:00–24:00) 
Moving diurnal average MDA Moving average of five half-hours at a time (MDA_5hh), extending to adjacent days 
Mean diurnal course MDC  Average of single half-hours at the same time of day 

for consecutive days, increasing in steps of 
±3 days (MDC_d3) or ±7 days (MDC_d7)  

Look-up tables (Section 2.3.3): 
Look-up table LUT  Binning depending on one, two, or three variables 

(LUT_V1, LUT_V1V2, LUT_V1V2V3, see also Table 1) 
within a certain time window of consecutive days, 
increasing in steps ±3 days (_d3) or ±7 days (_d7)  

LUT_MDS Binning depending on the same variables and ranges as the main look-up table of MDS  

Artificial neural networks (Section 2.3.4): 
Artificial neural network ANN Artifical neural networks with three variables as inputs (ANN_XYZ, see also Table 1) and with all available variables (ANN_all)  

Inferential model (Section 2.3.5): 
Ammonia flux model Model_NH3 Inferential model for the biosphere-atmosphere exchange of ammonia  

7 The set of variables was pre-determined using ANNs. Only for CO2, this 
yielded the same of the standard MDS variables (radiation, temperature, and 
VPD) with a small difference between LUT_V1V2V3_d7 and LUT_MDS_d7 in the 
setting of the VPD range of ±2.0 versus ±5.0. 
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without calibration using land-use specific parameters originally 
derived to be valid for a broad range of semi-natural ecosystems (Mas
sad et al., 2010). Site-specific calibrations of individual model parame
ters may increase the value of this model as a gap-filling tool and help 
reduce the bias error (Schrader et al., 2016; Schrader et al., 2020). 

The CO2 flux dataset has been included here for comparison with 
Moffat et al. (2007). Therein, eighteen techniques were tested on 
different artificial gap scenarios including ten ‘very short’-scenarios of 
single half-hours. The results for this specific scenario and dataset were 
added to the ‘hhs’-scenarios of Fig. 15. All techniques but the two linear 
interpolation methods not suitable for CO2 are the same or similar 
techniques as in Moffat et al. (2007). The performances of these tech
niques (R2, SDev, and bias error) are inside the ranges of Moffat et al. 
(2007) demonstrating that new artificial gap-filling scheme yields 
comparable results. 

3.3. Aggregated flux ensembles 

For each trace gas dataset, the real gaps were also filled with all 
techniques, the fluxes aggregated over the full time period and the sums 
calculated for the ensemble of medium and best gap-filling techniques 
(Table 3, with details on the calculations in Section 2.5.5). 

The NH3 fluxes summed up over the period of 51 days have a Delta of 
91 g N ha− 1 period− 1 for the gap-filling ensemble and a total confidence 
interval of 197 g N ha− 1 period− 1 (Fig. 4). The variability of the sums of 
the medium and best techniques is thus about 10% total NH3-N depo
sition. The prediction of the NH3 dry deposition inferential model is 
inside this range. Looking only at the best techniques would reduce the 
Delta to 55 g N ha− 1 period− 1 but comprise only two types of gap-filling 
techniques with LUT and ANN related in their working principles. 

For tNr, the fluxes over the period of 79 days yield to a Delta of 37 g N 
ha− 1 period− 1 and a total confidence interval of 134 g N ha− 1 period− 1 

for the medium and best gap-filling techniques (Fig. 8). Due to the strong 
bias error offsets of LUT_V1 for daytime and nighttime, the estimated 
sum is outside the confidence interval of the ensemble. 

The CH4 fluxes aggregated over 89 days with the gap-filling 
ensemble result in a Delta of 22 mg CH4 m− 2 period− 1 and a total con
fidence interval of 165 mg CH4 m− 2 period− 1 (Fig. 12). The estimated 
sums are all similar despite differences in gap-filling performances 
including techniques with clear offsets in the bias errors and despite the 
fact that a high percentage of the gaps came from full day gaps of up to 
nine days (Fig. 10 and Fig. 13). This may again be attributed to the more 
gradually changing, mostly positive CH4 fluxes at this site. The Delta 
across all techniques is 66 mg CH4 m− 2 period− 1. Its size is within the 
range of the standard deviation of differences in annual sum estimates 
for ten gap-filling techniques reported by Kim et al. (2019, Table 4 

therein) of 42 to 262 mg CH4 m− 2 period− 1 depending on the site and 
year with periods of 6 to 12 months. 

