NORTHWESTERN WORKING GROUP (NWWG)

VOLUME 4 | ISSUE 42

ICES SCIENTIFIC REPORTS

RAPPORTS
SCIENTIFIQUES DU CIEM

[^0]
International Council for the Exploration of the Sea Conseil International pour l'Exploration de la Mer

H.C. Andersens Boulevard 44-46
DK-1553 Copenhagen V
Denmark
Telephone (+45) 33386700
Telefax (+45) 33934215
www.ices.dk
info@ices.dk

ISSN number: 2618-1371

This document has been produced under the auspices of an ICES Expert Group or Committee. The contents therein do not necessarily represent the view of the Council.
© 2022 International Council for the Exploration of the Sea

This work is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For citation of datasets or conditions for use of data to be included in other databases, please refer to ICES data policy.

ICES Scientific Reports

Volume 4 | Issue 42

NORTHWESTERN WORKING GROUP (NWWG)

Recommended format for purpose of citation:

ICES. 2022. Northwestern Working Group (NWWG).
ICES Scientific Reports. 4:42. 734 pp. http://doi.org/10.17895/ices.pub. 19771381

Editor

Teunis Jansen

Abstract

Authors

Karolin Adorf • Elzbieta Baranowska • Birkir Bardarson • Höskuldur Björnsson • Jesper Boje • Tanja B. Buch • Bjarki Pór Elvarsson • Einar Hjörleifsson • Teunis Jansen • Kristján Kristinsson • Lísa Anne Libungan • Julius Nielsen • Søren Post • Anja Retzel • Frank Farsø Rigét • Petur Steingrund • Helga Bára Mohr Vang • Karl-Michael Werner

Contents

i Executive summary viii
ii Expert group information xiv
1 Introduction 1
1.1 Terms of Reference (ToR) 1
1.1.1 Specific ToR 1
1.2 NWWG 2022 work in relation to the generic ToR 1
1.3 Mohn's Rho 2
1.4 NWWG 2022 work in relation to the specific ToR 2
1.5 Assessment methods applied to NWWG stocks 2
1.6 Audits 3
1.7 Recommendations 3
1.8 Benchmarks and workshops 3
1.9 Chair 4
Sections 2-6 will be added to this report in November 2022
2 Demersal stocks in the Faroe area (Division 5.b and Subdivision 2.a4)
3 Faroe Bank cod
4 Faroe Plateau cod
5 Faroe haddock
6 Faroe saithe
7 Overview on ecosystem, fisheries and their management in Icelandic waters 165
8 Icelandic saithe 166
8.1 Stock description and management units 166
8.2 Fisheries-dependent data 166
8.2.1 Logbook data 167
8.2.2 Landings, advice and TAC 167
8.2.3 Landings by age 167
8.2.4 Mean weight and maturity at age 168
8.3 Scientific surveys 169
8.4 Assessment method 170
8.5 Reference points and HCR 170
8.6 State of the stock 171
8.7 Uncertainties in assessment and forecast 172
8.8 Ecosystem considerations 174
8.9 Possible changes in assessment setup. 174
8.10 References 176
9 Icelandic cod in 5.a 218
9.1 Overview 218
9.2 Some elaborations 219
9.2.1 Data. 219
9.2.1.1 Landings 219
9.2.1.2 Catch in numbers and weight at age 220
9.2.1.3 Surveys 221
9.2.2 The 2022 assessment 221
9.2.2.1 On reference points 223
9.2.2.2 On measure of fishing pressure 223
9.3 Reference 223
10 Haddock in 5.a 258
10.1 Fishery 258
10.1.1 Landing trends 262
10.2 Data available 262
10.2.1 Landings and discards 264
10.2.2 Length compositions 265
10.2.3 Age compositions 266
10.2.4 Weight at age in the catch 268
10.2.5 Natural mortality 268
10.3 Catch, effort and research vessel data 268
10.3.1 Catch per unit of effort from commercial fisheries 268
10.3.2 Icelandic survey data 269
10.3.3 Stock weight at age 274
10.3.4 Stock maturity at age 275
10.4 Data analyses 276
10.4.1 Analytical assessment 276
10.4.2 Data used by the assessment 277
10.4.3 Diagnostics 278
10.4.4 Model results 279
10.4.5 Short term projections 282
10.5 Management 284
10.6 Management considerations 286
10.7 References 286
11 Icelandic summer spawning herring 297
11.1 Scientific Data 297
11.1.1 Survey description 297
11.1.2 The survey results 297
11.2 Information from the commercial fishery 298
11.2.1 Fleets and fishing grounds 298
11.2.2 Catch in numbers, weight-at-age and maturity 298
11.3 Analytical assessment 299
11.3.1 Analysis of input data 299
11.3.2 Assessment 299
11.3.3 Final assessment and TAC advice based on a Management Plan 301
11.4 Reference points and the Management plan 301
11.5 State of the stock 302
11.6 Short-term forecast 302
11.6.1 The input data 302
11.6.2 Prognosis results 302
11.7 Medium-term predictions. 302
11.8 Uncertainties in assessment and forecast 303
11.8.1 Uncertainty in assessment 303
11.8.2 Uncertainty in forecast 303
11.8.3 Assessment quality 303
11.9 Comparison with previous assessment and forecast 303
11.10 Management consideration 304
11.11 Ecosystem considerations 304
11.12 Regulations and their effects 304
11.13 Changes in fishing technology and fishing patterns 304
11.14 Species interaction effects and ecosystem drivers 305
11.15 Comments on the PA reference points 306
11.16 Comments on the assessment 306
11.17 References 306
11.18 Tables 309
11.19 Figures 331
12 Capelin in the Iceland-East Greenland-Jan Mayen Area 337
12.1 Stock description and management units 337
12.2 Fishery independent abundance surveys 337
12.2.1 Autumn survey during September and October 2020 337
12.2.2 Surveys in winter 2021/2022 338
12.2.2.1 Winter surveys 1 . Coverage in $18-25$ January 2022 338
12.2.2.2 Winter surveys 2. Coverage in 25January- 2 February 2022 339
12.3 The fishery (fleet composition, behaviour and catch) 339
12.4 Biological data 340
12.4.1 Growth 340
12.5 Methods 340
12.6 Reference points 341
12.7 State of the stock 341
12.8 Uncertainties in assessment and forecast 341
12.9 Comparison with previous assessment and forecast 342
12.10 Management plans and evaluations 342
12.11 Managementconsiderations 342
12.12 Ecosystemconsiderations 342
12.13 Regulations and their effects 342
12.14 Changes in fishing technology and fishing patterns 343
12.15 Changes in the environment 343
12.16 Recommendations 343
12.17 References 344
12.18 Tables 345
12.19 Figures 362
13 Overview on ecosystem, fisheries and their management in Greenland waters 369
13.1 Ecosystemconsiderations 369
13.1.1 Atmospheric conditions 371
13.1.2 Description of the fisheries 374
13.1.3 Inshore fleets 374
13.1.4 Offshore fleets 375
13.2 Overview of resources 376
13.2.1 Shrimp 376
13.2.2 Snow crab 376
13.2.3 Scallops 376
13.2.4 Squids 376
13.2.5 Cod 376
13.2.6 Redfish 377
13.2.7 Greenland halibut 377
13.2.8 Lumpfish 377
13.2.9 Capelin 378
13.2.10 Mackere 378
13.2.11 Herring 378
13.3 References 378
14 Cod (Gadus morhua) in NAFO Subdivisions 1A-1E (Offshore West Greenland) 380
14.1 Stock definition 380
14.2 Fishery 380
14.2.1 The emergence and collapse of the Greenland offshore cod fisheries 380
14.2.2 The fishery in 2021 380
14.3 Surveys 381
14.3.1 Results of the Greenland Shrimp and Fish Survey 381
14.3.2 Results of the German groundfish survey 382
14.4 Information on spawning 383
14.5 Tagging experiments 383
14.6 State of the stock 383
14.7 Implemented management measures for 2022 384
14.8 Management plan 384
14.9 Managementconsiderations 384
14.10 Basis for advice 384
14.11 Benchmark 2023 384
14.12 References 385
14.13 Tables 387
14.14 Figures 406
15 Cod (Gadus morhua) in NAFO Subarea 1, inshore (West Greenland cod) 423
15.1 Stock description and management units 423
15.2 Scientific data 423
15.3 Tagging experiments 426
15.4 Methods 426
15.5 Reference points 426
15.6 State of the stock 426
15.7 Short-term forecast 427
15.8 Long-term forecast 427
15.9 Uncertainties in assessment and forecast 427
15.10 Comparison with previous assessment and forecast 428
15.11 Management plans and evaluations 428
15.12 Managementconsiderations 428
15.13 Ecosystemconsiderations 429
15.14 Regulations and their effects 429
15.15 Changes in fishing technology and fishing patterns 429
15.16 Changes in the environment 429
15.17 Benchmark 2023 429
15.18 References 429
15.19 Tables 431
15.20 Figures 454
16 Cod (Gadus morhua) in ICES Subarea 14 and NAFO Division 1.F (East Greenland, South Greenland) 473
16.1 Stock definition 473
16.2 Scientific data 473
16.3 Tagging 476
16.4 Methods 476
16.5 State of the stock 476
16.6 Short term forecast 476
16.7 Long term forecast 477
16.8 Uncertainties in assessment and forecast 477
16.9 Comparison with previous assessment and forecast 477
16.10 Implemented management measures for 2022 477
16.11 Management plan 478
16.12 Managementconsiderations 478
16.13 Basis for advice 479
16.14 Benchmark 2023 479
16.15 Recommendations 479
16.16 References 479
16.17 Tables 481
16.18 Figures 513
17 Greenland Halibut in Subareas 5, 6, 12, and 14 528
17.1 Catches, Fisheries, Fleet and Stock Perception 528
17.1.1 Catches 528
17.1.2 Fisheries and fleets 528
17.1.3 By-catch and discard 528
17.2 Trends in Effort and CPUE 529
17.2.1 Division 5.a. 529
17.2.2 Division 5.b 529
17.2.3 Division 14.b 529
17.2.4 Divisions 6.b and 12.b 529
17.3 Catch composition 529
17.4 Survey information 530
17.4.1 Division 5.a 530
17.4.2 Division 5.b 530
17.4.3 Division 14.b 530
17.5 Stock Assessment 530
17.5.1 Stock production model 530
17.5.2 Short-term forecast and management options 531
17.5.3 Reference points 532
17.6 Managementconsiderations 532
17.7 Data consideration and Assessment quality 532
17.8 Research needs and recommendations 532
17.9 References 533
17.10 Tables 534
17.11 Figures 547
18 Redfish in subareas 5, 6, 12 and 14 567
18.1 Environmental and ecosystem information 568
18.2 Environmental drivers of productivity 568
18.2.1 Abundance and distribution of 0 group and juvenile redfish 568
18.3 Ecosystemconsiderations 569
18.4 Description of fisheries 570
18.5 Demersal S. mentella in 5.b and 6 571
18.5.1 Demersal S. mentella in 5.b 571
18.5.2 Demersal S. mentella in 6 571
18.6 Regulations (TAC, effort control, area closure, mesh size etc.) 571
18.7 Mixed fisheries, capacity, and effort 571
18.8 References 572
18.9 Tables 574
18.10 Figures 577
19 Golden redfish (Sebastes norvegicus) in subareas 5, 6 and 14 586
19.1 Stock description and management units 586
19.2 Scientific data 586
19.2.1 Division 5.a. 586
19.2.2 Division 5.b 587
19.2.3 Subarea 14 587
19.3 Information from the fishing industry 588
19.3.1 Landings 588
19.3.2 Discard 588
19.3.3 Biological data from commercial fishery 589
19.3.4 Landings by length and age 589
19.3.5 CPUE 589
19.4 Analytical assessment 590
19.4.1 Gadget model 590
19.4.2 Advice for 2022 (Last year's advice) 592
19.5 Reference points 592
19.6 State of the stock 593
19.7 Short-term forecast 593
19.8 Medium-term forecast 593
19.9 Uncertainties in assessment and forecast 594
19.10 Basis for advice 594
19.11 Managementconsideration 594
19.12 Ecosystemconsideration 594
19.13 Regulation and their effects 594
19.14 Changes in fishing technology and fishing patterns 595
19.15 Changes in the environment 595
19.16 Benchmark 595
19.17 References 595
19.18 Tables 596
19.19 Figures 608
20 Icelandic slope Sebastes mentella in 5.a and 14 631
20.1 Stock description and management units 631
20.2 Scientific data 631
20.3 Information from the fishing industry 631
20.3.1 Landings 631
20.3.2 Fisheries and fleets 632
20.3.3 Sampling from the commercial fishery 632
20.3.4 Length distribution from the commercial catch 632
20.3.5 Catch per unit effort 632
20.3.6 Discard 633
20.4 Management 633
20.5 Methods 633
20.6 Reference points 633
20.7 State of the stock 633
20.8 Management considerations 634
20.9 Basis for advice 634
20.9.1 rfb rule 634
20.10 Regulation and their effects. 637
20.11 Benchmark in 2023 637
20.12 Exploratory analytical assessment with Gadget 640
20.12.1 Data used and model settings 640
20.12.2 Diagnostics 641
20.12.3 Retrospective plots 641
20.12.4 Model results 642
20.12.5 Reference points 642
20.13 References 642
20.14 Tables 643
20.15 Figures 648
21 Shallow Pelagic Sebastes mentella 661
22 Deep Pelagic Sebastes mentella 662
23 Beaked redfish (Sebastes mentella) in Division 14.b, demersal (Southeast Greenland) 663
23.1 Stock description and management units 663
23.2 Scientific data 663
23.2.1 Landings 664
23.2.2 CPUE and bycatch CPUE 665
23.2.3 Fisheries and fleets 665
23.2.4 Bycatch/discard in the shrimp fishery 666
23.3 Methods 666
23.4 Reference points 666
23.5 State of the stock 667
23.6 Managementconsiderations 668
23.7 References 668
23.8 Tables 669
23.9 Figures 674
24 Icelandic plaice in 5.a 686
24.1 General information 686
24.2 Fishery 686
24.2.1 Landing trends 688
24.3 Data available 690
24.3.1 Landings and discards 690
24.3.2 Length compositions 691
24.3.3 Age compositions 692
24.3.4 Weight-at-age 692
24.3.5 Catch, effort and research vessel data 693
24.3.6 Stock weights 699
24.3.7 Maturity-at-age 700
24.3.8 Natural mortality 700
24.4 Data analysis 700
24.4.1 Analytical assessment 700
24.5 Management considerations 708
24.6 Management 709
24.7 References 723
Annex 1: List of Participants 724
Annex 2: Resolutions 725
Annex 3: List of Working Documents 726
Annex 4: List of Stock Annexes 727
Annex 5: Audit reports 729

i Executive summary

The North Western Working Group (NWWG) reports on the status and considerations for management of some of the demersal fish stocks (cod, haddock, saithe, plaice and Greenland halibut) around Greenland, Iceland and Faroes, as well as two pelagic fish stocks in Icelandic waters (summer spawning herring and capelin) and five redfish stocks in Greenland, Iceland and the Irminger Sea.

Capelin in the Iceland-East Greenland-Jan Mayen area

In October 2021, MFRI advised an intermediate TAC of 904200 tonnes based on an acoustic survey in September.

In November 2021, ICES advised an initial quota of 400000 tonnes for the fishing season 2022/2023.

In February 2022, MFRI advised a final TAC of $869600 t$ for 2021/2022 based on acoustic surveys in January-February 2022. All advice was based on the HCR from the ICES Benchmark Workshop on Icelandic Stocks (WKICE - ICES, 2015).

The total landings in the fishing season 2021/2022 amounted to 689000 tonnes (preliminary data). All catches were caught in Autumn and winter months (October 2021-March 2022).

The stock has been accepted to go through a benchmark in 2022.

Offshore West Greenland Cod

The West Greenland offshore stock component is currently assessed as cod in the area comprised of the NAFO subdivisions 1A-E in West Greenland. The East Greenland stock component is currently assessed as cod in the area comprised of the area NAFO Subdivision 1F in South Greenland and ICES Subarea 14 in East Greenland.

Mixing occurs between the two stocks in West Greenland which at present is considered to act as a nursing area for juveniles of the East Greenland stock component. New genetic information suggest that the mixing is more extensive than previously thought, making the geographical boundaries arbitrary. Stock mixing will be addressed at the next benchmark for the Greenland cod stocks proposed for 2023.
Fishery collapsed in the area in the beginning of the 1990s and has since only been of minor importance with average catches between 2000-4000 tonnes per year in the period 2015-2019. TAC in 2021 was zero tonnes, but 100 tonnes were fished on the inshore quota.

Both the German Groundfish survey and Greenland Shrimp and Fish survey indices show that the biomass and abundance increased in the period 2010-2015 due primarily to the 2009-year class and in part to the 2010-year class. In the period 2016-2019 and 2021, the German survey did not cover the stock area. The Greenland survey showed a reduction in biomass in 2016 due to a decrease in the 2009 and 2010-year classes at age 6 and 7 years which where historically high at age 5 and 6 years in 2015. The decrease has been attributed as an effect of fishing and migration inshore and eastward. The abundance of older cod (age >7 years), however, increased since 2017 compared to previous years where older cod where almost absent indicating that not all cod has migrated out of the area and/or they returned from the inshore area. In 2019, the highest biomass in the time period was observed in the Greenland survey. The increase was based on two large hauls in the southern part of the survey area resulting in high uncertainty. Genetic samples from the 2019 survey, including the two hauls, showed that the stock composition in the southern part of the survey area is dominated by the East Greenland/Iceland offshore stock. Therefore, the
increase in biomass in 2019 is not considered representative for the West Greenland offshore stock. The biomass and abundance in both the Greenland and German survey was low in 2020. No survey was performed in 2021.

No analytical assessment is available and there are no biological reference points for the stock. Information from the Greenland survey is used as basis for advice. The age structure observed in survey data indicates that the abundance of adult cod remains low. For the first time in decades, spawning was observed in 2019 in NAFO Division 1C.

The advice is biennial and the one given in 2021 is valid for 2022 and 2023. TAC in 2021 is zero tonnes.

Inshore Greenland cod

The stock has increased since 2006 to historic high levels in 2016 and is currently above reference points. Low recruitment since 2016 has affected the spawning stock biomass, which continues to decrease since 2016. Fishing mortality has never been below $\mathrm{F}_{\text {msy }}$ (0.27) and remains above.

The mixing of cod from different stocks in the West Greenland inshore area adds uncertainty to the assessment. This is most pronounced in the poor model fit to catches, which is substantial in years with large catches ($>15000 \mathrm{t}$). Managers should take this into account when relating the ICES advice to the TAC setting.

TAC has been high in the period 2016-2019 (30 000-35 000 tonnes) but has only been fished in 2016. Since then, catches have decreased to 13500 tonnes in 2021. TAC in 2021 and 2022 is reduced to 21000 tonnes.

The stock is up for benchmark in 2023, were stock identities, based on new genetic data, will be the main issue.

Cod in East Greenland, South Greenland

New reference points were defined at an interim benchmark in august 2021.
Fishing mortality (F_{5-10}) was below $\mathrm{F}_{\text {MSY }}(0.29)$ since 1994 and was low until 2010 where F gradually increased. Since 2019 F is above FmSY. SSB has been declining since 2014 but is still above MSY $B_{\text {trigger }}$ (18 146 tonnes).

The assessment shows retrospective patterns with consistent underestimation of the spawning stock and corresponding overestimating of fishing mortality. The SSB peels are inside the confidence interval. There may be several reasons for the pattern.

Tagging shows substantial spawning emigration to Iceland that this is accounted for in the assessment. Given genetic and tagging studies, it is inferred that the cod in East Greenland is a mixture of cod that spawns in East Greenland and Iceland with some of immature cod from these spawning areas also growing up in West Greenland waters (north of NAFO 1F). In recent years, fishing effort on the slope south of the Dohrn Bank (northeastern part of Division 14.b) where large old cod are caught has been increasing. These factors contribute to the uncertainty of the assessment and may contribute to the observed retrospective pattern.
From 2021, East Greenland was split into two management areas, the Dohrn bank area (east of $35^{\circ} 15 \mathrm{~W}$) and the remaining part. TAC in the Dohrn bank management area is set at 20000 tonnes, whereas TAC in the remaining area is set as TAC (year) $=0.5^{*}$ TAC (year- 1) $+0.5^{*}$ ICES advice (year) resulting in a TAC of 7430 t for 2022. Total TAC in 2022 is therefore 27430 t .

The stock is up for benchmark in 2023 were stock identities, based on new genetic data, will be the main issue.

Icelandic saithe

Annual landings in the fishing year 2020/2021 are estimated to be 56333 tonnes or 72% of the TAC of 78574 . Since the fishing year 2014/2015 around 85% of the annual TAC has usually been caught on the average.

The assessment has since 2010 been based on an assessment model tuned with indices from the Icelandic spring survey (often referred to as SMB in this report). The assessment, benchmarked in 2019, is relatively uncertain due to fluctuations in the survey data, poor recruitment estimates and irregular changes in the fleet selectivity. This uncertainty is taken into account when evaluating the management plan.

The current assessment shows a downward revision of the stock size compared to the last four assessments but the stock size is still estimated to be above average. Mohns rho based on last five assessments is 0.25 for B4+ ending in the assessment year. The retrospective pattern for the last 5 years is caused by a very high 2018 survey index and again relatively high index in 2021. Last year, Mohns rho was 0.05 . The difference in Mohns rho compared to the last assessment is due to a downward revision of the stock few years back because of slow convergence of the assessment and a change in the assessment years considered in the 5 years peel from 2017-2021 to 2018-2022.

Investigation of alternative model setup shows the adopted assessment to be in the middle of plausible values and the range of results was not very wide. Still, low catches compared to TAC could be an indication that the stock is overestimated.

To the extent possible, the part of the TAC that is not caught is transferred to other species but a large part is not used at all. There are indications that overestimation will not lead to risk to the saithe stock, the fisheries will not become profitable and the TAC will not be caught, something that could change with higher saithe prices.

According to the management plan, catches in the fishing year 2022/23 should be no more than 71300 tonnes.

Icelandic cod

The results of this year's assessment show that the spawning stock in 2022 is estimated to be 356.697 kt . The values estimated in recent years are higher than have been observed during the last five decades. The reference biomass B_{4+} in 2022 is estimated to be 976.590 kt. Year classes since the mid-1980s are estimated to be relatively stable but with the mean around 35% lower than observed in the period 1955 to 1985.
The TAC for the current fishing year $(2021 / 2022)$ based on last years assessment was 222.737 kt .
Following the current HCR, the catch for the coming fishing year (2022/2023) should be 209.028 kt based on the following:

The input in the analytical age-based assessment are catch at age 1955-2021 (age 3 to 14) and ages 1 to 14 (from the 1985-2022 spring (often referred to as SMB in this report) and ages 3 to 13 from the 1996-2021 fall groundfish surveys (often referred to as SMH in this report).

The reference biomass (B_{4+}) upon which the TAC in the fishing year is set is derived from population numbers in the beginning of the assessment year and catch weights in that year. The catch weights are not known and hence need to be predicted. An alternative model to the current catch weight prediction model was explored and the WG concluded that it was an improvement. However, under current ICES protocol a working group is not allowed to deviate from the benchmark protocol unless an interbenchmark process or an independent review is called for, a system that is now already in overload. The WG thus proceeded reluctantly with the current
model and will patiently wait for passing the alternative model through the next benchmark, that for this stock will most likely occur in 2026 or 2027.

Icelandic summer spawning herring

The total reported landings in 2021/22 fishing season were 70.1 kt (including summer fishery 2021) although the TAC was set at 72.2 kt . Analyses of biological samples from the past fishing season indicate the continuation of new infection by Ichthyophonus in the stock in the coming fishing year 2022/23.

In this update assessment, where the 2021/22 catch and survey data have been added to the input data, additional natural mortality was applied for 2022 because of the Ichthyophonus infection in the stock. The same approach was used as for 2009-2011 and 2017-2021 where the applied mortality corresponds to a 30% of the infected herring.

The results from the analytical assessment model, NFT-Adapt, indicate that the stock size remains similar to last year's assessment, with the large 2017-year class which entered the fishery at age 4 last autumn and a 2018-year class predicted to be high. Spawning stock biomass in the beginning of the fishing season 2022 is estimated 421.1 kt and the reference biomass of age $4+$ ($B_{R e f}$) is 441.3 kt in the beginning of the year 2022. As the SSB will be above MGT $\mathrm{B}_{\text {trigger }}=200 \mathrm{kt}$, the catches in 2022/23 according to the Icelandic Management Plan would be $H R$ mgт $\times B_{\text {Ref }}=0.15 \times 441299$ tonnes $=66195$ tonnes.

Golden redfish (Sebastes norvegicus) in Subareas 5, 6, 12 and 14

Annual landings increased gradually since the 2000s, when they were at low level, to 2016 . Since then, landings have decreased. Total landings in 2021 were 43426 tonnes, which is 2771 tonnes less than in 2020. About 95\% of the catches were taken in Division 5.a.

The assessment results of 2022 show that the spawning stock increased from 1995 to 2015 but has since then decreased. Fishing mortality has been low since 2010, but since the HCR was adopted in 2014, the fishing mortality has been above the target of 0.097 due to TAC exceeding advised catches. Analytical retrospective patterns indicates that fishing mortality has consistently been underestimated and SSB has been overestimated. Recruitment estimates after 2013 are record low for the time series.

Results from surveys in Iceland and East Greenland indicate that the most recent year classes are poor although the accuracy of the surveys as an indicator of recruitment is not known.

The management plan is based on $\mathrm{F}_{9-19}=0.097$ that is reduced linearly if the spawning stock is estimated below 220000 tonnes ($\mathrm{B}_{\text {trigger) }}$. Blim is set at 160000 tonnes, lowest SSB in the 2012 run. The 2022 SSB was estimated at 220056 tonnes.

The stock is planned to be benchmarked in 2023.

Icelandic slope beaked redfish (Sebastes mentella) in 5.a and 14

Total landings of demersal S. mentella in Icelandic waters in 2021 were 10588 tonnes, a slight decrease from 2020. No agreed analytical assessment is available and there are no biological reference points for this stock. Survey indices from the Icelandic autumn survey since 2000 are used as basis for advice.

The total biomass and abundance indices were highest in 2000 and 2001, declined in 2002 and have been at that level since then.

The East Greenland shelf is most likely a nursery area for the stock. No new recruits ($<18 \mathrm{~cm}$) are seen in the survey catches of the German survey and the Greenland survey conducted in the area.

Icelandic slope S. mentella is considered a data limited stock (DLS) and follows the ICES framework for such (Category 3.2). The stock will be benchmarked in 2023.

Greenlandic demersal Sebastes mentella in 14.b

Before 2009, Sebastes mentella was mainly a bycatch in the fishery for Greenland halibut, but afterwards, a directed mixed fishery towards demersal redfish (S. mentella and S. norvegicus) has taken place. In 2021, total landings of demersal S. mentella were 1302 tonnes in East Greenland. The proportion of S. mentella in this mixed fishery is monitored on a yearly basis, and with the exception of 2019, S. norvegicus has dominated the catches since 2016.
S. mentella is a slow growing, late maturing species and is therefore considered vulnerable to overexploitation. Biomass and abundance index from the Greenland Shallow Water Survey (GRL-GFS) for both adult S. mentella and juvenile redfish (Sebastes spp.) have been declining for almost a decade. For S. mentella, the biomass index of 2020 is the lowest in the time series. The low stock biomass of S. mentella is supported by the German Groundfish Survey index (GER(GRL)-GFS-Q4). In 2021, neither the Greenland nor German surveys were conducted.

The Greenlandic demersal S. mentella is a data limited stock (DLS) and follows the ICES framework for category 3 stocks. The low biomass indices obtained in recent years and especially in 2020 indicate that the stock is below any candidates for biomass reference points and given the poor recruitment for a decade no catch level could be identified in accordance with the precautionary approach. For a data limited stock with extremely low biomass, ICES method 3.1.4 was applied and zero catches for 2022 are proposed. The stock has been proposed for benchmark in 2024.

Icelandic Haddock

All the signs from commercial catch data and surveys indicate that haddock in 5.a is at present in a good state. This is confirmed in the assessment. At the ICES Workshop on evaluation of the adopted harvest control rules for Icelandic summer spawning herring, ling and tusk (WKICEMSE - ICES, 2019), the harvest rate target applied by the HCR in the period between 2013 and 2018 was estimated to be no longer precautionary while a rate of 0.35 was in-line with both the precautionary and ICES MSY approach. As the 2018-year class is fairly small, the stock expected to remain at the current levels next year but it is, however, projected to increase in coming years due to strong incoming recruitment from the 2019- and 2020-year classes.

Due to this good state of the stock, and CPUE being at its highest value, the landings substantially exceeded the TAC advice for the fishing year 2020/2021. To prevent a possible quota choke, the Government of Iceland increased the TAC by 8000 tonnes while stating that the TAC for $2021 / 2022$ will be reduced by 8000 tonnes. Catch scenarios for 2022/2023 are therefore based on TAC constraint.

Greenland Halibut in Subareas 5, 6, 12, and 14

Catches of Greenland halibut in subareas 5, 6, 12 and 14 have ranged between 20 and 30 kt in the last two decades and amount to 23802 t in 2021 which is a 5% increase in total catches compared to 2020. The biomass indices used as input to the assessment (combined survey index from Greenland and Iceland, with Greenland index fixed values since 2016, when the last survey took place) showed a similar increasing trend while logbook information from Iceland trawler fishery showed a slight decreasing trend. The increase in survey biomass index was due to increase of fish larger than 40 cm .
A logistic production model in a Bayesian framework is used to assess stock status and for catch forecast scenarios. The model includes an extended catch series going back to the assumed virgin status of the stock at the beginning of the fishery in 1961. Estimated stock biomass showed an
overall decline along with the high catches in the late 1980s and early 1990s but since 2004/2005, the stock has increased slowly and is in 2022 at 80% of BMSY. Fishing mortality has since 2013 been close and above $\mathrm{F}_{\text {MSY }}$ but is in 2021 below $\mathrm{F}_{\text {MSY }}$ (94% of $\mathrm{F}_{\text {MSY }}$). The remaining available tuning indices are currently not used in the analytical assessment due to conflicting signals (logbook information from East Greenland and Faroese trawl fishery, and biomass index from a Faroese survey). The Greenland fishery in Division $14 . \mathrm{b}$ suggest a high but y declining biomass while the Faroese indices suggest a significantly lower but increasing biomass in the eastern areas of the stock distribution. From Icelandic waters survey estimates of abundance of fish smaller than 40 cm show reduced productivity since 2014 . This will likely impact the fishable stock in the near future. Stock structure and connectivity between the main fishing areas within the stock distribution area remains partly unknown but is presently being investigated and this will be an important issue in a forthcoming benchmark in 2023.

Icelandic plaice

Icelandic plaice fishery in 5 .a has been considered stable in the last two decades and annual total landings have been between 5 and 8 thousand tonnes during this period. In 2021, landings were 8677 tonnes, approximately 1170 tonnes increase from the previous year. Historical landings of plaice have fluctuated during different time periods, with highest landings registered in the 1980s, with 14500 tonnes landed in 1985. Demersal seine is the main fishing gear for plaice (65$71 \%$ since 2011) in Iceland followed by demersal trawl (23-30\%).

Results from Icelandic surveys indicate that the Icelandic plaice stock is stable, however the surveys are not adequately covering the main recruitment grounds for plaice, as recruitment takes place in shallow water in habitats unsuitable for demersal trawling. Juvenile abundance indices ($<20 \mathrm{~cm}$) from those surveys indicate low levels since 1998 with occasional small peaks.

An analytical age-based stock assessment model using catch in numbers and age-disaggregated indices from the spring survey was benchmarked in 2022. A management plan for plaice was evaluated at the same time. The model runs from 1981 onwards and ages 3-12 are tracked by the model, where age 12 is a plus group. Natural mortality is set to 0.15 for all age groups. Considerable uncertainty is present in the model due to limited information on recruitment. The result of the assessment indicates that the stock size is stable and the fishing pressure is in-line with the goals of the management plan, where the target F is set as 0.3 .

Faroe Plateau cod

This section will be updated in November 2022

Faroe Haddock

This section will be updated in November 2022

Faroe saithe

This section will be updated in November 2022

ii Expert group information

Expert group name	Northwestern Working Group (NWWG)
Expert group cycle	Annual
Year cycle started	2022
Reporting year in cycle	$1 / 1$
Chair	Teunis Jansen, Greenland and Denmark
Meeting venues and dates	$2-7$ May 2022, Copenhagen, Denmark and online (hybrid meeting), 18 participants
	$24-27$ October 2022, venue tbd, xx participants

1 Introduction

1.1 Terms of Reference (ToR)

1.1.1 Specific ToR

2021/2/FRSG05 The North-Western Working Group (NWWG), chaired by Teunis Jansen, Denmark, will meet in ICES HQ, Copenhagen, Denmark 2-7 May 2022 to:
a) Address generic ToRs for Regional and Species Working Groups for all stocks, except stocks mentioned in ToRs c)
b) Compile and review available data and information on plaice in Division 5.a and prepare a road map and issue list for a future benchmark
and on 24-27 October 2022 to:
c) Address generic ToRs for Regional and Species Working Groups for Capelin (Mallotus villosus) in subareas 5 and 14 and Division 2.a west of $5^{\circ} \mathrm{W}$, Cod (Gadus morhua) in Subdivision 5.b. 1 (Faroe Plateau), Cod in Subdivision 5.b. 2 (Faroe Bank,) Haddock (Melanogrammus aeglefinus) in Division 5.b (Faroes grounds) and Saithe (Pollachius virens) in Division 5.b (Faroes grounds).

The assessments will be carried out on the basis of the stock annex. The assessments must be available for audit on the first day of the meeting.

Material and data relevant for the meeting must be available to the group on the dates specified in the 2022 ICES data call.

NWWG will report by 19 May and 10 November 2022 for the attention of ACOM.
Only experts appointed by national Delegates or appointed in consultation with the national Delegates of the expert's country can attend this Expert Group

1.2 NWWG 2022 work in relation to the generic ToR

At the end of March, 2022, ICES Council placed a temporary suspension of Russian participation in all ICES activities. Hence, no experts representing the Russian Federation was at the NWWG meeting or took part in the reporting. The official statement from ICES is stated below:

Since the start of the ongoing war in Ukraine, a number of Member Countries have instructed their scientists and representatives to either boycott or avoid engagement in activities where representatives of the Russian Federation (one of ICES member countries) are present.

ICES is governed through an international convention and includes the 20 coastal states that border the North Atlantic, including the Baltic Sea. Multinational participation in the processes which provide science, data, and advice in support of our mission is essential to our integrity. ICES mission is to advance and share scientific understanding of marine ecosystems and the services they provide and to use this knowledge to generate state-of-the-art advice for meeting conservation, management, and sustainability goals.

In order to fulfil our mission and obligations to requesters of ICES Advice, we require broad participation of essential experts in our activities. The war in Ukraine is undermining this broad participation in many multilateral science organizations, including ICES.

ICES Council of Delegates has voted to place a temporary suspension on all Russian Federation delegates, members, and experts from participation in ICES activities. This suspension will begin on 30 March 2022. ICES Bureau (Executive Committee) will monitor the situation and, when appropriate, recommend a reversal of this suspension.

Because of the disruptions caused by COVID 19 in 2022 the meeting in April was held as a hybrid meeting with most participants attending physically at ICES HQ in Copenhagen while some attended remotely.

For all stocks discussed during the meeting, the NWWG adopted the assessment which formed the basis for stock status and the premise for the forecasts. Based on the assessments the group produced a draft advice for all stocks.
The fisheries overview for the Icelandic Ecoregion was published in 2019. Ecosystem overview for Greenland and Fisheries Overview for the Greenland and Faroese were published in 2020.

1.3 Mohn's Rho

Generic Term of Reference c)-viii).
Mean Mohn's Rho for category 1 stocks for Fbar, spawning-stock biomass (SSB) and Recruitment for the stocks was discussed during the meeting. The plots are shown in relevant chapters.

Stock	Code	Term. year	Retro years	Fbar	SSB	Recr
Inshore West Greenland cod	cod.21.1	2020	5	-0.024	-0.166	-0.483
East Greenland, South Greenland cod	cod.2127.1f14	2020	5	-0.122	-0.149	-0.383
Icelandic Saithe	pok.27.5a	2020	5	-0.084	0.101	-0.074
Icelandic cod	Cod.27.5a	2020	5	0.035	-0.021	0.074
Icelandic haddock	had.27.5a	2020	5		-0.065	0.035
Greenland halibut	ghl.27.561214	2019	5	0.030	0.043	-
Golden redfish	reg.27.561214	2022	5	-0.0141	0.0059	0.704
Icelandic summer spawning herring	her.27.5a	2021	5	1.03	-0.11	-0.13
Icelandic plaice	ple.27.5a	2021	5	0.06750	-0.07730	-0.02310

1.4 NWWG 2022 work in relation to the specific ToR

The group will meet two times in 2022 (see ToR). The report will be updated with the respective stocks after each meeting.

1.5 Assessment methods applied to NWWG stocks

The methods applied to assess the stock status of the NWWG stocks covers a wide range from descriptive to age based analytical assessments as follows:

Stock	Assessment model	Input*
Faroe Bank cod	DLS category 3	Survey
Faroe Plateau cod	SAM	Survey
Faroe haddock	SAM	Survey
Faroe saithe	SAM	CPUE

Stock	Assessment model	Input*
Iceland saithe	ADCAM (statistical catch-at-age)	Survey
Iceland cod	ADCAM (statistical catch-at-age)	Survey
Iceland haddock	Adapt type model	Survey
Iceland herring	NFT-Adapt	Survey
Icelandic plaice	SAM	Survey
Capelin	Linear regression	Survey
Inshore West Greenland cod	SAM	Survey
East and South Greenland cod	SAM	Survey
Offshore West Greenland cod	Descriptive	Survey
Greenland halibut	Stock production model (Bayesian)	Survey + CPUE
Golden redfish	GADGET (age-length based cohort model)	Survey
Iceland slope S. mentella	DLS category 3.2	Survey
Deep pelagic S. mentella	Gadget	Survey
Shallow pelagic S. mentella	DLS category 3	Survey
Greenland Slope S. mentella	DLS category 3.2	Survey

* Catches or catches by age are input to all assessments

1.6 Audits

All audits were completed. The auditors found the work of the assessment and advice satisfactory.

