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Abstract. Describing the heterogeneous structure of forests
is often challenging. One possibility is to analyze forest
biomass in different plots and to derive plot-based frequency
distributions. However, these frequency distributions depend
on the plot size and thus are scale dependent. This study pro-
vides insights about transferring them between scales. Un-
derstanding the effects of scale on distributions of biomass is
particularly important for comparing information from dif-
ferent sources such as inventories, remote sensing and mod-
eling, all of which can operate at different spatial resolutions.
Reliable methods to compare results of vegetation models at
a grid scale with field data collected at smaller scales are still
missing.

The scaling of biomass and variables, which determine
the forest biomass, was investigated for a tropical forest
in Panama. Based on field inventory data from Barro Col-
orado Island, spanning 50 ha over 30 years, the distribu-
tions of aboveground biomass, biomass gain and mortality
were derived at different spatial resolutions, ranging from 10
to 100 m. Methods for fitting parametric distribution func-
tions were compared. Further, it was tested under which as-
sumptions about the distributions a simple stochastic simu-
lation forest model could best reproduce observed biomass
distributions at all scales. Also, an analytical forest model
for calculating biomass distributions at equilibrium and as-
suming mortality as a white shot noise process was tested.

Scaling exponents of about−0.47 were found for the stan-
dard deviations of the biomass and gain distributions, while
mortality showed a different scaling relationship with an ex-
ponent of −0.3. Lognormal and gamma distribution func-
tions fitted with the moment matching estimation method
allowed for consistent parameter transfers between scales.
Both forest models (stochastic simulation and analytical so-
lution) were able to reproduce observed biomass distribu-
tions across scales, when combined with the derived scaling
relationships.

The study demonstrates a way of how to approach the
scaling problem in model–data comparisons by providing a
transfer relationship. Further research is needed for a better
understanding of the mechanisms that shape the frequency
distributions at the different scales.

1 Introduction

Forests are complex, heterogeneous ecosystems with charac-
teristics which can be measured at different scales. They are
inherently dynamic systems which are influenced by climate
and disturbances (Lewis et al., 2015). In any given forest
ecosystem, biomass is variable in space and time, driven by
the interplay of productivity and mortality (Rutishauser et al.,
2019). Different approaches are being used to quantify forest
biomass stocks and changes. These approaches include for-
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est inventory, eddy flux measurements, remote sensing and
forest modeling (Mitchard, 2018; Shugart et al., 2015).

The listed methods for quantifying forest biomass often
operate at different spatial scales, regarding their extents and
resolutions. Inventories measure and map forests at the reso-
lution of individual trees. From the individuals, biomass per
area units can be derived. Inventory plots have extents rang-
ing from a few square meters (e.g., national forest invento-
ries) to several hectares (e.g., research megaplots). Eddy flux
towers have typical footprint sizes in the range a few hundred
meters (Rebmann et al., 2005). Such measurements are an
important information source for deriving forest carbon bud-
gets (Brienen et al., 2015; Hetzer et al., 2020; Hubau et al.,
2020).

Much larger extents than the ones of ground-based mea-
surements can be covered by remote sensing. Remote sens-
ing products are typically gridded maps consisting of square-
shaped pixels with side lengths, depending on the sensor plat-
form and type of product. Typical pixel sizes are 1 m for
canopy height models, 10 to 30 m for tree cover and distur-
bance maps, 100 m for biomass, and 1 km for productivity
maps (Asner et al., 2013; Hansen et al., 2013; Running et al.,
2004).

Spatial scale is also important for forest models. Mod-
els which simulate the biomass dynamics and carbon bal-
ance of forests can have different complexities. At one end
of the spectrum, there are spatially explicit, individual-based
models which include physiological processes for modeling
the effects of environmental drivers on the carbon balance
(Shugart et al., 2018). On the other end, there are spatially
implicit differential equation models describing the carbon
balance in terms of and aggregated biomass gains and losses
(Fisher et al., 2008). Also, the spatial resolution of the out-
put of forest models can vary. While global vegetation mod-
els produce results at large scales (global extent and resolu-
tions of, e.g., 0.5◦; Maréchaux et al., 2021), gap forest mod-
els work at local scales (extents of several hectares and res-
olutions of forest gap sizes, e.g., 20 m, or individual trees;
Fischer et al., 2016). How to deal with differences in resolu-
tions of ecological models is an open question (Fritsch et al.,
2020).

The heterogeneity of a forest landscape can be described
by frequency distributions of forest attributes, e.g., biomass.
Despite the differences in measurement areas between the
methods, it is common practice to report biomass stocks and
carbon fluxes in per hectare units. Having units standardized
to one reference scale is important to make values compara-
ble and transferable but bears the risk of taking the unit t ha−1

too literally and neglecting the fact that the actual areas might
be of very different size. Since the actual areas, which these
values represent, do often deviate from 1 ha, it is crucial
to consider the scale dependence of the shapes of distribu-
tions. It has been shown that forest biomass distributions be-
come increasingly skewed and long-tailed with decreasing
plot size (Chave et al., 2003). At small scales these distri-

butions cover a wide range of values from near 0 tha−1 in
gaps to 1000 tha−1 in patches with very large trees. How-
ever, at the actual 1 ha scale such extreme values are uncom-
mon to observe and the range of typical values is much more
reduced.