For CO2, fluxes from a full year of measurements were filled 
(Fig. 16). The Delta of the gap-filling ensemble was 53 g C m− 2 period− 1 

and the total confidence interval 99 g C m− 2 period− 1. The bad perfor
mance of the simple interpolation techniques shows how crucial it is to 
account for the diurnal cycle of CO2. In contrast to the other three trace 
gases, the differences between techniques are larger than their error 
bounds which could partly be an effect of the longer dataset. Moffat 
et al. (2007) reported a more generic gap-filling error of 0.25 g C m− 2 

per gap-filled day derived from the spread of the bias error of the 
well-performing gap-filling techniques investigated therein. Applying 
this generic gap-filling error to the CO2 dataset translates to potential 
differences in annual sum estimates between gap-filling techniques of 
±31.6 g C m− 2, hence a range of 63.2 g C m− 2. This range has a similar 
size as the range of the annual sums estimates of the ensemble gap-filling 
techniques (i.e. the Delta) found herein. The Delta (Eq. 15) is an alter
native method of expressing such a generic gap filling error spanning 
multiple techniques which can be calculated dataset specific for any 
kind of trace gas. 

The only difference between LUT_MDS and LUT_V1V2V3_d7 is the 
setting for the bin width of VPD (5 hPa and 2 hPa, respectively) and led 
to a difference in the annual sum of 15 g C m− 2 (Figure 16) and Table 
S4.1). This demonstrates how even small changes in the setup of the 
same gap-filling technique can lead to significant differences in the 
annual sum and underlines the need for a more robust general gap-filling 
approach. 

By using multiple gap-filling techniques, the aggregated fluxes will 
be less dependent on the choice of the techniques (and their settings) 
and the estimated uncertainties will be more robust. The ensemble sums 
reported herein are stated as ranges (Table 3) since the suite of gap- 
filling techniques used was arbitrary and limited in methods (see Sec
tion 2.5.5). However, reporting ranges may even be more representative 
than absolute values for inter-annual and inter-site comparisons since 
the uncertainties induced by gap-filling are highly dataset specific (see 
also Section 1). 

Improving the gap-filling of eddy covariance fluxes through using 
ensembles has recently also been suggested in Mahabbati et al. (2021). 
As in other fields of Earth Science, this research can profit from the 
knowledge already obtained in climate modelling with similar benefits 
and challenges as discussed for crop modelling in Wallach et al. (2016). 

To minimize the effect of the choice of gap-filling techniques, the 
suite of techniques should encompass a wide range of different gap- 
filling approaches. The gap-filling framework developed herein had a 
focus on campaign data of a few weeks to months. However, our 
framework is just one potential implementation of the proposed 

Table 3 
Ensemble results of the aggregated fluxes and confidence intervals (CI) for all four trace gases. (Detailed sums and uncertainty estimates can be found in the according 
supplements, Table S1.1 for NH3, Table S2.1 for tNr, Table S3.1 for CH4, and Table S4.1 for CO2).  

Trace gas 
Ensemble results 

NH3 (g N ha1 period− 1) tNr (g N ha− 1 period− 1) CH4 (mg CH4 m− 2 period− 1) CO2 (g C m− 2 period− 1) 

Upper limit CI -678 -1229 +1529 -516 
Upper uncertainty (+44) (+52) (+71) (+24) 
Upper limit sum -722 -1281 þ1458 -540 
Delta (91) (37) (22) (53) 
Lower limit sum -813 -1318 þ1436 -593 
Lower uncertainty (-62) (-45) (-72) (-22) 
Lower limit CI -875 -1363 +1364 -615 
Total CI 197 134 165 99  
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methodology (Section 2.1). In a way, the chosen gap-filling techniques 
and example datasets are only a case study on how it can be realized. For 
long-term measurements and multi-site studies, long gaps play a more 
crucial role. Therefore, the gap-filling framework should include an 
artificial gap scheme with longer gap lengths (e.g. weekly) and more 
machine learning techniques as these have shown to be advantageous 
for filling long gaps (e.g. Kim et al., 2019; Zhu et al., 2022). In cases 
where absolute numbers are needed such as in data assimilations or 
meta analyzes, further research is required to test the applicability of 
different ensemble metrics (mean, median, center, weighted mean etc.) 
while deploying a wide variety of gap-filling techniques. 