1.7 Recommendations

The recommendations were included in a dedicated ICES database and passed on to relevant recipients.

1.8 Benchmarks and workshops

Benchmark of golden redfish, Icelandic slope beaked redfish and Greenland halibut will be take place in 2023 (WKNORTH).

The East Greenland, inshore and offshore West Greenland cod stocks are to be benchmarked in 2023 (WKGREENCOD). A substantial issue lists has been prepared and work has been initiated. Main pillars of the work were presented and discussed during the meeting. A dedicated workshop will take place in September 2022 to advance the method to be applied to split catches and survey data into the separate stocks.

Icelandic summer spawning herring was last benchmarked in January 2011 and therefore it is recommended that the stock will be benchmarked in 2024. A few issues were discussed at the meeting, for example that it would be ideal to use StoX and the SAM model similarly to what is used for the Norwegian spring spawning herring. An issue list will be put together before autumn 2022.

Furthermore, an inter-benchmark will take place later in autumn 2022 for the Faroese stocks to incorporate in-year catches into the stock assessments. Results will be ready to be implemented in preparation for the ICES catch advice for fishing opportunities in 2023.

1.9 Chair

This was the second of three years for the Chair, Teunis Jansen, Greenland/Denmark.

7 Overview on ecosystem, fisheries and their management in Icelandic waters

The most recent Icelandic Waters ecoregion - Ecosystem overview is available as an ICES advice publication:

- ICES. 2021. Icelandic Waters ecoregion -Ecosystem overview. In Report of the ICES Advisory Committee, 2021. ICES Advice 2021, Section 11.1, https://doi.org/10.17895/ices.advice. 9440

The most recent Icelandic Waters ecoregion - Fisheries overview is available as an ICES advice publication:

- ICES. 2021. Icelandic Waters ecoregion - Fisheries overview. In Report of the ICES Advisory Committee, 2021. ICES Advice 2021. https://doi.org/10.17895/ices.advice. 9167

8 Icelandic saithe

8.1 Stock description and management units

Description of the stock and management units is provided in the stock annex.
The stock was benchmarked and the management plan evaluated in March 2019 (ICES, 2019a). The result was no change in assessment setup. A minor change in the management plan was introduced as MGMTB ${ }_{\text {trigger }}$ was decreased from 65 to 61 thous. tonnes to be in line with ICES MSY Btrigger. Other reference points were unchanged except $H_{R}{ }_{\lim }$ and $H R_{\text {pa. }}$ were introduced to replace $\mathrm{F}_{\text {lim }}$ and F_{pa}.

8.2 Fisheries-dependent data

Landings of saithe in Icelandic waters in 2021 are estimated to have been 59774 t (Table 8.1 and Figure 8.1). This is 20% increase from last year, still lower than 2018 and 2020 and as in most recent years well below the allocated TAC that has been around 80 thousand tonnes (Figure 8.4)
Of the landings, 53248 t were caught by trawl, 2967 t by gillnets, and the rest caught by other fishing gear. Most of the catch is taken by bottom trawl (83% in 2010-2017, 90% in 2018-2021, with gillnet and jiggers taking the majority of the rest, 5% each fleet. The share taken by the gillnet fleet was larger in the past, 26% in 1987-1996 compared to 9% in 1998-2021 (Figure 8.1). The reduction in the gillnet fisheries is caused by general reduction in gillnet boats that are mostly targeting cod and increased mesh size in gillnet fisheries targeting cod.

The reduction in the gillnet fleet was driven by boats changing from gillnets (another types of gear) to longlines, a change driven by cod and haddock fisheries. Price of large gillnet cod sold for bacalau reduced compared to "normal size" so it became more economical to operate longliners that supply fish evenly through the year. Increase in the haddock stock in the early 2000s and progress in automatic baiting were also an important factor. This trend might be changing as the effort by longliners decreased by 20\% between 2014-2016 and 2020-2021.

For saithe fisheries the important factor is that saithe is rarely caught by longliners so the fleet has become much less of saithe fleet than before. The share of longlines increased gradually from 0.8% before 2000 to 2.2% in 2013-2016 but reduced again to 1.5% in 2020 and 0.8% in 2021.

The fleet using demersal trawl can be divided in two parts, those that freeze the catch and those that land it fresh. The trend in last decade has been that the proportion of the trawler fleet that land the catch fresh has increased. Freezing trawlers have taken larger proportion of the catch of saithe and redfish compared to cod and haddock (Figure 8.6). The main reason for this is relative price of frozen vs fresh fish for each species, but mixed fisheries issues like avoiding redfish when landing fresh fish can be a factor (redfish scratches the bycatch). The trend in recent years has been reduction in catch of all species by the freezing trawlers.

Spatial distribution of the saithe fisheries changed much from 2002-2014. (Figures 8.5 and 8.7). Before 2002 most of the saithe was caught south and west of Iceland but between 2012 and 2021 $40-50 \%$ of the catch have been taken north west of Iceland. Comparable percentage before 2002 was $3-8 \%$. Similar increase can be seen for golden redfish but redfish and saithe have for a long time been caught by the same vessels, not necessarily in the same hauls, rather as night and day fish. The area where saithe is caught now (Hali Figure 8.7) has since early in the $20^{\text {th }}$ century been the most important cod fishing ground for trawlers.

8.2.1 Logbook data

CPUE from the fleet show increasing trend over time (Figure 8.16 and 8.17). Considerable variability can be seen on top of this trend and all measures of CPUE show substantial reduction since 2018.

The GLM indices shown in 8.17 are compiled by a model of the form.

$$
\begin{gathered}
C=T^{\gamma} \times \delta_{\text {year }} \\
C=T^{\gamma} \times \delta_{\text {year }} \delta_{\text {freeze }}
\end{gathered}
$$

Where C is catch of saithe, T hours trawled. $\delta_{y e a r}$ is an estimated year factor $\delta_{\text {freeze }}$ a factor indicating if the catch is frozen aboard the vessel. γ is an estimated parameter showing relationship between hours trawled and catch.

Those models give similar trend as the indices compiled directly but the interesting observation of those models is that the models predict inverse relationship between hours trawled and saithe catch $(\gamma=-0.25)$ (the models are run on all hauls where saithe is registered). The average numbers of hours trawled might be the best measure of the stock size. Shorter hauls means larger stock.

8.2.2 Landings, advice and TAC

For all Icelandic stocks that are managed by a TAC system the TAC is given for fishing year where fishing year $\mathbf{y} / \mathbf{y} \mathbf{+ 1}$ is from September $1^{\text {st }}$ in the year \mathbf{y} to August $31^{\text {st }}$ in year $\mathbf{y} \mathbf{+ 1}$. Assessment done in the spring of year \mathbf{y}, is used to give advice for the fishing year starting September $1^{\text {st }}$ the same year. For most stocks the survey conducted in March is the most influential data source and the most recent survey from March in the assessment year is used in the advice.

The management plan and assessment for Icelandic saithe have been identical since 2010 and both advice and TAC based on the 20% harvest control rule. Since 2014/2015 the TAC has not been caught (Figure 8.4) but in the period 1997/1998 to 2013/2014 the TAC was caught in all years except 2007/2008 and 2008/2009. The catch in the fishing year 2020/2021 is estimated to have been 56 thous. tonnes, while the set TAC was 80 thous. tonnes.

The Icelandic Fisheries management system allows some transfer between species based on codequivalence factors that are supposed to reflect the price of the species compared to cod (see ICES, 2021). Cod is though not included in the system that is quite limited. In recent years saithe has been converted to other species (Figure 8.2) that are probably more economical to catch than saithe. But considerable part of the saithe quota has not been used that might be a signal of overestimation of the stock or that catching saithe is not economical. As described before, the fleet has been less of a saithe fleet in recent years and historical assessment shows that fishing mortality of Icelandic saithe was never really high (the same applies to other saithe stocks ref).

8.2.3 Landings by age

Compilation of catch in numbers is based on age and length distributions from the catches where the number aged is usually considerably less than number length measured. Discarding is not considered to be a problem in the Icelandic saithe fisheries, with an estimated discard proportion of 0.1% (annual reports by Palsson et al., 2003 and later). Recently, the fleet does also seem to have difficulty in catching the set TAC making discards more unlikely. Since the amount discarded is likely to be small, not taking discards into account in the total catches and catch in numbers is not considered to have major effect on the stock assessment.

Foreign landings that are 157 tonnes are included in the landings above. They are mostly caught by longlines (68 tonnes) and handlines (88 tonnes). All the foreign landings have in recent years been taken by the Faroese fleet.

Catch in numbers are compiled based on 2 fleets, bottom trawl and gillnets, 1 region and 1 season. Bottom trawl accounts for 90% of the landings and other fleets than bottom trawl and gillnet are included with the bottom trawl.

The samples used to derive catch in numbers are both taken by observers at sea and from shore samples. The trawlers that freeze the catch account for majority of sea samples while all shore samples are from fresh fish trawlers. In addition, relatively few fishes from sea samples are sampled for otoliths but the age-length keys are most likely similar.

Length distributions from sea and shore samples show some difference in recent years, the shore samples show more of large fish (Figure 8.8). This difference might be reflecting the difference in composition of the catch of the trawlers that freeze the catch and those that land the catch fresh. Excluding sea samples when compiling catch in number for the year 2021 leads to more of 6 years and older fish but less of other age groups (green and red bars in Figure 8.9).
Length distributions from bottom trawl show tendency to catch smaller fish from 2003-2017, larger fish in 2018-2020 but smaller again in 2021 (Figure 8.10). In 2020 the +110 cm group was unusually abundant.

Numbers sampled in 2019-2021 is shown in Tables 8.2 and 8.3. Sampling effort was low in 2020, mostly due to Covid. In recent years sea samples account on the average for about 77% of the length measured fish that is used in the calculation of the catch in number and 67% of the length samples (Figure 8.3). On the other hand, 25% of the aged otoliths come from sea samples. These numbers were different in 2020 when no aged fish and 50% of length measured fish came from sea samples.
90% of the length samples are taken from trawl that accounts for $\sim 90 \%$ of the catches.
The sampling program has been revised in last decades, the number of age samples reduced and the number of fish per sample has also reduced (Figure 8.3 and stock annex).

Two age-length keys are used to calculate catch at age, one key for the gillnet catch and another key for other gears combined. The same length-weight relationship $\left(W=0.02498{ }^{*} L^{\wedge} 2.75674\right)$ is applied to length distributions from both fleets.

Catch in numbers by age are listed in Table 8.4 and Figure 8.9 where they are compared to prediction from last year, not fitting too well (red and blue bars).

In recent decade increased proportion of saithe catches has been caught north-west of Iceland (Figure 8.5). This situation could lead to potential problem, if the sampling effort does not follow distribution in the catches. To look at this problem catch in numbers were recompiled using 12 cells, 3 gear (bottom trawl, gillnets and handlines), 2 areas (north and south) and 2 time periods (Jan-May and June-Dec). The resulting catch in numbers are nearly identical (Figure 8.11) and using it in assessment leads to less than 1% difference of reference biomass.

8.2.4 Mean weight and maturity at age

Weights of all age groups have been below average in recent years, the older age groups though closer to average (Table 8.5 and Figures 8.12-8.14). The large 2012 year class had the lowest mean weight of all year classes at age 4 and 5 , both in catches and in the survey. This is in line with density dependent growth that has been observed in this stock and can for example be seen for year classes 1984 and 2000 that are both large. The long-term trend since 1980 has been decline for younger age groups but increase for older age groups (Figure 8-14).

Weight at age in the landings are used to compile the reference biomass (B4+) that is the basis for the catch advice. Catch weights are also used to compile the spawning stock. Catch weights for the assessment year are predicted by applying a linear model using survey weights in the assessment year and the weight of the same year class in catches in the previous year as predictors (Magnusson, 2012 and stock annex).

Maturity at ages 4-9 has decreased in recent years and is currently below the average since 1985 (Table 8.6 and Figure 8.11). A model using maturity at age from the Icelandic groundfish spring survey is used to derive smoothed trends in maturity by age and year (see stock annex).

8.3 Scientific surveys

In the benchmarked assessments from 2010 and 2019, only spring survey (ice-smb) data are used to calibrate the assessment. Compared to the autumn survey (ice-smh) the spring survey has larger number of stations (lower CV) and longer time series. Saithe is among the most difficult demersal fishes to get reliable information from bottom trawl surveys. In the spring survey, which has 500-600 stations, a large proportion of the saithe is caught in relatively few hauls and there seems to be considerable inter-annual variability in the number of these hauls.

The biomass indices from the spring survey (Figure 8.18) fluctuated greatly from 1985-1995 but were consistently low from 1995-2001. Since 1995 the indices have been variable but compared to the period 1985-1995 the variability seems "real" rather than noise. This difference is also seen by the estimated confidence intervals of the indices that are smaller after 1995. In 2018 the indices were the highest in the series and had tripled since 2014. (Table 8.7 and Figure 8.18). Most of the increase was caused by year class 2012 that was strong in the surveys 2015-2018 (Figure 8.20). The biomass index from the March survey reduced much from 2018-2019 but has fluctuated since. The 2022 value is $2 / 3^{\text {rd }}$ of the 2021 value that was relatively high. The 2022 value is only 35% of the 2018 value that is the highest value in the series (the 1986 value is considered an outlier) Similar reduction in survey biomass has been seen before. Usually, the highest CV is estimated for the high survey value, the exception is 2018 where CV is around average. The 2022 index has similar CV as the 2009 index that is the lowest CV in the series.

Estimated CV from the survey is often relatively high and many relatively low values appear in the survey matrix, both for the youngest and oldest age groups. The youngest age group (age 34 and younger) are considered to inhabit waters shallower than the survey covers and the older age groups are reducing in numbers and could also be more pelagic.

To take this into account the survey residuals are compiled as $\frac{\log (I+\epsilon)}{\log (\hat{I}+\epsilon)}$ where ϵ is a number that should avoid giving low values too much weight as they do in log-log fit. Typical value of ϵ is the value that $3-4$ otoliths will give, that would be 0.15 for saithe. Higher values are used for saithe 0.3 for the older ages, 0.5 for ages $3-5$ and 0.7 for age 2 , a value giving age 2 very low weight except the index if very high.

Looking at the CV large part of the high biomass in 2018 was caused by age 6 , the age group that is "best fitted" in the survey. The 2018 index had medium CV.

The autumn survey shows similar trend as the spring survey and the index was at high level in 2017 (2004 and 2018 are outliers due to large CV). The values before 2000 might be underestimate due to stations added in 2000 (Figure 8.5) in an area where large schools of saithe are sometimes found. Excluding these stations leads to lower but more stable index.

Catch curves from the survey indicate that $\mathrm{Z} \sim 0.5$ assuming similar q with age (Figure 8.22).

Indices from the gillnet survey conducted south and west of Iceland since 1996 were high from 2015-2020 but the 2021 and 2022 values are lower. (Figure 8.13). The gillnet survey is mostly targeting large saithe (mean weight in 2022 was 7.5 kg).

To summarize, survey indices and CPUE from last 2-4 years indicate decreasing stock.
The high index in March 1986 (Figure 8.18) was mostly the result of one large haul that is scaled down to the second largest haul when compiling indices for tuning. The scaling is from 16 tonnes to 1 tonne.

Internal consistency in the March survey measured by the correlation of the indices for the same year class in 2 adjacent surveys is relatively poor, with R^{2} close to 0.46 where it is highest (Figure 8.21).

8.4 Assessment method

In accordance with the recommendation from the benchmark (ICES, 2019a), a separable forwardprojecting statistical catch-age model Muppet (Björnsson, 2019), developed in AD Model Builder, is used to fit commercial catch at age (ages 3-14 from 1980 onwards) and survey indices at age (ages 2-10 from 1985 onwards). The selectivity pattern is constant within each of 3 periods (Figure 8.23). Natural mortality is set at 0.2 for all ages. The survey residuals $\left(\frac{\log (I+\epsilon)}{\log (\hat{I}+\epsilon)}\right)$ are modelled as multivariate normal distribution with the correlation estimated (one coefficient).

The assessment model is also used for short term forecast, the Muppet model cannot be run without prediction.

The input for the short-term forecast is shown in Tables 8.3, 8.4 and 8.7. Future weights, maturity, and selectivity are assumed to be the same as in the assessment year, as described in the stock annex. Recruitment predictions are based on the segmented stock-recruitment function estimated in the assessment model which is essentially geometric mean when the stock is above estimated break point that is near Bloss.

8.5 Reference points and HCR

In April 2013, the Icelandic government adopted a management plan for managing the Icelandic saithe fishery (Ministry of Industries and Innovation, 2013). ICES evaluated this management plan and concluded that it was precautionary and in conformity with ICES MSY framework.

The management plan for the Icelandic saithe fishery, adopted for the first time in 2013 was reevaluated by ICES in March 2019 and found to be precautionary and in conformity with ICES MSY approach (ICES, 2019a).

The TAC set in year t is for the upcoming fishing year, from 1 September in year t, to 31 August in year $t+1$. The TAC according to the management plan is calculated as follows.

$$
\text { If } S S B_{y} \geq M G M T B_{\text {trigger }}
$$

$$
\operatorname{Tac}_{y / y+1}=\frac{T a c_{y-1 / y}+0.2 \times B_{4+, y}}{2}
$$

If $S S B_{y} \leq M G M T B_{\text {trigger }}$

$$
\begin{gathered}
\operatorname{Tac}_{y / y+1}=\alpha \times \operatorname{Tac}_{y-1 / y}+(1-\alpha) \times \frac{S S B_{y}}{M G M T B_{\text {trigger }}} \times 0.2 \times B_{4+, y} \\
\alpha=0.5 \times \frac{S S B_{y}}{M G M T B_{\text {trigger }}}
\end{gathered}
$$

Where $T a c_{y / y+1}$ is the TAC for the fishing year starting 1 September in year y ending 31 August in year $y+1 . B_{4+, y}$ the biomass of age 4 and older in the beginning of the assessment year compiled from catch weights. The latter equation shows that the weight of the last years Tac does gradually reduce from 0.5 to 0.0 when estimated $S S B$ changes from $M G M T B_{\text {trigger }}$ to 0 .
Reference points were also re-evaluated at WKICEMSE 2019 (See table below and ICES, 2019a). $B_{\text {lim, }} B_{\text {pa, }}$ MSY Btrigger, HRmsy and HRMgt were unchanged, MGMT Btrigger changed from 65 to 61 thous. tonnes and $H R R l i m_{\lim }$ and $\mathrm{HR}_{\mathrm{pa}}$ were defined but earlier $\mathrm{F}_{\mathrm{lim}}$ and F_{pa} had been defined.

Item	B $_{\text {lim }}$	$\mathbf{B}_{\text {pa }}$	MSY $\boldsymbol{B}_{\text {trigger }}$	MGT $\boldsymbol{B}_{\text {trigger }}$	HR $_{\text {MSY }}$	HR $_{\text {Mgt }}$	HR $_{\text {lim }}$	HR $_{\text {pa }}$
Value	44	61	$61 / 65$	61	0.2	0.2	0.36	$0.26 / 0.25$
Basis	$\mathrm{B}_{\text {loss }} / 1.4$	$\mathrm{~B}_{\text {loss }}$	$\mathrm{B}_{\text {pa }}$	$\mathrm{B}_{\text {pa }}$		Stochastic simulations.		

The recipe to evaluate MSY $B_{\text {trigger }}$ and $H R_{\text {pa }}$ has changed since 2019 so those reference points were evaluated based on the same simulations as in 2019, leading to MSY B trigger $=65$ thousand tonnes and $\mathrm{HR}_{\mathrm{pa}}=0.25$.

8.6 State of the stock

The results of the principal stock quantities (Table 8.8 and Figure 8.24) show that the reference biomass (B4+) has historically ranged from 136 to 415 kt (in 1999 and 1988), but this range has been narrower since 2003, between 230 and 343 kt . The current estimated stock size of B4+2022 $=$ 325 kt is among the highest values in the time series. Spawning biomass is estimated as 167 kt , also among highest in the timeseries.

The harvest rate peaked around 29% in the mid 1990 s but has since 2016 been below HR $\mathrm{Mgt}^{\text {target }}$ of 20%. The explanations for lower than intended harvest rate since 2016 are that the allocated TAC has not been fished and the stabilizer was reducing the TAC when the stock was increasing. Overestimation of the stock in last years would have lead to $H R>H_{R g t}$ if the TAC was caught. Fishing mortality has been low since 2004 compared to before that. Part of the difference is caused by change in selection pattern (Figure 8.23) that leads to F before and after 2004 not being comparable measures of fishing pressure. SSB has been at a relatively high level during the last ten years compared to the time before that.

Recruitment has been relatively stable since year class 2006, above average. Year class 2012 is estimated to be strong and year class 2015 poor but the remaining year classes from 2006-2018 close to geometric mean. Geometric mean is the first guess in the model for each year class. Deviations from the mean are then driven by the survey and catches but survey indices for ages 3 and 4 have been around average in recent years, except for year class 2015 where all survey indices have been low and the year class estimated poor since in the 2018 assessment.

The details of the fishing mortality and stock in numbers are presented in Tables 8.9 and 8.10.
The commercial catch-at-age residuals in 2021 (Figure 8.28) are negative for age 9 and older except for age 10. The residuals for the same age groups in 2020 have opposite sign. The survey residuals (Figure 8.27) show large positive values in 2018 for ages $4-7$, the age groups accounting for most of the biomass, therefore the survey biomass in 2018 exceeds prediction by large margin (Figure 8.26). The 2019-2022 residuals are mostly positive for the years 2019 and 2021 but negative for the years 2020 and 2022, as seen in comparison of observed and predicted survey biomass (Figure 8.26).

Assumptions about catch in the assessment year deviate from the stock annex that specifies the catch in the calendar year 2022 as the remaining TAC from the fishing year 2021/2022 at 1 January 2022 plus $1 / 3$ of the catch in the fishing year 2022/2023. 60 thousand tonnes of the catch for the fishing year 2021/2022 were remaining 1 January and the total catch for the year 2021 will be 84 thousand. tonnes following this procedure. Development of landings indicate that the catch for 2021 will be around 68 thousand tonnes so the parameter "remaining TAC" in the model is set to 44 thousand tonnes. The advice for next fishing year is based on biomass in the beginning of the assessment year so assumptions about catch in the assessment year do not affect the advice.

8.7 Uncertainties in assessment and forecast

The assessment of Icelandic saithe is relatively uncertain due to fluctuations in the survey data, poor recruitment estimates and irregular changes in the fleet selectivity. The internal consistency in the spring bottom trawl surveys is low for saithe (Figure 8.21). This is not surprising, considering the nature of the species that is partly pelagic, schooling, and relatively widely migrating. Uncertainties base on the hessian matrix in the assessment model indicate that CV of the biomass $4+$ is around 16%, rather high value for this kind of estimate that is usually underestimation of the real uncertainty.

The 2022 assessment of Icelandic saithe is substantial downward revision of the stock compared to the 2021 assessment. The change is caused by 2022 survey but the survey biomass in 2022 is 33% lower than in survey 2021

The retrospective pattern (Figure 8.21) reveals some of the assessment uncertainty. The harvest control rule evaluations incorporated uncertainties in assessment as well as other sources of uncertainty (ICES, 2019).

Using retrospective pattern based on the assessment years 2018-2022 Mohns rho is 0.25 for the reference biomass, -0.16 for the Harvest rate, 0.29 for SSB and 0.05 for recruitment (Table 8.11 called Stdsettings). The retrospective pattern in last 5 years is caused by the very high 2018 survey index and then again relatively high 2021 index. If the last estimated year is 2021 instead of 2022 rho for SSB changes to 0.24 and for B4+ to 0.21 . Higher Mohns rho for the SSB than for B4+ is not unexpected as old/large saithe are due to pelagic behaviour, difficult to catch by demersal gear. Model settings using ages 3-14 from the survey has lower Mohns rho, compared to the adopted model but the difference is not large (0.19 vs 0.25 and 0.23 vs 0.29). Over the range of assessment years 2002-2022 that model would though have performed little worse than the adopted model if Mohns rho in 5 years just before the assessment year is a measure of performance.

Looking at metrics from (nearly) converged assessment (assessment year < 2018, year <= assessment the values are shown in Table 8.12 based on assessment years 2000-2017. Bias is defined as $\overline{\log \left(\frac{B_{y, y}}{B_{y, a s s Y}}\right)}$ and CV as $\sigma^{\log \left(\frac{B_{y, y}}{B_{y, a s s Y}}\right)}$. Mohns rho is really another way to present bias. The selection of years to use is the difference between Tables 8.11 and 8.12 , in 8.12 the results are based on the assessment years (2001-2017) that are not used when compiling results for Table 8.11 (20182022). The results shown in Table 8.11 are in line with the assumptions used in the HCR evaluations in 2022 (CV = 0.22, bias $=0$ and first order autocorrelation $=0.5$.

Using peels of 5 years for stock with low fishing mortality is rather questionable, the assessments used in the evaluations have not converged. Retrospective pattern of Mohns rho illustrates this problem well (Figure 8.33). The value of Mohns rho cannot be obtained from the HCR simulations where only current estimate and "correct value" are available, the first value is the basis for
advice and the second value basis for development of the stock. Intermediate values do not affect, neither the advice nor the stock.

Alternative settings of the Muppet model and one SAM run were tested (Figure 8.30) compared to the results. The result show low estimated biomass when the survey data are downweighted, the same result is obtained with the leaveout run in SAM, both showing that catch in numbers indicate smaller stock compared to survey indices. Winchorised survey indices lead to less noise in the and therefore more weight on the survey in the assessment. The Adapt model used is just the Muppet model, using N of the oldest fish from the forward running model. The backwards running model is selected by changing one number in the main input file. A major advantage with the adapt approach is that CV of survey can be estimated independently for each age group, if attempted in a catch at age model the survey CV of one age will be set to zero. "The reweighted" model show lower biomass but it does also converge to lower biomass as the selection pattern of the oldest fish is different. Compared to last year the difference between the estimate of B4+ from different models is smaller.

All the models except the model with less weight on survey show similar retrospective pattern in recent years, $\approx 17 \%$ reduction in estimate of B4+ between assessment years 2021 and 2022 and $\approx 30 \%$ between assessment years 2018 and 2022.

The table below show B4+2022, the number that matters for the advice. The values are in thousand tonnes.

Std settings $\mathbf{2 0 2 2}$	Winchorised survey	Adapt	LessWeight on survey	Reweighed survey CV	Ages 3-14 in survey.	Survey CV	Std settings $\mathbf{2 0 2 1}$	SAM
325	424	288	222	275	344	270	375	323

If all the models would be taken as equally plausible configurations (which they are not) the average B4+2022 is 301 and CV 0.17.

The SAM settings are correlated random walk, 3 observation variance blocks for the catches and 4 for the survey.
One problem in the assessment is the fact that the TAC has not been fished in some recent years (Figure 8.4). In spite of overestimation of the stock, the assessment models do not indicate high fishing mortality nor harvest rate in last 5 years (Figure 8.24), mostly because the TAC has not been fished. The selection pattern observed since 2004 (Figure 8.23) indicates that the fisheries are targeting younger fish than before, something that could be interpreted as lack of large fish. This trend is even greater than observed in the figure as mean weight at age of ages $4-5$ have been low in recent years (Figure 8.12). The gillnet survey that is an indicator of large saithe has shown decrease from a high level in 2019 (Figure 8.19) and the autumn survey shows decreasing trend.

The problem seen in recent years is not new and the fact that fishing mortality of saithe was never high, indicates that it is difficult to catch saithe. One reason is that most of the gear is demersal while saithe is partly pelagic. Change of fleet and fishing practice in recent 20 years might also have effects. But the summary of the investigations in earlier section, reduction in CPUE, TAC not caught and decline in gillnet survey support that the stock has been overestimated and the TAC therefore too high.

The effect of too high TAC is increased catch of some other species through the transfer system, something that could change with higher price of saithe. Overestimation of the saithe stock leads to overestimation of the predation on capelin by saithe, leading to more precautionary capelin advice.

8.8 Ecosystem considerations

Changes in the distribution of large pelagic stocks (blue whiting, mackerel, Norwegian springspawning herring, Icelandic summer-spawning herring) may affect the tendency of saithe to migrate off shelf and between management units. Saithe is a migrating species and makes both vertical and long-distance feeding and spawning migrations (Armannsson et al., 2007, Armannsson and Jonsson, 2012, i Homrum et al., 2013). The evidence from tagging experiments (ICES, 2008) show some migrations along the Faroe-Iceland Ridge, as well as onto the East Greenland shelf.

Saithe is an important predator of capelin and is included in the predation model used to compile advice for Icelandic capelin.

8.9 Possible changes in assessment setup.

The assessment of Icelandic cod was benchmarked in 2021 and a number of changes done in the model formulation that lead to substantial downward revision of the biomass (ICES, 2021). All the changes had to do with treatment of survey indices in the model.

1. With lower fishing effort the abundance of old age groups increased. For some of those age groups (10+) the number caught had been so low that sampling error related to few otoliths had been the most important uncertainty. Ages 11 and older in the surveys were earlier not used in the tuning as they were minor part of the stock ($1-2 \%$). Not including them in the survey lead to "ghostfish" i.e dome shaped selection pattern of the fleet, not an impossible pattern but not acceptable without some proofs, especially when the older fish becomes larger part of the stock.
2. For ages 6-9 abundance increased, and nonlinear relationships started to show up, that was not apparent when range of values was smaller.
3. The relationship between abundance indices of ages 1-3 and older fish changed. The change can either be related to increased mortality or changed behaviour or less coastal spatial distribution.
4. The VPA version of Muppet was run and CV in the survey estimated for each age group using a VPA model. That pattern was then used in the separable model with one estimated multiplier.

Looking at saithe only factor 4 was relevant. Estimating power curves turned out to lead to no improvement of fit and the power coefficients were not far from 1 and quite variable in retrospective runs. Age composition of saithe has not been changing dramatically in recent years but old saithe has always been common compared to old cod. Looking at all aged fish since 1980 number of cod otoliths is 3.5 times the number of saithe otoliths but for ages >12 years the number of saithe is larger than number of cod. Changes in spatial distribution of recruits could be relevant for saithe but the recruitment indices are of too low quality to be able to detect such changes. The common perception about saithe is that the nursery areas are close to shore while the nursery areas of cod are both close to shore and in deeper waters.

What was then left was to re estimate the survey CV pattern with age (like redefining observation error blocks in SAM) and increase the number of age groups in the tuning fleet. In addition, a version of the model that uses the estimated survey CV was run.

To revise the pattern of survey CV with age the VPA model is used, estimating CV in the survey for each age group. The VPA model used is just the Muppet model, first the model is run in the forward model but then the number of fish in the oldest age group is used for VPA. If large changes in the CV pattern are observed the procedure might be reiterated.

To look again at the value of ϵ in survey residuals in $\left(\frac{\log (I+\epsilon)}{\log (\hat{I}+\epsilon)}\right)$ the number of aged saithe in the survey is 900 and the average total index around 20. Four otoliths do therefore correspond to $\epsilon=$ 0.15 which would be the suggested value to use for all age groups based only on this consideration. Other factors like poor spatial coverage of recruits might be used to justify higher values. In some of the alternative tested, age 2 was not included in the tuning fleet.

When doing the reweighting scheme, the pattern of ϵ must be exactly the same in the linked separable and VPA model. In principle the objective function for models using the same pattern of ϵ can be compared but if ϵ is different the comparison might be questionable.

When compiling the survey indices, relative standard error in the estimation of the indices is also compiled $C V_{s, y, a}=\frac{\sigma_{I_{y, a}}}{I_{y, a}}$ where $\sigma_{I_{y, a}}$ is standard error in the indices. High value indicates that few stations are responsible for large part of the index, it is the part of the uncertainty that can be improved by increasing the number of stations. There are other uncertainties that cannot be reduced by increasing the number of stations in the same area, like the proportion of fish that is pelagic or closer to coast that the survey covers. The model setup is to use $C V_{s, y, a}$ but add to that an estimated $C V$ by age called $C V_{2, a} C V_{s, y, a}=\frac{\sigma_{I_{y, a}}}{I_{y, a}} . C V_{t o t, y, a}=\sqrt{\left(C V_{s, y, a}^{2}+C V_{2, a}^{2}\right)}$.
$C V_{2, a}$ can here be estimated for each age group as $C V_{\text {tot,y,a}}$ is never going to be 0 .
Using this approach, the variance-covariance matrix (approximately 9×9) must be recalculated and inverted at every timestep, not a difficult task for today's computers.

In Figures 8.29 and 8.31 and the Tables 8.11 and 8.12 the results of 4 settings are compared. All the settings are based on the same data except the number of age groups in the survey varies.

1. Oldsettings. The adopted model from the benchmark 2019.
2. ChangedCVpattern. $\epsilon=0.1$ for all age groups. Age 2 not included and pattern of CV by age in the survey re-estimated.
3. surveyCV. Model uses estimated $C V_{y, a}$ in survey as described above.
4. Ages3to14. $\epsilon=0.1$ for all age groups. Survey indices age $3-14$. Pattern of CV by age in the survey estimated.

Model 1 is tuned with ages 2-10, 2 and 3 with ages $3-10$ and 4 with $3-14$. Models $1-3$ are based on constant q by age for ages 7 and older but model 5 with constant q for ages 10 and older. Assumptions about age above which q does not change is an important factor in the settings.

Looking at Mohns rho, model 4 performs best for last 5 years. Looking at difference between contemporary and converged assessment in the years 2001-2017 model 1 performs best but the metrics for models 1 and 3 are similar. The Mohns rho indicates that recruitment estimates are good in last 5 years but historically recruitment of saithe is not well estimated, this is just coincidence for this short period. Mohns rho from the SAM model is around 0.3 (for SSB), similar to the other models.

Comparing models 1 and 2 B4+2022 is 325 vs 275 thousand tonnes, and the objective function -774.5 vs -756 . Model 1 fits the data better and indicates larger stock. Retrospective performance of model 1 is also better. Model 3 has an objective function of -853 but with 8 more parameters than model 1, might indicate that the approach used was promising. Model 4 uses more data than the other models and the objective function is therefore not comparable.

An interesting factor to look at in the models is estimated q from the surveys (Figure 8.32). Model 4 uses ages $3-14$ for tuning but the other models $2-10$ or $3-10$. q is constrained to be identical for ages 9 and older in model 4 but ages 7 and older for the other models that use age groups until 10. This assumption when does q become constant has considerable effect on stock size, reducing q by age as in model 4 leads to larger stock.

Estimated selection (since 2004) in the model is also somewhat different (Figure 8.33). Models 1 and 3 have different selection pattern for older fish and do therefore not converge to exactly the same biomass in the period after 2003. The Adapt model (shown in Figure 30) might be considered as some kind of truth in this respect although is not completely insensitive to the number in the oldest age group that it gets from a separable model.

In summary, no obvious choice can be pointed at if a new model was adopted today. What works best for last 5 years according to Mohns rho does not work best when comparing contemporary and converged assessment 2001-2017.

8.10 References

Armannsson, H. and S.T. Jonsson. 2012. Vertical migrations of saithe (Pollachius virens) in Icelandic waters as observed with data storage tags. ICES J. Mar. Sci. 69:1372-1381.

Armannsson, H., S.T. Jonsson, J.D. Neilson, and G. Marteinsdottir. 2007. Distribution and migration of saithe (Pollachius virens) around Iceland inferred from mark-recapture studies. ICES J. Mar. Sci. 64:10061016.

Björnsson, Höskuldur, Einar Hjörleifsson and Bjarki Pór Elvarsson, 2019. Muppet: Program for Simulating Harvest Control Rules. Reykjavík: Marinc and Fresh water Institute. http://www.github.com/ho-ski/Muppet-HCR.

Gudmundsson, G. 2013. Fish stock assessment by time series analysis. ICES NWWG WD29.
i Homrum, E., B. Hansen, S.T. Jonsson, K. Michalsen, J. Burgos, D. Righton, P. Steingrund, T. Jakobsen, R. Mouritsen, H. Hatun, H. Armannsson, and J.S. Joensen. 2013. Migration of saithe (Pollachius virens) in the Northeast Atlantic. ICES J. Mar. Sci. 70:782-792.

ICES. 2008. Report of the North-Western Working Group (NWWG). ICES CM 2008/ACOM:03.
ICES. 2010. Report of the Benchmark Workshop on Roundfish (WKROUND). ICES CM 2010/ACOM:36.
ICES. 2013. Report of the evaluation of the Icelandic saithe management plan. ICES CM 2013/ACOM:60.
ICES. 2019. North Western Working Group (NWWG). ICES Scientific Reports. 1:14. 826 pp . http://doi.org/10.17895/ices.pub. 5298

ICES. 2019a. Workshop on the benchmark assessment and management plan evaluation for Icelandic haddock and saithe (WKICEMSE). ICES Scientific Reports. 1:10. 107 pp . http://doi.org/10.17895/ices.pub. 5091
ICES. 2019b. Saithe (Pollachius virens) in Division 5.a (Iceland grounds). In Report of the ICES Advisory Committee, 2019, pok.27.5a, https://doi.org/10.17895/ices.advice. 4731

ICES. 2021. Workshop on the re-evaluation of management plan for the Icelandic cod stock (WKICECOD). ICES Scientific Reports. 3:30. 85 pp. https://doi.org/10.17895/ices.pub. 7987
Magnusson, A. 2012. Icelandic saithe: New model to predict current weight at age. ICES NWWG WD30.
Magnusson, A. 2013. Mathematical properties of the Icelandic saithe HCR. ICES NWWG WD 31.
Ministry of Industries and Innovation. 2013. Adoption of management plan for Icelandic saithe. Letter to ICES, dated 22 Apr 2013.
Palsson, O.K., G. Karlsson, A. Arason, G.R. Gislason, G. Johannesson, and S. Adalsteinsson. 2003. Discards in demersal Icelandic fisheries 2002. Mar. Res. Inst. Rep. 94.