Commonly, variance decreases with increasing scale. For
independent identically distributed (iid) random variables,
the aggregation by a factor n (i.e., taking the mean of n val-
ues to derive one aggregated value) results in a reduction of
variance by the factor n and thus a reduction of standard de-
viation by a factor

√
n, while the expected value (distribution

mean) stays the same (Otto and Day, 2011). More generally,
also for non-iid and spatial data, the variance reduces with
aggregation, as more and more of the fine-scale variance oc-
curs within and not above the aggregation level (Smith and
Urban, 1988), which is referred to dispersion variance in geo-
statistics (Marques and Costa, 2014).

In times where field measurements, remote sensing and
model simulations are increasingly used in combination, ap-
proaches for harmonizing the different datasets with regard
to spatial resolution are required. Hence, with regard to forest
biomass distributions and their temporal dynamics the fol-
lowing problems arise. Field measurements provide us with
high-resolution information, but for limited extents, while
remote sensing can cover large extents with limited resolu-
tions. Forest models make use of both kinds of information,
either as input or to validate their output against. But it is of-
ten unclear how scale affects observed and simulated distri-
bution (Knapp et al., 2018a; Landsberg, 2003; Rödig et al.,
2017; Smith and Urban, 1988). Methods are needed to ac-
count for scale effects in model–data comparisons (Rammig
et al., 2018).

In this study, we worked towards an approach for transfer-
ring frequency distributions of forest biomass between dif-
ferent scales. Such approaches are needed to compare data
with simulation output. We tested it for a tropical rainforest
for which we also analyzed the distributions of biomass gain
and mortality. In addition, we developed two simple forest
models to analyze how they can be applied at different spatial
scales. The main questions of the study were the following.
(1) How do frequency distributions of forest biomass vary
with spatial scale and which probability density functions
describe them best? (2) How can we transfer between these
distributions at different scales? (3) How can simple forest
models reproduce these distributions at different scales?

2 Material and methods

2.1 Field data analysis

The 50 ha forest inventory plot (ForestGEO) on Barro Col-
orado Island (BCI), Panama, served as a study site (Condit,
1998; Condit et al., 2019, 1995; Hubbell et al., 1999). The in-
ventory comprised single tree measurements of all trees with
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Table 1. Equations for converting between descriptive statistics and parameters of the gamma and lognormal distributions.

Distribution gamma lognormal

Descriptive statistics from parameters m= α
β m= eµ+

σ2
2

s =

√
α
β s =

√
(eσ

2
− 1) · e2µ+σ 2

Parameters from descriptive statistics α = m2

s2 µ= ln

 m√
1+ s2

m2


β = m

s2 σ =

√
ln
(

1+ s2

m2

)
m: mean; s: standard deviation; α: gamma shape; β: gamma rate; µ: lognormal meanlog; σ : lognormal
sdlog.

a diameter at breast height ≥ 1 cm (ca. 250 000 trees), in-
cluding the spatial position of each individual (Condit et al.,
2012). Aboveground biomass values of each tree were cal-
culated based on a common allometric equation for tropical
trees (Chave et al., 2005). Censuses used in this study com-
prised data from 1985 to 2015 collected in 5-year intervals.
Based on unique tree identifiers and aboveground biomass
(AGB) values in successive censuses, AGB gains per tree
were calculated. The inventory was aggregated for square-
shaped plots with 10, 20, 50 and 100 m side lengths. At-
tributes calculated for each of these plots were standing AGB
at each census and AGB gain, loss, and mortality for each
census interval. AGB loss was the sum of AGB of all trees
alive in the census at the beginning of an interval and dead in
the following census. AGB mortality was AGB loss divided
by the standing AGB at the beginning of the interval. Due to
measurement uncertainties some trees showed negative AGB
gains. At the individual tree level these negative AGB gains
corresponded to 29.6 % of the positive AGB gains. When ag-
gregating AGB gain as the sum of single tree AGB gains, the
negative proportion would decrease to 12.3 % (10 m), 7.2 %
(20 m), 1.5 % (50 m) and 0 % (100 m). To obtain unbiased,
positive AGB gains, a correction was done at the single tree
level: all negative AGB gains were set to zero and all positive
AGB gains were reduced by 29.6 % to maintain the overall
AGB gain. AGB gains, losses and mortalities were down-
scaled to annual values through division by 5 years.

For investigating the scaling behavior of AGB beyond the
50 ha plot, an airborne lidar dataset from 2009 covering the
whole 15 km2 island (Lobo and Dalling, 2014) was used.
AGB was predicted at 100 m resolution from mean top-of-
canopy height of a 1 m resolution canopy height model using
a power law regression model (Knapp et al., 2020) and ag-
gregated at the 200, 500 and 1000 m scale. Pixels intersecting
the coastline were excluded to have pure forest pixels only.

2.2 Frequency distributions

The frequency distributions of all four variables (AGB, gains,
losses and mortality) were fitted using the R package “fitdis-
trplus” (Delignette-Muller and Dutang, 2015; R Core Team,
2022) and using two alternative probability density func-
tions: the (1) gamma and (2) lognormal distribution func-
tion. Both distribution types can be described with two pa-
rameters, respectively. If the parameters are known, the de-
scriptive statistics of the probability distribution (arithmetic
mean and standard deviation SD) can be calculated from es-
tablished equations and vice versa (Table 1). Two different
methods were used to fit the probability density functions
to the empirical data using (1) maximum likelihood estima-
tion (MLE) and (2) moment matching estimation (MME).
The optimization criterion for MLE is to find distribution pa-
rameters which maximize the likelihood for all observations.
MME aims at finding the parameters for which the calculated
moments match the empirical moments.