4. Conclusions and outlook 

The results show that the implemented gap-filling framework was 
successfully applied to four different trace gases. The new artificial gap 
scheme has the major advantage that as much information of the dataset 
as possible is preserved during the artificial gap-filling procedure while 
obtaining complete secondary datasets. The artificial gap scenarios are 
then sub-sampled by bootstrapping. The statistical metrics calculated 
from the model residuals of the gap-filling techniques are used to eval
uate the performances of the gap-filling techniques as well as to quantify 
the random and systematic errors. 

The techniques with acceptable performance were then used to gap- 
fill the real gaps and calculate an ensemble of aggregated fluxes. The 
development of such flexible gap-filling tools based on multiple gap- 
filling techniques is essential for Non-CO2 trace gases to identify suit
able techniques. The suite of gap-filling techniques may be extended to 
capture an even wider range of dataset characteristics such as the spo
radic nature of N2O fluxes. For non-aggregated fluxes in cases where 
complete gap-filled times series are required directly on the half-hourly 
basis, further research is needed assessing the implications of gap-filling 
with single versus multiple techniques. 

The new methodology describes a universal gap-filling framework 
based on multiple gap-filling technique and can be adopted for any kind 
of eddy covariance datasets. It encompasses the key elements needed for 
standardizing gap-filling procedures: a) an evaluation of the gap-filling 
techniques, b) an assessment of their uncertainties, c) a quantification 
of the more generic gap-filling error spanning multiple gap-filling 
techniques accounting for the specific dataset characteristics, and d) 
ensemble estimates of the aggregated fluxes. 

We recommend that the standardized processing of gap-filling eddy 
covariance datasets should be based on ensemble results from multiple 
techniques as this will increase the significance of inter-site compari
sons. Aggregating fluxes such as daily or annual sums from an ensemble 
of gap-filling techniques will be an important step towards more trans
parency and rigor. By implementing the key elements of the proposed 
methodology in the standardized gap-filling pipelines of research in
frastructures such as ICOS, seasonal to multi-year budget estimates will 
become less biased towards a single gap-filling technique and uncer
tainty estimates will become more robust and defendable. 
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Appendix A.1: Multiple Gap-Filling Tool 

The multiple gap-filling tool (MGF-Tool) can be used for gap-filling 
fluxes in any kind of eddy covariance dataset with multiple tech
niques. Our tool has originally been developed for campaign data. Even 
datasets with little ancillary measurements or limited knowledge of the 
driving processes may be gap-filled. The only mandatory ancillary var
iable is a measurement of incoming radiation in order to distinguish 
between daytime and nighttime fluxes. If not available, the potential 
radiation (easily calculated from latitude and longitude) may be used 
instead. To setup the trace gas specific parameters, a description of the 
flux data and file properties needs to be provided in a configuration file 
(see example ini-file for tNr in Table A.1). 

The following gap-filling techniques have been implemented: Simple 
interpolation methods (Section 2.3.1), diurnal interpolation methods 
(Section 2.3.2), and look-up tables (Section 2.3.3). The gaps in the fluxes 
are filled following the two artificial gap-filling scheme ‘hhs’ and ‘days’ 
(Section 2.4) and the results are saved to ascii-files. Afterwards, the 
bootstrapping analysis is performed on the gap-filled fluxes. External 
results of gap-filled fluxes may be added to the analysis if the same 
artificial gap-filling scheme was used (as done for the artificial neural 
networks and inferential model in the manuscript). All the plots pre
sented in this manuscript or supplements are automatically generated 
and the statistics and aggregated fluxes saved to ascii-files. 

The original code of the multiple gap-filling tool developed for this 
manuscript with the tNr flux measurements as an example dataset are 
publicly available via the ICOS CarbonPortal DOI minting service: 
https://doi.org/10.18160/R6S5-47J1. The code is programmed in Py
thon 3 and can be executed in a script or interactively accessed via a 
Jupyter Notebook. We are currently working on a user interface to easily 
incorporate new datasets and to use the MGF-Tool online at the Jupyter 
Hub of the Carbon Portal (https://jupyter3.icos-cp.eu/). 
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Appendix A.2: Revisiting reported annual sums of NEE 

A.2.1 Differences between annual sum estimates and error 
bounds 

To compare differences of annual sum estimates of gap-filled fluxes 
with the error bounds of the used gap-filling techniques, the pioneering 
paper by Falge et al. (2001) and a recent publication by Vitale et al. 
(2019b) will be discussed as examples with typical results reported for 
CO2. Both papers evaluate the errors of different gap-filling techniques 
and also show the results of annual sum NEE estimated for several sites. 