Table 8.1. Saithe in Division 5.a. Nominal catch (t) by countries, as officially reported to ICES.

	belgium	faroes	france	germany	iceland	norway	uk (e/w/ni)	uk (scot)	uk	total
1980	980	4930			52436	1				58347
1981	532	3545			54921	3				59001
1982	201	3582	23		65124	1				68931
1983	224	2138			55904					58266
1984	269	2044			60406					62719
1985	158	1778			55135	1	29			57101
1986	218	2291			63867					66376
1987	217	2139			78175					80531
1988	268	2596			74383					77247
1989	369	2246			79796					82411
1990	190	2905			95032					98127
1991	236	2690			99811					102737
1992	195	1570			77832					79597
1993	104	1562			69982					71648
1994	30	975		1	63333					64339
1995		1161		1	47466	1				48629
1996		803		1	39297					40101
1997		716			36548					37264
1998		997		3	30531					31531
1999		700		2	30583	6	1	1		31293
2000		228		1	32914	1	2			33146
2001		128		14	31854	44	23			32063
2002		366		6	41687	3	7	2		42071
2003		143		56	51857	164			35	52255
2004		214		157	62614	1	105			63091
2005		322		224	67283	2			312	68143
2006		415		33	75197	2			16	75663
2007		392			64008	3			30	64433
2008		196			69992	2				70190
2009		269			61391	3				61663
2010		499			53772	1				54272
2011		735			50386	2				51123
2012		940			50843					51783
2013		925			57077					58002
2014		746			45733	4				46483
2015		499			47973	3				48473
2016		287			48920	5				49212
2017		261			48786	4			4	49057
2018		270			65090					65360

	belgium	faroes	france	germany	iceland	norway	uk (e/w/ni)
2019	231	uk (scot)	uk	total			
2020	188	64295	6	64532			
2021	156	50058	6	50253			

Table 8.2. Saithe in Division 5.a. Sampling from catches 2019-2021

Year	Fleet	Landings (t)	No. of otolith samples	No. of otoliths aged	No. of length samples	No. of length measurements	No. of sea length samples
2019	Long lines	966	0	0	5	19	5
2019	Gillnets	1405	0	0	0	0	0
2019	Jiggers	1843	4	100	8	468	2
2019	Danish seine	1451	8	198	11	901	3
2019	Bottom trawl	58339	51	1269	159	28296	118
2019	Other gear	528	0	0	0	0	0
2019	Total	64532	63	1567	183	29684	128
2020	Long lines	745	0	0	1	8	1
2020	Gillnets	2573	3	75	9	630	6
2020	Jiggers	1794	4	87	8	365	0
2020	Danish seine	980	3	75	4	410	1
2020	Bottom trawl	43842	31	775	57	8182	26
2020	Other gear	319	0	0	0	0	0
2020	Total	50253	41	1012	79	9595	34
2021	Long lines	457	0	0	0	0	0
2021	Gillnets	2968	2	50	2	234	0
2021	Jiggers	1651	2	50	2	195	0
2021	Danish seine	1184	8	200	8	932	0
2021	Bottom trawl	53255	57	1550	159	29057	115
2021	Other gear	261	0	0	0	0	0
2021	Total	59775	69	1850	171	30418	115

Table 8.3. Saithe in Division 5.a. Sampling from catches 2021. No age samples were taken at sea.

Gear	Length sea-samples	Length shore-samples	Age sea-samples	Age shore-samples
Bottom trawl	115	44	13	44
Demersal seine	0	8	0	8
Gillnets	0	2	0	2
Handlines	0	2	0	2

Table 8.4. Saithe in Division 5.a. Commercial catch at age (thousands).

Year	3	4	5	6	7	8	9	10	11	12+
1980	275	2540	5214	2596	2169	1341	387	262	155	209
1981	203	1325	3503	5404	1457	1415	578	242	61	417
1982	508	1092	2804	4845	4293	1215	975	306	59	129
1983	107	1750	1065	2455	4454	2311	501	251	38	18
1984	53	657	800	1825	2184	3610	844	376	291	546
1985	376	4014	3366	1958	1536	1172	747	479	74	166
1986	3108	1400	4170	2665	1550	1116	628	1549	216	95
1987	956	5135	4428	5409	2915	1348	661	496	498	133
1988	1318	5067	6619	3678	2859	1775	845	226	270	132
1989	315	4313	8471	7309	1794	1928	848	270	191	221
1990	143	1692	5471	10112	6174	1816	1087	380	151	168
1991	198	874	3613	6844	10772	3223	858	838	228	51
1992	242	2928	3844	4355	3884	4046	1290	350	196	125
1993	657	1083	2841	2252	2247	2314	3671	830	223	281
1994	702	2955	1770	2603	1377	1243	1263	2009	454	428
1995	1573	1853	2661	1807	2370	905	574	482	521	154
1996	1102	2608	1868	1649	835	1233	385	267	210	447
1997	603	2960	2766	1651	1178	599	454	125	95	234
1998	183	1289	1767	1545	1114	658	351	265	120	251
1999	989	732	1564	2176	1934	669	324	140	72	75
2000	850	2383	896	1511	1612	1806	335	173	57	57
2001	1223	2619	2184	591	977	943	819	186	94	69
2002	1187	4190	3147	2970	519	820	570	309	101	53
2003	2284	4363	6031	2472	1942	285	438	289	196	72
2004	952	7841	7195	5363	1563	1057	211	224	157	124
2005	2607	3089	7333	6876	3592	978	642	119	149	147
2006	1380	10051	2616	5840	4514	1989	667	485	118	229
2007	1244	6552	8751	2124	2935	1817	964	395	190	99
2008	1432	3602	5874	6706	1155	1894	1248	803	262	307
2009	2820	5166	2084	2734	2883	777	1101	847	555	373
2010	2146	6284	3058	997	1644	1571	514	656	522	409
2011	2004	4850	4006	1502	677	1065	1145	323	433	469
2012	1183	4816	3514	2417	903	432	883	1015	354	549
2013	1163	5538	6366	2963	1610	664	375	537	460	320
2014	668	3499	4867	2805	1276	725	347	241	312	401
2015	781	2712	6461	2917	1509	694	589	249	133	347
2016	1588	6230	2653	2838	1648	1059	526	337	148	131
2017	750	3333	7542	1806	1449	813	648	229	127	237
2018	689	6681	4267	7908	1446	962	455	258	192	175

Year	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2 +}$
2019	1292	1585	6325	2752	4543	693	675	339	$\mathbf{2 4 2}$	$\mathbf{2 3 1}$
2020	1333	2310	1496	3228	1334	1700	710	351	379	666
2021	1832	6777	4160	1305	2380	1082	1303	471	197	190

Table 8.5. Saithe in Division 5.a. Mean weight at age (g) in the catches and in the spawning stock, with predictions in grey.

Year	3	4	5	6	7	8	9	10	11	12+
1980	1428	1983	2667	3689	5409	6321	7213	8565	9147	9979
1981	1585	2037	2696	3525	4541	6247	6991	8202	9537	9523
1982	1547	2194	3015	3183	5114	6202	7256	7922	8924	10021
1983	1530	2221	3171	4270	4107	5984	7565	8673	8801	9445
1984	1653	2432	3330	4681	5466	4973	7407	8179	8770	10520
1985	1609	2172	3169	3922	4697	6411	6492	8346	9401	10767
1986	1450	2190	2959	4402	5488	6406	7570	6487	9616	11080
1987	1516	1715	2670	3839	5081	6185	7330	8025	7974	10886
1988	1261	2017	2513	3476	4719	5932	7523	8439	8748	9823
1989	1403	2021	2194	3047	4505	5889	7172	8852	10170	11194
1990	1647	1983	2566	3021	4077	5744	7038	7564	8854	11284
1991	1224	1939	2432	3160	3634	4967	6629	7704	9061	9547
1992	1269	1909	2578	3288	4150	4865	6168	7926	8349	10181
1993	1381	2143	2742	3636	4398	5421	5319	7006	8070	9842
1994	1444	1836	2649	3512	4906	5539	6818	6374	8341	10388
1995	1370	1977	2769	3722	4621	5854	6416	7356	6815	8799
1996	1229	1755	2670	3802	4902	5681	7182	7734	9256	9601
1997	1325	1936	2409	3906	5032	6171	7202	7883	8856	9865
1998	1347	1972	2943	3419	4850	5962	6933	7781	8695	10043
1999	1279	2106	2752	3497	3831	5819	7072	8078	8865	10872
2000	1367	1929	2751	3274	4171	4447	6790	8216	9369	10443
2001	1280	1882	2599	3697	4420	5538	5639	7985	9059	10419
2002	1308	1946	2569	3266	4872	5365	6830	7067	9240	10190
2003	1310	1908	2545	3336	4069	5792	7156	8131	8051	10825
2004	1467	1847	2181	2918	4017	5135	7125	7732	8420	9547
2005	1287	1888	2307	2619	3516	5080	6060	8052	8292	8569
2006	1164	1722	2369	2808	3235	4361	6007	7166	8459	9583
2007	1140	1578	2122	2719	3495	4114	5402	6995	7792	9848
2008	1306	1805	2295	2749	3515	4530	5132	6394	7694	9589
2009	1412	1862	2561	3023	3676	4596	5651	6074	7356	9237
2010	1287	1787	2579	3469	4135	4850	5558	6289	6750	8785
2011	1175	1801	2526	3680	4613	5367	5685	6466	6851	7739
2012	1160	1668	2369	3347	4430	5486	6161	6448	7220	8236

Year	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2 +}$
2013	1056	1675	2219	3244	4529	5628	6397	7055	7378	8342
2014	1211	1575	2229	2983	4378	5598	6773	8023	7875	9020
2015	1072	1639	2141	3122	4262	5555	6633	7697	8269	8773
2016	1105	1468	2260	3071	4127	5272	6379	7247	8566	8969
2017	1282	1674	2199	3255	4314	5718	6361	7630	8590	9238
2018	1346	1724	2335	3005	4178	5319	6544	7773	8530	9324
2019	1485	2054	2449	3128	4104	5694	6483	7750	8563	9488
2020	1285	2015	2386	3131	4065	5059	6284	7025	8285	9175
2021	1336	1719	2515	3227	4379	5296	6265	7152	8045	9062
2022	1369	1855	2411	3412	4373	5489	6498	7309	8298	9341
2023	1369	1855	2411	3412	4373	5489	6498	7309	8298	9341

Table 8.6. Saithe in Division 5.a. Maturity at age, with predictions in grey.

Year	3	4	5	6	7	8	9	10	11	12
1980	0	0.083	0.189	0.374	0.604	0.796	0.909	1	1	1
1981	0	0.083	0.189	0.374	0.604	0.796	0.909	1	1	1
1982	0	0.083	0.189	0.374	0.604	0.796	0.909	1	1	1
1983	0	0.083	0.189	0.374	0.604	0.796	0.909	1	1	1
1984	0	0.083	0.189	0.374	0.604	0.796	0.909	1	1	1
1985	0	0.083	0.189	0.374	0.604	0.796	0.909	1	1	1
1986	0	0.075	0.173	0.349	0.578	0.778	0.9	1	1	1
1987	0	0.069	0.159	0.326	0.553	0.76	0.89	1	1	1
1988	0	0.063	0.147	0.306	0.53	0.743	0.881	1	1	1
1989	0	0.058	0.137	0.29	0.511	0.728	0.873	1	1	1
1990	0	0.055	0.131	0.278	0.496	0.716	0.866	1	1	1
1991	0	0.054	0.127	0.271	0.488	0.71	0.862	1	1	1
1992	0	0.054	0.127	0.271	0.487	0.709	0.862	1	1	1
1993	0	0.055	0.13	0.277	0.496	0.716	0.866	1	1	1
1994	0	0.059	0.139	0.292	0.514	0.73	0.874	1	1	1
1995	0	0.066	0.153	0.317	0.543	0.753	0.886	1	1	1
1996	0	0.077	0.176	0.353	0.583	0.782	0.902	1	1	1
1997	0	0.092	0.205	0.398	0.629	0.813	0.918	1	1	1
1998	0	0.11	0.24	0.448	0.675	0.842	0.932	1	1	1
1999	0	0.13	0.277	0.495	0.715	0.865	0.943	1	1	1
2000	0	0.149	0.31	0.535	0.746	0.883	0.951	1	1	1
2001	0	0.163	0.333	0.561	0.766	0.893	0.955	1	1	1
2002	0	0.168	0.341	0.57	0.773	0.897	0.957	1	1	1
2003	0	0.166	0.338	0.566	0.77	0.896	0.956	1	1	1
2004	0	0.159	0.326	0.554	0.761	0.891	0.954	1	1	1
2005	0	0.15	0.311	0.536	0.747	0.883	0.951	1	1	1

Year	3	4	5	6	7	8	9	10	11	12
2006	0	0.141	0.296	0.518	0.734	0.876	0.948	1	1	1
2007	0	0.134	0.284	0.505	0.723	0.87	0.945	1	1	1
2008	0	0.129	0.276	0.494	0.714	0.865	0.943	1	1	1
2009	0	0.126	0.269	0.485	0.707	0.861	0.941	1	1	1
2010	0	0.122	0.263	0.478	0.701	0.857	0.939	1	1	1
2011	0	0.119	0.257	0.469	0.694	0.853	0.937	1	1	1
2012	0	0.115	0.249	0.459	0.685	0.848	0.934	1	1	1
2013	0	0.109	0.239	0.446	0.674	0.841	0.931	1	1	1
2014	0	0.104	0.229	0.432	0.661	0.833	0.927	1	1	1
2015	0	0.098	0.219	0.417	0.647	0.825	0.923	1	1	1
2016	0	0.094	0.209	0.404	0.634	0.816	0.919	1	1	1
2017	0	0.09	0.201	0.392	0.623	0.809	0.916	1	1	1
2018	0	0.087	0.196	0.384	0.615	0.804	0.913	1	1	1
2019	0	0.085	0.192	0.378	0.609	0.8	0.911	1	1	1
2020	0	0.084	0.19	0.375	0.605	0.797	0.91	1	1	1
2021	0	0.083	0.188	0.372	0.603	0.795	0.909	1	1	1
2022	0	0.082	0.187	0.37	0.601	0.794	0.908	1	1	1
2023	0	0.082	0.187	0.37	0.601	0.794	0.908	1	1	1

Table 8.7. Saithe in Division 5.a. Survey indices by age.

Year	2	3	4	5	6	7	8	9	10
1985	0.59	0.57	3.1	5.32	1.81	1.1	0.52	1.43	0.16
1986	2.34	2.46	2.15	2.21	1.5	0.65	0.3	0.19	0.32
1987	0.38	11.84	13.22	6.61	4.09	3.19	0.82	0.37	0.27
1988	0.31	0.47	2.74	2.86	1.76	0.98	0.42	0.07	0.08
1989	1.42	4.01	5.08	6.68	2.65	1.74	0.89	0.37	0.01
1990	0.73	1.32	4.96	6.42	12.53	3.38	1.23	0.65	0.12
1991	0.22	1.38	1.7	2.18	1.12	2.49	0.31	0.02	0.04
1992	0.14	0.91	5.91	5.67	2.84	2.69	1.93	0.28	0.06
1993	1.27	11	1.93	6.61	2.33	2.2	1.02	3.92	0.66
1994	0.83	0.72	1.96	1.79	2.07	0.72	1.13	1.2	2.77
1995	0.49	1.98	1.12	0.52	0.29	0.34	0.1	0.15	0.15
1996	0.13	0.49	3.78	1.16	1.03	0.59	0.98	0.06	0.09
1997	0.32	0.91	4.73	3.98	0.95	0.4	0.16	0.1	0.05
1998	0.13	1.66	2.36	2.55	1.27	0.72	0.3	0.09	0.07
1999	0.73	3.74	0.94	1.27	1.7	0.59	0.16	0.02	0.02
2000	0.38	2.01	2.55	0.61	0.86	0.54	0.45	0.08	0.03
2001	0.92	2.06	2.73	1.68	0.22	0.23	0.4	0.14	0.07
2002	1.02	2.23	3.01	3.11	2.19	0.42	0.47	0.32	0.22
2003	0.05	9.79	5.14	2.98	1.37	0.78	0.21	0.05	0.1

Year	2	3	4	5	6	7	8	9	10
2004	0.9	1.39	9.6	6.27	4.52	1.52	0.84	0.17	0.17
2005	0.25	4.29	2.41	7.5	4.73	2.36	0.88	0.45	0.13
2006	0	2.19	6.77	1.98	8.86	3.5	1.21	0.29	0.25
2007	0.06	0.31	1.75	3.27	0.82	1.64	0.71	0.29	0.16
2008	0.08	2.26	1.81	2.88	4.05	0.62	0.79	0.34	0.15
2009	0.21	2.45	1.85	0.69	0.91	0.84	0.12	0.26	0.15
2010	0.07	1.24	5.07	2.55	0.64	0.61	0.47	0.07	0.12
2011	0.15	3.84	4.24	3.1	1.17	0.41	0.39	0.44	0.17
2012	0.02	1.77	12.01	6.75	2.76	0.63	0.17	0.38	0.5
2013	0.11	4.28	7.57	6.85	4.67	2.58	1.12	0.3	0.43
2014	0.03	0.39	3.89	3.74	2.02	0.87	0.42	0.15	0.11
2015	0.04	1.08	1.93	3.22	1.73	0.82	0.72	0.66	0.43
2016	0.05	3.17	16.21	2.75	2.27	1.08	0.53	0.44	0.28
2017	0.02	1.48	6.67	14.64	3.03	1.68	0.87	0.45	0.3
2018	0.03	0.5	17.92	10.51	15.28	1.51	0.84	0.43	0.32
2019	0.08	3.75	1.22	3.46	2.61	4.07	0.82	0.61	0.14
2020	0.09	1.89	2.57	0.7	2.14	1.19	2.36	0.35	0.18
2021	0.36	2.55	4.53	3.42	1.06	2.69	0.67	1.17	0.23
2022	1.2	2.43	4.39	3	1.11	0.24	0.69	0.25	0.53

Table 8.8. Saithe in Division 5.a. Main population estimates.

Year	Recruitment (Age 3) in thousands	Stock size		Harvest rate B_{4+}	Total catch
		SSB	Reference biomass ages 4+		
1980	28194	113844	313210	0.184	57659
1981	20200	120803	305796	0.211	57548
1982	21587	137948	295536	0.204	67865
1983	32176	137885	270934	0.218	56504
1984	41845	140591	288126	0.194	60405
1985	35340	138908	300230	0.205	53728
1986	67101	137191	319223	0.236	65230
1987	90981	128893	335997	0.233	80237
1988	50576	125932	415344	0.194	77244
1989	32086	129370	397933	0.232	82339
1990	20854	136640	377550	0.267	97537
1991	29494	146412	337083	0.258	102201
1992	14916	137968	288848	0.257	79568
1993	19972	114293	231610	0.286	71539
1994	17862	94886	188599	0.283	63559

Year	Recruitment (Age 3) in thousands	Stock size		Harvest rate B_{4+}	Total catch
		SSB	Reference biomass ages 4+		
1995	30190	71030	154737	0.274	48296
1996	26067	62499	151431	0.248	39352
1997	17231	63747	159365	0.205	36671
1998	8955	70538	157812	0.195	30657
1999	31354	75485	136435	0.236	30898
2000	32322	77980	148364	0.215	32751
2001	55573	85582	169929	0.227	31570
2002	64990	103865	229739	0.213	41969
2003	73114	128421	292820	0.207	52306
2004	25973	148710	334806	0.202	64668
2005	72850	159450	300772	0.244	69054
2006	41946	167787	326328	0.208	75462
2007	18583	163771	297054	0.228	64261
2008	26069	162159	265710	0.238	69426
2009	38008	150028	238651	0.235	60266
2010	36151	138308	235635	0.22	53853
2011	42905	128618	236694	0.216	50769
2012	39235	123151	238935	0.232	51252
2013	39735	121399	241432	0.205	57522
2014	28627	117718	234649	0.202	45538
2015	83965	120310	231664	0.211	48476
2016	38622	127521	287821	0.171	49223
2017	51816	142285	312092	0.193	49054
2018	14939	160004	342972	0.187	65583
2019	33070	171929	316665	0.172	63130
2020	47444	167026	295506	0.192	50245
2021	48299	172309	312448	0.208	59762
2022	38727	167743	325190		

Table 8.9. Saithe in Division 5.a. Stock in numbers. Shaded area is input to prediction.

Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1980	32.2	24.7	28.2	46.9	31	10.3	8.2	3.7	1.3	0.7	0.7	0.5	0.3	0.1
1981	48	26.4	20.2	22.7	35.3	21.3	6.3	4.7	2	0.7	0.4	0.4	0.3	0.2
1982	62.4	39.3	21.6	16.3	17.2	24.7	13.4	3.7	2.6	1.1	0.4	0.2	0.2	0.2
1983	52.7	51.1	32.2	17.4	12.2	11.8	14.9	7.5	2	1.4	0.6	0.2	0.1	0.1
1984	100.1	43.2	41.8	26	13.3	8.6	7.5	9.1	4.3	1.1	0.8	0.4	0.1	0.1
1985	135.7	82	35.3	33.8	19.9	9.4	5.6	4.6	5.3	2.6	0.7	0.5	0.2	0.1
1986	75.4	111.1	67.1	28.5	25.8	14	6	3.4	2.6	3.1	1.5	0.4	0.3	0.1
1987	47.9	61.8	91	54.1	21.5	17.8	8.7	3.5	1.8	1.5	1.7	0.9	0.2	0.2
1988	31.1	39.2	50.6	73	40	14.3	10.2	4.6	1.7	0.9	0.7	0.9	0.5	0.1
1989	44	25.5	32.1	40.7	54.5	26.9	8.4	5.6	2.3	0.9	0.5	0.4	0.5	0.3
1990	22.3	36	20.9	25.8	30.5	37	16.2	4.7	2.9	1.3	0.5	0.3	0.2	0.3
1991	29.8	18.2	29.5	16.7	19.1	20.2	31.4	8.6	2.3	1.5	0.6	0.3	0.1	0.1
1992	26.6	24.4	14.9	23.7	12.3	12.5	11.4	16.2	4.1	1.1	0.7	0.3	0.1	0.1
1993	45	21.8	20	12	17.4	8.1	7.1	5.9	7.7	2	0.5	0.4	0.2	0.1
1994	38.9	36.9	17.9	16	8.7	11.2	4.4	3.6	2.7	3.7	0.9	0.3	0.2	0.1
1995	25.7	31.8	30.2	14.3	11.5	5.5	5.9	2.1	1.5	1.2	1.5	0.4	0.1	0.1
1996	13.4	21	26.1	24.1	10.2	7.2	2.8	2.7	0.9	0.7	0.5	0.8	0.2	0.1
1997	46.8	10.9	17.2	20.9	17.6	6.6	3.9	1.4	1.2	0.4	0.3	0.3	0.4	0.1
1998	48.2	38.3	9	13.6	14.8	11.5	4	2.1	0.7	0.6	0.2	0.1	0.1	0.2
1999	82.9	39.5	31.4	7.1	9.9	10.1	7.3	2.3	1.2	0.4	0.3	0.1	0.1	0.1
2000	97	67.9	32.3	24.9	5.2	6.7	6.4	4.3	1.3	0.6	0.2	0.2	0.1	0
2001	109.1	79.4	55.6	25.7	18	3.5	4.2	3.7	2.2	0.6	0.3	0.1	0.1	0
2002	38.7	89.3	65	44.3	18.9	12.5	2.3	2.6	2.1	1.2	0.4	0.2	0.1	0.1
2003	108.7	31.7	73.1	51.7	32.4	12.9	8	1.3	1.4	1.1	0.7	0.2	0.1	0

Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14
2004	62.6	89	26	58.3	37.9	22.2	8.3	4.8	0.7	0.8	0.6	0.4	0.1	0.1
2005	27.7	51.2	72.8	20.5	39.7	23.8	13.8	5.3	3.1	0.5	0.5	0.4	0.2	0.1
2006	38.9	22.7	41.9	57.2	13.7	24.4	14.4	8.5	3.4	1.9	0.3	0.3	0.2	0.1
2007	56.7	31.8	18.6	32.8	37.7	8.2	14.3	8.7	5.3	2	1.2	0.2	0.2	0.1
2008	53.9	46.4	26.1	14.6	22	23.1	5	8.9	5.5	3.3	1.3	0.7	0.1	0.1
2009	64	44.2	38	20.3	9.4	12.8	13.2	2.9	5.4	3.3	1.9	0.7	0.4	0.1
2010	58.5	52.4	36.2	29.7	13.3	5.6	7.5	7.9	1.8	3.3	2	1.1	0.4	0.2
2011	59.3	47.9	42.9	28.3	19.8	8.1	3.4	4.6	5	1.1	2	1.2	0.7	0.3
2012	42.7	48.5	39.2	33.7	19.1	12.2	4.9	2.1	2.9	3.1	0.7	1.2	0.7	0.4
2013	125.3	35	39.7	30.8	22.7	11.8	7.5	3.1	1.3	1.8	2	0.4	0.8	0.5
2014	57.6	102.6	28.6	31.1	20.2	13.5	6.9	4.5	1.9	0.8	1.1	1.2	0.3	0.5
2015	77.3	47.2	84	22.6	21.4	12.9	8.5	4.4	2.9	1.2	0.5	0.7	0.7	0.2
2016	22.3	63.3	38.6	66.3	15.6	13.7	8.2	5.5	2.9	1.9	0.8	0.3	0.5	0.5
2017	49.3	18.2	51.8	30.6	46.2	10.1	8.8	5.3	3.7	1.9	1.2	0.5	0.2	0.3
2018	70.8	40.4	14.9	41.3	21.9	31.2	6.8	6	3.7	2.5	1.3	0.8	0.3	0.1
2019	72.1	57.9	33.1	11.8	28.5	14	19.7	4.4	3.9	2.4	1.6	0.8	0.5	0.2
2020	57.8	59	47.4	26.1	8.1	18.2	8.9	12.7	2.9	2.5	1.5	1	0.5	0.3
2021	54.9	47.3	48.3	37.7	18.5	5.4	11.9	5.9	8.6	1.9	1.7	1	0.7	0.4
2022	52	45	38.7	38.1	25.8	11.7	3.4	7.6	3.9	5.6	1.2	1.1	0.6	0.4
2023	51.7	42.6	36.8	30.5	25.8	16	7.2	2.1	4.9	2.4	3.5	0.8	0.7	0.4
2024	51.7	42.4	34.9	28.9	20.4	15.8	9.7	4.4	1.3	3	1.5	2.1	0.5	0.4

Table 8.10. Saithe in Division 5.a. Fishing mortality rate. Shaded areas show predictions i.e. where catches are unknown.

Year	3	4	5	6	7	8	9	10	11	12	13	14
1980	0.016	0.085	0.177	0.294	0.362	0.434	0.403	0.434	0.337	0.356	0.356	0.356
1981	0.015	0.076	0.158	0.263	0.323	0.388	0.36	0.388	0.301	0.318	0.318	0.318
1982	0.017	0.088	0.183	0.303	0.373	0.448	0.415	0.448	0.347	0.367	0.367	0.367
1983	0.014	0.07	0.147	0.243	0.299	0.359	0.333	0.359	0.278	0.294	0.294	0.294
1984	0.013	0.067	0.14	0.231	0.285	0.342	0.317	0.342	0.265	0.28	0.28	0.28
1985	0.014	0.071	0.148	0.246	0.302	0.363	0.337	0.363	0.282	0.297	0.297	0.297
1986	0.016	0.082	0.171	0.283	0.348	0.418	0.388	0.418	0.324	0.343	0.343	0.343
1987	0.02	0.102	0.212	0.352	0.434	0.521	0.483	0.521	0.404	0.426	0.426	0.426
1988	0.018	0.094	0.195	0.323	0.398	0.478	0.443	0.478	0.371	0.392	0.392	0.392
1989	0.017	0.089	0.185	0.307	0.379	0.455	0.422	0.455	0.352	0.372	0.372	0.372
1990	0.019	0.101	0.211	0.35	0.432	0.518	0.481	0.518	0.402	0.424	0.424	0.424
1991	0.021	0.108	0.226	0.374	0.461	0.554	0.513	0.554	0.429	0.453	0.453	0.453
1992	0.02	0.106	0.221	0.366	0.451	0.542	0.502	0.542	0.42	0.444	0.444	0.444
1993	0.022	0.115	0.239	0.396	0.488	0.586	0.543	0.586	0.454	0.48	0.48	0.48
1994	0.025	0.13	0.271	0.448	0.552	0.663	0.615	0.663	0.514	0.543	0.543	0.543
1995	0.025	0.132	0.275	0.456	0.562	0.675	0.626	0.675	0.523	0.552	0.552	0.552
1996	0.022	0.115	0.239	0.397	0.489	0.587	0.544	0.587	0.455	0.48	0.48	0.48
1997	0.035	0.143	0.228	0.307	0.407	0.506	0.537	0.504	0.505	0.458	0.458	0.458
1998	0.028	0.116	0.184	0.247	0.328	0.408	0.433	0.407	0.407	0.37	0.37	0.37
1999	0.029	0.12	0.191	0.257	0.34	0.423	0.449	0.422	0.422	0.383	0.383	0.383
2000	0.031	0.126	0.2	0.269	0.356	0.443	0.47	0.442	0.442	0.402	0.402	0.402
2001	0.026	0.105	0.167	0.224	0.297	0.37	0.392	0.369	0.369	0.335	0.335	0.335
2002	0.028	0.114	0.181	0.243	0.322	0.401	0.426	0.4	0.4	0.363	0.363	0.363
2003	0.027	0.111	0.177	0.238	0.315	0.392	0.415	0.39	0.391	0.355	0.355	0.355
2004	0.038	0.182	0.264	0.277	0.256	0.232	0.248	0.256	0.267	0.263	0.263	0.263

Year	3	4	5	6	7	8	9	10	11	12	13	14
2005	0.042	0.2	0.289	0.303	0.28	0.253	0.272	0.28	0.293	0.288	0.288	0.288
2006	0.046	0.217	0.314	0.33	0.305	0.275	0.295	0.304	0.318	0.313	0.313	0.313
2007	0.042	0.201	0.291	0.305	0.282	0.255	0.274	0.282	0.295	0.29	0.29	0.29
2008	0.049	0.234	0.339	0.356	0.329	0.297	0.319	0.328	0.343	0.338	0.338	0.338
2009	0.047	0.224	0.324	0.34	0.314	0.284	0.305	0.314	0.328	0.322	0.322	0.322
2010	0.043	0.205	0.297	0.312	0.288	0.261	0.28	0.288	0.301	0.296	0.296	0.296
2011	0.041	0.194	0.281	0.295	0.272	0.246	0.264	0.272	0.284	0.279	0.279	0.279
2012	0.041	0.194	0.281	0.295	0.273	0.246	0.264	0.272	0.284	0.28	0.28	0.28
2013	0.046	0.221	0.32	0.336	0.31	0.28	0.301	0.309	0.324	0.318	0.318	0.318
2014	0.036	0.172	0.25	0.262	0.242	0.219	0.235	0.242	0.253	0.248	0.248	0.248
2015	0.036	0.171	0.247	0.26	0.24	0.217	0.233	0.239	0.25	0.246	0.246	0.246
2016	0.034	0.161	0.233	0.245	0.227	0.205	0.22	0.226	0.236	0.232	0.232	0.232
2017	0.028	0.133	0.193	0.203	0.187	0.169	0.182	0.187	0.195	0.192	0.192	0.192
2018	0.036	0.17	0.246	0.258	0.239	0.216	0.231	0.238	0.249	0.245	0.245	0.245
2019	0.036	0.171	0.248	0.26	0.24	0.217	0.233	0.24	0.251	0.246	0.246	0.246
2020	0.031	0.146	0.212	0.222	0.205	0.186	0.199	0.205	0.214	0.211	0.211	0.211
2021	0.037	0.178	0.257	0.27	0.249	0.225	0.242	0.249	0.26	0.256	0.256	0.256
2022	0.04	0.191	0.276	0.29	0.268	0.242	0.26	0.267	0.28	0.275	0.275	0.275
2023	0.042	0.202	0.292	0.307	0.283	0.256	0.275	0.283	0.296	0.291	0.291	0.291

Table 8.11. Mohns rho for the 5 models compared as candidate assessment model. The value is based on assessment years 2018-2022. Stdsettings is the adopted model today. The lower table applies if year < Assessment year but the upper table if year <= Assessment year.

model	B4+	ssb	N3	hr	f4-9
Stdsettings	0.2518	0.2887	0.0468	-0.1675	-0.2099
ChangedCVpattern	0.2189	0.2837	0.0154	-0.152	-0.1945
SurveyCV	0.2532	0.3071	0.0073	-0.1672	-0.2117
Ages3to14	0.1924	0.2288	-0.0452	-0.1356	-0.1738
	$\mathbf{B 4 +}$	ssb	N3	hr	f4-9
model	0.2115	0.2384	0.2025	-0.1675	-0.2099
Stdsettings	0.1882	0.2475	0.1687	-0.152	-0.1945
ChangedCVpattern	0.2095	0.2615	0.2478	-0.1672	-0.2117
SurveyCV	0.1652	0.1913	0.1467	-0.1356	-0.1738
Ages3to14					

Table 8.12. Bias, CV and Mohns rho for the 4 models compared as candidate assessment model based on "converged assessment" i.e. results from assessment years 2000-2017 compared to results for same years from the 2022 assessment.

Parameter	Model	Bias	CV	Mohns rho
B4+	Stdsettings	-0.063	0.212	-0.042
B4+	ChangedCVpattern	-0.037	0.266	-0.004
B4+	SurveyCV	0.136	0.268	0.185
B4+	Ages3to14	-0.156	0.246	-0.121
F4-9	Stdsettings	0.032	0.25	0.064
F4-9	ChangedCVpattern	-0.004	0.303	0.04
F4-9	SurveyCV	-0.153	0.288	-0.107
F4-9	Ages3to14	0.119	0.287	0.172
hr	Stdsettings	0.029	0.206	0.05
hr	ChangedCVpattern	-0.006	0.248	0.023
hr	SurveyCV	-0.134	0.245	-0.1
hr	Stdsettings	0.095	0.231	0.128
N3	ChangedCVpattern	-0.272	0.362	-0.192
N3	SurveyCV	-0.301	0.318	-0.224
N3	Ages3to14	-0.174	0.271	-0.132
N3	Stdsettings	-0.37	0.313	-0.277
ssb	ChangedCVpattern	-0.091	0.269	-0.057
ssb	-0.043	0.343	0.011	
ssb	Ages3to14	0.135	0.328	0.133
ssb		0.322	01	
		-0.189	0.	

Table 8.13. Saithe in Division 5.a. Output from short-term projections.

$\mathbf{2 0 2 2}$						
B4+	SSB	Fbar	Landings			
325	168	0.255	67.7			
$\mathbf{2 0 2 3}$						
B4+	SSB	Fbar	Landings	B4+	SSB	Rationale
312	157	0.269	69.8	294	148	20% HCR

20% HCR = average between 0.2 B4+ (current year) and last year's TAC

Figure 8.1 Saithe in Division 5.a. Total landings and percent by gear.

Figure 8.2 Saithe in Division 5.a. Upper figure. Cumulative landings in the current fishing year (left) and calendar year (right). The vertical (green line) in the left figure shows the quota for the current fishing year. Lower figure. Transfer of quota to next fishing year, unused quota and transfer from other species (negative transfer from other species means transfer to other species).

Figure 8.3 Saithe in Division 5.a. Development of sampling intensity from catches. Red is sea samples from the Fisheries Directorate, blue harbour samples from the MFRI and green from a discard project, combination of sea and shore samples.

Figure 8.4. Advice, TAC and catch of saithe since 1987.

Figure 8.5. Saithe in Division 5.a. Upper figure percent of landings by regions defined in the lower figure to the left. Lower right, stations added in the autumn survey in $\mathbf{2 0 0 0}$ (red dots).

Figure 8.6 Saithe in Division 5.a. Catch by trawlers divided between those that freeze the catch and those that do not. Number of trawlers landing more than 500 tonnes has been reducing gradually from 42 in 2008 to 33 in 2020. Freezing trawlers landing > 500 tonnes were 26 in 2008 but 9 in 2020.

Figure 8.7. Spatial distribution of saithe catch as tonnes per square nautical mile per year.

Figure 8.8. Length distributions from sea and shore samples.

Figure 8.9. Catch in numbers 2020 compared to last year's prediction. The green bars show catch in numbers only based on shore samples.

Figure 8.10. Length distributions from bottom trawl catches (lines) compared to average (grey shading).

Figure 8.11. Catch in numbers 2000-2021 compiled by 1 region and 1 time interval (old) compared to catch in numbers compiled by 2 regions and 2 time interval (new). The regions are shown in Figure 8.6, north red and yellow and south blue and black.

Figure 8.12. Saithe in Division 5.a. Weight at age in the catches, as relative deviations from the mean. Blue bars show prediction.

Figure 8.13. Saithe in Division 5.a. Weight at age in the catches shown as average for 2 periods.

Figure 8.14 Saithe in Division 5.a. Weight at age in the survey, as relative deviations from the mean. Colours can be used to follow year classes.

Figure 8.15. Saithe in Division 5.a. Maturity at age used for calculating the SSB. The horizonal lines show the average of last 10 years (blue one) and the average since 1985.

Figure 8.16. CPUE, CPUE scaled to an average of 1 and average numbers of hour trawled. Different colours indicate selection of tows where proportion of saithe of the total catch exceeds certain specified value.

Figure 8.17. CPUE compiled from 3 different models compared to CPUE compiled in similar way as shown in figure 8.16. All curves scaled to an average of 1.

Figure 8.18. Saithe in Division 5.a. Biomass index from the groundfish surveys in March and October.

Figure 8.19. Saithe in Division 5.a. Indices from the gillnet survey in April 1996-2022. Saithe was not length measured in the survey before 2002 so catch in $\mathbf{k g}$ cannot be compiled.

Figure 8.20. Saithe in Division 5.a. Survey indices by age from the spring survey. The colours follows year classes except of course for age 8+.

Age 6 vs age $5 \mathrm{r} 2=0.46$

Age 8 vs age $7 \mathrm{r} 2=0.26$

Age 5 vs age 4 r2 $=0.29$

Age 7 vs age 6 r2 $=0.3$

Figure 8.21. Saithe in Division 5.a. Survey indices by age from the spring survey plotted against indices of the same cohort one year earlier.