2.3 Scaling equations

In the following, a general equation for scaling of probabil-
ity distributions is formulated (based on considerations by
Dubayah et al., 1997). Let θ be a parameter of a probability
distribution (SD, shape, rate, etc.). Let λ and 3 be the side
lengths of plots of two different sizes and κ be a scaling ex-
ponent characterizing how the parameter θ changes between
scales. The values of θ (characterizing the frequency distri-
butions; see Table 1 for examples) at scales λ and 3 shall
be called θλ and θ3, respectively. Then θ3 can be calculated
from θλ in the following way:

θ3 =

(
32

λ2

)κ
· θλ. (1)
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Figure 1. Scale dependence of the standard deviation (SD) of the distribution of aboveground biomass (AGB). Panel (a) shows the SD values
at each scale (3) plotted over the respective plot side lengths 3. Panel (b) shows the scaling relationship using plot areas (32 instead of 3)
and after standardizing with 10 m as the reference scale (λ), as well as plotting the values in a log–log linear way. The slope of the grey
regression line is the scaling exponent κ .

If values for the parameter θ are known at different scales,
κ can be derived via log–log linearization.

θ3

θλ
=

(
32

λ2

)κ
(2)

log10

(
θ3

θλ

)
= κ · log10

(
32

λ2

)
(3)

log10

(
θ3

θλ

)
= 2κ · log10

(
3

λ

)
(4)

Hence, in log–log space, the ratio of θ at two different
scales is a linear function of the ratio of areas with κ as slope.
If the ratio of side length instead of areas is used, the slope
of the relationship becomes 2κ . In the further analyses, the
area ratio was used (Eq. 3). The focus of this study was to
investigate how the scaling equation can be used to calcu-
late the SD of forest attribute distributions at a certain target
scale from a known SD at a reference scale, which will be
called rescaling further on. A graphical example is given in
Fig. 1 for the SD of the biomass distribution using 10 m as
the reference scale. The analyses focused on the scales be-
tween 10 and 100 m, where the frequency distributions of
forest biomass were considered to be primarily driven by the
demographic processes growth and mortality (Smith and Ur-
ban, 1988), while at larger scales environmental gradients in
heterogenous landscapes lead to deviations from the scaling
relationship (lidar analysis).

2.4 Comparing frequency distributions

Two metrics were used to quantify the agreement between
different probability density functions (PDFs). The first met-
ric was the relative overlap between PDFs (OVL; Inman and
Bradley, 1989), i.e., the intersection of the areas under the
curves (AUCs) divided by the union of the areas under the
curves of two PDFs. The R package “overlapping” was used
for computation of OVL (Pastore and Calcagnì, 2019).

OVL=
AUC(PDF1)∩AUC(PDF2)

AUC(PDF1)∪AUC(PDF2)
(5)

The second metric was the relative error of standard devi-
ations (RESD), which we defined as the absolute difference
between the SD of an estimated (e.g., rescaled or simulated)
PDF1 and an observed (empirical) PDF2, normalized by the
SD of the latter.

RESD=
|SD(PDF1)−SD(PDF2)|

SD(PDF2)
(6)

Hence, two PDFs are in close agreement, if OVL is close
to one and RESD is close to zero. OVL is a good quantita-
tive measure for visual agreement of the main bodies of the
distributions. RESD, in contrast, is sensitive to the influence
of the extreme values in the tails of the distributions, which
is often not apparent from visual inspection of the PDFs.

2.5 Forest simulation model

A simple grid-based forest growth model was used to simu-
late forest dynamics over time and obtain the resulting AGB
frequency distribution at mature stage. The model is based
on the model suggested by Fisher et al. (2008), in which the
change of AGB (B) is described as a differential equation in-
volving an AGB gain parameter (G) and an AGB mortality
parameter (M).

dB(t)
dt
=G−M ·B(t) (7)

The analytical solution of this equation provides the av-
erage trajectory of forest biomass (over a large area) for
given G and M , and the average mature AGB is G/M .

B(t)=
G

M
(1− e−Mt ) (8)

For simulating small-scale heterogeneity including patch
dynamics, Fisher et al. (2008) used a grid-based approach.
Each grid cell represented 10 m× 10 m of forest area. At
each simulation time step, they applied Eq. (7) to calculate
the change of AGB in each cell, based on a constant AGB
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gain (G) and a stochastic mortality (M). A mortality event in
their case meant that B was set back to zero in a patch and
growth restarted from bare ground. Setting a patch back to
zero is a valid assumption as long as patches are at the scale
of single trees (e.g., 10 m), but using this approach at larger
patch scales would rather correspond to large stand-replacing
disturbances and no longer to natural tree mortality. Hence,
in this study, the model was modified such thatG andM both
follow continuous probability distributions.