In Falge et al. (2001), the absolute errors of the gap-filling technique 
were estimated using artificial gaps and ranged from 7 to 41 gC m− 2 y− 1 

for three techniques. The absolute difference between the lowest and the 
highest estimate of the annual sum by the gap-filling techniques, Delta 
(Eq. 15), will serve as a measure of the discrepancy between annual sum 
estimates. The Delta between the techniques spanned from 5 to 201 gC 
m− 2 y− 1 for the 28 site years. In 21 cases, the annual sum estimates of at 
least one technique was outside the error bounds of the other tech
niques, including 13 cases where the error bounds were not even over
lapping (Table A.2.1). 

A comparison of two techniques with a very thorough analysis of the 
associated uncertainties by statistical inference can be found in Vitale 
et al. (2019b). The error bounds ranged from 13.2 to 137.6 gC m− 2 y− 1 

and the Delta between techniques from 2 to 113 gC m− 2 y− 1 for the 10 
site years. Despite the similar looking ranges, the annual sum estimates 
were outside the error bounds of the other technique in 6 cases 
(Table A.2.2), including 2 cases where the confidence intervals of the 
two techniques were not even overlapping. 

The error bounds of the gap-filling techniques often underestimate 

the discrepancies found for the annual sum estimates between tech
niques. The total differences (Deltas) are the effect of the performance of 
the gap-filling technique plus the specific characteristics of the fluxes 
and real gaps in the dataset. Just to mention one example, the effect of a 
longer gap at the onset of the growing phase can only partly be simu
lated by inserting artificial gaps during the rest of the year or be 
captured by statistical inference. 

A.2.2 Differences between sites and between techniques 
The basic assumption behind using one standardized gap-filling 

technique is that this improves the inter-site (and inter-year) compara
bility of the predicted annuals sums. For example, if one gap-filling 
technique tends to overestimate the fluxes but always overestimates in 
a similar way, the absolute values of the annual sums would be affected 
the same way and hence be more comparable in relative terms. More 
generally, the differences of the annual sum estimates are expected to be 
smaller when using one technique across sites. This assumption is 
difficult to prove since even artificial gap scenarios only test a limited 
amount cases and the truth for the real gaps is unknown. 

In the gap-filling comparison by Moffat et al. (2007) fifteen different 
gap-filling techniques were used and the median of the annual sum es
timate of all techniques will be assumed to be close to the truth in the 
following. Their Table 5 states the deviations from the median for each 
technique and site year. To compare only “well-working” gap-filling 
techniques, only the deviations of the ten techniques with “medium” 
and “good” annual sum performance (see Table 3 therein) were taken 
and outliers removed, see Table A.2.3. The ten flux datasets had similar 
dataset characteristics in the sense that the eddy covariance measure
ments were all taken at forested European sites equipped with similar 
sensors and of high quality data including an extensive set of pre-filled 

Table A.1 
Settings in the ini-File for tNr.  

Variable Settings Description 

Flux measurement settings 
FluxGas "tNr" Name of the trace gas 
FluxColumn "Nr_F" Name of the flux column 
FluxUnit "ng N m-2 s-1" Unit of the half-hourly fluxes 
FluxFlag "Nr_qc" Name of the quality column (or “none”) 
FlagMax 1 Highest flag to be included (or nan) 
ConvFactor 0.0180 Conversion factor from flux rate (FluxUnit) to half-hourly sum (ConvUnit) 
ConvUnit "g N ha-1 hh-1" Unit of the aggregated fluxes 
ConvSums "g N ha-1 period-1" Unit of the total period 

Light measurement for daytime/nighttime differentiation 
LightVar "Rg" Column name of incoming radiation measurement 
LightThres 5.0 Threshold of radiation for daytime/nighttime 

Settings of the look-up table 
LUTVar_1 "Nr_C" 1st LUT variable 
LUTRange_1 0.6 1st LUT variable range 
LUTVar_2 "Rg" 2nd LUT variable 
LUTRange_2 50 2nd LUT variable range 
LUTVar_3 "ustar" 3rd LUT variable 
LUTRange_3 0.1 3rd LUT variable range 