Figure 8.22. Saithe in Division 5.a. Survey indices by age from the spring survey plotted as catch curves for each year class. The grey lines correspond to $\mathrm{Z}=0.5$.

Figure 8.23. Upper figure. Estimated selectivity patterns for the 3 periods, 1980-1996, 1997-2003 and 2004-2020. Lower figure estimated selection from the SAM model. The timing of selection change around 2004 is also evident in the SAM model results.

Figure 8.24. Saithe in Division 5.a. Results from the adopted benchmark (SPALY) model and short-term forecast.

Figure 8.25. Saithe in Division 5.a. Comparison of this year's assessment and short term forecast with results from two earlier years.

Figure 8.26. Saithe in Division 5.a. Observed and predicted survey biomass from the "SPALY model".

Figure 8.27. Saithe in Division 5.a. Survey residuals from the "Adopted model". The residuals are standardised.

Figure 8.28. Saithe in Division 5.a. Catch residuals from the "Adopted model".

Figure 8.29. Saithe in Division 5.a. Retrospective pattern for the adopted assessment model (Oldsettings) and alternative configurations of the model. The figure shows estimate of B4+, the metric affecting advised catch. The grey vertical lines show the year 2021.

Figure 8.30. Saithe in Division 5.a. Comparison between the default separable model (Muppet) and alternative assessment models and model settings.

Figure 8.31. Saithe in Division 5a. Comparison between 2022 assessment results of the models shown in Figure 8.29. The Adapt model is added to the list shown there to see the "converged biomass". The lower figure shows B4+ and SSB.

Figure 8.32. Saithe in Division 5a. Q by age in the March survey for the different models.

Figure 8.33. Saithe in Division 5a. Retrospective pattern of Mohns rho for B4+.

9 Icelandic cod in 5.a

9.1 Overview

A formal HCR to set the TAC has been in place for this stock since 1994. The primary essence of the rule is that the TAC for the next fishing year (starting 1 . September in the assessment year and ending 31. August next year) is based on a multiplier on the reference biomass of four years and older in the assessment year (B_{4+}).
The rule has gone through some amendments and revisions over time. The last significant change occurred in 2007, when the harvest rate multiplier upon which the TAC for the next fishing season is based was changed from 0.25 to 0.20 . The current rule has in addition a catch stabilizer. When the SSB in the assessment year is estimated to be above $\operatorname{SSB}_{\text {trigger }}(220 \mathrm{kt})$ the decision rule is:

$$
T A C_{y / y+1}=\left(0.20 * B_{4+, y}+T A C_{y-1 / y}\right) / 2
$$

The TAC for the current fishing year (2021/2022) based on last year's assessment was 222.737 kt .
The results of this year's assessment show that the spawning stock in 2022 is estimated to be 356.697 kt . The values estimated in recent years are higher than have been observed during the last five decades. The reference biomass B_{4+} in 2022 is estimated to be 976.59 kt . Fishing mortality is 0.42 in 2021 having declined significantly in recent decades due to management action. Year classes since the mid-1980s are estimated to be relatively stable but with the mean around 35% lower than observed in the period 1955 to 1985.

Given the above HCR rule and the estimated reference biomass in the beginning of 2021 the catch for the coming fishing year (2022/2023) is 209.028 kt based on the following:

$$
T A C_{2021 / 2022}=\left(0.20 * 976.590_{2022}+222.373_{2021 / 2022}\right) / 2=208.846
$$

Following the benchmark 2021 the reference biomass upon which the advice is based was approximately 20% lower in recent (non-converged) years than based on setting prior to the benchmark. This in part is reflected in somewhat higher recent harvest rate than intended although it is still within the range expected in the HCR simulation.

The input in the analytical age-based assessment are catch at age 1955-2021 (age 3 to 14) and ages 1 to 14 (from the 1985-2022 spring (often referred to as SMB in this report) and ages 3 to 13 from the 1996-2021 fall groundfish surveys (often referred to as SMH in this report).

The advisory outputs are:

Table 1.1: Advice table 1

Variable	Value	Notes
HR_2022	0.22	Catch constraint, tonnes.
SSB_2023	370488	Tonnes.
B4+_2023	1074370	Tonnes.
R3_2022	179427	From the assessment; thousands.
R3_2023	147870	From the assessment; thousands.
R3_2024	127681	From the assessment; thousands.
Catch_2022	215624	Estimated catch until the end of the fishing year (31 August 2022) and estimated catch in the first four months of the next fishing year (1 September-31 December 2022); tonnes.

Table 1.2: Advice table 2

Catch 2022/2023	HR 2023	SSB 2024	B4+ 2024	\% SSB change	\% TAC change
209028	0.2	393257	1124180	6%	-6%

The reference biomass (B_{4+}) upon which the TAC in the fishing year is set is the sumproduct of the population numbers in the beginning of the assessment year and catch weights in that year. The catch weights are not known and hence need to be predicted. An alternative model to the spaly catch weight prediction model was explored and the WG concluded that it was an improvement. However, under current ICES protocol a working group is not allowed to deviated from the benchmark protocol unless an interbenchmark process is called for, a system that is now already in overload. The WG thus proceeded reluctantly with the spaly model and will patiently wait for passing the alternative model through next benchmark, that for this stock will most likely occur in 2026 or 2027.

9.2 Some elaborations

9.2.1 Data

The data used for assessing Icelandic cod are landings and catch-at-age composition since 1955 and indices from two standardized bottom trawl surveys. The spring survey (SMB) was instigated in 1985, the fall survey (SMH) in 1996.

The sampling programs i.e. log books, surveys, sampling from landings etc. have been described in previous reports.

9.2.1.1 Landings

Landings of Icelandic cod in 2021 are estimated to have been 265.729 kt , the bulk taken by the Icelandic fleet.

The share of the catch by different gears in 2021 is according to the following in-text table:

Gear	\mathbf{p}
Longline	0.27
Gillnet	0.07
Jiggers	0.06
Scottish seine	0.07
Bottom trawl	0.53

The estimates of landings for the current calendar year of 216 kt is based on the remainder of the quota from the current fishing year (2020/21, 223 kt) on 1 January $2021(143 \mathrm{kt})$, the catch that is expected to be taken from 1 September to 31 December 2021 ($70 \mathrm{kt}, 1 / 3 \mathrm{rd}$ of the advised TAC of 209 kt) and the expected catch of the foreign fleet (3 kt).
Mean annual discard of cod over the period 2001-2012 is around 1% of landings in weight (Ólafur Pálsson et al., 2013). More recent (unpublished) data indicate that discarding may have increased. The method used for deriving these estimates assumes that discarding only occurs as high grading.

9.2.1.2 Catch in numbers and weight at age

Catch in numbers by age: The method for deriving the catch at age (Table 3.1) is based on 20 metiers: two areas (north and south), two seasons (January-May and June-December) and five fleets (bottom trawl, longline, hooks (jiggers), gillnet and Danish seine).

In recent decades the composition of the catch in weights has shifted towards older ages, e.g. age 8 and older where generally less than 25% of the catch prior to 2007 while in the last 4 years it has been above 40% of the catch. The increase in ages 11 to 14 have increased even more, being less than 2.5% of the caches prior to 2010 to above 10% of the catches in the last two years.

Mean weight at age in the landings: The mean weight age in the catch (Table 3.2 and Figure 3.1) declined from 2001 to 2007, reaching then a historical low in many age groups. The weight at age have been increasing in recent years and are in 2021 at or above the average in the most important age groups. The variation in the pattern of weight at age in the catches is in part a reflection of the variation in the weight in the stock as seen in the measurements from the surveys (Table 3.3 and Figure 3.2).

Prediction of catch weights in 2022: The reference biomass (B_{4+}) upon which the TAC in the fishing year is set is derived from population numbers in the beginning of the assessment year and catch weights. The catch weights are though not known. In recent years, the estimates of mean weights in the catch of age groups 3-9 in the assessment years (y) have been based on a prediction from the spring survey weight measurements in that year using the slope (β) and the intercept (α) from a linear relationship between survey and catch weights in preceding year $(y-1\}$ (for ages 10 and older the weights from the previous year are used). The same approach was used this year for predicting weight at age in the catches for 2022 (Figure 3.3). I.e. the α and β were estimated from:

$$
c W_{a, y-1}=\alpha+\beta * s W_{a, y-1}
$$

and the catch weights for 2022 then from:

$$
c W_{a, y}=\alpha+\beta * s W_{a, y}
$$

Based on this the mean weights at age in the catches in 2022 are predicted to be quite high for ages 3 and 4 (Figure 3.1) and Table 3.2), even though the weights in the spring survey in those
age groups are below or at the long term mean (Figure 3.2). The reason for this is that predication for those age groups are also based on the observations in the older age groups.

An alternative model based using all data from 1990 onwards to estimate α and β within each age group 3 to 9 (Figure 3.4) was explored:

$$
c W_{a}=\alpha+\beta * s W_{a}
$$

The catch weight in the assessment year would then be predicted using "each age" α and β and the observed stock weights in the assessment year. This alternative model gave a much more plausible estimates of catch weights in 2022 although the reference biomass in the terminal year (2022) was very similar (spaly $B_{4+}=977 \mathrm{kt}$ vs alternative 959 kt). A retrospective analysis, using the current estimates of the parameters α and β, indicated that the overall predictive power of the reference biomass was better (cv of 0.035 vs 0.050 , bias $-0.0020 \mathrm{vs}-0.0049$) using the alternative model (Figures 3.5 and 3.6). The alternative model was discussed within the NWWG 2022 and there was a conclusion among the more than dozen scientists that the model was an improvement over the spaly weight prediction model. Under current ICES protocol a working group is not allowed to deviated from the benchmark protocol unless an interbenchmark process is called for, a system that is now already in overload. The WG thus proceeded reluctantly with the spaly model and will patiently wait for passing the alternative model through next benchmark, that for this stock will most likely occur in 2026 or 2027.
Weight and maturity at age used in the calculation of SSB are presented in Tables 3.4 and 3.5.

9.2.1.3 Surveys

Biomass indices: The total spring (SMB) and fall survey (SMH) measurements decreased significantly from the highest value observed in 2017 to the 2020 measurement (Figure 3.7). While the 2021 and 2022 spring survey measurement were on par with that observed in 2018 and 2019 the fall survey measurement in 2021 continued to decline, it being the lowest observed since 2004. In general, the two surveys have shown similar trends through time (Figure 3.8) but the contrast through the increase and decline since the late 2000s being greater in the fall survey. The discrepancy between the last two pairs of the spring (2021 and 2022) vs the fall biomass measurements (2000 and 2021) are the highest observed in the time series.

Age based indices: Abundance indices by age from the spring and the fall surveys (Tables 3.6 and 3.7). Indices of older fish are all relatively high in recent decade despite the indices of these year classes when younger are low or moderate in size (Figure 3.9). The 2020 spring survey anomaly are clearly apparent, e.g. for year classes 2014 and 2015 that are around the long-term average in 2019 (then ages 4 and 5) but roughly half of that in 2020 (then ages 5 and 6). In the 2021 and 2022 spring survey these year classes are however more on par with the 2019 measurement. In the fall survey measurements in the last two years there is a clear indication that most age groups are lower relative to the mean than that observed in the spring survey. It is also clear that the increase in the older age groups in recent years is not as pronounced in the fall survey compared to that observed in the spring survey as well as that observed in the catches.

9.2.2 The 2022 assessment

The framework: A separable statistical catch at age model (sometimes refer to as MUPPET) with four periods where the selection pattern is assumed to be constant. The last separable period is from 2007 to the present. The survey residuals are modeled as multivariate normal distribution to account for potential survey "year effects" - this being a feature in place since 2002. The same framework is used to carry the stock dynamics forward to evaluate reference points and HCR. This framework was benchmarked in 2021.

Diagnostics: The diagnostic (see Tables 3.8, 3.9 and 3.9 and Figure 3.10) manifest the large negative residuals in the spring survey 2020 for the most important age groups (ages 4 to 8) as observed in the 2020 assessment, while residuals in these age groups in the 2021 are much closer to that observed historically. The spring survey residuals are however anomalously high for age groups 10 years and older in the last two years. The fall survey residuals in the last 2-3 terminal years are all negative, being most pronounced in the median age groups. A summarised diagnostic of the observed vs predicted survey biomass (Figure 3.11) illustrate deviation between the model estimates and the point estimates. There are indication that interannual variability in survey measurements in both surveys has increased in recent years compared with that observed in the past.

Results: The detailed result by age of the assessment are provided in Tables 3.11 and 3.12 and the stock summary in Table 3.13 and Figure 3.12. The reference biomass is estimated to be 976.59 kt in 2022 and the fishing mortality 0.42 in 2021. The 2016 year class that is now entering the reference biomass is below recent (1985 onwards) average recruitment (20% lower). The reference biomass has decreased somewhat in recent years, in part driven by incoming recruitment being somewhat lower and in part driven by increase in fishing pressure. The first estimates of the 2021 year class indicates that it is somewhat below average, but this year class will not enter the reference biomass until 2025.

Mohn's rho: One of the ToR for this year was to evaluate the retrospective pattern of the assessment (Figure 3.13) and calculate the Mohn's rho values. The default 5-year peels resulted in the following values:

variable	value
fbar	0.043
bio	0.015
ssb	-0.024
rec	0.059

Calculation of Mohn's rho over only a 5-year period may not be the best indicator of potential bias in the assessment because:

- The metrics over the short period may be just a reflection of autocorrelation.
- When mortality is low the assessment converges slowly and the metrics using only the most recent years may be heavily influence by the terminal year estimates.

A longer-term metric for the Icelandic cod based on a retrospective going back to 2002 is as follows:

variable	value
fbar	0.036
bio	0.012
ssb	-0.004
rec	0.035

Alternative runs: Tuning with each survey alone (Figure 3.15 shows that the spring survey gives somewhat higher biomass than when both surveys are used while the fall survey gives a 10% lower biomass estimates. It is of interest to note that the three runs do not converge and actually show a "crossover" with time. This is in part driven by difference in the estimated selection patterns. The most likely cause is that in an assessment where two surveys are included the catches
get less influence than if only one survey is used. It would be of interest to investigate this issue in future stock assessments.

9.2.2.1 On reference points

Prior to the 2021 benchmark the ICES reference points that matter for the advice (ICES $B_{\text {trigger }}$ and $H R_{m s y}$) were set the same as in the HCR. Other (redundant) fishing pressure reference points were set based on the conventional F (i.e. $F_{l i m}$ and $F_{p a}$). In the 2021 benchmark there was a requirement that ICES $B_{\text {trigger }}$ should be set in accordance with the guidelines and that fishing pressure reference points should be set in the same units as used in the HCR.
Since this stock has been fished for quite a while at a rate that is closed to that resulting in MSY the ICES $B_{\text {trigger }}$ was based on the 5% percentile of SSB with the stabilizer in the HCR being ignored. The resulting value was 265 kt . This may not be the most optimum approach because the influence of incoming age 4 weigh quite high in the B_{4+} reference biomass, something that is actually ameliorated in the HCR that uses a buffer. If an advice is based on no buffer it may be better to base the reference biomass not on catch weights but stock weights, because then the influence of age four would be reduced.

More problematic is however the derivation of $H R_{p a}$ (same would a apply to any $F_{p a}$ derivation), which according to the guidelines is defined based on using the $B_{\text {trigger }}(265 \mathrm{kt})$ in the simulation. The actual value became $H R_{p a}=0.39$. This value is higher than $H R_{\text {lim }}=0.35$, the reason being that the latter is derived in the absence of a $B_{\text {trigger }}$ (which was hence conveniently left undefined). On its own, a $H R_{p a}=0.39$ is quite high, in particular if is going to be presented as a horizontal line on a summary plot. This is said because the value is conditional on the $B_{\text {trigger }}=$ 265 kt and if applied will result in the stock going frequently below this value, resulting attenuated inter-annual variability in yield. The simulation showed that the median realized value of fishing pressure given the trigger was ~ 0.30.

9.2.2.2 On measure of fishing pressure

Given the push to define fishing pressure in the same units as used in the HCR one may need to consider how one should derive the harvest rate. For the Icelandic cod this is more cumbersome than normally because the advice is not for a calendar year but fishing year. It was decided to use the following metric in the summary (Table 3.13) as well as the table in the advice sheet:

$$
H R_{y}=\left(1 / 3 * Y_{y}+2 / 3 * Y_{y+1}\right) / B_{4+, y}
$$

where Y is the yield and the fractions represent the proportion of the catch of the fishing year taken in the different calendar year. This measure of fishing pressure is by no means the best one but reflects best the "intended" harvest rate as stipulated in the HCR.

9.3 Reference

ICES 2021. ICES. 2021. Workshop on the re-evaluation of management plan for the Icelandic cod stock (WKICECOD). ICES Scientific Reports, 3:30. https://doi.org/10.17895/ices.pub.7987.

Table 3.1: Icelandic cod in Division 5.a. Estimated catch in numbers (millions) by year and age in millions of fish in 19552021.

year	3	4	5	6	7	8	9	10	11	12	13	14
1955	4.790	25.164	46.566	28.287	10.541	5.224	2.467	25.182	2.101	1.202	1.668	0.665
1956	6.709	17.265	31.030	27.793	14.389	4.261	3.429	2.128	16.820	1.552	1.522	1.545
1957	13.240	21.278	17.515	24.569	17.634	12.296	3.568	2.169	1.171	6.822	0.512	1.089
1958	25.237	30.742	14.298	10.859	15.997	15.822	12.021	2.003	2.125	0.771	3.508	0.723
1959	18.394	37.650	23.901	7.682	5.883	8.791	13.003	7.683	0.914	0.990	0.218	1.287
1960	14.830	28.642	27.968	14.120	8.387	6.089	6.393	11.600	3.526	0.692	0.183	0.510
1961	16.507	21.808	19.488	15.034	7.900	6.925	3.969	3.211	6.756	1.202	0.089	0.425
1962	13.514	28.526	18.924	14.650	12.045	4.276	8.809	2.664	1.883	2.988	0.405	0.324
1963	18.507	28.466	19.664	11.314	15.682	7.704	2.724	6.508	1.657	1.030	1.372	0.246
1964	19.287	28.845	18.712	11.620	7.936	18.032	5.040	1.437	2.670	0.655	0.370	1.025
1965	21.658	29.586	24.783	11.706	9.334	6.394	11.122	1.477	0.823	0.489	0.118	0.489
1966	17.910	30.649	20.006	13.872	5.942	7.586	2.320	5.583	0.407	0.363	0.299	0.311
1967	25.945	27.941	24.322	11.320	8.751	2.595	5.490	1.392	1.998	0.109	0.030	0.106
1968	11.933	47.311	22.344	16.277	15.590	7.059	1.571	2.506	0.512	0.659	0.047	0.098
1969	11.149	23.925	45.445	17.397	12.559	14.811	1.590	0.475	0.340	0.064	0.024	0.021
1970	9.876	47.210	23.607	25.451	15.196	12.261	14.469	0.567	0.207	0.147	0.035	0.050
1971	13.060	35.856	45.577	21.135	17.340	10.924	6.001	4.210	0.237	0.069	0.038	0.020
1972	8.973	29.574	30.918	22.855	11.097	9.784	10.538	3.938	1.242	0.119	0.031	0.001
1973	36.538	25.542	27.391	17.045	12.721	3.685	4.718	5.809	1.134	0.282	0.007	0.001
1974	14.846	61.826	21.824	14.413	8.974	6.216	1.647	2.530	1.765	0.334	0.062	0.028
1975	29.301	29.489	44.138	12.088	9.628	3.691	2.051	0.752	0.891	0.416	0.060	0.046
1976	23.578	39.790	21.092	24.395	5.803	5.343	1.297	0.633	0.205	0.155	0.065	0.029
1977	2.614	42.659	32.465	12.162	13.017	2.809	1.773	0.421	0.086	0.024	0.006	0.002
1978	5.999	16.287	43.931	17.626	8.729	4.119	0.978	0.348	0.119	0.048	0.015	0.027
1979	7.186	28.427	13.772	34.443	14.130	4.426	1.432	0.350	0.168	0.043	0.024	0.004
1980	4.348	28.530	32.500	15.119	27.090	7.847	2.228	0.646	0.246	0.099	0.025	0.004
1981	2.118	13.297	39.195	23.247	12.710	26.455	4.804	1.677	0.582	0.228	0.053	0.068
1982	3.285	20.812	24.462	28.351	14.012	7.666	11.517	1.912	0.327	0.094	0.043	0.011
1983	3.554	10.910	24.305	18.944	17.382	8.381	2.054	2.733	0.514	0.215	0.064	0.037
1984	6.750	31.553	19.420	15.326	8.082	7.336	2.680	0.512	0.538	0.195	0.090	0.036
1985	6.457	24.552	35.392	18.267	8.711	4.201	2.264	1.063	0.217	0.233	0.102	0.038
1986	20.642	20.330	26.644	30.839	11.413	4.441	1.771	0.805	0.392	0.103	0.076	0.044
1987	11.002	62.130	27.192	15.127	15.695	4.159	1.463	0.592	0.253	0.142	0.046	0.058
1988	6.713	39.323	55.895	18.663	6.399	5.877	1.345	0.455	0.305	0.157	0.114	0.025
1989	2.605	27.983	50.059	31.455	6.010	1.915	0.881	0.225	0.107	0.086	0.038	0.005
1990	5.785	12.313	27.179	44.534	17.037	2.573	0.609	0.322	0.118	0.050	0.015	0.020
1991	8.554	25.131	15.491	21.514	25.038	6.364	0.903	0.243	0.125	0.063	0.011	0.012
1992	12.217	21.708	26.524	11.413	10.073	8.304	2.006	0.257	0.046	0.032	0.009	0.008
1993	20.500	33.078	15.195	13.281	3.583	2.785	2.707	1.181	0.180	0.034	0.011	0.013

year	3	4	5	6	7	8	9	10	11	12	13	14
1994	6.160	24.142	19.666	6.968	4.393	1.257	0.599	0.508	0.283	0.049	0.018	0.006
1995	10.770	9.103	16.829	13.066	4.115	1.596	0.313	0.184	0.156	0.141	0.029	0.008
1996	5.356	14.886	7.372	12.307	9.429	2.157	0.837	0.208	0.076	0.065	0.055	0.005
1997	1.722	16.442	17.298	6.711	7.379	5.958	1.147	0.493	0.126	0.028	0.037	0.021
1998	3.458	7.707	25.394	20.167	5.893	3.856	2.951	0.500	0.196	0.055	0.033	0.013
1999	2.525	19.554	15.226	24.622	12.966	2.795	1.489	0.748	0.140	0.046	0.010	0.005
2000	10.493	6.581	29.080	11.227	11.390	5.714	1.104	0.567	0.314	0.074	0.022	0.006
2001	13.553	26.000	9.111	20.213	5.850	3.760	2.028	0.508	0.199	0.137	0.013	0.031
2002	6.019	17.776	24.030	7.160	9.424	2.451	1.555	0.738	0.150	0.058	0.041	0.004
2003	5.490	16.313	22.045	16.628	4.840	4.933	1.201	0.507	0.211	0.046	0.026	0.033
2004	1.784	17.960	24.043	17.901	10.166	2.880	1.978	0.499	0.162	0.087	0.019	0.008
2005	5.271	5.302	26.183	16.922	8.543	4.890	1.292	0.790	0.216	0.096	0.037	0.005
2006	3.446	13.108	8.834	22.063	10.540	4.683	2.164	0.471	0.240	0.040	0.016	0.010
2007	2.054	11.639	15.937	8.599	9.894	5.680	2.281	1.139	0.332	0.088	0.067	0.006
2008	3.104	5.126	12.849	11.641	5.153	4.708	2.139	0.880	0.280	0.067	0.043	0.004
2009	3.458	7.926	9.626	17.895	10.503	3.888	2.295	0.742	0.315	0.089	0.022	0.012
2010	3.511	7.730	9.591	8.448	10.922	5.546	1.566	0.924	0.299	0.144	0.063	0.017
2011	4.001	7.845	10.576	10.820	6.287	6.292	2.429	0.680	0.419	0.134	0.040	0.016
2012	4.056	11.249	10.814	9.560	8.918	5.009	3.213	1.152	0.292	0.227	0.081	0.026
2013	5.778	12.224	15.347	11.414	7.594	5.792	2.571	1.832	0.653	0.209	0.146	0.036
2014	4.630	8.365	14.898	13.262	8.426	4.930	2.816	1.395	0.964	0.376	0.127	0.107
2015	5.229	13.361	10.350	13.897	9.409	5.616	2.441	1.552	0.953	0.407	0.125	0.036
2016	2.667	11.179	11.886	10.989	12.746	7.345	3.232	1.590	0.847	0.537	0.184	0.056
2017	5.174	8.033	13.630	13.590	7.632	7.459	3.904	2.005	0.761	0.517	0.251	0.143
2018	4.905	12.805	8.403	14.206	11.364	7.124	4.418	2.047	0.852	0.506	0.176	0.105
2019	2.916	8.467	13.461	9.095	8.974	7.801	4.182	3.973	2.033	0.748	0.354	0.184
2020	3.284	10.770	18.092	18.630	7.373	6.139	4.384	2.468	1.511	0.912	0.458	0.270
2021	4.071	8.397	9.783	17.340	11.149	4.337	3.344	2.217	1.589	1.180	0.593	0.352

Table 3.2: Icelandic cod in Division 5.a. Estimated mean weight at age in the catch (kg) in period the 1955-2021. The weights for age groups 3 to 9 in 2022 are based on predictions from the 2022 spring survey measurements. The weights in the catches are used to calculate the reference biomass (B_{4+}).

year	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
1955	0.827	1.307	2.157	3.617	4.638	5.657	6.635	6.168	8.746	8.829	10.086	14.584
1956	1.080	1.600	2.190	3.280	4.650	5.630	6.180	6.970	6.830	9.290	10.965	12.954
1957	1.140	1.710	2.520	3.200	4.560	5.960	7.170	7.260	8.300	8.290	10.350	13.174
1958	1.210	1.810	3.120	4.510	5.000	5.940	6.640	8.290	8.510	8.840	9.360	13.097
1959	1.110	1.950	2.930	4.520	5.520	6.170	6.610	7.130	8.510	8.670	9.980	11.276
1960	1.060	1.720	2.920	4.640	5.660	6.550	6.910	7.140	7.970	10.240	10.100	12.871
1961	1.020	1.670	2.700	4.330	5.530	6.310	6.930	7.310	7.500	8.510	9.840	14.550
1962	0.990	1.610	2.610	3.900	5.720	6.660	6.750	7.060	7.540	8.280	10.900	12.826

year	3	4	5	6	7	8	9	10	11	12	13	14
1963	1.250	1.650	2.640	3.800	5.110	6.920	7.840	7.610	8.230	9.100	9.920	11.553
1964	1.210	1.750	2.640	4.020	5.450	6.460	8.000	9.940	9.210	10.940	12.670	15.900
1965	1.020	1.530	2.570	4.090	5.410	6.400	7.120	8.600	12.310	10.460	10.190	17.220
1966	1.170	1.680	2.590	4.180	5.730	6.900	7.830	8.580	9.090	14.230	14.090	17.924
1967	1.120	1.820	2.660	4.067	5.560	7.790	7.840	8.430	9.090	10.090	14.240	16.412
1968	1.170	1.590	2.680	3.930	5.040	5.910	7.510	8.480	10.750	11.580	14.640	16.011
1969	1.100	1.810	2.480	3.770	5.040	5.860	7.000	8.350	8.720	10.080	11.430	13.144
1970	0.990	1.450	2.440	3.770	4.860	5.590	6.260	8.370	10.490	12.310	14.590	21.777
1971	1.090	1.570	2.310	2.980	4.930	5.150	5.580	6.300	8.530	11.240	14.740	17.130
1972	0.980	1.460	2.210	3.250	4.330	5.610	6.040	6.100	6.870	8.950	11.720	16.000
1973	1.030	1.420	2.470	3.600	4.900	6.110	6.670	6.750	7.430	7.950	10.170	17.000
1974	1.050	1.710	2.430	3.820	5.240	6.660	7.150	7.760	8.190	9.780	12.380	14.700
1975	1.100	1.770	2.780	3.760	5.450	6.690	7.570	8.580	8.810	9.780	10.090	11.000
1976	1.350	1.780	2.650	4.100	5.070	6.730	8.250	9.610	11.540	11.430	14.060	16.180
1977	1.259	1.911	2.856	4.069	5.777	6.636	7.685	9.730	11.703	14.394	17.456	24.116
1978	1.289	1.833	2.929	3.955	5.726	6.806	9.041	10.865	13.068	11.982	19.062	21.284
1979	1.408	1.956	2.642	3.999	5.548	6.754	8.299	9.312	13.130	13.418	13.540	20.072
1980	1.392	1.862	2.733	3.768	5.259	6.981	8.037	10.731	12.301	17.281	14.893	19.069
1981	1.180	1.651	2.260	3.293	4.483	5.821	7.739	9.422	11.374	12.784	12.514	19.069
1982	1.006	1.550	2.246	3.104	4.258	5.386	6.682	9.141	11.963	14.226	17.287	16.590
1983	1.095	1.599	2.275	3.021	4.096	5.481	7.049	8.128	11.009	13.972	15.882	18.498
1984	1.288	1.725	2.596	3.581	4.371	5.798	7.456	9.851	11.052	14.338	15.273	16.660
1985	1.407	1.971	2.576	3.650	4.976	6.372	8.207	10.320	12.197	14.683	16.175	19.050
1986	1.459	1.961	2.844	3.593	4.635	6.155	7.503	9.084	10.356	15.283	14.540	15.017
1987	1.316	1.956	2.686	3.894	4.716	6.257	7.368	9.243	10.697	10.622	15.894	12.592
1988	1.438	1.805	2.576	3.519	4.930	6.001	7.144	8.822	9.977	11.732	14.156	13.042
1989	1.186	1.813	2.590	3.915	5.210	6.892	8.035	9.831	11.986	10.003	12.611	16.045
1990	1.290	1.704	2.383	3.034	4.624	6.521	8.888	10.592	10.993	14.570	15.732	17.290
1991	1.309	1.899	2.475	3.159	3.792	5.680	7.242	9.804	9.754	14.344	14.172	20.200
1992	1.289	1.768	2.469	3.292	4.394	5.582	6.830	8.127	12.679	13.410	15.715	11.267
1993	1.392	1.887	2.772	3.762	4.930	6.054	7.450	8.641	10.901	12.517	14.742	16.874
1994	1.443	2.063	2.562	3.659	5.117	6.262	7.719	8.896	10.847	12.874	14.742	17.470
1995	1.348	1.959	2.920	3.625	5.176	6.416	7.916	10.273	11.022	11.407	13.098	15.182
1996	1.457	1.930	3.132	4.141	4.922	6.009	7.406	9.772	10.539	13.503	13.689	16.194
1997	1.484	1.877	2.878	4.028	5.402	6.386	7.344	8.537	10.797	11.533	10.428	12.788
1998	1.230	1.750	2.458	3.559	5.213	7.737	7.837	9.304	10.759	14.903	16.651	18.666
1999	1.241	1.716	2.426	3.443	4.720	6.352	8.730	9.946	11.088	12.535	14.995	15.151
2000	1.308	1.782	2.330	3.252	4.690	5.894	7.809	9.203	10.240	11.172	13.172	17.442
2001	1.484	2.017	2.629	3.362	4.555	6.187	7.124	8.445	9.311	9.566	10.242	9.503
2002	1.309	1.947	2.664	3.638	4.551	5.927	7.083	8.100	9.276	11.660	11.221	14.029

year	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
$\mathbf{2 0 0 3}$	1.350	1.866	2.459	3.391	4.380	4.756	6.141	7.138	9.580	10.260	11.479	10.720
2004	1.139	1.754	2.413	3.373	4.288	5.185	5.741	7.376	10.038	10.322	12.428	11.452
2005	1.196	1.735	2.421	3.395	4.292	5.059	6.233	6.124	7.964	10.075	12.776	13.719
2006	1.088	1.622	2.205	3.052	4.265	4.978	5.287	6.028	8.455	11.154	12.608	15.381
2007	1.063	1.595	2.179	2.791	3.861	5.159	5.871	6.405	7.182	9.506	10.406	10.532
2008	1.098	1.598	2.364	3.140	3.990	5.264	6.483	7.367	7.784	10.505	11.621	18.092
2009	1.096	1.666	2.206	3.187	4.059	5.024	6.649	8.354	9.529	11.193	11.761	14.918
2010	1.100	1.824	2.355	3.213	4.481	5.463	6.740	8.026	8.969	10.419	11.648	12.205
2011	1.109	1.660	2.512	3.443	4.404	5.783	6.526	7.828	8.806	9.662	12.941	11.649
2012	1.180	1.625	2.442	3.744	4.707	5.925	7.369	7.988	9.111	10.720	12.042	11.608
2013	1.132	1.743	2.451	3.612	4.936	6.125	7.367	8.137	9.173	10.121	10.421	12.702
2014	1.118	1.741	2.522	3.518	4.677	6.158	7.486	8.586	8.967	10.518	10.286	12.354
2015	1.196	1.643	2.663	3.599	4.643	5.919	7.589	8.600	9.686	11.208	11.328	10.392
2016	1.101	1.791	2.510	3.749	4.659	5.967	7.188	8.535	10.130	10.719	11.421	13.899
2017	1.011	1.760	2.501	3.459	4.789	5.929	7.190	8.467	9.496	11.025	11.535	12.853
2018	1.181	1.797	2.808	3.768	4.591	6.126	7.102	8.723	9.471	10.127	10.422	11.617
2019	1.155	1.662	2.480	3.773	4.783	5.504	6.604	8.095	8.842	10.596	11.687	12.003
2020	1.001	1.779	2.434	3.250	4.375	5.451	6.608	7.838	8.484	9.631	9.601	11.945
2021	1.273	1.915	3.012	3.656	4.570	5.877	6.974	7.889	8.748	9.307	9.836	10.331
2022	1.501	2.062	2.601	3.875	4.604	5.514	7.126	7.889	8.748	9.307	9.836	10.331

Table 3.3: Icelandic cod in Division 5.a. Estimated survey weight (kg) at age in the spring survey (SMB).

year	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
1985	0.014	0.137	0.388	1.124	1.743	2.601	3.264	4.757	6.009
1986	0.015	0.159	0.619	1.225	2.264	3.006	4.362	5.595	7.186
1987	0.014	0.117	0.469	1.202	1.763	3.004	4.229	6.301	6.876
1988	0.011	0.122	0.496	1.082	1.977	3.119	3.622	4.482	8.046
1989	0.022	0.151	0.547	1.159	1.973	3.081	4.404	6.212	6.942
1990	0.019	0.135	0.462	1.042	1.832	2.643	3.870	5.871	7.746
1991	0.018	0.147	0.555	1.170	1.859	2.636	3.344	5.675	7.316
1992	0.024	0.134	0.500	1.017	1.863	2.619	3.766	5.101	7.355
1993	0.012	0.173	0.576	1.170	1.954	3.043	4.048	5.410	6.080
1994	0.013	0.174	0.686	1.417	2.055	3.230	4.193	6.229	8.156
1995	0.010	0.133	0.606	1.380	2.297	3.009	4.466	5.350	8.035
1996	0.011	0.155	0.551	1.352	2.084	3.322	4.044	5.257	7.460
1997	0.018	0.139	0.546	1.194	2.170	3.211	4.858	5.501	6.463
1998	0.015	0.154	0.482	1.193	2.041	3.017	4.249	5.417	6.333
1999	0.014	0.140	0.578	1.070	1.849	2.869	3.826	4.993	5.657
2000	0.016	0.124	0.486	1.195	1.817	2.771	4.068	5.345	8.472
2001	0.017	0.149	0.530	1.184	1.845	2.625	3.781	5.491	6.472

year	1	2	3	4	5	6	7	8	9
2002	0.013	0.131	0.510	1.206	1.998	2.920	3.784	5.791	6.321
2003	0.016	0.131	0.466	1.179	1.919	2.786	4.136	4.672	6.246
2004	0.021	0.142	0.480	1.073	1.896	2.791	3.413	4.866	5.069
2005	0.011	0.118	0.440	1.033	1.771	2.669	3.680	4.365	7.207
2006	0.013	0.106	0.412	0.980	1.710	2.624	4.039	4.709	5.587
2007	0.014	0.100	0.412	0.970	1.665	2.382	3.694	5.052	6.052
2008	0.011	0.121	0.376	0.943	1.811	2.612	3.586	4.919	6.301
2009	0.012	0.111	0.411	0.847	1.616	2.646	3.690	4.698	5.836
2010	0.013	0.098	0.386	1.010	1.706	2.593	4.052	4.931	6.235
2011	0.012	0.102	0.392	1.128	2.127	3.003	4.258	5.866	6.638
2012	0.012	0.143	0.467	1.144	1.936	3.210	4.281	5.812	7.897
2013	0.014	0.110	0.495	1.053	1.790	3.033	4.781	6.372	8.078
2014	0.011	0.114	0.359	1.076	1.713	2.641	3.992	6.138	8.025
2015	0.013	0.150	0.417	0.897	2.062	3.029	4.405	6.058	8.606
2016	0.010	0.119	0.478	1.007	1.583	3.164	4.000	5.510	7.192
2017	0.014	0.091	0.418	1.223	1.938	2.726	5.160	6.445	7.570
2018	0.020	0.133	0.383	0.974	2.141	3.167	3.978	6.540	7.593
2019	0.010	0.094	0.468	0.908	1.796	3.407	4.389	5.319	7.434
2020	0.012	0.137	0.398	1.159	1.741	2.941	4.752	5.846	7.305
2021	0.010	0.111	0.489	1.014	2.096	3.090	4.078	5.825	7.879
2022	0.014	0.090	0.391	1.118	1.816	3.468	4.412	5.592	7.682

Table 3.4: Icelandic cod in Division 5.a. Estimated weight at age in the spawning stock ($\mathbf{k g}$) in period the 1955-2022. These weights are used to calculate the spawning stock biomass (SSB).