The parameters G and M were assumed to be distributed
like the AGB gain and AGB mortality values derived from
the field inventory. Variability in gain G represents differ-
ences in site conditions or growth rates of trees and was as-
sumed to vary in space but stay constant in time. Hence, in
the simulation, each patch was assigned a random G drawn
from the AGB gain distribution, and this G was kept con-
stant for the patch throughout the simulation run. Variabil-
ity in mortality rate M reflects the stochastic nature of mor-
tality. In a common year, only small amounts of AGB are
lost per patch, due to small trees dying from competition.
Large AGB losses due to dying large trees are rare events.
Hence, mortality rateM was drawn randomly from the AGB
mortality distribution for each patch at each time step. This
simulation approach was applied at different grid cell sizes
(10, 20, 50, 100 m). The total simulation area was set to
25 km2 (5 km× 5 km) to obtain smooth output distributions.
The simulation time step was 1 year, and 300 years were sim-
ulated to reach a mature forest.

The AGB distributions in equilibrium state after 300 years
of simulation time were analyzed by comparing them to the
AGB distributions from the field inventory. The simulations
were conducted with G and M coming from different proba-
bility distributions. The probability density functions could
be either gamma or lognormal, fitted with either MLE or
MME, and be derived from the field at either 10, 20, 50 or
100 m scale (reference scale). The scaling equation was used
to rescale SD and probability density function parameters
from one reference scale to the other three scales, to con-
duct simulations at all four scales for each of the possible in-
put constellations (pre-model scaling). The resulting biomass
distributions at the end of the simulations were aggregated
from the finer to the coarser scales (post-model scaling). For
evaluating the goodness of fit for the AGB distributions, OVL
and RESD were calculated pairwise between each simulated
(and aggregated) distribution and the empirical distribution
at the respective scale. For evaluating the simulation run as a
whole, the mean OVL and mean RESD over all single distri-
butions were calculated.

2.6 Derivation of biomass distributions from theory –
white shot noise

As a second approach, the AGB distribution can also be de-
rived analytically as a function ofG andM . This was done to
test if such a direct calculation of the biomass distribution is

possible and whether this can be applied at multiple scales as
well. The approach assumes M to be white shot noise. This
type of noise is used in environmental modeling to describe
pulsed processes that occur at irregular time intervals (e.g.,
rainfall at daily resolution). White shot noise assumes pulse
intensities and interval lengths both to be exponentially dis-
tributed and is, therefore, characterized by two parameters:
the mean intensity and the mean occurrence probability.

It was assumed that the AGB mortality at small spatial res-
olution (10 m× 10 m) can be described by white shot noise.
Since observed AGB mortality is never exactly zero, due to
small trees dying every year, the mean occurrence probabil-
ity can be assumed as one. The mean intensity then directly
corresponds to the mean AGB mortality M . It can be shown
that under this white shot noise assumption the AGB for a
given G and M value follows a gamma distribution of the
following form (Ridolfi et al., 2011):

B ∼ Gamma
(

1

M
+ 1,

1
G

)
. (9)

For a range of k different G values, which represent the
spatial heterogeneity in growth rates and which themselves
follow a gamma or lognormal distribution, AGB of a forest
landscape can be described by a mixture of gamma distribu-
tions.

B ∼
1
k
·

k∑
i=1

Gamma
(

1

M
+ 1,

1
Gi

)
(10)

The exponential distribution of mortality intensity, as as-
sumed by the theory, has a monotonically decreasing prob-
ability density function. Such probability distributions are
usually only observed for mortality at small scales, while
mortality follows unimodal distributions at larger scales (see,
e.g., Fig. 4). Hence, for deriving AGB distributions from the
white shot noise theory at larger scales, there are different op-
tions, of which two were investigated here. (1) The simplest
one is to apply the white shot noise directly at all scales, ig-
noring the actual shape of the mortality distribution. (2) Al-
ternatively, white shot noise was applied to derive the AGB
distribution only at the 10 m scale, and the SD of this distri-
bution was rescaled in a post-model scaling using Eq. (1) and
an empirically derived scaling exponent κ . The rescaled SD
was used to approximate the AGB distribution with a lognor-
mal distribution. The main steps in the analysis, from inven-
tory data to frequency distributions to scaling relationships
and forest model applications at different spatial scales, are
summarized in Fig. 2.
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Figure 2. Overview of the analysis (section numbers in brackets). Forest inventory data were aggregated at different spatial scales to obtain
frequency distributions of biomass, gain and mortality. Next, scaling relationships were established for up- and downscaling of frequency
distributions. Then, it was tested how biomass distributions at different scales can be derived from gain and mortality using either simulations
or an analytical forest model.

3 Results

3.1 Scaling relationships of standard deviations of
forest attribute distributions

The relationships between spatial scale (plot area) and stan-
dard deviations of the frequency distributions were derived
for AGB, gain, loss and mortality within the 50 ha forest plot
for the scale range from 10 to 100 m. The scaling exponents
for AGB (κ =−0.461), AGB gain (κ =−0.468) and AGB
loss (κ =−0.467) were similar, whereas it was different for
AGB mortality (κ =−0.301). The log–log linear relation-
ships are shown in Fig. 3.