Settings of a second LUT (used for MDS settings in the manuscript) 
LUT2Var_1 "Rg" 1st LUT2 variable 
LUT2Range_1 50 1st LUT2 variable range 
LUT2Var_2 "Temp" 2nd LUT2 variable 
LUT2Range_2 2.5 2nd LUT2 variable range 
LUT2Var_3 "VPD" 3rd LUT2 variable 
LUT2Range_3 5.0 3rd LUT2 variable range  

Additional setting for aggregating the fluxes 
DefGFT "MDA_hh5_hhs" Default alternative technique if a half-hour could not be filled by a gap-filling technique  

Data file(s) settings 
FileData "tNr_BaF_v07_mgf.csv" Name of the ascii file with the original data 
FileModels "DE-BaF_NrX_ANN _v20191019.csv" Name of the ascii file with additional gap-filled results 
FileSeparator " " Value separator (delimiter) in ascii file 
FileTimeStamp "DateTime" Name of the time stamp column 

(Original naming of the variables can be used in the tool. If a variable name/value is not available, the setting needs to be set to “none”/nan. The ascii file should have 
Year-Month-Day as the order of the date format and period “.” as a separator for decimal numbers). 
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meteorological data. 
The range between the lowest and the highest deviation of the 

annual sum estimate from the median will be called Delta. This Delta 
calculated from the median is essentially the same as the absolute dif
ference between the lowest and highest annual sum prediction in Eq. 15. 
The Delta for the different techniques (DeltaTechniques) ranged from 12.8 to 
45.1 g C m− 2 y− 1 over all site-years and the Delta between the different 
site years (DeltaSites) from 14.1 to 42.6 g C m− 2 y− 1 over all techniques 
(Table A.2.3). Hence, using the same technique leads to very similar gap- 
filling errors on the annual sums among all site-years (vertical) as using 

all well-working techniques for the same site-year (horizontal). 
Furthermore, the Deltas of the same technique at the same site but 
different years can be as small as 2.0 g C m− 2 y− 1 but also range up to 
45.1 g C m− 2 y− 1. Two techniques are having their highest Delta for two 
different years of the same site. 

These results for multiple techniques and multiple sites show no 
indication that using only one technique would reduce the gap-filling 
error on the annual sum estimate. Annual sum estimates may be just 
as comparable if different well-working gap-filling techniques are used. 

Table A.2.1 
Average annual sums of net ecosystem exchange (NEE, gC m− 2 y− 1) for three techniques with estimates of their absolute error taken from Table 6 in Falge et al. (2001) 
and their minima, maxima, and Deltas. The values are printed in bold if the absolute errors are smaller than the Delta. Additionally, the values are marked with an 
asterisk if the bounds of the absolute errors are non-overlapping.  

Technique MDC Absolute error LUT Absolute error NLR Absolute error Min Max Delta 

Site Year          
WE97 177 37 114 23 104 23 104 177 73* 
TH97 -605 22 -603 15 -608 15 -608 -603 5 
VI97 -328 26 -359 27 -368 27 -368 -328 40 
LO97 -358 22 -363 14 -358 14 -363 -358 5 
SO97 3 6 0 5 -3 5 -3 3 6 
HY97 -272 17 -260 10 -266 10 -272 -260 12 
HE97 -144 7 -153 7 -158 7 -158 -144 14 
BR97 127 41 74 26 -74 26 -74 127 201* 
AB97 -614 17 -604 11 -624 11 -624 -604 20 
WB95 -544 16 -517 15 -519 15 -544 -517 27 
WB96 -796 16 -734 15 -738 15 -796 -734 62* 
WB97 -791 19 -698 18 -721 18 -791 -698 93* 
HL96 -321 29 -258 18 -278 18 -321 -258 63* 
HV92 -189 28 -324 25 -338 25 -338 -189 149* 
HV93 -210 31 -228 28 -225 28 -228 -210 18 
HV94 -175 14 -162 12 -158 12 -175 -158 17 
HV95 -230 17 -227 15 -229 15 -230 -227 3 
HV96 -191 12 -170 11 -172 11 -191 -170 21 
LW97 150 6 131 10 148 10 131 150 19* 
LW98 521 7 436 13 467 13 436 521 85* 
BV97 -563 20 -543 16 -526 16 -563 -526 37* 
BV98 125 25 133 21 165 21 125 165 40 
SH97 -383 8 -349 14 -355 14 -383 -349 34* 
PO97 -147 41 -155 30 -174 30 -174 -147 27 
ME96 -308 16 -287 11 -325 11 -325 -287 38* 
ME97 -328 26 -264 17 -324 17 -328 -264 64* 
DU98 -566 40 -555 36 -585 36 -585 -555 30 
DU99 -708 27 -649 25 -666 25 -708 -649 59* 

(MDC – mean diurnal course, see Section 2.3.2, LUT – Look-up-table, see Section 2.3.3, NLR – nonlinear regression. More details on the table and techniques can be 
found in the original paper). 