year	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
$\mathbf{1 9 5 5}$	0.645	1.019	1.833	3.183	4.128	5.657	6.635	6.168	8.746	8.829	10.086	14.584
1956	0.645	1.248	1.862	2.886	4.138	5.630	6.180	6.970	6.830	9.290	10.965	12.954
1957	0.645	1.334	2.142	2.816	4.058	5.960	7.170	7.260	8.300	8.290	10.350	13.174
1958	0.645	1.412	2.652	3.969	4.450	5.940	6.640	8.290	8.510	8.840	9.360	13.097
1959	0.645	1.521	2.490	3.978	4.913	6.170	6.610	7.130	8.510	8.670	9.980	11.276
1960	0.645	1.342	2.482	4.083	5.037	6.550	6.910	7.140	7.970	10.240	10.100	12.871
1961	0.645	1.303	2.295	3.810	4.922	6.310	6.930	7.310	0.750	8.510	9.840	14.550
1962	0.645	1.256	2.218	3.432	5.091	6.660	6.750	7.060	7.540	8.280	10.900	12.826
1963	0.645	1.287	2.244	3.344	4.548	6.920	7.840	7.610	8.230	9.100	9.920	11.553
1964	0.645	1.365	2.244	3.538	4.850	6.460	8.000	9.940	9.210	10.940	12.670	15.900
1965	0.645	1.193	2.184	3.599	4.815	6.400	7.120	8.600	12.310	10.460	10.190	17.220
1966	0.645	1.310	2.202	3.678	5.100	6.900	7.830	8.580	9.090	14.230	14.090	17.924
1967	0.645	1.420	2.261	3.579	4.948	7.790	7.840	8.430	9.090	10.090	14.240	16.412
1968	0.645	1.240	2.278	3.458	4.486	5.910	7.510	8.480	10.750	11.580	14.640	16.011
1969	0.645	1.412	2.108	3.318	4.486	5.860	7.000	8.350	8.720	10.080	11.430	13.144

year	3	4	5	6	7	8	9	10	11	12	13	14
1970	0.645	1.131	2.074	3.318	4.325	5.590	6.260	8.370	10.490	12.310	14.590	21.777
1971	0.645	1.225	1.964	2.622	4.388	5.150	5.580	6.300	8.530	11.240	14.740	17.130
1972	0.645	1.139	1.878	2.860	3.854	5.610	6.040	6.100	6.870	8.950	11.720	16.000
1973	0.645	1.108	2.100	3.168	4.361	6.110	6.670	6.750	7.430	7.950	10.170	17.000
1974	0.645	1.334	2.066	3.362	4.664	6.660	7.150	7.760	8.190	9.780	12.380	14.700
1975	0.645	1.381	2.363	3.309	4.850	6.690	7.570	8.580	8.810	9.780	10.090	11.000
1976	0.645	1.388	2.252	3.608	4.512	6.730	8.250	9.610	11.540	11.430	14.060	16.180
1977	0.645	1.491	2.428	3.581	5.142	6.636	7.685	9.730	11.703	14.394	17.456	24.116
1978	0.645	1.430	2.490	3.480	5.096	6.806	9.041	10.865	13.068	11.982	19.062	21.284
1979	0.645	1.526	2.246	3.519	4.938	6.754	8.299	9.312	13.130	13.418	13.540	20.072
1980	0.645	1.452	2.323	3.316	4.681	6.981	8.037	10.731	12.301	17.281	14.893	19.069
1981	0.645	1.288	1.921	2.898	3.990	5.821	7.739	9.422	11.374	12.784	12.514	19.069
1982	0.645	1.209	1.909	2.732	3.790	5.386	6.682	9.141	11.963	14.226	17.287	16.590
1983	0.645	1.247	1.934	2.658	3.645	5.481	7.049	8.128	11.009	13.972	15.882	18.498
1984	0.645	1.346	2.207	3.151	3.890	5.798	7.456	9.851	11.052	14.338	15.273	16.660
1985	1.312	1.399	1.766	2.738	3.483	4.762	7.301	10.320	12.197	14.683	16.175	19.050
1986	1.312	1.612	2.915	3.279	4.591	5.803	7.199	9.084	10.356	15.283	14.540	15.017
1987	1.718	1.598	2.439	3.532	4.886	6.408	7.499	9.243	10.697	10.622	15.894	12.592
1988	0.931	1.486	2.281	3.287	4.423	4.678	8.147	8.822	9.977	11.732	14.156	13.042
1989	0.823	1.526	2.364	3.426	4.702	7.273	8.436	9.831	11.986	10.003	12.611	16.045
1990	0.733	1.044	2.199	2.841	4.367	6.177	8.919	10.592	10.993	14.570	15.732	17.290
1991	0.114	1.288	2.069	2.799	3.477	6.007	8.823	9.804	9.754	14.344	14.172	20.200
1992	0.449	1.349	2.117	3.086	3.861	5.196	7.429	8.127	12.679	13.410	15.715	11.267
1993	0.773	1.374	2.316	3.276	4.179	5.729	6.441	8.641	10.901	12.517	14.742	16.874
1994	1.618	1.733	2.259	3.384	4.563	6.471	9.803	8.896	10.847	12.874	14.742	17.470
1995	0.514	1.639	2.353	3.197	4.493	5.544	8.579	10.273	11.022	11.407	13.098	15.182
1996	0.542	1.756	2.490	3.530	4.251	5.621	8.263	9.772	10.539	13.503	13.689	16.194
1997	1.111	1.346	2.267	3.723	5.415	5.963	6.964	8.537	10.797	11.533	10.428	12.788
1998	1.111	1.605	2.262	3.262	4.461	5.759	6.793	9.304	10.759	14.903	16.651	18.666
1999	1.311	1.471	1.936	2.999	3.968	5.132	6.522	9.946	11.088	12.535	14.995	15.151
2000	0.497	1.355	1.916	2.881	4.318	5.573	8.464	9.203	10.240	11.172	13.172	17.442
2001	0.816	1.583	2.080	2.676	4.112	6.236	6.926	8.445	9.311	9.566	10.242	9.503
2002	0.782	1.591	2.260	3.120	3.991	5.991	9.225	8.100	9.276	11.660	11.221	14.029
2003	1.150	1.326	2.241	3.049	4.226	5.051	6.823	7.138	9.580	10.260	11.479	10.720
2004	1.150	1.456	2.095	3.011	3.678	5.192	5.400	7.376	10.038	10.322	12.428	11.452
2005	0.648	1.123	1.908	2.979	3.901	4.789	7.238	6.124	7.964	10.075	12.776	13.719
2006	0.907	1.407	2.016	2.913	4.351	5.057	6.472	6.028	8.455	11.154	12.608	15.381
2007	1.439	1.261	2.023	2.640	4.116	5.697	6.632	6.405	7.182	9.506	10.406	10.532
2008	0.912	1.845	2.232	2.911	3.897	5.400	6.927	7.367	7.784	10.505	11.621	18.092
2009	0.644	1.465	2.041	2.887	3.943	4.923	7.044	8.354	9.529	11.193	11.761	14.918

year	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
2010	0.644	1.590	2.154	3.149	4.207	5.207	6.460	8.024	8.968	10.419	11.647	12.208
2011	0.794	2.467	2.666	3.216	4.546	5.989	6.851	7.828	8.805	9.662	12.941	11.649
2012	1.404	1.702	2.606	3.717	4.516	6.016	8.038	7.988	9.111	10.720	12.042	11.608
2013	0.944	2.323	2.991	3.834	5.207	6.532	8.260	8.137	9.173	10.121	10.421	12.702
2014	0.944	1.332	2.549	3.316	4.459	6.390	8.178	8.586	8.967	10.518	10.286	12.354
2015	0.704	1.043	3.320	3.836	4.895	6.218	8.677	8.600	9.687	11.205	11.330	10.360
2016	0.972	2.247	3.042	4.213	4.614	6.000	7.351	8.486	10.111	10.701	11.362	13.899
2017	1.773	2.582	3.513	3.936	5.698	6.716	7.636	8.486	9.509	11.095	11.575	12.800
2018	1.029	2.372	3.230	3.862	4.574	6.671	7.711	8.699	9.445	10.072	10.269	11.638
2019	0.599	3.044	3.260	4.221	4.700	5.498	7.481	8.095	8.842	10.596	11.687	12.003
2020	0.874	1.697	3.150	3.941	5.140	5.998	7.342	7.838	8.484	9.631	9.601	11.945
2021	0.449	1.349	2.943	3.818	4.523	6.061	7.879	7.889	8.748	9.307	9.836	10.331
2022	0.965	1.620	2.530	4.285	4.590	5.781	7.753	7.889	8.748	9.307	9.836	10.331

Table 3.5: Icelandic cod in Division 5.a. Estimated maturity at age in period the 1955-2022.

year	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
1955	0.019	0.022	0.033	0.181	0.577	0.782	0.834	0.960	1.000	1.000	1.000	1
1956	0.019	0.025	0.033	0.111	0.577	0.782	0.818	0.980	0.980	1.000	1.000	1
1957	0.019	0.026	0.043	0.100	0.549	0.801	0.842	0.990	1.000	1.000	1.000	1
1958	0.019	0.028	0.086	0.520	0.682	0.801	0.834	1.000	1.000	1.000	1.000	1
1959	0.019	0.029	0.070	0.535	0.772	0.818	0.834	0.990	1.000	1.000	1.000	1
1960	0.019	0.026	0.066	0.577	0.782	0.826	0.834	0.990	1.000	1.000	1.000	1
1961	0.019	0.025	0.053	0.450	0.772	0.818	0.834	0.990	0.990	1.000	1.000	1
1962	0.019	0.025	0.048	0.281	0.791	0.834	0.834	0.990	0.990	1.000	1.000	1
1963	0.019	0.025	0.048	0.237	0.706	0.834	0.849	1.000	1.000	1.000	1.000	1
1964	0.019	0.026	0.048	0.329	0.762	0.826	0.849	1.000	1.000	1.000	1.000	1
1965	0.019	0.025	0.045	0.354	0.751	0.826	0.842	1.000	1.000	1.000	1.000	1
1966	0.019	0.026	0.045	0.394	0.791	0.849	0.849	1.000	1.000	1.000	1.000	1
1967	0.019	0.028	0.051	0.341	0.772	0.842	0.849	1.000	1.000	1.000	1.000	1
1968	0.019	0.025	0.051	0.292	0.682	0.801	0.842	1.000	1.000	1.000	1.000	1
1969	0.019	0.028	0.043	0.227	0.682	0.801	0.842	1.000	1.000	1.000	1.000	1
1970	0.019	0.023	0.041	0.227	0.644	0.772	0.818	1.000	1.000	1.000	1.000	1
1971	0.019	0.025	0.037	0.074	0.657	0.706	0.772	0.979	0.994	0.982	0.993	1
1972	0.019	0.023	0.035	0.106	0.450	0.772	0.809	0.979	0.994	0.982	0.993	1
1973	0.022	0.028	0.163	0.382	0.697	0.801	0.834	0.996	0.996	1.000	1.000	1
1974	0.020	0.031	0.085	0.346	0.636	0.790	0.818	0.989	1.000	1.000	1.000	1
1975	0.020	0.035	0.118	0.287	0.715	0.809	0.839	1.000	1.000	1.000	1.000	1
1976	0.025	0.026	0.086	0.253	0.406	0.797	0.841	1.000	1.000	1.000	1.000	1
1977	0.019	0.024	0.060	0.382	0.742	0.817	0.842	1.000	1.000	1.000	1.000	1
1978	0.025	0.025	0.052	0.192	0.737	0.820	0.836	1.000	1.000	1.000	1.000	1
								1	1			

year	3	4	5	6	7	8	9	10	11	12	13	14
1979	0.019	0.021	0.053	0.282	0.635	0.790	0.836	0.919	1.000	1.000	1.000	1
1980	0.026	0.021	0.047	0.225	0.653	0.777	0.834	0.977	1.000	0.964	1.000	1
1981	0.019	0.022	0.030	0.090	0.448	0.751	0.811	0.962	0.988	1.000	1.000	1
1982	0.021	0.025	0.038	0.065	0.297	0.705	0.815	0.967	1.000	1.000	1.000	1
1983	0.019	0.030	0.047	0.116	0.264	0.530	0.715	0.979	0.985	1.000	1.000	1
1984	0.019	0.024	0.053	0.169	0.444	0.620	0.716	0.949	0.969	0.948	1.000	1
1985	0.000	0.021	0.186	0.414	0.495	0.730	0.580	0.746	1.000	1.000	1.000	1
1986	0.001	0.023	0.154	0.398	0.681	0.727	0.936	0.667	1.000	1.000	1.000	1
1987	0.001	0.033	0.094	0.359	0.487	0.879	0.777	0.805	1.000	1.000	1.000	1
1988	0.006	0.029	0.220	0.498	0.446	0.677	0.932	0.890	1.000	1.000	1.000	1
1989	0.008	0.026	0.141	0.363	0.621	0.639	0.619	1.000	1.000	1.000	1.000	1
1990	0.006	0.012	0.154	0.428	0.576	0.781	0.774	0.714	1.000	1.000	1.000	1
1991	0.000	0.055	0.149	0.368	0.629	0.787	0.654	0.901	1.000	1.000	1.000	1
1992	0.002	0.062	0.265	0.407	0.813	0.916	0.880	1.000	1.000	1.000	1.000	1
1993	0.006	0.085	0.267	0.462	0.684	0.795	0.843	0.834	1.000	1.000	1.000	1
1994	0.008	0.109	0.338	0.590	0.706	0.921	0.694	0.830	1.000	1.000	1.000	1
1995	0.005	0.109	0.383	0.527	0.747	0.790	0.859	1.000	1.000	1.000	1.000	1
1996	0.002	0.032	0.186	0.501	0.653	0.733	0.810	0.774	1.000	1.000	1.000	1
1997	0.006	0.037	0.247	0.427	0.686	0.786	0.804	0.539	1.000	1.000	1.000	1
1998	0.000	0.061	0.208	0.486	0.782	0.807	0.809	0.852	1.000	1.000	1.000	1
1999	0.012	0.044	0.239	0.517	0.650	0.836	0.691	0.974	1.000	1.000	1.000	1
2000	0.001	0.065	0.248	0.512	0.611	0.867	0.998	0.999	1.000	1.000	1.000	1
2001	0.003	0.046	0.286	0.599	0.761	0.766	0.883	1.000	1.000	1.000	1.000	1
2002	0.006	0.086	0.321	0.656	0.759	0.920	0.559	0.724	1.000	1.000	1.000	1
2003	0.005	0.048	0.222	0.532	0.873	0.798	0.879	0.833	1.000	1.000	1.000	1
2004	0.000	0.040	0.249	0.549	0.631	0.833	0.807	0.854	1.000	1.000	1.000	1
2005	0.003	0.108	0.281	0.494	0.795	0.808	0.949	0.904	1.000	1.000	1.000	1
2006	0.002	0.023	0.298	0.446	0.749	0.874	0.739	0.741	1.000	1.000	1.000	1
2007	0.012	0.031	0.156	0.504	0.696	0.797	0.836	0.926	1.000	1.000	1.000	1
2008	0.001	0.042	0.275	0.546	0.728	0.833	0.850	0.958	1.000	1.000	1.000	1
2009	0.002	0.015	0.134	0.451	0.684	0.884	0.752	0.631	1.000	1.000	1.000	1
2010	0.000	0.015	0.057	0.380	0.821	0.868	0.927	0.813	1.000	1.000	1.000	1
2011	0.002	0.012	0.136	0.427	0.732	0.923	0.941	0.961	1.000	1.000	1.000	1
2012	0.004	0.031	0.127	0.414	0.730	0.884	0.963	0.850	1.000	1.000	1.000	1
2013	0.003	0.008	0.062	0.344	0.738	0.922	0.965	1.000	1.000	1.000	1.000	1
2014	0.000	0.026	0.069	0.238	0.615	0.893	0.967	0.956	1.000	1.000	1.000	1
2015	0.003	0.007	0.110	0.353	0.636	0.907	0.978	0.988	1.000	1.000	1.000	1
2016	0.001	0.009	0.025	0.289	0.543	0.731	0.941	0.986	1.000	1.000	1.000	1
2017	0.005	0.008	0.089	0.262	0.765	0.906	0.979	0.987	1.000	1.000	1.000	1
2018	0.002	0.013	0.147	0.434	0.605	0.935	0.953	1.000	1.000	1.000	1.000	1

year	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
2019	0.004	0.004	0.062	0.452	0.707	0.898	0.987	0.993	1.000	1.000	1.000	1
2020	0.001	0.037	0.065	0.298	0.763	0.878	0.976	1.000	1.000	1.000	1.000	1
2021	0.002	0.005	0.111	0.432	0.612	0.873	1.000	0.985	1.000	1.000	1.000	1
2022	0.000	0.007	0.055	0.425	0.776	0.868	0.975	1.000	1.000	1.000	1.000	1

Table 3.6: Icelandic cod in Division 5.a. Survey indices of the spring bottom trawl survey (SMB).

year	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1985	17.19	111.14	35.40	48.28	64.88	23.24	15.48	5.23	3.59	1.96	0.32	0.33	0.09	0.08
1986	15.61	61.09	96.44	22.58	21.75	27.74	7.37	2.86	0.97	0.86	0.32	0.08	0.06	0.04
1987	3.66	28.17	104.43	82.68	21.47	12.84	13.02	2.81	0.99	0.42	0.45	0.23	0.13	0.13
1988	3.45	7.08	73.13	103.75	69.61	8.50	6.59	7.33	0.71	0.29	0.13	0.27	0.06	0.05
1989	4.02	16.39	21.27	75.09	71.48	38.47	4.83	1.71	1.42	0.27	0.19	0.06	0.01	0.01
1990	5.47	11.74	26.44	14.30	27.98	35.30	16.80	1.76	0.58	0.48	0.13	NA	0.04	0.04
1991	3.95	15.97	18.11	30.13	15.44	18.90	22.46	4.93	0.94	0.31	0.22	NA	0.08	0.08
1992	0.71	16.97	33.52	18.79	16.45	6.80	6.33	5.75	1.48	0.23	0.04	0.04	0.04	NA
1993	3.55	4.66	30.75	36.68	13.49	10.59	2.42	2.02	1.39	0.41	0.13	0.03	0.03	0.01
1994	14.23	14.72	9.02	26.93	22.46	6.08	3.95	0.79	0.53	0.50	0.18	0.02	0.03	0.01
1995	1.08	29.27	24.78	9.07	24.56	18.47	4.04	1.92	0.39	0.20	0.24	0.14	0.03	NA
1996	3.71	5.42	42.51	29.69	13.26	15.43	15.22	4.21	1.16	0.21	0.07	0.22	0.10	0.05
1997	1.20	22.39	13.61	56.71	29.74	9.98	9.46	7.30	0.62	0.25	0.19	0.04	0.15	0.10
1998	8.04	5.46	30.11	16.08	63.24	29.99	7.01	5.78	3.33	0.76	0.20	NA	0.02	NA
1999	7.38	33.16	6.99	42.29	13.27	24.77	12.00	2.61	1.47	0.83	0.19	0.07	NA	NA
2000	18.79	27.70	55.16	7.01	30.86	8.71	8.85	4.60	0.56	0.35	0.08	0.03	0.04	0.01
2001	12.24	23.59	36.46	38.18	5.07	15.70	3.53	2.15	0.90	0.34	0.12	0.09	0.05	0.02
2002	0.96	38.56	41.31	40.60	37.26	7.47	8.99	1.66	0.81	0.35	0.07	0.01	NA	NA
2003	11.16	4.20	46.55	36.91	29.22	17.76	4.13	4.79	1.13	0.23	0.13	0.01	0.09	NA
2004	7.34	27.62	8.24	66.84	41.29	30.95	17.60	3.27	3.56	0.57	0.32	0.01	NA	0.01
2005	2.69	17.79	41.72	9.95	46.31	24.99	12.10	6.45	1.01	1.03	0.27	0.24	0.03	NA
2006	9.09	7.43	25.05	40.53	11.74	31.64	11.66	4.11	1.62	0.28	0.16	0.02	NA	NA
2007	5.65	19.04	9.07	22.77	29.88	10.06	11.37	6.10	2.44	0.86	0.30	0.13	0.01	NA
2008	6.75	12.41	23.00	9.84	22.36	22.94	9.44	8.00	3.03	0.77	0.44	0.09	0.05	NA
2009	22.14	12.75	16.46	22.41	15.49	25.86	16.60	4.81	3.15	1.16	0.28	0.11	0.07	0.03
2010	18.62	21.51	18.89	18.10	24.64	14.14	18.35	9.87	3.24	1.93	0.58	0.26	0.05	0.02
2011	3.55	22.96	27.54	20.10	23.07	26.66	14.70	13.37	5.02	1.01	1.01	0.21	0.07	0.02
2012	20.36	11.03	39.37	56.70	41.89	31.20	28.41	10.88	7.06	3.21	0.97	0.48	0.36	0.13
2013	10.89	33.70	18.22	44.39	47.10	25.89	17.15	14.44	7.19	3.47	1.68	0.71	0.16	0.25
2014	3.29	24.25	39.05	23.75	47.55	38.29	17.83	8.45	4.37	2.24	0.84	0.52	0.12	0.12
2015	21.06	10.98	28.05	42.24	21.22	41.98	29.41	17.09	5.13	3.18	1.48	0.60	0.17	0.10
2016	31.71	31.65	15.21	37.62	54.80	28.19	38.46	19.05	7.00	2.33	1.24	0.85	0.26	0.12
2017	3.83	25.03	33.76	18.16	36.43	40.35	23.63	22.55	11.86	5.15	2.09	0.88	0.54	0.09

year	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
2018	11.48	14.52	29.97	36.89	16.12	28.83	26.68	15.33	7.85	3.72	1.24	0.59	0.25	0.10
2019	7.99	22.09	14.63	30.72	31.46	14.13	20.34	17.31	9.43	5.98	2.56	0.95	0.38	0.04
2020	29.45	13.21	19.32	10.07	18.48	15.32	7.49	10.27	7.34	4.13	3.56	2.04	0.48	0.02
2021	19.13	40.24	26.89	34.19	18.07	33.55	21.40	6.79	6.01	5.30	3.19	2.48	1.17	0.38
2022	6.88	18.00	45.36	35.74	40.29	16.81	30.15	10.47	2.92	2.45	1.68	1.16	0.56	0.06

Table 3.7: Icelandic cod in Division 5.a. Survey indices of the fall bottom trawl survey (SMH).

year	3	4	5	6	7	8	9	10	11	12	13
1996	19.59	14.19	5.57	7.70	6.49	1.65	0.31	0.08	0.02	0.05	0.01
1997	6.65	29.25	16.34	5.40	3.74	2.13	0.31	0.14	0.01	0.03	0.04
1998	15.34	7.29	16.10	16.16	5.24	2.25	1.27	0.20	0.05	0.02	0.01
1999	5.58	23.16	7.45	10.04	4.08	0.59	0.34	0.37	0.03	NA	0.06
2000	15.24	3.76	11.57	3.65	2.71	1.14	0.34	0.28	0.11	0.02	0.01
2001	19.32	21.27	3.40	6.93	1.65	0.79	0.18	0.03	0.10	0.02	NA
2002	15.84	23.39	16.21	5.54	4.87	1.13	0.63	0.08	0.17	0.02	0.04
2003	26.05	17.31	13.47	9.11	1.92	2.59	0.37	0.10	0.09	0.02	0.02
2004	6.91	30.29	19.38	12.07	7.60	1.92	1.68	0.23	0.11	0.07	NA
2005	19.96	6.77	26.10	11.30	4.01	1.96	0.31	0.32	0.03	0.06	0.02
2006	15.88	22.85	7.78	14.45	6.31	2.12	1.05	0.17	0.11	NA	0.01
2007	4.90	12.10	16.26	6.53	6.10	3.21	0.80	0.53	0.04	0.08	NA
2008	15.08	8.06	17.96	18.82	5.90	5.59	1.41	0.74	0.28	0.09	0.02
2009	13.73	17.71	12.76	16.89	10.57	3.29	2.76	0.92	0.30	0.16	0.01
2010	16.44	15.97	18.08	9.89	11.31	6.76	2.26	1.24	0.55	0.07	0.11
2011	NA										
2012	24.85	21.58	12.81	11.13	9.59	5.41	3.25	1.43	0.55	0.16	0.11
2013	14.07	26.05	21.29	12.62	7.88	6.02	3.06	1.87	0.99	0.46	0.21
2014	30.52	15.92	24.26	19.85	8.46	5.72	3.68	2.11	1.38	0.69	0.31
2015	34.96	43.59	18.98	27.61	16.14	5.39	3.10	1.10	0.58	0.47	0.19
2016	8.66	17.91	22.24	11.00	11.96	6.71	2.67	1.53	0.76	0.46	0.17
2017	32.34	16.86	31.31	31.99	12.13	9.74	4.37	1.53	0.97	0.46	0.35
2018	21.84	21.00	8.40	13.43	12.87	7.42	4.99	2.31	0.85	0.40	0.14
2019	19.38	26.60	18.01	9.07	8.66	5.30	2.47	1.68	0.74	0.26	0.16
2020	15.00	8.78	12.79	11.51	4.01	4.04	2.34	1.49	0.90	0.36	0.17
2021	10.07	12.03	6.31	10.32	5.61	1.68	2.17	1.20	0.54	0.38	0.25

Table 3.8: Icelandic cod in Division 5.a. Catch at age residuals from the ADCAM model tuned with the spring (SMB) and the fall (SMH) surveys.

year	3	4	5	6	7	8	9	10	11	12	13	14
1955	-0.49	-0.21	0.18	0.23	0.28	-0.09	-0.14	-0.09	-0.13	-0.25	-0.15	-0.01
1956	-0.14	0.01	0.10	0.07	-0.17	-0.21	-0.03	0.10	0.11	0.23	0.37	0.29
1957	0.28	0.16	0.03	0.17	-0.21	-0.06	-0.02	-0.09	0.04	-0.06	-0.06	0.47
1958	0.52	0.31	-0.20	-0.12	-0.06	-0.02	-0.06	-0.13	0.32	0.21	-0.03	0.37
1959	0.00	0.35	0.32	-0.24	-0.27	-0.11	-0.02	0.14	-0.08	0.38	0.03	-0.06
1960	0.35	-0.36	0.09	0.13	0.03	0.04	0.00	-0.13	-0.03	0.18	-0.07	0.46
1961	0.28	0.11	-0.54	-0.02	-0.06	0.30	0.21	-0.06	0.09	-0.09	-0.16	0.43
1962	0.51	0.12	0.09	-0.39	0.06	-0.24	0.01	0.30	0.06	0.15	-0.20	0.32
1963	0.38	0.44	-0.22	-0.09	-0.12	-0.07	-0.23	0.13	0.34	0.17	0.08	-0.06
1964	0.18	0.04	0.09	-0.36	-0.18	0.36	0.01	-0.30	-0.04	0.22	0.03	0.36
1965	0.12	-0.12	0.03	0.08	-0.24	0.05	0.48	-0.44	-0.08	-0.39	-0.06	0.40
1966	-0.05	-0.11	-0.21	0.07	-0.09	0.15	-0.14	0.55	-0.48	0.10	-0.04	0.37
1967	0.07	-0.21	-0.08	-0.20	0.06	-0.29	0.50	0.04	0.38	-0.27	-0.11	-0.02
1968	-0.22	-0.14	-0.37	-0.11	0.35	0.20	-0.24	0.24	-0.11	0.15	-0.13	0.08
1969	-0.41	0.00	0.22	0.09	0.22	-0.07	-0.29	-0.32	-0.25	-0.15	-0.17	-0.03
1970	-0.44	0.14	-0.02	-0.05	0.14	-0.06	0.34	-0.53	-0.25	-0.13	-0.06	-0.02
1971	-0.41	0.02	0.18	0.27	-0.13	0.23	-0.15	-0.21	-0.34	-0.11	-0.08	-0.02
1972	-0.46	-0.22	0.16	0.13	0.15	-0.03	-0.11	0.25	-0.25	-0.07	-0.03	-0.04
1973	0.19	-0.10	-0.05	0.16	0.03	-0.27	0.04	0.12	0.07	-0.20	-0.06	-0.02
1974	-0.32	0.09	0.03	-0.06	0.04	0.00	-0.18	0.25	0.05	0.08	-0.10	0.02
1975	0.02	-0.24	0.08	0.11	0.10	-0.10	-0.15	-0.04	0.24	0.02	-0.01	0.01
1976	0.41	0.11	-0.10	0.06	-0.15	0.14	-0.17	-0.15	0.04	0.07	-0.03	0.02
1977	-0.55	-0.06	0.04	-0.16	0.19	0.08	0.21	-0.07	-0.21	-0.07	-0.05	-0.05
1978	-0.03	0.10	0.04	-0.15	0.16	-0.09	0.08	-0.12	-0.06	-0.09	-0.02	0.03
1979	0.13	0.25	-0.16	0.01	0.06	0.09	-0.25	-0.03	-0.02	-0.07	-0.04	-0.02
1980	0.06	0.11	0.14	-0.01	-0.01	-0.06	0.07	-0.25	0.09	-0.02	-0.03	-0.04
1981	-0.77	-0.33	0.07	-0.20	0.05	0.18	0.07	0.30	0.08	0.14	-0.02	0.06
1982	-0.50	-0.04	0.07	-0.08	-0.26	0.18	0.22	0.03	-0.10	-0.23	-0.02	-0.04
1983	-0.85	-0.56	0.12	0.19	0.09	0.09	0.00	-0.08	-0.05	0.06	-0.07	0.03
1984	0.26	0.05	-0.01	0.01	-0.04	0.06	0.02	-0.18	-0.36	-0.08	0.03	-0.01
1985	0.12	0.18	-0.02	0.11	-0.10	-0.03	-0.19	-0.01	-0.08	-0.31	-0.03	0.01
1986	0.31	-0.16	0.05	0.01	0.10	-0.07	0.03	-0.21	-0.02	-0.05	-0.22	-0.02
1987	-0.17	0.13	0.09	-0.13	0.04	0.04	0.01	0.06	-0.08	-0.03	-0.01	-0.04
1988	-0.30	-0.15	0.04	0.15	-0.21	0.07	0.13	0.05	0.18	0.04	0.08	0.01
1989	-0.41	0.04	0.28	0.06	-0.06	-0.20	-0.24	-0.04	0.02	0.06	0.00	-0.02
1990	-0.01	-0.20	-0.03	0.12	0.09	-0.03	-0.16	-0.11	0.05	0.02	0.00	0.01
1991	0.33	0.05	-0.13	-0.03	0.09	-0.09	-0.03	-0.06	-0.03	0.04	-0.01	0.01
1992	0.19	-0.03	0.06	-0.05	-0.06	-0.01	0.00	-0.02	-0.07	-0.05	-0.01	0.00
1993	1.00	0.00	-0.29	-0.09	-0.29	-0.15	0.26	0.56	0.20	0.01	-0.01	0.02

year	3	4	5	6	7	8	9	10	11	12	13	14
1994	0.61	0.32	-0.13	-0.27	-0.07	0.01	-0.04	0.16	0.39	0.09	0.03	0.01
1995	0.81	0.21	0.12	-0.08	-0.09	-0.13	-0.16	-0.10	0.01	0.26	0.07	0.02
1996	0.09	0.16	-0.32	0.01	0.08	-0.02	0.02	0.09	-0.03	0.03	0.13	0.01
1997	-0.46	0.14	-0.09	-0.29	-0.09	0.24	0.07	0.20	0.15	-0.02	0.05	0.05
1998	-0.50	-0.25	0.03	0.06	-0.12	-0.20	0.17	0.00	0.07	0.07	0.05	0.01
1999	-0.25	0.01	-0.05	0.10	0.05	-0.17	-0.29	-0.18	-0.08	-0.02	0.00	0.00
2000	0.36	-0.34	0.09	-0.06	-0.03	0.12	-0.06	-0.10	0.05	0.05	0.02	0.01
2001	0.75	0.33	-0.25	0.10	-0.01	-0.15	0.17	0.19	0.03	0.13	0.00	0.06
2002	0.12	0.20	0.10	-0.08	0.07	0.09	0.05	0.27	0.12	0.03	0.06	0.00
2003	-0.05	0.09	0.08	-0.06	0.02	0.15	0.18	-0.06	0.07	0.03	0.03	0.07
2004	-0.48	0.02	0.06	0.00	-0.12	0.15	0.02	0.13	-0.10	0.05	0.02	0.00
2005	0.04	-0.45	0.08	-0.05	-0.19	-0.07	0.20	0.07	0.16	0.06	0.04	0.00
2006	-0.18	-0.05	-0.27	0.14	0.00	-0.04	-0.02	0.13	-0.02	-0.01	-0.02	0.01
2007	-0.31	0.04	-0.15	-0.07	-0.14	0.12	0.08	0.22	0.38	0.00	0.15	-0.01
2008	-0.24	-0.35	0.06	-0.10	0.09	-0.05	0.14	0.19	0.04	0.07	0.04	-0.01
2009	-0.11	-0.25	-0.02	0.20	0.08	0.16	-0.13	-0.24	-0.07	-0.18	0.00	-0.01
2010	-0.03	-0.02	-0.12	-0.02	0.21	0.02	0.10	-0.21	-0.22	-0.10	0.01	0.03
2011	-0.11	-0.03	0.12	0.00	0.06	0.09	-0.09	-0.06	-0.23	-0.28	-0.13	-0.04
2012	-0.18	0.02	0.03	-0.06	0.09	0.16	0.03	-0.25	-0.17	-0.28	-0.12	-0.05
2013	0.39	-0.03	0.02	-0.05	-0.05	-0.04	0.06	-0.02	-0.21	-0.11	-0.10	-0.08
2014	0.03	0.02	0.03	-0.07	0.06	-0.01	-0.02	0.12	0.06	-0.17	0.03	0.06
2015	0.34	0.25	0.02	-0.07	-0.09	0.04	-0.06	-0.02	0.29	-0.19	-0.23	-0.05
2016	0.07	0.21	-0.13	-0.01	0.10	-0.03	0.06	0.02	-0.04	0.14	-0.18	-0.16
2017	0.27	0.29	0.16	-0.07	-0.09	-0.09	-0.05	0.11	-0.08	-0.09	0.07	0.01
2018	0.10	0.23	0.02	0.06	-0.03	0.11	-0.07	-0.19	-0.13	-0.10	-0.23	-0.01
2019	-0.13	-0.30	-0.04	-0.04	-0.16	-0.12	0.13	0.29	0.29	0.05	0.08	0.06
2020	-0.38	0.17	0.11	0.15	0.00	-0.22	-0.10	0.12	-0.04	-0.03	0.16	0.22
2021	-0.07	-0.29	-0.09	0.10	0.05	-0.05	-0.07	-0.08	0.38	0.22	0.26	0.39

Table 3.9: Icelandic cod in Division 5.a. Spring survey (SMB) at age residuals from the ADCAM model, assessment tuned with both the spring and the fall survey.

year	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1985	-0.61	0.00	0.25	0.48	0.08	0.34	0.47	0.22	0.20	0.42	-0.03	-0.31	-0.10	0.09
1986	0.35	-0.17	-0.45	-0.22	-0.06	-0.11	-0.11	-0.26	-0.25	-0.12	-0.15	-0.12	-0.33	-0.04
1987	0.62	-0.11	0.04	-0.52	0.05	-0.02	-0.02	-0.02	-0.06	-0.04	0.15	0.12	0.16	0.09
1988	-0.24	-0.10	0.47	0.10	-0.11	-0.29	0.17	0.54	-0.06	-0.08	-0.02	0.26	0.01	0.08
1989	0.29	0.03	0.54	0.51	0.23	0.12	-0.03	-0.10	0.19	0.01	0.15	0.02	-0.07	-0.02
1990	-0.56	0.03	0.10	0.08	-0.15	-0.36	0.03	-0.13	-0.08	0.07	0.07	-0.10	0.05	0.06
1991	-0.01	-0.59	0.04	0.21	0.33	0.04	-0.01	-0.13	0.23	0.09	0.13	-0.09	0.14	0.16
1992	-0.28	0.15	-0.23	0.07	-0.04	0.00	-0.13	-0.10	0.04	0.02	-0.08	-0.02	0.07	-0.01
1993	-0.50	-0.12	0.34	-0.09	0.09	0.15	-0.06	-0.02	-0.01	0.03	0.14	0.01	0.04	0.02
1994	0.53	-0.31	0.06	0.17	-0.18	-0.21	0.03	-0.11	-0.03	0.09	0.12	0.00	0.05	0.01
1995	-0.33	0.14	-0.20	-0.08	0.22	0.02	-0.08	0.02	0.01	-0.08	0.13	0.19	0.05	-0.01
1996	-0.71	-0.29	0.12	-0.12	0.19	-0.01	0.28	0.49	0.23	0.04	-0.05	0.30	0.18	0.11
1997	0.22	-0.10	0.15	0.32	-0.06	0.01	-0.06	0.21	-0.38	-0.20	0.22	0.01	0.26	0.21
1998	-0.06	0.16	-0.19	0.18	0.54	0.30	0.11	0.13	0.32	0.28	0.09	-0.07	0.02	-0.02
1999	0.08	0.23	-0.05	0.09	0.01	0.09	0.01	-0.06	-0.13	0.02	0.07	0.05	-0.02	-0.01
2000	0.86	0.23	0.36	-0.17	-0.02	-0.07	-0.21	0.03	-0.31	-0.23	-0.26	-0.03	0.06	0.02
2001	0.14	-0.02	0.12	-0.05	-0.49	-0.18	-0.27	-0.58	-0.31	0.05	-0.06	0.06	0.09	0.04
2002	-0.27	0.22	0.15	0.15	0.09	0.04	-0.11	-0.21	-0.42	-0.18	-0.05	-0.09	-0.05	-0.01
2003	-0.14	-0.40	0.03	-0.05	-0.08	-0.26	-0.07	-0.01	0.16	-0.45	-0.09	-0.06	0.16	-0.02
2004	-0.15	0.23	-0.20	0.32	0.17	0.34	0.23	0.30	0.55	0.21	0.16	-0.12	-0.03	0.01
2005	-0.26	0.11	0.25	-0.16	0.11	0.08	-0.05	0.03	0.05	0.24	0.23	0.30	0.02	-0.01
2006	0.13	-0.09	0.04	0.13	-0.06	0.15	-0.17	-0.35	-0.33	-0.16	-0.17	-0.06	-0.06	-0.02
2007	-0.03	0.23	-0.33	-0.17	-0.09	-0.07	-0.39	-0.10	0.00	-0.09	0.24	0.06	-0.02	-0.02
2008	-0.12	0.04	0.01	-0.40	-0.19	-0.07	0.21	-0.09	0.02	-0.24	0.04	0.06	0.02	-0.02
2009	0.20	-0.13	-0.10	-0.13	-0.07	-0.04	-0.10	-0.01	-0.26	-0.21	-0.32	-0.16	0.10	0.03
2010	-0.17	-0.26	-0.15	-0.14	-0.07	-0.10	-0.08	-0.09	0.25	-0.05	-0.15	0.00	-0.08	0.02
2011	-0.79	-0.35	-0.40	-0.23	0.01	0.12	0.15	0.08	-0.07	-0.21	-0.05	-0.25	-0.10	-0.05
2012	0.09	-0.33	-0.19	0.20	0.42	0.38	0.39	0.25	0.12	0.12	0.20	-0.09	0.26	0.15
2013	-0.04	0.16	-0.25	-0.17	0.04	0.07	0.01	0.18	0.47	0.08	0.10	0.36	-0.18	0.29
2014	0.00	0.21	-0.08	-0.12	-0.06	0.06	-0.06	-0.22	-0.28	0.00	-0.50	-0.23	-0.10	-0.01
2015	0.49	0.35	-0.05	-0.11	-0.30	0.04	0.02	0.32	-0.07	0.03	0.15	-0.25	-0.30	0.03
2016	0.77	0.38	0.24	0.11	0.15	0.09	0.17	0.05	0.09	-0.20	-0.24	0.17	-0.24	-0.12
2017	-0.23	0.05	0.05	0.24	0.04	0.06	0.11	0.12	0.27	0.40	0.22	-0.02	0.26	-0.23
2018	0.05	0.32	-0.16	0.02	-0.03	-0.03	-0.12	0.13	-0.21	-0.17	-0.29	-0.23	-0.26	-0.11
2019	-0.03	0.14	-0.09	-0.24	-0.15	-0.13	-0.13	-0.03	0.35	0.24	0.08	0.03	-0.02	-0.32
2020	0.28	-0.15	-0.39	-0.59	-0.72	-0.63	-0.48	-0.26	-0.09	0.26	0.38	0.47	0.09	-0.31
2021	0.42	0.20	0.14	0.07	-0.08	0.13	0.02	-0.07	0.02	0.36	0.65	0.67	0.59	0.32
2022	-0.14	-0.15	-0.06	0.30	0.23	-0.06	0.32	-0.14	-0.16	-0.11	-0.03	0.35	0.11	-0.27