Beyond the 50 ha plot, AGB was analyzed via a lidar-
derived AGB map (Fig. S4 in the Supplement). The lidar
analysis demonstrates that at the 100 m scale the inventory-
based SD of the AGB distribution within the 50 ha plot

(59 tha−1) matches the lidar-based SD of the whole island
(59 tha−1), while the lidar-based SD within the 50 ha plot
was somewhat smaller (49 tha−1). At the 200 m scale, the
lidar-based SD within the 50 ha plot (29 tha−1) conforms
the scaling relationship. At the 500 m scale, it is somewhat
higher than expected (20 tha−1), but at this large pixel size
a strict spatial overlap with the 50 ha plot is not possible,
and the area contributing to this value is 150 ha (6 pix-
els). The island-wide SDs at 200 m (47 tha−1) and 500 m
(37 tha−1) resolution are higher than predicted by the scaling
relationship. This additional variability can be explained by
the larger extent and possible autocorrelation in the spatial
distribution of biomass across the island. At 1000 m scale,
the island-wide SD (10 tha−1) is close to the scaling rela-
tionship, which can be explained by the fact that only 5 km2

in the center of the island, around the 50 ha plot, were ana-
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Figure 3. Scaling relationships for aboveground biomass (AGB) (a), gain (b), loss (c) and mortality (d), derived from the standard devi-
ations (SD) of the empirical distributions. Fitted slopes represent the scaling exponents (κ in Eqs. 1–3). Plotted are the log10-transformed
ratios of the SDs over the log10-transformed ratios of plot areas, with 10 m being the reference scale (λ). The top axis shows the plot side
lengths (3), and the right axis shows the values of the SD for each scale, respectively.

lyzed while all square kilometers intersecting the shoreline
were excluded.

3.2 Fitted distribution functions

For each of the four variables of interest (AGB, gain, loss
and mortality) the best-describing distribution function was
identified, by fitting either lognormal or gamma distribution
functions with the maximum likelihood or moment matching
method. Selected fits for all four spatial scales (10, 20, 50
and 100 m) are shown in Fig. 4.

From each fit at one scale (reference scale) the expected
SDs at all other scales (target scales) were calculated using
the scaling equation (Eq. 1) with the empirically derived scal-
ing exponents κ , respectively. From these rescaled SDs the
function parameters and probability density curves were de-
rived using the equations in Table 1. An example for down-
scaling AGB from 100 m to the three smaller scales is shown
in Fig. 5.

To identify the best-fitting distribution and method for
each variable, i.e., the most consistent across scales, two cri-
teria were used: (1) the mean overlaps (OVL) between empir-
ical and fitted probability densities and (2) the mean relative
error of the SD (RESD). Mean in both cases refers to mean
over all four spatial scales. Table 2 lists the values for these

criteria for all distributions and methods, and Fig. S1 shows
the best-matching distribution function for each variable at
all spatial scales.

For three of the four variables, there was a clear best fit
according to the criteria (Table 2): AGB (lognormal MME),
AGB loss (lognormal, MME) and AGB mortality (gamma,
MLE or MME equally good). For AGB gain, however, the
best-fitting lognormal distribution functions derived from the
MLE and MME methods were considerably different from
each other (Fig. 4). While the MLE fits had the higher over-
lap with the field data, they produced large errors when
used for calculating the SD at the other scales (large mean
RESD). Consistent rescaling of the SD of AGB gain was
only achieved when using the MME fit, despite the weaker
overlap of these distributions with the field data. Comparing
Figs. S1b with S2a illustrates the differences of the meth-
ods for AGB gain in detail, and Fig. S2b and c illustrates the
RESD for both.

3.3 Simulation results

Simulations with the stochastic forest model were conducted
at the scales of 10, 20, 50 and 100 m. The resulting biomass
distributions at the end of the simulations were aggregated
to the coarser scales, respectively. By testing a range of
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Figure 4. Frequency distributions for aboveground biomass and its gain and mortality analyzed at four different scales. Shown are the best-
fitting probability density functions for each of the three variables at each scale and the respective empirical distributions from the field (grey
histograms). For AGB gain, each of the two fitting methods (MME and MLE) were superior regarding one criterion; hence, curves are plotted
for both.

64 different combinations of input distribution functions (G
and M) and reference scales (at which these distributions
were derived), well-performing combinations were identified
based on the goodness-of-fit criteria OVL and RESD (Ta-
ble S1, Figs. S5–S8 in the Supplement). It was found that
simulated AGB distributions matched the field distributions
particularly well when G and M distributions were derived
at the 50 m scale (reference scale). Figure 6 shows the results
for the unscaled case at the 50 m scale and the rescaled dis-
tributions at the other scales. The distribution functions iden-
tified as best for gain and mortality, based on the field data
analyses (Table 2), were also among the best for G and M ,
based on the simulation analyses (Table S1). If G was mod-

eled as a lognormal distribution (MLE fit at the 50 m scale)
and M as gamma distribution (MME fit at the 50 m scale),
rescaling and subsequent stochastic simulations resulted in
consistent AGB distributions at all scales (Fig. 6).

It was found that several versions of the stochastic for-
est model simulations could produce realistic AGB distri-
butions across scales (Figs. S5–S8 provide details about the
different reference, simulation and aggregation scales). The
best-matching AGB distributions were observed for simula-
tions using 50 m as the reference scale (mean OVL= 77 %,
mean RESD= 9 %, Table S2). At the 20 m reference scale,
the largest observed mean OVL was 75 % and the smallest
observed mean RESD was 12 % (although the two were from
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Figure 5. Downscaling the aboveground biomass distribution from the 100 m scale to three other scales. Black curves represent the down-
scaled (down) lognormal probability density functions and grey histograms the empirical (emp) distributions from the field. Standard devia-
tions are given for each distribution.