Table A.2.2 
Annual budget estimates for net ecosystem exchange (NEE, gC m− 2 y− 1) for two techniques with lower and upper confidence intervals (CI) and total uncertainty taken 
from Table 2 from Vitale et al. (2019). and their Deltas. The values are printed in bold if the total uncertainties are smaller than the Delta. Additionally, the values are 
marked with an asterisk if the confidence intervals are non-overlapping.  

Technique Lower CI Budget MDS Upper CI Total uncertainty Lower CI Budget PADL Upper CI Total uncertainty Delta 

Site Year          
AT-Neu 2010 509 558 608 49.4 556 645 733 88.4 87 
AU-Cpr 2012 -216 -203 -190 13.2 -250 -232 -214 18.2 29 
AU-How 2011 -618 -576 -533 42.4* -756 -689 -621 67.6* 113* 
DK-Sor 2009 -359 -314 -268 45.4 -360 -312 -264 47.9 2 
FI-Hyy 2007 -264 -240 -216 24.3 -314 -282 -251 31.5 42 
FR-Pue 2008 -309 -285 -261 23.9* -387 -355 -322 32.6* 70* 
GF-Guy 2008 -172 -103 -34 68.8 -223 -85 52 137.6 18 
IT-CA1 2012 -349 -319 -290 29.6 -423 -383 -344 39.5 64 
US-Los 2006 -34 -13 8 21.2 -57 -15 27 41.8 2 
US-Ne2 2012 -537 -452 -368 84.3 -566 -480 -395 85.9 28 

(PADS - panel autoregressive distributed lag multiple imputation model, MDS - marginal distribution sampling. More details on the table and techniques can be found 
in the original paper.) 
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Table A.2.3 
Deviations from the median over all techniques of the annual sum predictions of net ecosystem exchange (NEE , gC m− 2 y− 1) taken from Table 5 in Moffat et al. (2007) 
and their horizontal and vertical minima, maxima, and Deltas. The rows of the two techniques having the highest Delta at the same site for two different years are 
printed in bold.  

Technique NLR _AM NLR FCRN _STD NLR _FM _OLS NLR _LM ANN _BR ANN _PS LUT MDS SPM MDV Min Max DeltaSites 

Site Year              
be1_2000 4.4 -1.6 -2.4 10.6 -13 0 10 -12.7 1.9 2.5 -13 10.6 23.6 
be1_2001 0.3 -1.1 -6.7 7.4 -2 2.7 5.9 4.8 0 - -6.7 7.4 14.1 
de3_2000 15.7 2.4 -21.7 7.3 - 2 0 -10.5 -7.9 -0.9 -21.7 15.7 37.4 
de3_2001 - 5.3 23.4 -16.9 -6.1 0 -19.2 2.9 -6.1 9.9 -19.2 23.4 42.6 
fi1_2001 -8 0.4 -1.6 0 -9.6 -4.6 1 1.9 - 8.8 -9.6 8.8 18.4 
fi1_2002 6.3 0 -2.3 2.9 -12 2.2 -2.5 -6.7 19.9 6.5 -12 19.9 31.9 
fr1_2001 7.4 -2.1 -0.7 2 8.9 -2.8 0 4.6 15.6 -12.1 -12.1 15.6 27.7 
fr1_2002 -3.8 18.2 -6.5 0 -2 -10.1 5.3 1.4 1.9 -10.8 -10.8 18.2 29 
fr4_2002 14.3 -7.4 18.2 6.4 - -1.7 1.6 -0.5 -7 0 -7.4 18.2 25.6 
it3_2002 9.6 0 6 21.6 -6.5 -0.6 8.4 -6.7 7.6 3.7 -6.7 21.6 28.3 
Min -8 -7.4 -21.7 -16.9 -13 -10.1 -19.2 -12.7 -7.9 -12.1    
Max 15.7 18.2 23.4 21.6 8.9 2.7 10 4.8 19.9 9.9    
DeltaTechniques 23.7 25.6 45.1 38.5 21.9 12.8 29.2 17.5 27.8 22    

(More details on the table and techniques can be found in the original paper.) 
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