Table 3.10: Icelandic cod in Division 5.a. Fall survey (SMH) at age residuals from the ADCAM model, assessment tuned with both the spring and the fall survey.

year	3	4	5	6	7	8	9	10	11	12	13
1996	-0.15	-0.31	-0.11	-0.09	0.22	0.28	-0.10	0.01	-0.04	0.06	0.01
1997	-0.15	0.21	0.06	-0.06	-0.19	-0.13	-0.23	-0.03	-0.04	0.03	0.08
1998	-0.35	-0.05	-0.03	0.41	0.54	0.10	0.25	0.04	-0.01	0.03	0.01
1999	0.10	0.11	0.13	-0.01	-0.09	-0.41	-0.32	0.13	-0.04	-0.04	0.14
2000	-0.40	-0.20	-0.16	-0.25	-0.39	-0.27	0.01	0.16	0.07	0.01	0.02
2001	-0.02	-0.03	-0.27	-0.24	-0.24	-0.52	-0.47	-0.17	0.10	-0.01	-0.01
2002	-0.31	0.16	0.01	0.25	0.09	0.10	0.02	-0.22	0.26	0.00	0.07
2003	-0.03	-0.23	-0.12	-0.22	-0.15	0.20	-0.03	-0.23	0.04	0.01	0.02
2004	0.01	0.12	0.18	0.12	0.29	0.49	0.58	0.14	0.06	0.11	-0.01
2005	0.01	-0.02	0.31	0.00	-0.27	-0.22	-0.12	0.04	-0.05	0.07	0.04
2006	0.05	0.12	0.12	0.08	0.07	-0.15	0.03	0.01	0.02	-0.05	0.01
2007	-0.51	-0.26	0.01	0.03	-0.14	0.09	-0.20	0.14	-0.05	0.09	-0.02
2008	0.05	-0.11	0.19	0.33	0.34	0.32	-0.03	0.21	0.13	0.14	0.00
2009	0.16	0.15	0.27	0.17	0.24	0.31	0.27	0.17	0.08	0.15	0.00
2010	0.15	0.23	0.20	0.05	0.21	0.30	0.48	0.15	0.21	-0.10	0.14
2011	NA										
2012	-0.14	-0.24	-0.17	-0.09	0.07	0.28	0.04	0.02	0.23	-0.17	0.05
2013	-0.05	-0.17	-0.09	-0.06	-0.01	0.11	0.31	0.16	0.21	0.41	0.16
2014	0.17	-0.03	-0.07	0.04	-0.05	0.13	0.19	0.50	0.37	0.36	0.39
2015	0.63	0.42	0.16	0.26	0.24	-0.05	0.08	-0.27	-0.04	0.06	0.02
2016	0.07	-0.13	-0.09	-0.27	-0.14	-0.16	-0.16	0.02	-0.08	0.19	-0.06
2017	0.48	0.62	0.49	0.46	0.21	0.11	-0.02	-0.07	0.13	0.04	0.30
2018	0.01	-0.03	-0.16	-0.18	0.00	0.20	0.05	0.04	-0.03	0.00	-0.11
2019	0.60	0.13	-0.06	-0.05	-0.15	-0.33	-0.21	-0.24	-0.29	-0.20	-0.04
2020	-0.16	-0.21	-0.41	-0.27	-0.36	-0.30	-0.40	0.03	-0.12	-0.15	-0.01
2021	-0.36	-0.43	-0.53	-0.39	-0.46	-0.57	-0.21	-0.26	-0.15	-0.10	0.08

Table 3.11: Icelandic cod in Division 5.a. Estimates of fishing mortality 1955-2021 based on ACAM using catch at age and spring and fall bottom survey indices.

year	3	4	5	6	7	8	9	10	11	12	13	14
1955	0.06	0.18	0.24	0.25	0.31	0.37	0.41	0.50	0.56	0.53	0.53	0.53
1956	0.06	0.18	0.24	0.25	0.31	0.37	0.41	0.50	0.56	0.52	0.52	0.52
1957	0.07	0.20	0.27	0.28	0.34	0.41	0.46	0.56	0.62	0.59	0.59	0.59
1958	0.08	0.22	0.30	0.31	0.39	0.47	0.52	0.63	0.70	0.66	0.66	0.66
1959	0.07	0.20	0.26	0.28	0.34	0.41	0.46	0.55	0.62	0.58	0.58	0.58
1960	0.08	0.22	0.30	0.31	0.38	0.46	0.51	0.62	0.69	0.65	0.65	0.65
1961	0.07	0.20	0.28	0.29	0.36	0.43	0.48	0.58	0.65	0.61	0.61	0.61
1962	0.07	0.21	0.28	0.29	0.36	0.43	0.48	0.58	0.65	0.61	0.61	0.61
1963	0.08	0.23	0.32	0.33	0.41	0.49	0.55	0.66	0.74	0.70	0.70	0.70
1964	0.09	0.27	0.36	0.38	0.46	0.56	0.62	0.75	0.84	0.79	0.79	0.79
1965	0.10	0.29	0.39	0.41	0.50	0.60	0.67	0.81	0.91	0.85	0.85	0.85
1966	0.09	0.26	0.36	0.37	0.46	0.56	0.62	0.75	0.84	0.79	0.79	0.79
1967	0.09	0.25	0.33	0.35	0.43	0.52	0.58	0.69	0.78	0.73	0.73	0.73
1968	0.10	0.29	0.39	0.41	0.50	0.60	0.67	0.81	0.91	0.86	0.86	0.86
1969	0.08	0.23	0.32	0.33	0.41	0.49	0.54	0.66	0.74	0.69	0.69	0.69
1970	0.10	0.29	0.39	0.41	0.50	0.60	0.67	0.81	0.91	0.86	0.86	0.86
1971	0.12	0.34	0.47	0.49	0.60	0.72	0.80	0.97	1.09	1.02	1.02	1.02
1972	0.12	0.34	0.46	0.48	0.60	0.72	0.80	0.96	1.08	1.02	1.02	1.02
1973	0.13	0.36	0.49	0.51	0.63	0.76	0.84	1.02	1.14	1.07	1.07	1.07
1974	0.13	0.37	0.50	0.52	0.65	0.78	0.87	1.05	1.18	1.10	1.10	1.10
1975	0.13	0.37	0.50	0.52	0.64	0.77	0.86	1.04	1.17	1.09	1.09	1.09
1976	0.05	0.23	0.41	0.59	0.74	0.86	0.84	0.80	0.67	0.71	0.71	0.71
1977	0.04	0.19	0.33	0.48	0.60	0.70	0.68	0.65	0.54	0.57	0.57	0.57
1978	0.03	0.15	0.27	0.38	0.49	0.57	0.55	0.53	0.44	0.46	0.46	0.46
1979	0.03	0.15	0.25	0.36	0.46	0.54	0.52	0.50	0.41	0.44	0.44	0.44
1980	0.03	0.16	0.28	0.40	0.51	0.59	0.58	0.55	0.46	0.48	0.48	0.48
1981	0.04	0.20	0.36	0.51	0.65	0.75	0.73	0.70	0.58	0.62	0.62	0.62
1982	0.05	0.23	0.41	0.58	0.74	0.86	0.84	0.80	0.66	0.70	0.70	0.70
1983	0.04	0.22	0.38	0.55	0.69	0.80	0.78	0.74	0.62	0.66	0.66	0.66
1984	0.04	0.20	0.36	0.51	0.64	0.75	0.73	0.69	0.58	0.61	0.61	0.61
1985	0.05	0.23	0.40	0.57	0.72	0.84	0.82	0.78	0.65	0.69	0.69	0.69
1986	0.06	0.28	0.48	0.69	0.88	1.02	1.00	0.95	0.79	0.84	0.84	0.84
1987	0.06	0.29	0.51	0.73	0.93	1.08	1.06	1.00	0.83	0.89	0.89	0.89
1988	0.06	0.30	0.52	0.75	0.95	1.10	1.08	1.02	0.85	0.90	0.90	0.90
1989	0.05	0.25	0.43	0.62	0.78	0.91	0.89	0.84	0.70	0.74	0.74	0.74
1990	0.05	0.25	0.44	0.63	0.79	0.92	0.90	0.86	0.71	0.75	0.75	0.75
1991	0.06	0.30	0.52	0.75	0.94	1.10	1.07	1.02	0.85	0.90	0.90	0.90
1992	0.07	0.33	0.58	0.83	1.05	1.22	1.19	1.13	0.94	1.00	1.00	1.00
1993	0.07	0.32	0.57	0.81	1.03	1.20	1.17	1.11	0.92	0.98	0.98	0.98

year	3	4	5	6	7	8	9	10	11	12	13	14
1994	0.04	0.22	0.39	0.55	0.70	0.81	0.79	0.75	0.63	0.66	0.66	0.66
1995	0.04	0.14	0.30	0.45	0.58	0.66	0.73	0.77	0.79	0.77	0.77	0.77
1996	0.03	0.13	0.28	0.43	0.55	0.63	0.69	0.73	0.75	0.74	0.74	0.74
1997	0.03	0.13	0.29	0.44	0.56	0.64	0.71	0.75	0.77	0.75	0.75	0.75
1998	0.04	0.16	0.35	0.53	0.68	0.77	0.85	0.91	0.93	0.91	0.91	0.91
1999	0.05	0.19	0.41	0.62	0.80	0.91	1.00	1.06	1.09	1.07	1.07	1.07
2000	0.05	0.19	0.42	0.63	0.81	0.92	1.02	1.08	1.11	1.09	1.09	1.09
2001	0.05	0.18	0.39	0.58	0.75	0.85	0.94	1.00	1.02	1.00	1.00	1.00
2002	0.04	0.15	0.32	0.48	0.62	0.70	0.78	0.82	0.84	0.83	0.83	0.83
2003	0.04	0.14	0.31	0.47	0.60	0.69	0.76	0.80	0.82	0.81	0.81	0.81
2004	0.04	0.15	0.33	0.50	0.64	0.73	0.81	0.86	0.88	0.86	0.86	0.86
2005	0.04	0.14	0.32	0.48	0.61	0.70	0.77	0.82	0.84	0.83	0.83	0.83
2006	0.04	0.14	0.30	0.45	0.58	0.66	0.73	0.78	0.80	0.78	0.78	0.78
2007	0.03	0.13	0.28	0.42	0.54	0.61	0.67	0.71	0.73	0.72	0.72	0.72
2008	0.04	0.11	0.20	0.32	0.39	0.48	0.47	0.49	0.49	0.62	0.62	0.62
2009	0.04	0.12	0.21	0.34	0.41	0.51	0.50	0.53	0.53	0.67	0.67	0.67
2010	0.03	0.10	0.18	0.29	0.35	0.43	0.43	0.45	0.45	0.57	0.57	0.57
2011	0.03	0.09	0.17	0.27	0.33	0.41	0.40	0.42	0.42	0.53	0.53	0.53
2012	0.03	0.10	0.17	0.27	0.33	0.41	0.41	0.43	0.42	0.54	0.54	0.54
2013	0.03	0.10	0.18	0.29	0.36	0.44	0.44	0.46	0.46	0.58	0.58	0.58
2014	0.03	0.09	0.16	0.26	0.32	0.40	0.39	0.41	0.41	0.52	0.52	0.52
2015	0.03	0.09	0.16	0.25	0.31	0.38	0.38	0.40	0.39	0.50	0.50	0.50
2016	0.03	0.09	0.16	0.26	0.32	0.39	0.39	0.41	0.40	0.51	0.51	0.51
2017	0.03	0.09	0.16	0.26	0.32	0.39	0.39	0.41	0.40	0.51	0.51	0.51
2018	0.03	0.10	0.17	0.28	0.34	0.43	0.42	0.44	0.44	0.55	0.55	0.55
2019	0.03	0.11	0.19	0.31	0.38	0.47	0.46	0.48	0.48	0.61	0.61	0.61
2020	0.04	0.12	0.22	0.35	0.43	0.53	0.52	0.55	0.54	0.69	0.69	0.69
2021	0.04	0.12	0.21	0.34	0.42	0.51	0.51	0.53	0.53	0.67	0.67	0.67

Table 3.12: Icelandic cod in Division 5.a. Estimates of numbers at age in the stock 1955-2022 (in millions) based on ACAM using catch at age and spring and fall bottom survey indices.

year	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1955	161.467	143.755	151.014	211.538	199.652	110.948	31.896	20.440	9.573	77.118	6.371	4.707	5.492	1.820
1956	215.102	161.468	143.756	116.170	145.110	128.590	70.710	19.158	11.538	5.182	38.312	2.976	2.277	2.656
1957	304.142	215.102	161.468	110.617	79.752	93.561	82.045	42.528	10.832	6.257	2.580	17.940	1.443	1.104
1958	153.654	304.142	215.102	123.338	74.376	49.990	57.962	47.580	34.750	5.595	2.938	1.131	8.175	0.657
1959	195.928	153.654	304.142	162.879	80.900	45.079	29.902	32.186	39.724	16.939	2.449	1.190	0.479	3.461
1960	125.151	195.928	153.654	232.451	109.690	50.819	27.990	17.389	17.478	31.621	7.988	1.079	0.545	0.219
1961	173.213	125.151	195.928	116.498	153.022	66.810	30.554	15.642	9.002	8.592	13.984	3.274	0.462	0.233
1962	197.572	173.214	125.151	149.270	77.752	94.957	40.957	17.490	25.151	4.570	3.950	5.987	1.460	0.206
1963	219.611	197.573	173.214	95.319	99.538	48.192	58.141	23.410	9.303	12.742	2.096	1.687	2.662	0.649
1964	233.049	219.611	197.572	130.592	61.755	59.329	28.327	31.596	11.719	4.408	5.387	0.817	0.688	1.086
1965	320.333	233.049	219.611	147.336	82.021	35.291	33.374	14.579	14.818	5.161	1.707	1.902	0.304	0.256
1966	171.147	320.333	233.049	162.540	90.577	45.530	19.259	16.544	6.536	6.207	1.882	0.563	0.664	0.106
1967	239.615	171.147	320.333	173.838	102.164	51.815	25.639	9.925	7.771	2.884	2.409	0.666	0.210	0.248
1968	179.502	239.615	171.147	240.500	111.294	59.919	29.948	13.646	4.846	3.579	1.179	0.904	0.262	0.083
1969	193.003	179.502	239.615	126.627	147.706	61.698	32.654	44.935	6.105	2.025	1.301	0.388	0.315	0.091
1970	141.890	193.003	179.502	180.724	82.130	88.172	36.323	31.391	22.548	2.899	0.859	0.509	0.159	0.129
1971	277.773	141.890	193.003	132.806	110.990	45.528	48.048	17.974	14.044	9.423	1.054	0.282	0.177	0.055
1972	187.011	277.773	141.890	140.008	77.123	57.030	22.920	21.558	23.526	5.149	2.925	0.290	0.083	0.052
1973	259.286	187.010	277.773	102.996	81.455	39.727	28.785	10.316	8.607	8.663	1.607	0.810	0.086	0.025
1974	370.746	259.287	187.011	200.365	58.859	40.951	19.550	12.556	3.967	3.039	2.570	0.420	0.228	0.024
1975	144.057	370.747	259.287	134.366	113.229	29.146	19.836	8.363	4.716	1.365	0.874	0.649	0.114	0.062
1976	225.138	144.056	370.746	186.520	76.192	56.330	14.186	8.536	3.164	1.636	0.396	0.223	0.178	0.031
1977	239.412	225.138	144.057	289.546	120.835	41.380	25.635	5.524	2.943	1.114	0.600	0.166	0.090	0.072
1978	141.344	239.412	225.138	113.517	196.093	70.938	21.050	11.493	2.244	1.216	0.476	0.286	0.077	0.041

year	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1979	145.812	141.344	239.412	178.722	79.741	122.738	39.550	10.598	5.343	1.058	0.589	0.252	0.147	0.040
1980	139.361	145.812	141.344	190.362	126.561	50.622	75.313	20.430	5.076	2.593	0.527	0.319	0.133	0.078
1981	230.373	139.361	145.812	112.043	132.773	78.235	27.724	45.492	9.252	2.332	1.226	0.273	0.161	0.067
1982	140.407	230.373	139.361	114.574	74.818	76.044	38.415	11.886	17.541	3.633	0.950	0.561	0.121	0.071
1983	139.253	140.407	230.373	108.878	74.359	40.763	34.763	15.045	4.125	6.216	1.342	0.401	0.228	0.049
1984	304.350	139.253	140.407	180.529	71.732	41.594	19.350	14.280	5.519	1.543	2.417	0.591	0.170	0.097
1985	252.412	304.350	139.253	110.353	120.694	41.169	20.484	8.327	5.530	2.177	0.631	1.110	0.262	0.075
1986	175.919	252.412	304.350	108.901	71.973	66.326	19.054	8.149	2.943	1.995	0.817	0.270	0.457	0.108
1987	96.453	175.919	252.412	235.676	67.632	36.298	27.149	6.489	2.403	0.890	0.633	0.304	0.096	0.162
1988	131.054	96.453	175.919	194.813	143.987	33.144	14.260	8.777	1.801	0.685	0.267	0.225	0.103	0.032
1989	113.339	131.053	96.453	135.614	118.322	69.836	12.829	4.525	2.384	0.503	0.202	0.093	0.075	0.034
1990	170.454	113.339	131.054	75.147	86.813	92.728	30.843	4.810	1.492	0.804	0.177	0.082	0.036	0.029
1991	126.162	170.454	113.339	102.032	47.937	45.890	40.596	11.437	1.566	0.497	0.280	0.071	0.031	0.014
1992	81.361	126.162	170.454	87.395	62.051	23.304	17.821	12.934	3.121	0.439	0.147	0.098	0.024	0.010
1993	145.447	81.362	126.162	130.556	51.408	28.453	8.324	5.108	3.121	0.776	0.116	0.047	0.030	0.007
1994	160.310	145.447	81.362	96.756	77.290	23.839	10.329	2.435	1.262	0.794	0.209	0.038	0.014	0.009
1995	93.942	160.311	145.447	63.726	63.588	43.045	11.246	4.209	0.885	0.468	0.306	0.091	0.016	0.006
1996	158.668	93.942	160.310	114.910	45.560	38.618	22.527	5.174	1.786	0.351	0.178	0.114	0.035	0.006
1997	76.441	158.668	93.942	126.870	82.690	28.070	20.650	10.655	2.266	0.733	0.138	0.069	0.045	0.014
1998	162.550	76.440	158.668	74.289	91.033	50.622	14.867	9.647	4.602	0.916	0.284	0.053	0.026	0.017
1999	150.427	162.550	76.440	124.561	51.845	52.422	24.462	6.172	3.642	1.603	0.303	0.092	0.017	0.009
2000	156.840	150.427	162.550	59.571	84.539	28.076	23.105	9.020	2.035	1.093	0.453	0.083	0.026	0.005
2001	174.457	156.840	150.427	126.584	40.319	45.505	12.262	8.421	2.935	0.602	0.304	0.123	0.023	0.007
2002	88.400	174.457	156.840	117.600	86.952	22.421	20.869	4.759	2.944	0.939	0.182	0.090	0.037	0.007
2003	149.958	88.400	174.457	123.602	83.282	51.714	11.372	9.221	1.929	1.109	0.338	0.064	0.032	0.013
2004	130.877	149.958	88.400	137.599	87.810	49.878	26.504	5.092	3.795	0.739	0.406	0.121	0.023	0.012

year	1	2	3	4	5	6	7	8	9	10	11	12	13	14
2005	97.867	130.877	149.958	69.554	96.850	51.524	24.790	11.409	2.004	1.383	0.257	0.138	0.042	0.008
2006	127.615	97.868	130.876	118.192	49.278	57.656	26.170	10.974	4.634	0.756	0.499	0.091	0.049	0.015
2007	115.215	127.615	97.868	103.359	84.376	29.831	30.028	11.965	4.624	1.822	0.285	0.184	0.034	0.019
2008	125.928	115.215	127.615	77.513	74.600	52.327	16.109	14.384	5.317	1.928	0.730	0.112	0.073	0.014
2009	167.612	125.928	115.215	100.852	56.842	55.785	31.235	8.972	7.309	2.721	0.964	0.366	0.049	0.032
2010	179.149	167.612	125.928	90.817	73.362	37.726	32.537	16.912	4.403	3.615	1.312	0.466	0.154	0.021
2011	129.313	179.149	167.612	99.833	67.254	50.260	23.161	18.753	8.967	2.350	1.888	0.687	0.217	0.072
2012	169.171	129.314	179.149	133.168	74.433	46.633	31.462	13.670	10.239	4.926	1.265	1.019	0.332	0.105
2013	143.418	169.170	129.313	142.260	99.126	51.463	29.056	18.464	7.411	5.586	2.632	0.678	0.488	0.159
2014	94.980	143.418	169.171	102.438	105.099	67.625	31.380	16.608	9.689	3.915	2.886	1.364	0.311	0.224
2015	149.155	94.981	143.418	134.467	76.483	73.057	42.503	18.612	9.123	5.354	2.121	1.567	0.664	0.152
2016	155.717	149.155	94.981	114.138	100.783	53.529	46.426	25.550	10.395	5.125	2.951	1.172	0.780	0.331
2017	108.847	155.718	149.155	75.539	85.367	70.275	33.813	27.704	14.141	5.788	2.798	1.615	0.576	0.384
2018	141.828	108.846	155.717	118.610	56.477	59.487	44.344	20.152	15.309	7.861	3.155	1.529	0.793	0.283
2019	129.060	141.829	108.846	123.527	88.009	38.828	36.728	25.735	10.776	8.239	4.142	1.666	0.719	0.373
2020	179.427	129.061	141.829	86.074	90.763	59.463	23.309	20.597	13.190	5.562	4.154	2.094	0.742	0.320
2021	147.869	179.426	129.060	111.652	62.363	59.816	34.288	12.446	9.935	6.413	2.634	1.973	0.861	0.305
2022	127.681	147.869	179.427	101.716	81.181	41.358	34.843	18.536	6.095	4.903	3.085	1.271	0.828	0.362

Table 3.13: Icelandic cod in Division 5.a. Catch (kt), average fishing mortality of age groups 5 to 10 , recruitment to the fisheries at age 3 (millions), reference fishing biomass ($B 4+, k t$), spawning stock biomass ($k t$) at spawning time and harvest ratio. 'Harvest rate' is the calendar year yield divided by the reference biomass in the start of the year, 'Harvest rate2' is $1 / 3$ of the yield in the calendar year and $2 / 3$ of the yield in the next year divided by the reference biomass at the start of the year. Predictions are based on the estimated yield in the assessment year.

Year	Recruits	SSB	Yield	F5-10	Reference biomass	Harvest rate
1955	151.014	726.287	545.250	0.35	2090.380	0.24
1956	143.756	583.865	486.909	0.35	1818.210	0.26
1957	161.468	574.634	455.182	0.39	1639.830	0.30
1958	215.102	690.021	517.359	0.44	1650.440	0.29
1959	304.142	639.289	459.081	0.38	1580.370	0.30
1960	153.654	583.577	470.121	0.43	1657.820	0.25
1961	195.928	399.325	377.291	0.40	1430.540	0.27
1962	125.151	505.488	388.985	0.40	1464.290	0.27
1963	173.214	460.458	408.800	0.46	1298.690	0.33
1964	197.572	420.077	437.012	0.52	1210.680	0.33
1965	219.611	322.929	387.106	0.56	1052.730	0.35
1966	233.049	295.716	353.357	0.52	1063.300	0.32
1967	320.333	280.608	335.721	0.48	1139.650	0.32
1968	171.147	248.437	381.770	0.56	1242.780	0.32
1969	239.615	354.205	403.205	0.46	1335.700	0.34
1970	179.502	354.810	475.077	0.56	1332.680	0.34
1971	193.003	253.013	444.248	0.67	1083.460	0.38
1972	141.890	225.481	395.166	0.67	978.391	0.39
1973	277.773	244.958	369.205	0.71	830.101	0.44
1974	187.011	188.447	368.133	0.73	908.431	0.40
1975	259.287	174.471	364.754	0.72	889.532	0.40
1976	370.746	145.135	346.253	0.71	946.192	0.36
1977	144.057	198.192	340.086	0.57	1297.730	0.26
1978	225.138	211.522	329.602	0.46	1307.230	0.27
1979	239.412	307.151	366.462	0.44	1410.180	0.29
1980	141.344	369.493	432.237	0.49	1513.860	0.30
1981	145.812	268.949	465.032	0.62	1246.070	0.33
1982	139.361	178.333	380.068	0.70	982.289	0.33
1983	230.373	140.074	298.049	0.66	795.748	0.36
1984	140.407	149.501	282.022	0.61	909.695	0.34
1985	139.253	165.679	323.428	0.69	931.199	0.38
1986	304.350	192.296	364.797	0.84	856.081	0.45
1987	252.412	145.121	389.915	0.89	992.122	0.38
1988	175.919	160.566	377.554	0.90	988.243	0.37
1989	96.453	162.074	363.125	0.74	952.690	0.36
1990	131.054	197.937	335.316	0.76	816.241	0.39

Year	Recruits	SSB	Yield	F5-10	Reference biomass	Harvest rate
1991	113.339	156.179	307.759	0.90	696.964	0.40
1992	170.454	142.297	264.834	1.00	563.496	0.45
1993	126.162	114.903	250.704	0.98	600.233	0.34
1994	81.362	152.802	178.138	0.67	572.888	0.30
1995	145.447	174.584	168.592	0.58	568.306	0.31
1996	160.310	158.421	180.701	0.55	686.994	0.28
1997	93.942	192.365	203.112	0.56	794.598	0.29
1998	158.668	201.138	243.987	0.68	735.256	0.35
1999	76.440	176.040	260.147	0.80	727.314	0.33
2000	162.550	161.451	235.092	0.81	587.904	0.40
2001	150.427	158.282	236.707	0.75	652.560	0.33
2002	156.840	190.365	209.535	0.62	697.062	0.30
2003	174.457	186.811	207.241	0.61	728.622	0.30
2004	88.400	193.412	228.330	0.65	794.511	0.28
2005	149.958	221.675	213.863	0.62	719.230	0.28
2006	130.876	212.724	197.200	0.59	677.717	0.27
2007	97.868	196.537	171.641	0.54	652.804	0.24
2008	127.615	246.662	147.663	0.39	661.153	0.26
2009	115.215	226.776	183.315	0.42	728.730	0.24
2010	125.928	255.878	170.018	0.35	775.171	0.22
2011	167.612	313.000	172.197	0.33	821.969	0.23
2012	179.149	346.497	196.188	0.34	944.292	0.23
2013	129.313	367.227	223.593	0.36	1071.480	0.21
2014	169.171	336.090	222.013	0.33	1082.680	0.21
2015	143.418	443.964	230.168	0.31	1157.530	0.21
2016	94.981	387.901	251.238	0.32	1201.250	0.21
2017	149.155	514.595	244.021	0.32	1122.360	0.23
2018	155.717	499.909	267.490	0.35	1157.120	0.23
2019	108.846	441.162	262.950	0.38	1092.400	0.24
2020	141.829	386.745	269.871	0.43	978.667	0.27
2021	129.060	364.187	265.729	0.42	1023.090	0.23
2022	179.427	356.697	215.624	0.36	976.590	0.22
2023	147.870	370.488	NA	0.33	1074.370	0.20
2024	127.681	393.257	NA	NA	1124.180	NA

Figure 3.1: Icelandic cod Division 5.a. Weight at age (numbers in panel indicate age classes) in the catches expressed as deviations from the mean. Weight at age in the assessment year are based on predictions using the spring survey weights. Note that values that are equal to the mean are not visible in this type of a plot.

Figure 3.2: Icelandic cod Division 5.a. Weight at age (numbers in panel indicate age classes) in the spring survey (SMB) and fall survey (SMH) expressed as deviations from the mean. No fall survey was conducted in 2011. Note that values that are equal to the mean are not visible in this type of a plot.

Figure 3.3: Icelandic cod Division 5.a. Prediction of catch weights age 3 to 9 in the assessment year. The 'crossed' points are the mean from 1990 to the present.

Figure 3.4: Icelandic cod Division 5.a. Alternative catch weight prediction model using a regression within each age groups based on data from 1990 onwards. The vertical red line shows the survey measurements in the current assessment year and the blue line the predicted weight using the spaly weight prediction model.

Figure 3.5: Icelandic cod Division 5.a. Residuals of the two catch prediction models. Numbers indicate the equivalence of biomass in kilotonnes.

Figure 3.6: Icelandic cod Division 5.a. Comparison of the reference biomass using the two catch prediction models.

Figure 3.7: Icelandic cod Division 5.a. Indices of cod in the spring (SMB, red) and fall (SMH, blue) groundfish surveys. Abundance index of fish less than 55 cm , ($<55 \mathrm{~cm}$, top left) and biomass indices of 55 cm and larger ($>55 \mathrm{~cm}$, top right), biomass index 80 cm and larger (bottom left) and total biomass (Total, bottom right). The vertical bar show 1 standard error of the estimate.

Figure 3.8: Icelandic cod Division 5.a. Relative total survey biomass if the spring (SMB, red) and the fall (SMH, blue) survey biomass. The survey measurements are shifted to the beginning/end of each year (hence the last data points are the fall 2021 and spring 2022 measurements.

Figure 3.9: Icelandic cod Division 5.a. Age based catch and abundance indices of cod in the groundfish survey in spring (SMB) and fall (SMH). The values are standardized within each age group and within each survey in years 1996 to the present. Age 1, 2 and 14 indices from the fall survey are not used in the assessment.

Figure 3.10: Icelandic cod Division 5.a. Catch residuals (left), spring survey residuals (SMB, middle) and fall survey residuals (SMH, right) by year and age. Note that values that are equal to zero are not visible in this type of a plot and that no survey was carried out in the fall 2011.

Figure 3.11: Icelandic cod Division 5.a. Summary plot of observed vs predicted survey biomass.

Figure 3.12: Icelandic cod in Division 5.a. Assessment summary. The x-axis for the recruitment refers to the year class

Figure 3.13: Icelandic cod in Division 5.a. Analytical retrospective pattern of key metrics in the last eight years and the current estimates.

Figure 3.14: Icelandic cod in Division 5.a. Comparison with last year's assessment.

Figure 3.15: Icelandic cod in Division 5.a. Comparisons of alternative tunings.

10 Haddock in 5.a

Icelandic haddock (Melanogrammus aeglefinus) is fairly abundant in the coastal waters around Iceland and is mostly limited to the Icelandic continental shelf, while 0 -group and juveniles from the stock are occasionally found in East Greenland waters (ICES area 14). Apart from this, larval drifts links with other areas have not been found. In addition, minimal catches have been reported in area 14 (maximum of less than 10 tons in 2016). The nearest area to the Icelandic were haddock are found in reasonable abundance are in shallow Faroese waters, an area that constitutes as a separate stock. The two grounds are separated by a wide and relatively deep ridge, an area where reporting of haddock catches is non-existent, both commercially and scientifically. Tagging studies (Jónsson 1996) conducted between 1953 and 1965 showed no migrations of juvenile and mature fish outside of Icelandic waters, with most recaptures taking place in the area of tagging (or adjacent areas) and on the spawning grounds south of Iceland. Information about stock structure (metapopulation) of haddock in Icelandic waters is limited.

The species is found all around the Icelandic coast, principally in the relatively warm waters off the west and south coast, in shallow waters (10-200 m depth). Spawning has historically been limited to the southern waters. Haddock is also found off the north coast and in warm periods a large part of the immature fish have been found north of Iceland. In recent years a larger part of the fishable stock has been found off the north coast of Iceland than the last two decades of the 20th century.

10.1 Fishery

The fishery for haddock in 5.a has not changed substantially in recent years, but the total number of boats that account for 95% of fishery have been declining steadily (Figure 10.1). Around 250 longliners annually report catches of haddock, around 60 trawlers and 40 demersal seine boats. Most of haddock in 5. a is caught by trawlers and the proportion caught by that gear has decreased since 1995 from around 70% to 45% in 2017. However, for the last two years this proportion has increased slightly and is now around 60%. At the same time the proportion caught by longlines has increased from around 15% in 1995-2000 to 40% in 2011-2021. Catches in demersal seine have varied less and have been at around 15% of Icelandic catches of haddock in 5.a. Currently less than 2% of catches are taken by other vessel types, but historically up to 10% of total catches were by gillnetters, but since 2000 these catches have been low (Figure 10.2). Most of the haddock caught in $5 . a$ by Icelandic vessels is caught at depths less than 200 m (Figure 10.3). The main fishing grounds for haddock in 5.a, as observed from logbooks, are in the south, southwestern and western part of the Icelandic shelf (Figure 10.4) and Figure 10.5). The main trend in the spatial distribution of haddock catches in 5.a according to logbook entries is the increased proportion of catches caught in the north and northeast.

Figure 10.1: Haddock in 5.a. Number of vessels (all gear types) accounting for 95\% of the total catch annually since 1994. Left: Plotted against year. Right: Plotted against total catch. Data from the Directorate of Fisheries.

Figure 10.2: Haddock in 5.a. Landings in tons and percent of total by gear and year

Figure 10.3: Haddock in 5.a. Depth distribution of haddock catches from bottom trawls, longlines, trawls and demersal seine from Icelandic logbooks.

Figure 10.4: Haddock in 5.a. Changes in spatial distribution of haddock catches as recorded in Icelandic logbooks.

Figure 10.5: Haddock in 5.a. Spatial distribution of catches by all gears.

10.1.1 Landing trends

Landings of Icelandic haddock in 2021 are estimated to have been 57599 tonnes, see Figure 10.6. The landings in Division 5.a. have decreased from 100 thous. tonnes between 2005-2008, which historically was very near the maximum levels observed in the 1960s, to the current level which is slightly lower than observed between 1975 to early 2000s.

Foreign vessel landings were a considerable proportion of the landings, but since the expansion of the EEZ landings of foreign vessels are negligible. Currently most of the foreign catch is caught by Faeroese vessels, which in last year was 1696 tonnes, while Norwegian vessels land considerably less haddock.

Figure 10.6: Haddock in 5.a. Recorded landings since 1905.

10.2 Data available

In general, sampling is considered good from commercial catches from the main gears (demersal seines, longlines and trawls). The sampling does seem to cover the spatial and seasonal distribution of catches (see Figure 10.7and Figure 10.8. In 2020, sampling effort was reduced substantially, on-board sampling in particular, due to the COVID-19 pandemic. This reduction in sampling is, however, considered to be sufficiently representative of the fishing operations and thus not considered to substantially affect the assessment of the stock.

Figure 10.7: Haddock in 5.a. Ratio of samples by month (blue bars) compared with landings by month (solid black line) split by year and main gear types. Numbers of above the bars indicate number of samples by year, month and gear.

Figure 10.8: Haddock in 5.a. Fishing grounds in 2019 as reported in logbooks (contours) and positions of samples taken from landings (crosses) by main gear types.