Table 2. Goodness-of-fit criteria values for the different distribution functions and fitting methods for all four variables. Best-matching
distributions, i.e., those with the largest mean overlap (OVL) and smallest mean relative error of standard deviation (RESD), are highlighted
in bold font. Mean hereby refers to the mean over all four spatial scales (10, 20, 50, 100 m).

Variable Distribution Method Mean OVL Mean RESD

AGB lognormal MLE 0.883 0.08
AGB lognormal MME 0.887 0.056
AGB gamma MLE 0.752 0.167
AGB gamma MME 0.771 0.056
AGB gain lognormal MLE 0.781 0.356
AGB gain lognormal MME 0.665 0.03
AGB gain gamma MLE 0.636 0.366
AGB gain gamma MME 0.567 0.03
AGB loss lognormal MLE 0.839 0.172
AGB loss lognormal MME 0.877 0.013
AGB loss gamma MLE 0.653 0.327
AGB loss gamma MME 0.631 0.013
AGB mortality lognormal MLE 0.732 0.579
AGB mortality lognormal MME 0.699 0.052
AGB mortality gamma MLE 0.824 0.054
AGB mortality gamma MME 0.82 0.052

AGB: aboveground biomass; MLE: maximum likelihood estimation; MME: moment matching
estimation.

different simulations, Table S1). At the 10 m reference scale,
the best mean OVL was the smallest among all reference
scales (65 %), while the best mean RESD was good (13 %,
Table S1). At the 100 m reference scale, the best mean OVL
was better (70 %), but the best mean RESD was far higher
than for any other reference scale (34 %, Table S2).

One consistent finding across scales was that simulations
using lognormal distributions and the MLE fitting method
were more abundant among the best simulations than the
ones using gamma distributions and the MME method. In
fact, at any reference scale, the approach which used only
lognormal and MLE for modeling G and M ranked among
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Figure 6. Biomass distributions at different spatial scales resulting from different approaches. (a) Curves show the gain (G) and mortality (M)
distributions used as input. (b) Dark grey histograms show the empirical distributions from the field inventory. Green histograms show the
simulation results from the stochastic forest model (SFM). All SFM simulations were driven by the two probability density functions for
AGB gain and mortality derived at the 50 m scale (a), which were rescaled for simulations at the 10, 20 and 100 m scale. Blue lines show the
AGB distribution functions calculated with the analytical forest model (AFM).

the best simulations. Approaches using gamma or MME for
more than one distribution (G and M) never ranked among
the best (Tables S1 and S2). Examples for simulated AGB
distributions at all scales (with OVL and RESD values),
when starting from different reference scales, are shown in
Figs. S5 to S8.

3.4 White shot noise calculations

As an alternative to the simulations with the stochastic forest
model, the calculation of AGB distributions from an analyt-

ical forest model was tested. The mortality was assumed as
white shot noise; i.e., only its total mean (M = 0.0285) was
required. Since the assumption of white shot noise mortality
was considered most appropriate at the finest scale, the prob-
ability density function (gamma mixture distribution) was
derived at the 10 m scale and upscaled with the scaling re-
lationship, using a lognormal distribution as approximation
for the mixture distribution. The distributions resulting from
the analytical model (blue lines in Fig. 6) are close to the field
data and the simulation model outputs. A quantitative analy-
sis based on OVL and RESD is presented in Fig. S9, which
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also shows how a direct application of white shot noise at
larger scales leads to deviations in the AGB distributions.

4 Discussion

It was shown how the distributions of forest biomass, gain
and mortality vary with spatial scale. While distributions at
a small scale show large SDs due to the large heterogene-
ity between patches, SDs decrease due to spatial averaging
and the loss of dispersion variance at larger scales. Methods
for fitting the distributions best across all scales and transfer-
ring their standard deviations between scales were identified.
It was shown how scaling was necessary to reproduce the
biomass distributions with two simple forest models.

4.1 Scaling of forest attributes

For transferring between the distributions at the different spa-
tial scales, empirical scaling coefficients were derived. The
exponents for scaling the SDs of the distributions were very
similar for the extensive properties aboveground biomass
stocks, gains and losses (all between −0.46 and −0.47),
while the one for the intensive property mortality was con-
siderably different (−0.3). Theory states that the SD of an
independent identically distributed random variable changes
with the square root of the area ratio between scales, i.e., a
scaling exponent of −0.5. The slight deviation from −0.5 is
an indication of spatial structure in the data, i.e., that grid
cells are not fully independent.

The different scaling exponent of mortality is likely caused
by the fact that mortality is a ratio of AGB loss and stock.
This characteristic of being a ratio between two extensive
properties makes mortality a non-additive intensive property.
When aggregating mortality values from smaller to larger
scales, the weighted mean has to be used, with AGB as a
weighting variable. It further has the consequence that the
mean mortality over the whole 50 ha plot is not the same
when calculated at different resolutions. The mean mortali-
ties of all 10 and 20 m patches were 0.035 and 0.031 yr−1,
respectively, and only stabilized above the 50 m scale at
0.029 yr−1 (Fig. S1d). All the other attributes in this analysis
were additive and had a stable mean across scales.