10.2.1 Landings and discards

All landings in 5.a before 1982 are derived from the STATLANT database, and also all foreign landings in 5.a to 2005. The years between 1982 and 1993 landings by Icelandic vessels were collected by the Fisheries Association of Iceland (Fiskifélagið). Landings after 1994 by Icelandic vessels are given by the Icelandic Directorate of Fisheries. Landings of foreign vessels (mainly Norwegian and Faroese vessels) are given by the Icelandic Coast Guard prior to 2014 but after 2014 this are also recorded by the Directorate. Discarding is banned by law in the Icelandic demersal fishery. Based on annual discards estimates since 2001, discard rates in the Icelandic fishery for haddock due to highgrading are estimated very low in recent years ($<3 \%$ in either numbers or weight, see MRI (2016) for further details) while historically discards may have been substantial in the early 1990s. Measures in the management system such as converting quota share from one species to another are used by the fleet to a large extent and this is thought to discourage discarding in mixed fisheries. In addition to prevent high grading and quota mismatch the fisheries are allowed to land fish that will not be accounted for in the allotted quota, provided that the proceedings when the landed catch is sold will go to the Fisheries Project Fund (Verkefnasjóður sjávarútvegsins). A more detailed description of the management system can be found on https://www.responsiblefisheries.is/seafood-industry/management-and-control-system/.

Figure 10.9: Haddock in 5.a. Estimates of annual discards by gear. Vertical lines indicate the 95% confidence interval while dots the point estimates. No estimates are available since 2018.

10.2.2 Length compositions

The bulk of the length measurements are from the three main fleet segments, i.e. trawls, longlines and demersal seine. The number of available length measurements by gear has fluctuated in recent years in relation to the changes in the fleet composition.

Length distributions from the main fleet segments are shown in Figure 10.10. The sizes caught by the main gear types (bottom trawl and longlines) appear to be fairly stable, primarily catching haddock in the size range between 40 and 70 cm . Gillnets tend to catch slightly larger fish and modes of the length distribution varies more depending on the availability of large haddock.

Figure 10.10: Haddock in 5.a. Commercial length distributions by gear and year.

10.2.3 Age compositions

Catch in numbers-at-age is shown in Figure 10.11. The catches in 2021 are mainly composed with the 2014 to 2017-year classes. The number of year classes contributing to the catches is unusually many; the result of low fishing mortality in recent years and the last year class contributing with more than 1% of total is 11 years old (Figure 10.12).

Figure 10.11: Haddock in 5.a. Catch at age from the commercial fishery in Iceland waters. Bar size is indicative of the catch in numbers and bars are coloured by cohort.

Figure 10.12: Haddock in 5.a. Catch at age from the commercial fishery in Iceland waters. Biomass caught by year and age, bars are coloured by cohort.

10.2.4 Weight at age in the catch

Mean weight at age in the catch is shown in Figure 10.13. Catch weights of the older year classes have been increasing in recent years, after being very low when the stock was large between 2005 and 2009. Higher mean weight at age is most apparent for the younger haddock from the small cohorts (2008-2013), which has resulted in a mean weight of the old fish above average. Mean weight of younger year classes in the catches has decreased but is still above average.

Figure 10.13: Haddock in 5.a. Catch weights from the commercial fishery in Icelandic waters. Bars are coloured by cohort.

10.2.5 Natural mortality

No information is available on natural mortality. For assessment and advisory purpose, the natural mortality is set to 0.2 for all age groups.

10.3 Catch, effort and research vessel data

10.3.1 Catch per unit of effort from commercial fisheries

Catch per unit of effort data (Figure 10.14 shows that for hauls where the catch is composed of more than 50% haddock the CPUE has been steadily increasing since 1990 for the main gear types. The CPUE from all catches from bottom trawls and demersal seine is amongst the highest recorded while for longlines it is fairly low. This is in-line with fishermen's perception that it is easy to catch haddock. This gives a different picture of the development of the stock than that which is observed in surveys and assessment, much less increase after 2000 and much less decrease in recent years. However, it is worth noting that there is also a considerable change in the
size composition of the stock, where the biomass of 60 cm and above is at the highest observed in the time series, while the total biomass is close to it average value, suggesting that the CPUE may be more representative of larger fish.

There are also considerable differences in the CPUE by area, where the area north of Iceland has seen a continuous increase while the southern regions are more consistent with the total biomass index from the spring survey. Bycatch is of little concern as the haddock is commonly targeted in specific catch mixtures.

Figure 10.14: Haddock in 5.a. Catch per unit of effort in the most important gear types. The dashed lines are based on locations where more than 50% of the catch is haddock and solid lines on all records where haddock is caught. A change occurred in the longline fleet starting September 1999. Earlier only vessels larger than 10 BRT were required to return logbooks but later all vessels were required to return logbooks.

10.3.2 Icelandic survey data

Information on abundance and biological parameters from haddock in $5 . a$ is available from two surveys, the Icelandic groundfish survey in the spring and the Icelandic autumn survey.

The Icelandic groundfish survey in the spring, which has been conducted annually since 1985, covers the most important distribution area of the haddock fishery. The autumn survey commenced in 1996 and expanded in 2000 to include deep water stations. It provides additional information on the development of the stock. The autumn survey has been conducted annually with the exception of 2011 when a full autumn survey could not be conducted due to a fisherman strike. Although both surveys were originally designed to monitor the Icelandic cod stock, the surveys are considered to give a good indication of the haddock stock, both the juvenile population and the fishable biomass. A detailed description of the Icelandic spring and autumn groundfish surveys is given in the Stock Annex. Figure 10.15 shows both a recruitment index and the trends in various biomass indices. Changes in spatial distribution observed in the spring survey
are shown in Figure 10.16. The figure shows that a larger proportion of the observed biomass now resides in the north (areas NW and NE). Survey length distributions are shown in Figure 10.18 (abundance) and changes in spatial distribution in Figure 10.17.

Both surveys show much increase total biomass between 2002 and 2005 but considerable decrease from 2007-2010. The difference in perception of the stock between the surveys is that the autumn survey shows less contrast between periods of large and small stock. The 2015 estimate from the autumn survey exhibited substantially lower biomass compared to adjacent years. The contrast between the surveys appears to be starker when looking at the biomass of 60 cm and larger, but both surveys show that the $60 \mathrm{~cm}^{+}$is at its maximum in recent years.
Age disaggregated indices from the March survey are shown in Figure 10.19. Similar to the biomass of $60 \mathrm{~cm}^{+}$the index of age 11^{+}higher than seen before in March survey. This is assumed to be related to lower fishing mortality after the establishment of a management plan for haddock in 5.a. After a period of low recruitment, the biomass for other age groups is near the geometric mean in both surveys.

Figure 10.15: Haddock in 5.a. Indices in the Spring Survey (March) 1985 and onwards (line shaded area) and the autumn survey (point ranges).

Figure 10.16: Haddock in 5.a. Changes in geographical distribution of the survey biomass.

Figure 10.17: Haddock in 5.a. Location of haddock in the March 2022 (SMB) and the Autumn 2021 (SMH) survey, bubble sizes are relative to catch sizes.

Figure 10.18: Haddock in 5.a. Length disaggregated abundance indices from the March survey 1985 and onwards.

Figure 10.19: Haddock in 5.a. Age disaggregated indices in the Spring Survey (left) and the autumn survey (rights). Bars indicated the deviation from the log mean index, fill colors indicate cohorts. Note different scales on y-axes.

10.3.3 Stock weight at age

Mean weight at age in the catch is shown in Figure 10.13. Stock weights are obtained from the groundfish survey in March and are also used as mean weight at age in the spawning stock. Both stock and catch weights of the older year classes have been increasing in recent years, after being very low when the stock was large between 2005 and 2009. Higher mean weight at age is most apparent for the younger haddock from the small cohorts (2008-2013), which has resulted in a mean weight of the old fish above average. Mean weight of younger year classes has decreased but is still above average.

Figure 10.20: Haddock in 5.a. Stock weights from the March survey in Icelandic waters. Bars are coloured by cohort.

10.3.4 Stock maturity at age

Maturity-at-age data are shown Figure 10.21. Those data are obtained from the groundfish survey in March. Maturity-at-age of the youngest age groups has been decreasing in recent years which is likely to be related to the distributional shift towards the north. Maturity by size has been decreasing and the most likely explanation is large proportion of those age groups north of Iceland where proportion mature has always been low, as illustrated in Figure 10.22.

Figure 10.21: Haddock in Division 5.a. Maturity at age in the survey. Bars are coloured by cohort. The values are used to calculate the spawning stock.

Figure 10.22: Haddock in 5.a. Geographical differences in proportion mature by year and age (top), and stock weights (below).

10.4 Data analyses

10.4.1 Analytical assessment

This stock was last benchmarked in 2019 (WKICEMSE; ICES, 2019), but the model had been used in parallel to the previous assessment since 2013. A management plan for haddock in 5.a based on this assessment was tested at the same meeting and subsequently implemented by the government of Iceland in the same year.

The assessment model used is a statistical catch-at-age model described in Bjornsson, Hjorleifsson, and Elvarsson (2019). The model runs from 1979 onwards and ages 1 to 10 are tracked by the model, where the age of 10 is a plus group. Natural mortality is set to 0.2 for all age groups. Selection pattern of the commercial fleet is defined in terms of mean stock weights at age, rather than age, based on a logit selection function:

$$
S_{a, y}=\frac{1}{1+e^{-\alpha\left(\log \left(s W_{a, y}\right)-\log \left(W_{50}\right)\right)}}
$$

The rationale for this choice, compared to a more traditional age-based selection, is to account for observed changes in growth between year classes. Larger year classes tend to have lower mean weight compared to smaller year classes, as observed in Figure 10.13. As fishery selection is mainly size based, the assessment model using a size-based selection only requires two parameters to estimate the selection pattern. In contrast an age-based selection pattern would require parameter based on multiple selection time periods.

The weights to the survey data are based on a common multiplier to the variance estimates of each age group and survey obtained from a backwards calculation model (described in Bjornsson, Hjorleifsson, and Elvarsson 2019), shown in Figure 10.23.

The ratio of fishing and natural mortality before spawning was set at 0.4 and 0.3 respectively as haddock is known to spawn in the period between April till the end of May.

Figure 10.23: Haddock in 5.a. Estimated selection by weight, CV pattern, stock recruitment relationship and survey catchability.

10.4.2 Data used by the assessment

The assessment relies on four sources of data, that are described above. These are the two surveys, commercial samples and landings. The commercial data is used to compile catch at age data that enter the likelihood along with the survey at age from both surveys. Stock weights and catch weights at age are derived from the spring survey and catches respectively. The maturity data is similarly collected in the spring survey. Prior to 1985, when the spring survey started, stock weights and maturity at age were assumed constant at the 1985 values. A full description of the preparation of the data used for tuning and as input is given in the stock annex (see ICES, 2019).

10.4.3 Diagnostics

The fit to data is illustrated in Figure 10.25 where no concerning residual patterns are observed. When looking at the combined fit (Figure 10.24) the figure shows the observed vs. predicted biomass from the surveys and it indicates that historically the autumn survey biomass has been closer to the prediction than corresponding values from the March survey, where the contrast in observed biomass is more than predicted from the assessment. The model accounts for this by estimating a stronger residual correlation for the spring survey (0.527) compared with the autumn survey (0.193). When contrasting the biomass levels before and after the mid 2000s peak the autumn survey suggests that the biomass level after the peak biomass is higher while the spring survey is at similar levels. Thus, the model appears to fall in a region between the two surveys. The discrepancy appears to be in the largest age groups where the age indices autumn survey are overpredicted in recent years, suggesting that older age groups observed in the March survey are not observed to the same degree in the October survey. Related to this figure, Figure 10.23 shows the estimated "catchability" and CV as a function of age for the surveys, showing that estimated CV is lower is generally lower for ages $2-6$, whereas the CV increases faster by age for the autumn survey compared with the spring survey.

Figure 10.24: Haddock in Division 5.a. Aggregated model fit to the total biomass indices.

Figure 10.25: Haddock in Division 5.a. Residuals from the model fit to survey and catch data based on the both the surveys. Red circles indicate negative residuals (observed < modelled), while blue positive. Residuals are proportional to the area of the circles.

10.4.4 Model results

The results of the assessment indicate that the stock decreased from 2008-2011 when large year classes disappeared from the stock and were replaced by smaller year classes (Figure 10.26). Since 2011 the rate of reduction has slowed down as fishing mortality has been low. The spawning stock has, however, decreased more than the reference biomass as the proportion mature by age/size has been decreasing. Fishing mortality is now estimated to be low and is in line with the overall goal of the currently implemented HCR. The baseline assessment does indicate that a bottom has been reached and the stock size will increase in the coming years. The main features of the baseline assessment are the same as in the assessments used between 2011 to 2018. The analytical retrospective (Figure 10.28) indicates a slight upwards revision in the most recent years. The assessment can however be considered fairly stable and the estimated 5-year Mohn's ρ are within acceptable range as illustrated in Figure 10.28.

Assessment in recent years has shown some difference between model runs where either or both of the two different tuning series, i.e. March and the October surveys, are omitted from the estimation, but currently this difference is mostly within the estimated uncertainty (Figure 10.27) but that has not always been the case. When the model is only fitted with catch data the reference biomass is estimated to be increasing a much faster rate than the baseline assessment suggest.

Estimated selection is illustrated in Figure 10.29, where substantial variations in selection at age is estimated by the model. Haddock in Icelandic waters has exhibited substantial density dependence in growth, as illustrated in Figure 10.32.

Figure 10.26: Haddock in Division 5.a. Summary from assessment. Dashed vertical line indicates the assessment year and yellow shaded region the uncertainty as estimated by the model.

Figure 10.27: Haddock in 5.a. Comparison of assessment results where either the spring survey or the autumn survey is omitted from the estimation.

Figure 10.28: Haddock in Division 5.a. Analytical retrospective analysis of the assessment of haddock with a 5-year peel.

Figure 10.29: Haddock in 5.a. Estimated selection at age.

10.4.5 Short term projections

Following the management plan the advice for the coming fishing year (2022/2023) is based in the biomass of $45 \mathrm{~cm}^{+}$at the beginning the next calendar year (2023). To arrive at this prediction a deterministic projection of the growth in weight and changes in maturity in the coming calendar year is needed. Growth in 2023 is predicted by the equation:

$$
\log \left(\frac{W_{a+1, y+1}}{W_{a, y}}\right)=\alpha+\beta \log \left(W_{a, y 0}\right)+\delta_{y}
$$

where according to the stock annex the factor δ_{y} for the assessment year (Figure 10.32) is the average of the points estimates of the growth factor in the two preceding years. Growth has been high but somewhat variable in recent years but was much less in when the stock was larger. Maturity, selection, catch weights at age and proportion of the biomass above $45 \mathrm{~cm}^{+}$are then predicted from stock weights in 2022. When those values have been estimated the prediction is done by the same model as used in the assessment. The model works iteratively as the estimated TAC for the fishing year 2022/2023 has some effect of the biomass at the beginning of 2023, which the TAC is based on. This procedure is described in the detail in the stock annex.

Figure 10.30: Haddock in 5.a. Comparison of the short-term prediction of reference biomass to the realised value a year later.

Figure 10.31: Haddock in 5.a. Comparison of some of the results of 2019 assessment based on different tuning data and 2017 assessment tuned with both the surveys.

Figure 10.32: Haddock in 5.a. Input data to prediction model, where the exponent of the year factor (growth multiplier) is estimated to derive the reference biomass in the advisory year, as described in the text.

Figure 10.33: Haddock in 5.a. Maturity at weight as used in the projections.

10.5 Management

The Icelandic Ministry of Industries and Innovation (MII) is responsible for management of the Icelandic fisheries and implementation of legislation. The Ministry issues regulations for commercial fishing for each fishing year (1 September-31 August), including an allocation of the TAC for each stock subject to such limitations. Haddock in 5.a has been managed by TAC since the 1987. Landings have roughly followed the advice given by MFRI and the set TAC in all fishing years ('r tables(display='cite,'" "tachist) and Figure 10.34). Since the 2001/2002 the catches have exceeded more that 5% the set TAC in seven fishing years. The largest overshoot in landings in relation to advice/TAC was observed in the fishing year 2007/2008 when the landings of haddock exceeded the advice by 11%. The reasons for the implementation errors are related to the management system that allow for transfers of quota share between fishing years and conversion of TAC from one species to another (species transformation).

The TAC system does not include catches taken by Norway and the Faroe Islands by bilateral agreement. The level of those catches is known in advance but has until recently not been taken into consideration by the Ministry when allocating TAC to Icelandic vessels. There is no minimum landing size for haddock in 5.a. There are agreements between Iceland, Norway and the Faroe Islands relating to a fishery of vessels in restricted areas within the Icelandic EEZ. Faroese vessels are allowed to fish 5600 t of demersal fish species in Icelandic waters which includes maximum 1200 tonnes of cod and 40 t of Atlantic halibut.

The effect of these species transformations and quota transfers is illustrated in Figure 10.35. The figure illustrates that when the biomass of haddock was high in the years between 2002 to 2007 the net transfers to haddock from other species increased. This may in part be explained by shifts in distribution of haddock, as illustrated in Figure 10.5, as the fisheries that traditionally target the northern area had lower amounts of haddock in their quota portfolio. However, looking over longer period quota transfer towards/from haddock has on the average been close to zero. With the establishment a management plan in 2013 the transfers between quota years have decreased substantially, while at the same time transfers from other species have increased. This is likely
due to the fact that haddock is easy to catch, as demonstrated by high CPUE in recent years. The haddock quota may also be limiting in some mixed fisheries and that haddock may have been underestimated in last years could also contribute to transfer towards haddock. These effects were considered when the management plan was tested.

Figure 10.34 illustrates the difference between national TAC and landed catch in 5.a. The difference can be attributed to species transformation (in both directions), while for the 1999/2000 and 2020/2021 fishing years the government of Iceland increased TAC mid-season.

Figure 10.34: Haddock in 5.a. Comparison of the realised catches and the set TAC for the fishing operations in Icelandic waters. Note that in the 1999/2000 fishing year the government of Iceland increased TAC mid-season.

Figure 10.35: Haddock in 5.a. An overview of the net transfers of quota between years and species transformations in the fishery in 5.a.

10.6 Management considerations

All the signs from commercial catch data and surveys indicate that haddock in $5 . a$ is at present in a good state. This is confirmed in the assessment. At WKICEMSE 2019 the harvest rate target applied by the HCR in the period between 2013 and 2018 was estimated to be no longer precautionary while a rate of 0.35 was in-line with both the precautionary and ICES MSY approach. As the 2018-year class is fairly small the stock has remained at the current levels however it is projected to increase in coming years due to strong incoming recruitment from the 2019- and 2020year classes.

For the 2020/2021 fishing year the Government of Iceland increased the TAC by 8000 tons while lowering the TAC for 2021/2022 by the same amount. This was done to prevent a quota choke. The advice for 2022/2023 is therefore based on catch constraint with this lowered TAC.

10.7 References

Bjornsson, Höskuldur, Einar Hjorleifsson, and Bjarki Pór Elvarsson. 2019. "Muppet: Program for Simulating Harvest Control Rules." Reykjavik: Marine; Freshwater Researh Institute. http://www.github.com/hoski/Muppet-HCR.

ICES. 2019. "Stock Annex: Haddock (Melanogrammus aeglefinus) in Division 5.a (Iceland grounds)." International Council for the Exploration of the Seas; ICES publishing.

Jónsson, Jón. 1996. Tagging of Cod (Gadus Morhua) in Icelandic Waters 1948-1986;: Tagging of Haddock (Gadus Aeglefinus) in Icelandic Waters 1953-1965. Hafrannsóknastofnunin.

MRI. 2016. "Mælingar á brottkasti porsks og ýsu (e. Measurments of discards of Cod and Haddock), 20142016, Reykjavik, Iceland." Vol. 3. Marine; Freshwater Research Institute, Iceland; Marine Research Institute, Iceland. https://www.hafogvatn.is/static/research/files/fjolrit-183pdf.

Table 10.1: Haddock in Division 5.a. Age disaggregated survey indices from the groundfish survey in March (SMB).

Year	1	2	3	4	5	6	7	8	9	10
1985	28.575	32.942	17.726	23.888	26.496	3.724	11.004	5.136	5.388	0.755
1986	124.260	112.224	56.704	15.099	16.485	12.434	0.892	2.685	1.221	2.275
1987	23.144	329.992	141.902	43.321	8.957	8.037	4.720	0.370	0.593	1.136
1988	15.732	46.130	182.259	86.779	23.148	1.495	2.189	1.954	0.163	0.603
1989	10.484	21.911	40.355	147.443	44.812	13.275	0.783	0.879	0.449	0.471
1990	72.401	31.170	26.620	39.264	91.654	31.171	3.399	0.891	0.202	0.014
1991	89.422	144.534	44.742	17.872	20.519	32.658	7.560	0.218	0.078	0.176
1992	18.338	209.604	142.976	34.360	17.333	13.307	16.221	2.270	0.119	0.007
1993	28.982	38.349	260.775	90.610	11.129	3.749	1.492	4.484	0.824	0.000
1994	59.314	62.235	39.417	151.828	41.570	5.554	2.717	1.213	3.573	0.261
1995	37.657	82.030	51.491	20.769	68.456	7.093	1.066	0.000	0.313	0.000
1996	96.043	71.077	119.894	35.767	18.907	41.364	5.871	0.628	0.010	0.267
1997	8.637	123.936	50.662	52.476	10.959	7.128	10.759	1.386	0.046	0.144
1998	22.943	18.632	110.949	28.160	23.220	4.932	3.430	4.736	0.315	0.000
1999	81.048	86.172	24.993	99.569	13.394	9.840	1.560	1.871	1.043	0.091
2000	61.023	88.972	43.210	8.310	25.115	3.076	1.597	0.425	0.178	0.494
2001	81.677	152.426	115.467	21.515	3.980	10.488	0.870	0.495	0.000	0.117
2002	20.178	303.588	201.158	110.796	22.887	3.300	7.419	0.392	0.338	0.116
2003	112.023	102.610	281.386	248.277	113.835	17.457	2.619	4.667	0.415	1.074
2004	327.761	290.418	70.478	208.872	110.711	34.864	6.216	1.353	0.598	0.262
2005	54.827	696.286	290.880	44.657	156.682	58.724	15.478	3.130	0.324	0.215
2006	38.729	77.757	577.128	182.402	19.575	62.962	16.475	6.668	0.722	0.286
2007	35.891	63.410	91.770	435.838	86.037	7.541	21.380	4.547	1.861	0.043
2008	88.825	65.201	73.828	73.634	222.247	29.253	3.599	7.010	1.762	0.267
2009	11.016	105.699	52.440	39.978	41.061	102.901	12.533	1.850	2.795	0.524
2010	16.492	27.417	140.054	30.317	18.515	20.723	31.743	2.701	0.383	0.779
2011	8.427	26.024	23.499	78.086	13.394	5.835	9.561	14.242	1.229	0.538
2012	12.009	13.983	32.281	28.317	60.113	5.282	2.967	5.703	6.979	1.309
2013	13.378	23.074	21.862	23.664	23.471	42.631	5.062	2.545	3.833	5.670
2014	14.328	24.730	29.546	17.388	16.230	14.422	16.325	1.327	0.965	3.194
2015	59.116	19.117	25.709	34.048	13.040	11.655	10.223	10.149	1.171	2.592
2016	29.504	123.420	23.794	21.484	21.940	7.179	7.120	4.886	4.077	2.772
2017	27.159	66.004	142.143	22.664	20.269	22.290	6.603	4.960	3.359	2.694
2018	61.837	72.756	72.695	116.651	13.002	11.346	9.518	3.065	2.819	2.666
2019	7.074	85.034	47.072	40.624	66.640	4.021	3.838	2.838	1.394	1.280
2020	109.055	15.592	102.591	35.257	27.056	42.384	2.640	1.841	1.881	2.867
2021	125.030	245.271	27.611	101.262	24.203	16.004	19.858	1.115	0.818	2.996

Table 10.2: Haddock in 5.a. Age disaggregated survey indices from the groundfish survey in October (SMH).

Year	1	2	3	4	5	6	7	9	8	10
1995	154.864	172.708	48.674	24.973	46.202	6.813	0.374	0.059	0.000	0.000
1996	444.043	95.984	81.458	17.765	7.492	17.992	1.412	0.000	0.000	0.000
1997	28.706	207.232	55.529	37.967	7.776	5.817	6.624	0.000	0.302	0.000
1998	80.045	30.852	129.177	20.260	16.282	5.638	5.342	0.000	1.926	0.177
1999	370.846	70.470	27.763	94.065	12.155	10.678	0.385	0.385	1.373	0.000
2000	160.181	254.381	44.552	7.877	28.856	1.778	3.282	0.288	0.165	0.583
2001	380.844	273.787	167.008	32.126	4.757	14.064	1.062	0.000	1.001	0.218
2002	74.302	239.702	190.160	93.061	17.865	2.588	3.413	0.327	0.624	0.000
2003	328.368	138.413	255.385	153.303	55.406	10.602	1.822	0.000	0.703	0.021
2004	681.123	347.882	52.084	153.426	70.075	19.583	3.374	0.413	0.575	0.000
2005	68.926	546.809	177.657	27.280	93.127	27.336	10.970	0.000	1.969	0.258
2006	115.089	113.726	504.347	109.392	13.868	37.863	9.671	1.190	4.267	0.000
2007	96.848	68.528	93.803	327.185	57.284	7.890	10.484	0.660	4.171	0.436
2008	199.775	90.485	67.844	86.833	191.883	15.575	2.598	0.256	4.065	0.089
2009	48.686	253.068	78.961	32.685	45.054	95.188	8.994	2.780	1.533	0.779
2010	40.375	52.221	142.049	30.998	14.517	22.205	35.128	0.875	4.917	1.431
2011	18.494	9.832	6.558	26.895	5.670	2.228	5.148	0.113	1.318	0.706
2012	50.528	30.510	31.275	35.669	69.741	11.124	4.070	9.744	9.448	1.778
2013	100.212	117.391	35.064	36.077	38.712	44.429	6.562	5.795	2.408	5.320
2014	32.906	41.101	65.795	24.072	25.116	22.714	25.851	2.452	2.170	5.575
2015	204.531	37.485	39.498	44.785	15.351	16.777	10.005	2.273	11.679	3.977
2016	76.474	126.869	23.911	17.796	19.247	7.199	7.568	2.942	3.882	2.746
2017	114.513	95.433	148.700	14.540	17.124	13.655	3.559	2.585	4.010	2.422
2018	116.330	77.363	71.032	118.870	6.954	6.816	5.665	2.570	3.248	2.762
2019	32.724	137.558	48.989	38.534	53.835	2.378	2.824	0.543	0.975	1.530
2020	294.574	22.447	107.108	35.272	19.230	24.054	0.893	0.827	1.049	1.421
2021	243.117	254.206	24.464	68.903	20.637	10.114	13.645	0.632	0.470	2.895

Table 10.3: Haddock in 5.a. Catch at age from the commercial fishery in Icelandic waters.

Year	1	2	3	4	5	6	7	8	9	10
1980	0.000	0.000	2221.874	14138.266	5355.917	4090.140	3286.567	429.641	60.333	27.111
1981	0.000	0.000	543.586	6598.800	19310.260	5869.602	2279.548	1387.274	120.786	19.257
1982	0.000	5.803	258.057	2830.554	11210.060	14438.292	2095.553	1002.869	761.265	223.358
1983	0.000	0.000	1159.392	1540.786	4752.128	10348.082	8781.591	718.420	201.248	209.561
1984	0.000	32.780	968.914	5342.904	1564.204	4923.345	3681.561	4281.210	262.851	90.093
1985	0.000	699.672	1321.939	5821.849	8536.695	1203.141	1954.735	2013.169	1474.208	129.323
1986	0.000	48.736	3147.191	4797.900	5075.571	5411.823	499.496	821.098	825.411	371.867
1987	20.798	2132.538	9130.410	7926.622	2881.908	2090.971	928.181	86.432	89.912	215.307
1988	0.000	205.740	8411.111	15521.575	6130.332	1293.851	1020.191	614.903	57.732	234.700
1989	0.000	103.972	3843.204	21726.203	9843.391	3060.735	396.987	419.211	150.418	137.092
1990	0.000	0.000	1634.584	7703.042	23502.597	6733.964	1052.278	191.805	67.187	84.219
1991	0.000	344.152	2074.261	3846.022	6678.415	12865.482	3189.809	396.451	35.715	21.968
1992	0.000	783.463	6651.669	4884.572	4273.294	4020.142	5601.953	1235.599	115.608	33.508
1993	0.000	133.592	10586.490	13101.384	3314.864	1672.311	1417.994	2165.992	329.360	45.715
1994	0.000	378.504	3563.435	28575.159	11121.534	1563.422	674.095	389.795	686.903	137.259
1995	0.000	1205.166	6068.412	6240.857	24121.217	5688.891	590.750	231.371	179.126	333.056
1996	4.239	450.082	8243.179	6350.035	4623.802	13698.612	2488.972	234.542	88.927	133.347
1997	0.000	1099.232	3560.281	10633.050	4769.054	2578.991	5230.422	778.831	63.478	72.514
1998	0.000	156.657	8410.930	5312.313	8009.675	2446.463	1555.858	1993.312	218.377	38.102
1999	28.062	838.643	1339.786	16168.284	4610.576	5178.171	989.398	655.445	542.582	72.769
2000	10.980	2192.932	5368.257	2221.052	13623.793	1997.687	1771.258	351.226	222.581	181.429
2001	0.000	2410.158	10971.731	7018.579	1476.688	6658.580	710.021	492.758	96.911	96.612
2002	48.668	1028.303	10563.234	16224.354	5103.822	1099.873	3152.381	250.174	173.346	96.267
2003	0.000	343.784	6377.242	16406.366	12713.737	2926.486	787.355	1294.895	91.940	80.883
2004	148.588	1297.681	4170.831	17725.087	19507.597	9091.762	1930.665	501.625	518.568	151.181

Year	1	2	3	4	5	6	7	8	9	10
2005	13.227	1505.182	9816.255	7200.101	25743.637	13846.241	4748.460	831.304	232.163	223.935
2006	0.000	152.423	9568.296	21031.033	6510.775	19511.355	7888.710	2206.788	332.323	188.039
2007	2.594	607.522	3458.200	41721.344	23126.995	3444.497	10389.848	2852.144	539.706	174.109
2008	0.000	1101.971	3087.078	8577.185	52881.654	11568.482	1839.906	3151.774	816.989	203.124
2009	0.000	939.482	3109.408	4842.328	9266.287	35700.432	5890.757	722.269	1403.324	463.969
2010	0.000	148.509	6009.741	6998.964	5295.788	6725.127	17658.364	1876.916	374.547	524.554
2011	0.000	201.009	1581.966	11728.962	4955.563	2781.487	4043.655	6338.837	525.455	217.067
2012	0.000	161.056	1260.847	3476.323	13223.730	2323.123	1269.345	2565.420	2691.292	369.902
2013	0.000	210.841	1060.127	2881.729	4030.712	9339.414	1237.613	683.129	1260.590	1585.576
2014	0.000	142.526	1398.118	1779.265	2706.454	2880.811	4919.265	482.547	381.528	1378.930
2015	14.282	133.635	1537.578	4281.608	2376.038	2937.280	2591.206	2676.264	229.600	833.304
2016	0.000	377.393	1738.299	3526.989	4162.824	1783.324	1971.885	1466.092	1355.079	482.511
2017	0.000	319.798	3808.866	3071.488	2991.626	3195.463	1077.711	1166.778	770.356	1007.459
2018	0.000	275.375	3851.346	11032.346	2900.917	2906.067	2247.882	882.748	564.579	959.497
2019	0.000	111.999	2466.497	6508.906	13896.604	1847.004	1367.499	1407.630	553.526	1189.208
2020	13.118	197.608	3813.351	5369.245	6536.633	8396.383	827.778	618.802	556.756	746.452
2021	0.000	268.788	1078.199	9297.478	5312.507	4241.979	6378.002	522.309	317.909	586.707

Table 10.4: Haddock in 5.a. Catch weights from the commercial fishery in Icelandic waters.

Year	1	2	3	4	5	6	7	8	9	10
1980	4000	4000	807	1293	2099	2616	3008	3593	4924	4687
1981	4000	4000	1050	1157	1718	2298	3106	3333	3810	4119
1982	4000	553	973	1465	1650	2295	2940	3329	3824	3998
1983	4000	4000	951	1501	1918	2358	2818	3391	4191	4307
1984	4000	1102	926	1426	1931	2391	3077	2852	3843	3629
1985	4000	938	1157	1688	2074	2608	3015	3134	3639	3976
1986	4000	1090	1232	1763	2399	2719	3478	3608	4020	4239
1987	231	491	1078	1631	2358	2829	3281	3746	3976	3402
1988	4000	387	824	1476	2179	2847	3511	3736	4471	4340
1989	4000	796	847	1222	2009	2833	3911	3632	4668	5123
1990	4000	4000	776	1077	1552	2389	3362	3800	4793	4390
1991	4000	645	931	1226	1649	2077	2686	3285	3610	5526
1992	4000	311	987	1358	1657	2059	2511	3036	4090	4601
1993	4000	594	786	1372	1894	2410	2956	3091	3454	3798
1994	4000	597	732	1064	1704	2314	2721	3227	3178	3626
1995	4000	592	860	1141	1357	2041	2791	3066	3633	3289
1996	66	483	892	1280	1593	1878	2694	3742	3533	3958
1997	4000	530	800	1177	1659	1959	2366	3072	3173	4076
1998	4000	575	682	1168	1680	2240	2531	2875	3361	3806
1999	281	646	945	1120	1670	2213	2639	2871	3234	3805
2000	229	550	1013	1333	1489	2103	2641	3285	3592	3676
2001	4000	562	944	1440	1726	1822	2249	2867	3136	4515
2002	315	601	921	1261	1708	2188	2189	2761	3219	3989
2003	4000	544	929	1273	1679	2269	2672	2604	2829	3287
2004	111	580	992	1236	1571	2029	2746	3199	2957	4040
2005	126	431	875	1253	1489	1896	2266	2971	3119	2808
2006	4000	485	744	1084	1472	1739	2150	2531	3083	3327
2007	240	545	752	972	1322	1800	2019	2337	2603	2876
2008	4000	517	726	897	1136	1577	2123	2365	2684	2474
2009	4000	493	828	955	1104	1336	1731	2259	2473	3019
2010	4000	399	767	1081	1267	1436	1664	2144	2314	2564
2011	4000	660	941	1126	1440	1683	1905	2070	2550	2939
2012	4000	682	974	1193	1463	1896	2112	2317	2645	2727
2013	4000	699	1049	1352	1656	2011	2388	2572	3042	3102
2014	4000	691	1085	1398	1775	2091	2462	2568	3145	3195
2015	377	711	1083	1489	1997	2319	2787	3297	3155	3978
2016	4000	599	1052	1552	1989	2556	2916	3536	3565	3661
2017	4000	799	965	1615	1975	2477	2967	3496	3767	3903
2018	4000	750	1111	1411	2024	2561	2946	3364	3605	3913

Year	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
2019	4000	931	1018	1454	1805	2787	3055	3234	3844	3877
2020	1088	1168	1035	1482	2042	2363	2964	3381	3649	3721
2021	4000	697	1010	1407	1817	2429	2796	3434	3978	4002

Table 10.5: Haddock in 5.a. Stock weights from the March survey in Icelandic waters.