The lidar-based scaling of AGB beyond the 50 ha plot and
across the whole island showed that the SD of the distribu-
tion decreases further but no longer strictly follows the scal-
ing relationship from within the plot. With increasing scale,
the spatial pattern of AGB distribution is possibly increas-
ingly dominated by environmental factors, which in the case
of Barro Colorado Island are topographic slope, soil proper-
ties and forest age due to disturbance history (Mascaro et al.,
2011). These covariates may alter the slopes of scaling re-
lationships. Additionally, the spatial coverages of the AGB
maps were different, due to exclusion of pixels intersect-
ing the coastline, which led to a small sample size of only

5 pixels at the largest analyzed scale (1000 m). Further analy-
ses could investigate the scaling in heterogenous landscapes,
e.g., based on synthetically generated landscapes with spatial
autocorrelation or based on regional or global remote sens-
ing products. With such approaches, an invariability–area re-
lationship has been suggested (Wang et al., 2017).

4.2 The choice of the proper distribution fit

Parametric probability density functions represent idealized
models to which real empirical data may either conform well
or not. To fit the parameters of distribution functions to match
the data, different target criteria can be formulated, such as
maximizing the likelihood of all observed values (maximum
likelihood estimation) or matching the moments of the em-
pirical data (moment matching estimation). Thus, the choice
of the probability density function (lognormal or gamma) and
fitting method (MLE or MME) affects the estimated param-
eters and hence SD. It was found that for the majority of
forest attributes (AGB, loss, mortality) a best-fitting distribu-
tion function, which was also consistent across scales, could
be identified. The example of AGB gain, however, demon-
strated that different methods for distribution fitting can have
different outcomes and that neither lognormal nor gamma
distribution functions matched the empirical distribution well
across scales. Maximum likelihood estimation usually results
in high overlaps of empirical and fitted distributions. How-
ever, it does not necessarily lead to a good match of the mo-
ments of empirical and fitted distribution. Because of this,
SDs of the fitted probability density functions deviated from
the empirical SDs, and they deviated differently at each scale.
This led to inconsistent probability density functions when
applying the scaling relationship for rescaling of the SDs.
With moment matching estimation, SDs were correctly es-
timated at all scales and could consistently be rescaled. The
price for the matching moments were lower overlaps between
empirical and fitted distributions.

4.3 Scaling of forest models

It was found that both forest models could reproduce the
biomass distributions observed in the field at different spa-
tial scales. For the simulation model, it proved to be best to
choose an intermediate reference scale (50 m) for deriving
the information about gain and mortality and using a pre-
model scaling to drive simulations at the other scales. In this
way, the simulation model could reproduce the biomass dis-
tributions at the four simulation resolutions.

Choosing the lower (10 m) or upper (100 m) end of the
scale range as the reference scale led to less agreement of
the simulated and the field distributions. An explanation for
this might be that more bias is introduced when rescaling
over a longer scale range rather than from an intermediate
scale which is closer to both ends. Additionally, using the
small scales as the reference scale is probably problematic,
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because mean mortality is positively biased at these scales,
due to the non-additivity of mortality discussed earlier. Sim-
ulations with the 100 m reference scale resulted in too large
SDs of the distributions across all scales, which can be ex-
plained by the fact that the AGB gain distribution underlying
the simulations was most difficult to fit and rescale from the
100 m reference scale (Fig. S2a). The reason why this was
the case remains speculative but could be explained by the
effect that the heterogeneity caused by the forest structure it-
self (tree positions and sizes) becomes comparatively small
at the 100 m scale, such that underlying landscape gradients
(topography, soil conditions) make the distributions wider
than expected from forest dynamics alone (Mascaro et al.,
2011).

The simulation model produced the most consistent results
when the input distributions were fitted using maximum like-
lihood estimation. This was unexpected, considering the ear-
lier finding that moment matching estimation allows for more
consistent scaling of SDs based on the field data analysis. An
explanation could be that, while moment matching fits are
more accurate with regard to the SD, maximum likelihood
fits are overall “closer” to the real distributions (higher distri-
bution overlap). The deviation of moment matching fits from
the real distributions (smaller distribution overlap) may pose
a problem in simulations where these distributions are used
for drawing random numbers many times. Maximum likeli-
hood fits might be more appropriate in this case, especially if
they were obtained at intermediate scales, from where distri-
bution parameters, like SD, can be rescaled in both directions
without causing much bias.

A fast solution for approximating the AGB distribution
of the forest from the AGB gain and mortality distributions
was given with the analytical model using white shot noise.
This approach does not require iterative simulation over time.
However, it requires the assumption that mortality follows
an exponential distribution, which is a simplification. At the
10 m scale the mortality distribution is at least more similar
to an exponential distribution than at the larger scales. In-
deed, assuming white shot noise directly at large scales did
not approximate the AGB distributions well. However, as-
suming white shot noise only at the 10 m scale and applying
a post-model upscaling enabled a good approximation of the
AGB distribution across all scales without running a simula-
tion. This is an example of an inherent scale of a model; i.e.,
the method white shot noise cannot be applied at arbitrary
scales, but scaling helps to apply the process at its inherent
scale and nevertheless produce results at other scales.

Thus, it was found that the analytical model worked best
when applied at the 10 m scale, where the assumption of a
white shot noise mortality was the most justified, while the
simulation model worked best with parameters derived at the
50 m scale, from where the least bias was introduced when
rescaling the parameters. Such optimal scales always depend
on the considered processes and need to be identified in every
model.

4.4 Perspectives

Quantifying the carbon budget of forests is one of the most
important reasons for combining forest models with remote
sensing (Shugart et al., 2015). Increasingly, the two tech-
niques are being combined for this purpose, either using re-
mote sensing information for model parameterization, ini-
tialization, calibration, or validation or using model informa-
tion for remote sensing interpretation (Plummer, 2000). In
this context, it is important that remote sensing products and
models describe variables at the same spatial resolution. In
case they are operating at different resolutions, appropriate
scaling of the variables needs to be conducted.

Descriptive statistics of distributions and relationships be-
tween variables may critically depend on the chosen aggrega-
tion approach, a phenomenon long known as the modifiable
areal unit problem (MAUP; Openshaw, 1983). The MAUP
has been divided into the zoning and scaling problem. While
the former refers to the problem of where to draw the bor-
ders between aggregation units, the latter refers to the size of
the aggregation units, which is particularly relevant for regu-
larly gridded data and grid-based simulation models (Wong,
2008). It can only be avoided by identifying basic ecological
meaningful entities (trees in forests) and conducting analyses
and model simulations exclusively at their level (Jelinski and
Wu, 1996). This, however, would mean to apply individual-
based models at any scale, which is not feasible for compu-
tational limitations. Thus, we rely on scaling if we want to
model forest dynamics over larger areas.

Based on the results of this study, we advise to consider the
spatial scale in model–data comparisons when dealing with
aggregated quantities such as biomass and carbon fluxes. If
possible, frequency distributions should be derived and com-
pared at several scales. Scaling relationships like the ones
identified in this study may help to transfer distribution pa-
rameters between scales.

Models often have inherent scales; i.e., they represent cer-
tain processes on a grid. This is not exclusive to simple forest
models, like the one used in this study, but also individual-
based forest models, which simulate many processes and en-
vironmental drivers like mortality, disturbances, climate and
soil using grid cells. We have shown that for reproducing the
correct output distributions (biomass) at different scales, the
input distributions (gain, mortality), i.e., the model parame-
ters, had to be rescaled accordingly.

4.5 Outlook

For a deeper understanding of the scaling coefficients of
the different processes at the small scales below 1 ha, fur-
ther analyses should look into the spatial patterns and
mechanisms at the individual level, i.e., tree positions and
their size and biomass distribution. Methods such as point
process models (Lister and Leites, 2018), spatially ex-
plicit individual-based forest models (Maréchaux and Chave,
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2017) or network analysis (Schmid et al., 2020) can improve
our understanding of how patterns at the individual level
shape the scaling at aggregated levels. Beyond the 1 ha scale,
where environmental gradients determine the distributions,
their influence on scaling can be investigated with a combina-
tion of forest landscape models (He, 2008), high-resolution
and multitemporal remote sensing (Dalponte et al., 2019),
and machine-learning-based surrogate models (Rammer and
Seidl, 2019).

Several applications become possible if the scaling of
biomass distributions and their relation to growth and mortal-
ity are well understood. For example, Williams et al. (2013)
used this to estimate disturbance intensities from remotely
sensed biomass distributions using a forest model. A detailed
understanding how canopy height changes at a certain scale
related to biomass changes can allow for a direct quantifi-
cation of the net forest carbon changes from remote sensing
(Hiltner et al., 2022; Knapp et al., 2018b). Knowledge about
the scaling of forest attribute distributions is also required
for downscaling of gridded maps (i.e., super-resolution), for
purposes such as data assimilation (Hill et al., 2011; Rödig
et al., 2017) or pixel-to-point comparisons between models
and field data (Rammig et al., 2018).

5 Conclusions

The study has shown how the distributions of variables,
which are important for the carbon budgets of forests, vary
with spatial scale. Biomass and its gain, loss and mortality
could all be described with parametric distribution functions
(gamma or lognormal) of varying spread at different spatial
resolutions. The spread of these distributions, in the form of
standard deviations, was described as a function of scale us-
ing power law relationships. Scaling exponents for the exten-
sive properties biomass and gain were close to the expected
value of −0.5 but not precisely, which indicates subtle spa-
tial patterns in the data, while the scaling exponent of the
intensive property mortality was quite different. The scaling
relationships allowed for successful up- and downscaling of
the respective distribution functions in the range of scales be-
tween 10 and 100 m. Beyond this range, a comparison with
lidar data showed deviations from the scaling relationship.
Thus, we conclude that the distributions in the considered
range are dominated by the process heterogeneity (forest dy-
namics), while, above, landscape heterogeneity plays an in-
creasing role. Forest models need to account for this land-
scape heterogeneity when being applied at coarser scales.
The application of up- and downscaling for forest models
was demonstrated. It was shown how the scaling relation-
ships can be used to reproduce biomass frequency distribu-
tions with two different simple forest models across scales
using measured parameters about gain and mortality from
a single reference scale as input. The two models differed
with regard to which scale was the best reference scale. Op-

timal scales always depend on the considered processes and
need to be identified in every model. Scaling approaches will
hopefully facilitate the comparison and trans-scale integra-
tion of data about forest dynamics from various sources of in-
formation, such as forest inventory, remote sensing and mod-
eling.
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