Year	1	2	3	4	5	6	7	8	9	10
1980	37	185	481	910	1409	1968	2496	3077	3300	4000
1981	37	185	481	910	1409	1968	2496	3077	3300	4000
1982	37	185	481	910	1409	1968	2496	3077	3300	4000
1983	37	185	481	910	1409	1968	2496	3077	3300	4000
1984	37	185	481	910	1409	1968	2496	3077	3300	4000
1985	35	242	580	1184	1675	2380	2804	3246	3356	3818
1986	35	238	677	1172	1999	2424	3301	3382	3801	3818
1987	34	165	527	1196	1736	2560	3031	3427	3889	4191
1988	36	183	463	993	1828	2636	3137	3399	3436	4510
1989	26	182	426	879	1513	2357	3067	3347	3417	3945
1990	29	185	455	827	1230	1973	2751	3055	3141	4000
1991	31	176	484	1018	1404	1889	2504	3391	4505	5457
1992	30	157	493	905	1348	1871	2345	2949	4235	7332
1993	37	168	380	885	1482	1729	2584	2627	3428	4000
1994	33	179	409	706	1262	1698	1936	2406	2095	1182
1995	40	169	455	755	1085	1849	2621	4000	1389	4000
1996	37	175	445	819	1071	1462	2205	2825	3745	2361
1997	53	173	418	829	1264	1423	1927	2453	3829	4341
1998	39	197	394	746	1225	1687	1901	2447	2837	4000
1999	33	201	470	696	1175	1955	2409	2637	3047	2826
2000	29	178	550	870	1142	1694	2551	2839	3624	3293
2001	36	183	473	1028	1399	1483	2056	2744	4000	4018
2002	61	175	470	885	1485	1962	1987	2135	5020	5067
2003	40	233	419	810	1270	1878	3099	2310	3333	4458
2004	35	178	554	816	1285	1736	2500	2533	2875	4000
2005	39	153	450	913	1185	1581	2118	2840	2329	3608
2006	33	131	335	739	1127	1518	1968	2240	3264	3273
2007	47	170	343	610	1063	1516	1808	2085	2113	3638
2008	27	178	374	606	873	1300	1839	2246	2622	2315
2009	32	134	429	681	881	1134	1485	1912	2515	2179
2010	32	150	387	764	928	1174	1454	1764	2075	2701
2011	34	171	435	744	1122	1303	1555	1848	2106	2910
2012	28	197	476	803	1145	1514	1886	2104	2254	2230
2013	32	206	582	944	1260	1642	1893	2184	2665	2632

Year	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
2014	37	228	586	1012	1361	1764	2166	2367	2679	3106
2015	33	257	624	1085	1601	1939	2442	2760	3198	3132
2016	29	161	653	1115	1579	2109	2287	3053	3387	3310
2017	34	200	462	1251	1626	2141	2709	3128	3593	3464
2018	30	193	545	928	1829	2332	2625	2920	3103	3523
2019	29	169	514	968	1353	2384	2801	3016	3421	3545
2020	29	209	473	951	1520	2040	3155	2967	3260	4380
2021	28	163	567	935	1445	2116	2594	3501	3618	3871

Table 10.6: Haddock in 5.a. Sexual maturity-at-age in the stock (from the March survey). The numbers for age 10 only apply to the spawning stock.

year	1	2	3	4	5	6	7	8	9	10
1980	0.000	0.080	0.301	0.539	0.722	0.821	0.868	0.904	0.963	1.000
1981	0.000	0.080	0.301	0.539	0.722	0.821	0.868	0.904	0.963	1.000
1982	0.000	0.080	0.301	0.539	0.722	0.821	0.868	0.904	0.963	1.000
1983	0.000	0.080	0.301	0.539	0.722	0.821	0.868	0.904	0.963	1.000
1984	0.000	0.080	0.301	0.539	0.722	0.821	0.868	0.904	0.963	1.000
1985	0.000	0.023	0.162	0.555	0.589	0.732	0.775	0.945	0.939	0.987
1986	0.000	0.017	0.183	0.401	0.658	0.825	0.883	0.955	0.982	0.998
1987	0.000	0.013	0.115	0.439	0.587	0.862	0.898	1.000	0.988	0.965
1988	0.000	0.014	0.194	0.376	0.760	0.765	0.935	0.894	1.000	0.935
1989	0.000	0.038	0.215	0.525	0.722	0.809	1.000	1.000	1.000	1.000
1990	0.000	0.115	0.327	0.624	0.816	0.844	0.914	0.911	1.000	1.000
1991	0.000	0.068	0.231	0.587	0.744	0.824	0.901	0.397	1.000	1.000
1992	0.000	0.051	0.222	0.414	0.804	0.904	0.900	0.845	1.000	1.000
1993	0.000	0.129	0.358	0.474	0.652	0.895	0.971	0.913	0.874	1.000
1994	0.037	0.251	0.332	0.602	0.786	0.855	1.000	0.880	1.000	1.000
1995	0.000	0.135	0.444	0.377	0.772	0.780	0.666	0.904	1.000	1.000
1996	0.000	0.169	0.357	0.589	0.646	0.787	0.746	0.945	0.840	1.000
1997	0.132	0.089	0.434	0.579	0.674	0.760	0.788	0.881	1.000	1.000
1998	0.001	0.031	0.486	0.684	0.787	0.756	0.849	0.905	1.000	1.000
1999	0.000	0.044	0.387	0.678	0.722	0.774	0.901	0.801	0.920	1.000
2000	0.012	0.105	0.247	0.630	0.811	0.881	0.876	1.000	0.817	0.950
2001	0.003	0.098	0.369	0.534	0.768	0.905	0.927	0.868	0.963	1.000
2002	0.000	0.047	0.280	0.635	0.809	0.937	0.937	1.000	1.000	1.000
2003	0.063	0.055	0.345	0.692	0.878	0.933	0.945	0.984	1.000	1.000
2004	0.000	0.038	0.363	0.575	0.836	0.923	1.000	1.000	1.000	1.000
2005	0.000	0.023	0.221	0.558	0.745	0.922	0.942	0.967	1.000	1.000
2006	0.031	0.029	0.122	0.470	0.633	0.749	0.926	1.000	1.000	1.000
2007	0.000	0.075	0.203	0.423	0.694	0.774	0.891	0.971	1.000	1.000

year	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
2008	0.002	0.027	0.272	0.427	0.642	0.840	0.892	0.912	0.961	1.000
2009	0.001	0.018	0.315	0.481	0.597	0.860	0.905	1.000	0.972	1.000
2010	0.011	0.034	0.175	0.637	0.797	0.815	0.901	0.936	1.000	0.964
2011	0.001	0.049	0.176	0.431	0.826	0.825	0.850	0.904	0.979	1.000
2012	0.001	0.108	0.162	0.444	0.630	0.818	0.906	0.859	0.911	1.000
2013	0.001	0.053	0.263	0.417	0.725	0.809	0.929	0.988	0.976	0.993
2014	0.002	0.105	0.200	0.389	0.571	0.691	0.763	0.934	0.922	0.893
2015	0.000	0.134	0.282	0.438	0.669	0.799	0.790	0.903	1.000	0.871
2016	0.002	0.013	0.370	0.493	0.609	0.795	0.802	0.894	0.907	1.000
2017	0.001	0.076	0.129	0.593	0.666	0.751	0.918	0.947	1.000	0.985
2018	0.001	0.039	0.236	0.393	0.823	0.866	0.897	0.885	0.974	1.000
2019	0.011	0.035	0.333	0.591	0.672	0.891	0.944	0.968	1.000	0.881
2020	0.002	0.022	0.190	0.665	0.739	0.711	0.915	0.964	1.000	1.000
2021	0.003	0.017	0.214	0.423	0.807	0.782	0.809	1.000	1.000	1.000

Table 10.7: Haddock in Division 5.a. Landings by nation.

Year	Belgium	Faroe Islands	Iceland	Norway	UK	Germany	Russia	Greenland	Denmark	Lithuania
1979	1010	2161	56150	11	0	0	0	0	0	0
1980	1144	2029	50674	23	0	0	0	0	0	0
1981	673	1839	64599	15	0	0	0	0	0	0
1982	377	1982	66998	28	0	0	0	0	0	0
1983	268	1783	63815	3	0	0	0	0	0	0
1984	359	707	47167	3	0	0	0	0	0	0
1985	391	987	49573	0	2	0	0	0	0	0
1986	257	1289	47335	0	0	0	0	0	0	0
1987	238	1043	39751	1	0	0	0	0	0	0
1988	352	797	52999	0	0	0	0	0	0	0
1989	483	606	61715	0	0	0	0	0	0	0
1990	595	603	65919	0	0	0	0	0	0	0
1991	485	733	53497	0	0	0	0	0	0	0
1992	361	757	46119	0	0	0	0	0	0	0
1993	458	758	47075	0	0	6	606	0	0	0
1994	271	915	58697	13	173	1046	492	2	0	0
1995	0	968	60499	0	57	0	2	0	0	0
1996	0	764	56438	4	0	0	17	0	0	0
1997	0	340	43824	0	0	0	0	0	0	0
1998	0	513	41015	0	0	0	0	0	0	0
1999	0	885	44708	18	0	0	0	0	0	0
2000	0	5	41391	4	1	0	0	0	0	0

2001	0	690	39474	56	0	0	0	0	0	0
2002	0	847	49669	8	0	0	0	0	0	0
2003	0	968	60017	1	51	0	0	0	0	0
2004	0	1125	83809	1	0	0	0	0	0	0
2005	0	1515	95882	3	44	0	0	0	0	0
2006	0	1588	96133	4	0	0	0	0	0	0
2007	0	1686	108182	11	0	0	0	2	0	0
2008	0	1197	101680	11	0	0	0	0	0	0
2009	0	824	81439	5	0	0	0	0	0	0
2010	0	360	63869	8	0	0	0	0	0	0
2011	0	214	49232	3	0	0	0	0	0	0
2012	0	325	45711	13	0	0	0	0	0	0
2013	0	654	43370	23	0	0	0	0	0	0
2014	0	876	33048	11	0	0	0	0	0	0
2015	0	1257	38393	15	0	0	0	0	0	0
2016	0	1444	36648	8	0	0	0	0	0	0
2017	0	1355	35695	11	0	0	0	0	0	0
2018	0	1172	47677	15	0	0	0	0	0	0
2019	0	969	57075	1	0	0	0	0	0	0
2020	0	1248	53528	6	0	0	0	0	0	0
2021	0	1696	55882	20	0	0	0	0	0	0

Table 10.8: Haddock in 5.a. Number of Icelandic boats and catches by fleet segment participating in the haddock fishery in 5.a.

| Year | Nr. Bottom
 Trawl | Nr. Danish
 Seine | Nr. Long
 Line | Bottom
 Trawl | Other | Danish
 Seine | Long Line | Total catch |
| :---: | :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1992 | 308 | 92 | 844 | 30705 | 5577 | 1379 | 8458 | 46119 |
| 1993 | 374 | 143 | 808 | 32008 | 5159 | 1787 | 8121 | 47075 |
| 1994 | 322 | 154 | 842 | 42299 | 4370 | 3431 | 8597 | 58697 |
| 1995 | 269 | 139 | 743 | 44839 | 3224 | 4321 | 8115 | 60499 |
| 1996 | 228 | 150 | 625 | 40380 | 2895 | 5563 | 7601 | 56439 |
| 1997 | 211 | 155 | 474 | 28342 | 2543 | 5343 | 7596 | 43824 |
| 1998 | 199 | 139 | 469 | 24928 | 2477 | 3692 | 9918 | 41015 |
| 1999 | 187 | 129 | 492 | 26294 | 2064 | 2780 | 13569 | 44707 |
| 2000 | 165 | 118 | 479 | 23315 | 1881 | 3105 | 13091 | 41392 |
| 2001 | 146 | 92 | 451 | 22065 | 2372 | 3049 | 11987 | 39473 |
| 2002 | 144 | 91 | 419 | 30385 | 2043 | 3602 | 13639 | 49669 |
| 2003 | 136 | 96 | 435 | 36240 | 1685 | 4806 | 17285 | 60016 |
| 2004 | 131 | 95 | 449 | 50722 | 1793 | 8096 | 23198 | 83809 |
| 2005 | 126 | 91 | 449 | 53046 | 1577 | 10493 | 30767 | 95883 |
| 2006 | 117 | 93 | 436 | 45969 | 1218 | 12709 | 36237 | 96133 |
| 2007 | 109 | 94 | 407 | 57033 | 1081 | 12869 | 37199 | 108182 |

| Year | Nr. Bottom
 Trawl | Nr. Danish
 Seine | Nr. Long
 Line | Bottom
 Trawl | Other | Danish
 Seine | Long Line | Total catch |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2008 | 102 | 91 | 362 | 51228 | 944 | 16457 | 33051 | 101680 |
| 2009 | 98 | 81 | 335 | 39078 | 608 | 15182 | 26571 | 81439 |
| 2010 | 94 | 67 | 279 | 29341 | 475 | 10138 | 23916 | 63870 |
| 2011 | 95 | 54 | 278 | 20718 | 473 | 6866 | 21175 | 49232 |
| 2012 | 98 | 56 | 289 | 20469 | 473 | 6048 | 18722 | 45712 |
| 2013 | 95 | 65 | 281 | 18829 | 398 | 4955 | 19188 | 43370 |
| 2014 | 84 | 47 | 282 | 13438 | 329 | 3776 | 15505 | 33048 |
| 2015 | 83 | 50 | 256 | 17337 | 360 | 4327 | 16369 | 38393 |
| 2016 | 82 | 53 | 236 | 17045 | 321 | 4456 | 14826 | 36648 |
| 2017 | 80 | 53 | 209 | 16456 | 343 | 4539 | 14358 | 35696 |
| 2018 | 72 | 58 | 193 | 26639 | 336 | 5585 | 15117 | 47677 |
| 2019 | 69 | 43 | 182 | 35947 | 302 | 6237 | 14588 | 57074 |
| 2020 | 73 | 42 | 148 | 32005 | 278 | 5079 | 16165 | 53527 |
| 2021 | 82 | 46 | 140 | 35957 | 264 | 5337 | 14323 | 55881 |
| | | | | | | | | |

11 Icelandic summer spawning herring

11.1 Scientific Data

11.1.1 Survey description

The scientific data used for assessment of the Icelandic summer-spawning (ISS) herring stock derives from annual acoustic surveys (IS-Her-Aco-4Q/1Q), which have been ongoing since 1973 (Table 11.1.1.1). These surveys are conducted in the period of October-January and March-April. The surveyed area each year is decided based on available information on the distribution of the stock in the previous and the current year, which include information from the fishery. Thus, the survey area varies spatially as the survey is focused on the adult and incoming year classes but is considered to cover the whole stock each year.

The acoustic abundance index for the adult stock in the winter 2021/2022 derives from two dedicated acoustic surveys on RV Bjarni Sæmundsson: (1) A survey aiming at herring juveniles in the east and southeast of Iceland in November; (2) A survey in the end of March aiming at the fishable stock at the main overwintering area of the stock west of Iceland.

In addition to getting an acoustic estimate on the adult part and on juveniles at age 2 (juvenile survey for age 1 was not conducted in the year 2021), the objective was also to get an estimate of the prevalence of Ichthyophonus infection in the stock. The instrument and methods in the surveys were the same as in previous years. The biological sampling in the survey is detailed in Table 11.1.1.2.

11.1.2 The survey results

The fishable part of the Icelandic summer-spawning herring stock was observed mainly in two areas, west of Iceland in Kolluáll in the end of March 2022, and east and southeast of Iceland (Figure 11.1.2.1). The total acoustic estimate, according to these two surveys, came to 2.8 billion in numbers and the total biomass index was 528 kt (Table 11.1.1.1). The fishable part of the stock $(\geq 27 \mathrm{~cm})$ accounted for 63% in number and 83% of the biomass, or 437 kt .

The annual survey aiming for the abundance of herring juveniles east and southeast of Iceland took place in November 2021. Areas covered (Figure 11.1.2.1) were different from previous years, with the distribution more condensed in the east. The survey in the south and southeast is aimed for assessing the younger part of the stock, while the survey in the west assesses the older part.
A widespread ichthyophoniasis epizootic infection has been occurring in ISS-herring since 2008. This is caused by the parasite Ichthyophonus sp. Results of comprehensive analyses for the period 2008-2014 imply that significant infection mortality took place in the first three years after the outbreak started (2009-2011) but not the years after (2012-2016; Óskarsson et al., 2018b). The level of the mortality was estimated with series of runs of the NFT-Adapt assessment model, which gave the best fit to the data when applying infection mortality equivalent to 30% of the infected herring (heart inspection and survey abundance estimates provided Minfected) died annually in the first three years of the outbreak $\left(\mathrm{M}_{\text {year, age }}=\mathrm{M}_{\text {fixed }}+\mathrm{Minfected}, \mathrm{year} \mathrm{age} \times\right.$,0.3 ; Table 11.3.2.1). Also, the separate model run in the assessment, Muppet, estimated the Icthyophonus multiplier and it was very close to 0.3 (the value used in the assessment). The prevalence of the Ichthyophonus infection in the stock in 2021/22 was estimated in a same way as has been done since the initiation of the infection in the autumn 2008 (Óskarsson and Pálsson, 2018). The prevalence of infection shows a declining trend for all age classes for the past decade. The infection rate for the younger year
classes (age 2-4) seems to be low, or $<6.5 \%$ in the west and east combined (Figure 11.1.3.1.) There are still new infections taking place as seen with the younger ages, so infection mortality is assumed to take place in 2022, like in previous years. Thus, in the stock prognosis (Section 11.6), the abundance estimates from the final year of the assessment (1 January 2022) is lowered by this additional M as done in assessments for the past years. The level of M should then follow the results by Óskarsson et al. (2018b), where age specific Minfected (estimated from the catch samples; Figure 11.1.3.1) is multiplied by 0.3 and the fixed M (0.1) added to it. The M for 2021 (Table 11.3.2.1) should be used in the prognosis in 2022 and in the analytical assessment from 2022 and onwards, until better more reliable estimates become available.

11.2 Information from the commercial fishery

The total landings of ISS herring in 2021/2022 season was 70084 t including the summer catches in 2021 with no discards reported (Table 11.2.1 and in Figure 11.2.1). Including the summer catches in the subsequent fishing season, as done here, is a traditional handling of the catch data when assessing this stock. The quality of the herring landing data regarding discards and misreporting are consider adequate as implied in the Her-Vasu stock annex.

The recommended TAC for 2021/2022 fishing season (1 September-31 August; ICES, 2018) and TAC (Regulation No. 672, 2 July 2020) was 72.2 kt (Table 11.2.1). Officially, according to the Directorate of Fisheries (www.fiskistofa.is/veidar/aflaupplysingar/heildaraflamarksstada/), 70.1 kt had been caught in April 2022, slightly below the TAC.

The direct fishery in offshore areas west of Iceland in October-December contributed 74\% (52 kt) of the total catches (Figure 11.2.2). The remaining $25 \%(18 \mathrm{kt})$ of the catch was taken in Septem-ber-October in the east and the final $1 \%(1 \mathrm{kt})$ as bycatch in the fishery also in the east in JuneAugust (Figure 11.2.2).

11.2.1 Fleets and fishing grounds

The herring fishing season has taken minor changes in the last three decades as detailed in the stock annex. All seasonal restricted landings, catches and recommended TACs since 1985 are given in thousands of tonnes (kt) in Table 11.2.1.

All the catch in 2021/2022 was taken in pelagic trawls (Figure 11.2.1), which reflects that both the targeting and bycatch fisheries. During all fishing seasons from 2007/2008 to 2012/2013, most of the catches ($\sim 90 \%$) were taken in inshore areas west off Iceland in Breiðafjörður, while prior to that they were mainly taken off the south-, southeast-, and the east coast. In 2013/2014 there was an indication for change in this pattern, with less proportion in Breiðafjörður, and then in 2014/2015 almost all the overwintering west of Iceland took place offshore, which has continued since. These changes in the stock distribution explain the dominance of pelagic trawl in the fishery, which is preferred by the fleet over purse seine in offshore areas.

To protect juvenile herring (27 cm and smaller) in the fishery, area closures are enforced based on a regulation of the herring fishery set by the Icelandic Ministry of Fisheries (no. 376, 8 October 1992). No closure was enforced in this herring fishery in 2021/22. Normally, the age of first recruitment to the fishery is age-3, which is fish at length around $26-29 \mathrm{~cm}$.

11.2.2 Catch in numbers, weight-at-age and maturity

Catch at age in 2021/2022:
The procedure for the catch-at-age estimations, as described in the Stock Annex, was followed for the 2021/22 fishing season. It involves calculations from catch data collected at the harbours
by the research personnel (0%) or at sea by fishers (100%). This year, the calculations were accomplished by dividing the total catch into two cells confined by season and area. In the same way, weight-at-length relationships derived from the length and weight measurements of the catch samples were used. Based on difference in length-at-age, two length-age keys were applied. The catches of the Icelandic summer spawners in number-at-age for this fishing season as well as back to 1975 are given in Table 11.2.2.1. The geographical location of the catch and sampling in 2021/2022 is shown on Figure 11.2.2.

Weight-at-age:

As stated in the stock annex, the mean weight-at-age of the stock is derived from the catch samples (Table 11.2.2.2).

Proportion mature:

The fixed maturity ogives were used in this year's assessment, as described in detail in the stock annex, where proportion mature-at-age 3 is set 20% and 85% for fish at age 4 , while all older fish is considered mature.

11.3 Analytical assessment

11.3.1 Analysis of input data

Examination of catch curves for the year classes from 1989 to 2017 (Figure 11.3.1.1) indicates, in general, that the total mortality signal (Z) in the fully recruited age groups is around 0.4 . It is under the assumption that the effort has been the same the whole time. In recent years the effort has changed a lot because of the infection and spatial distribution of the stock, and the mass mortality in 2012/2013, which makes any strong inference from the catch curves for those recent years less meaningful.

Catch curves were also plotted using the age disaggregated survey indices for each year class from 1989-2017 (Figure 11.3.1.2). Even if the total mortalities look at bit noisy for some year classes, they seem to be fairly close to 0.4 . There is an indication that the fish is fully assessable to the survey at age 3-5.

Increased mortality in the stock because of the Ichthyophonus outbreak cannot be detected clearly from the catch curves of the surveys. However, considering that F was reduced drastically in the beginning of the outbreak, similar Z means an increased M during that period, representing infection mortality.

11.3.2 Assessment

In order to explore the data this year, two models were run, NFT-ADAPT (VPA/ADAPT version 3.3.0 NOAA Fisheries Toolbox) that has been used as the basis for the assessments since 2005 and another model (Muppet) also used in the MSE in 2017 for the stock (ICES 2017b; Björnsson 2018) as well as analytical assessment of Icelandic saithe. Applying NFT-ADAPT was evaluated at benchmark assessment in January 2011 (ICES, 2011a) and it found to be appropriate as the principal assessment tool for the stock. The catch data used were from 1987/88-2021/22 (Table 11.2.2.1) and survey data from 1987/88-2021/22 (Table 11.1.1.1). Other input data consisted of: (i) mean weight at age (Table 11.2.2.2); (ii) maturity ogive (Table 11.2.2.3); (iii) natural mortality, M , that was set to 0.1 for all age groups in all years, except for 2009-2011 and 2017-2021 where additional age dependent mortality was applied because of the Ichthyophonus infection (see Section 11.1.3; Table 11.3.2.1; Óskarsson et al., 2018b); (iv) proportion of M before spawning was set
to 0.5 ; and (v) proportion of F before spawning was set to 0 . Thus, in comparison to last year's assessment, all the input data are the same with an additional year of data.

Results:

The estimated parameters in NFT Adapt are the stock in numbers at age. The parameters are output by the Levenburg-Marquardt Non-Linear Least Squares minimization algorithm (see VPA/ADAPT Version 3.3.0, Reference Manual). The estimated parameters were stock numbers for ages 4 to 12 in the beginning of year 2022. The stock numbers at age 2 and 3 in 2022 were derived by using geometric mean for the period 1987-2019. Like in last years' assessments, the input partial recruitment was set to 1 for ages 4 and older and the classic method was used to calculate the value of fully recruited fishing mortality in the terminal year.

The catchability at age in the survey, as estimated by the NFT-Adapt, and the CV is shown in Figure 11.3.2.1. The age groups 3-10 were used for tuning (Table 11.1.1.1 as decided at the benchmark in ICES (2011a). Compared to last year, estimated catchability and uncertainty in the survey are similar.

The output and model settings of the NFT-Adapt run (the adopted final assessment model) are shown in Table 11.3.2.2. Stock numbers and fishing mortalities derived from the run are shown in Table 11.3.2.3 and Table 11.3.2.4, respectively, and summarized in Table 11.3.2.5 and Figure 11.3.2.2.

Residuals of the model fit are shown in Figure 11.3.2.3 and Table 11.3.2.6 and shows both cohort and year affects. The main pattern is the same as presented in recent assessments. Positive residuals, where the model estimates are smaller than seen in the survey, can be seen for 1994- and 1999-year classes for almost all age groups and negative residuals for the 2001- and 2003-year classes. Year blocks of positive residuals are apparent for the years ~ 2000 to 2006 (i.e. referring to 1 January). During these years, the stock was overwintering in offshore areas off the east and west coast, compare to mainly easterly distribution before and overwintering in inshore areas there after (from ~2006-2012). These positive blocks could therefore reflect changes in catchability of the survey for these years. After 2008 the residuals are generally behaving well.

Retrospective analyses indicate a consistency over the most recent six years, i.e. adding new data to the model does not change the present perception of the stock size much (Figure 11.3.2.4). The retros for the fishing mortality and recruits behave, in a same way, well for the last four years.

Like demonstrated and analysed earlier (ICES, 2014), the main difference between observed and predicted survey values from the NFT-Adapt model was for the period 1999-2004, where the observed values were well above the predicted (Figure 11.3.2.5), otherwise they fitted relatively well. Like seen in the residual plot (Figure 11.3.2.3), the observed value for the 2009 survey was lower than predicted and the vice versa for the 2012 survey (referring to the beginning of the year; Figure 11.3.2.5). The low survey value in 2009 is likely underestimate due to distribution of the stock that year in the fjord west of Iceland (Breiðafjörður; Oskarsson et al., 2010), while the positive block during 2000-2004 was previously found to be mainly caused by the large 1999year class (ICES, 2014) and possibly changes in the catchability of the survey as suggested above. However, an exploratory run in NFT-Adapt done in the 2011 assessment (ICES, 2011b) where these years were excluded in the tuning, did not change the point estimate of the stock size in the latest year (1 January 2011), implying that the terminal point estimates in the final run was not driven by this residual block.

Comparisons of different models:

The two models explored, NFT-Adapt and Muppet, gave very similar results, and especially for the latest years of the assessments (Figure 11.3.2.2). This indicates that the results are driven by the input data and not by the model used.

11.3.3 Final assessment and TAC advice based on a Management Plan

In this update assessment, where the 2021/22 catch and survey data have been added to the input data, additional natural mortality was applied for 2022 because of the Ichthyophonus infection in the stock. The same approach was used as for 2009-2011 and 2017-2021 where the applied mortality corresponds to that 30% of infected herring died.

The results from the analytical assessment model, NFT-Adapt, indicate that the stock size is slightly lower than in the previous year. Spawning stock biomass for 2023 is estimated 404 kt and the reference biomass of age $4+\left(B_{R e f}\right)$ is 441.3 kt in the beginning of the year 2022. As the SSB will be above MGT $B_{\text {trigger }}=200 \mathrm{kt}$, the advised TAC according to the Iceland Management Plan is $H R_{M G T} \times B_{R e f}=0.15 \times 441299=66195$ tonnes.

11.4 Reference points and the Management plan

Precautionary approach reference points:

The working group points out that managing this stock at an exploitation rate at or above $\mathrm{F}_{0.1}=\mathrm{F}_{\text {MSY }}=0.22$ has been successful in the past for almost 30 years, despite biased assessments. At the 2016 NWWG meeting, the PA reference points for the stock were verified and revised (ICES, 2016). On basis of the stock-recruitment relationship deriving from time-series ranging from 1947-2015, keeping Blim $=200$ kt was considered reasonable as the Study Group on Precautionary Reference Points for Advice on Fishery Management concluded also in February 2003. Other PA reference points were derived from $B_{l i m}$ and these data in accordance to the ICES Advice Technical Guidelines and became these: $\mathrm{B}_{\mathrm{pa}}=273 \mathrm{kt}\left(\mathrm{B}_{\mathrm{pa}}=\mathrm{B}_{\lim } \times \mathrm{e}^{1.645 \sigma}\right.$, where $\left.\sigma=0.19\right)$; $\mathrm{F}_{\lim }=$
 where $\sigma=0.18$).

MSY based reference points:

At a NWWG meeting in 2011 an exploratory work, using the HCS program Version 10.3 (Skagen, 2012), was used to evaluate possible points based on the MSY framework that could be a basis for a management plan and Harvest Control Rule later (ICES, 2011b). Number of different runs was made with varying settings. The results implied that the MSY framework was confirmative with the currently used precautionary reference points. It means that the currently used $\mathrm{F}_{0.1}=0.22$ could be a valid candidate for $\mathrm{F}_{\text {MSY. }}$. During a Management Strategy Evaluation (MSE) for the stock in April 2017 (ICES, 2017b), FMSY $=0.22$ was not considered to be significantly different from results of simulation giving 0.24. Thus, it was concluded adequate to keep $\mathrm{F}_{\mathrm{MSY}}=0.22$.

Management plan

A Management Strategy Evaluation (MSE) for the stock took place in 2017 (ICES, 2017b). Five different HCRs were tested and all of them, except for the advisory rule applied at that time ($\mathrm{FMGT}=0.22$), were considered precautionary and in accordance with the ICES MSY approach. One of these HCR was later adopted by Icelandic Government as a Management plan for the stock. This HCR is based on reference biomass of age $4+$ in the beginning of the assessment years ($B_{r e f, ~}$ Y), a spawning stock biomass trigger (MGT $B_{\text {trigger }}$) is defined as 200 kt , and the harvest rate (HRмgт) is set as 15% of the reference biomass age4+ in the beginning of the assessment year. In the assessment year (Y) the TAC in the next fishing year (1 September of year Y to 31 August of year $\mathrm{Y}+1$) is calculated as follows:

When SSBy is equal or above MGT Btriger:
TACy/y+1 $=$ HRмqт * Bref,y
When SSBy is below MGT $B_{\text {trigger: }}$
$\mathrm{TACy}_{\text {/y }+1}=$ HRMGT $^{*}\left(\right.$ SSBy $\left._{y} / \mathrm{MGT} \mathrm{B}_{\text {trigger }}\right){ }^{*} \mathrm{~B}_{\text {ref }, \mathrm{y}}$
In the MSE simulation, the ongoing Ichthyophonus epidemic was considered to continue and was accounted for. Consequently, this HCR is independent of estimated level of Ichthyophonus mortality and requires no further action during such epidemics.

The distribution of the realized harvest rate when the HCR is followed showed that the 90% expected range are within a harvest rate of $0.099-0.22$ with no bias and $0.122-0.247$ if bias is applied. The recent realized harvest rates are within the above range.

11.5 State of the stock

The stock was at high levels around 2002 but showed a steady decline to 2017 despite a low fishing mortality. The reduction is a consequence of mortality induced by the Ichthyophonus outbreak in the stock in 2009-2011 and 2016-2018 in addition to small year classes entering the stock since around 2005, particularly the 2011-2014-year classes. The 2017-year class was large, and indices from the last fishing season 2021/22 indicate that the 2018-year class will also be above average and will enter the fishable stock in autumn 2022 at age 4.

11.6 Short-term forecast

11.6.1 The input data

The final adopted model, NFT-Adapt, which gave the number-at-age on 1 January, 2022, was used for the prognosis. All input values for the prognosis are given in Table 11.6.1.1. Because of the expected Ichthyophonus mortality in the stock in the spring 2022 (see Section 11.1.3), the NFTAdapt model output were reduced according to the infection ratios times 0.3 (Table 11.3.2.1), or the same approach as used in the assessments in 2009-2011 and 2018-2021 (ICES, 2011b; 2018a; Óskarsson et al., 2018b).

The weights were estimated from the last year catch weights (see Stock Annex) and as in the recent years, the weights are expected to continue to be high, except for the youngest age groups, which is though still well within observed range (Figure 11.6.1.1).

In summary, the basis for the stock projection is as follows: $\operatorname{SSB}(2022)=421.1 \mathrm{kt}$; Biomass age 4+ $\left(1\right.$ January 2022) $=441.3 \mathrm{kt}$; Catch $(2021 / 22)=70.1 \mathrm{kt} ; \mathrm{WF}_{5-10}(2021)=0.288 ; \mathrm{HCR}(2021)=0.15$.

11.6.2 Prognosis results

SSB in the beginning of the fishing season 2022/23 (approximately the same time as spawning in July 2022) is estimated to be 421132 kt , which is above MGT Btrigger of 200 kt . Consequently, advised TAC on basis of the Management rule is $0.15 \times$ Biomass $4+(441299 \mathrm{kt})=66195 \mathrm{kt}$. This results in $\mathrm{F}_{\mathrm{W}-10}=0.202$ in 2022/23 and SSB $=403999 \mathrm{kt}$ in 2023 (Table 11.6.2.1). The results of different options are given in Table 11.6.2.1.

11.7 Medium-term predictions

Because of the increased uncertainty of the assessment in relation to the development of the Ichthyophonus outbreak in the coming months and years, the uncertainty in size of the recruiting year classes, and the new management rule, no medium-term prediction is provided.

11.8 Uncertainties in assessment and forecast

11.8.1 Uncertainty in assessment

There are number of factors that could lead to uncertainty in the assessment. Two of them are addressed here. Additional natural mortality caused by the Ichthyophonus infection was set for the first three years of the outbreak (2009-2011) and in 2017-2021 (Minfected, age, year multiplied by 0.3 (see Section 11.1.3). This quantification of the infection mortality based on Óskarsson et al. (2018b), was considered to improve the assessment and reduce its uncertainty. For the most recent years, where new infection reappeared (2017-2021), more accurate estimation of the infection mortality will be possible in the years to come but until then, this approach will add uncertainty to the assessment. Worth noticing, increasing M has been shown to increase the historical perception of the stocks size but has minor impacts on the assessment of the final year and the resulting advice.

11.8.2 Uncertainty in forecast

It is important to notice that the advice for 2022/2023 fishing season deriving from the Management plan is independent of the forecast and its uncertainty as it is only based on the reference biomass in the beginning of the assessment year. The uncertainty in the assessment mentioned above related to the apparent new infection in the stock and size of the recruiting year classes, apply also for the forecast.

11.8.3 Assessment quality

For a period, there was concerns regarding the assessment because of retrospective patterns of the results. No assessment was provided in 2005 due to data and model problems and in the two next consecutive years, ACFM rejected the assessment due to the retrospective pattern. In the assessments in 2007-2009 there was observed an improvement in the pattern from NFT-Adapt, while in 2010-2011, a retrospective pattern appeared again which was both related to the high M because of the Ichthyophonus infection but also due to new and more optimistic information about incoming year classes to the fishable stock (particularly the 2008-year class) and fishing pattern in recent year. The retrospective pattern in the last five and this year's assessment are less than seen for many years for SSB and F (Figure 11.3.2.4). Simultaneously the residuals from the survey are behaving better than before (Figure 11.3.2.3). This together could be interpreted as indications for improvements in the assessment quality in recent years in comparison to the years before.

As stated in the 2017 NWWG report (ICES, 2017c), the revision of the infection mortality applied in the analytical assessment for the years 2009-2011 in accordance to the estimated mortality levels (Section 11.1.3), is also considered as an improvement of the assessment. Thus, the downward revision of the stock size over the period ~2003-2011 compared to the last year's assessment (Figure 11.3.2.2) is considered to provide more robust figure of development in the historical stock's size.

11.9 Comparison with previous assessment and forecast

This year's assessment was conducted in the same way as in last year. Additional natural mortality was applied to because of the infection.

11.10 Management consideration

Inspections indicate still a high prevalence of heart lesions related to Ichthyophonus hoferi in the herring stock. More importantly, new infection have taken place in the stock in the past winters but possibly with a decreased intensity in 2018/2019. Significant new infection was otherwise last observed in 2010 (Óskarsson et al., 2018b). Correspondingly, induced mortality due to the infection was unavoidably applied for 2017-2021, and this second outbreak might continue in the coming year.

11.11 Ecosystem considerations

The reason for the outbreak of Ichthyophonus infection in the herring stock that was first observed in the autumn 2008 is not known but is probably the effect of interaction between environmental factors and distribution of the stock (Óskarsson et al. 2009). It includes that outbreak of Ichthyophonus spores in the environment, which infect the herring via oral intake (Jones and Dawe, 2002), could be linked to the observed increased temperature off the southwest coast. Further researches on the causes and origins of such an outbreak are ongoing at MFRI. It involves scanning for Ichthyophonus DNA in zooplankton species that the herring feeds on with PCR (Polymerase chain reaction) technique. Results from that work (MS thesis) can be expected in the summer 2019, while preliminary results indicate that the source of the infection is widespread and is in various zooplankton groups and species. With respect to the impacts of the outbreak on the herring stock, recent analyses show that significant additional mortality took place over the first three years only (Óskarsson et al., 2018b), despite a high prevalence of infection for the past decade. As pointed out above, a new infection since the summer 2022 is however, expected to cause significant mortality again. For how long time this outbreak will last is unknown as this is basically an unprecedented outbreak. The signs of the infection that is found in the stock will most likely remain for some years, even if no new infection will occur, and then decrease and disappear over some years as new year classes replace the older ones. The observed new infection will however delay this process.

All general ecosystem consideration with respect to the stock can be found in the Ecosystem Overview for the Icelandic Ecoregion (ICES, 2017a).

11.12 Regulations and their effects

The fishery of the Icelandic summer-spawning herring is limited to the period 1 September to 1 May each season, according to regulations set by the Icelandic Fishery Ministry (no. 770, 8 September 2006). Several other regulations are enforced by the Ministry that effect the herring fishery. They involve protections of juvenile herring (27 cm and smaller) in the fishery where area closures are enforced if the proportion of juveniles exceeds 25% in number (no. 376,8 October 1992). No such closures took place in 2021/2022. Another regulation deals with the quantity of bycatch allowed. Then there is a regulation that prohibits use of pelagic trawls within the 12 nautical miles fishing zone (no. 770, 8 September 2006), which is enforced to limit bycatch of juveniles of other fish species.

11.13 Changes in fishing technology and fishing patterns

There are no recent changes in fishing technology which may lead to different catch compositions. The fishing pattern in the seasons 2014/2015 to 2021/2022 was different from the previous seasons. Instead of fishing near only in a small inshore area off the west coast in purse seine, the
directed fishery took place in offshore areas west and east of Iceland by pelagic trawls. These changes are not considered to affect the selectivity of the fishery because the fishery is still targeting dense schools of overwintering herring in large fishing gears, getting huge catches in each haul and is by no means size selective.

Bycatch of Icelandic summer-spawning herring in summer fishery for NE-Atlantic mackerel and Norwegian spring-spawning herring has been taken place since around mid-2000s. Until that time, no summer fishery on this stock had taken place for decades. Part of this bycatch is on the stock components (e.g. juveniles and herring east of Iceland) that are not fished in the direct fishery on the overwintering grounds in the west. However, these bycatches are well sampled and contributes normally to less than 10% of the total annual catch but were as high as 37% in the season 2017/2018. It can be explained by the low TAC, so the fleet did not have much quota left for direct autumn fishery. Still, the impacts of these changes on the assessment are considered to be insignificant.

The fishing pattern varies annually as noted in Section 11.2 and it is related to variation in winter distribution of the different age classes of the stock. This variation can have consequences for the catch composition but it is impossible to provide a forecast about this variation.

11.14 Species interaction effects and ecosystem drivers

The WG have not dealt with this issue in a thoroughly and dedicated manner. However, some work has been done in this field in recent years in one way or another.

Regarding relevant researches on species interaction, the main work relates to the increasing amount of North East Atlantic mackerel (NEAM) feeding in Icelandic waters after 2006 (Astthorsson et al., 2012; Nøttestad et al., 2016). Surveys in the summers since 2010 indicate a high overlap in spatial and temporal distribution of NEAM and Icelandic summer-spawning herring (Óskarsson et al., 2016). Moreover, the diet composition of NEAM in Icelandic waters showed a clear overlap with those of the two herring stocks, i.e. Icelandic summer-spawning herring and Norwegian spring-spawning herring (Óskarsson et al., 2016). Even if copepoda was important diet group for all the three stocks its relative contribution to the total diet was apparently higher for NEAM than the two herring stocks. Considering former studies of herring diet, this finding was unexpected, and particularly how little the copepoda contributed to the herring diet. This difference in the stomach content of NEAM and the two herring stocks indicated that there could be some difference in feeding ecology between them in Icelandic waters, where NEAM preferred copepoda, or feed in the water column where they dominate over other prey groups, while the opposite would be for the herring and the prey Euphausiacea. Recent studies in the Nordic Seas have shown similar results (Langøy et al., 2012; Debes et al., 2012). The indication for difference in feeding ecology of the species is further supported by the fact that the body condition of the two herring stocks showed no clear decreasing trend since the invasion of NEAM started into Icelandic waters. On the contrary the mean weights-at-age (and at-length) of the summer spawners have been high after 2010 (Óskarsson, 2019b) and for example record high in the autumn 2014 (Figure 11.6.1.1). It should though be noted that comparison of the diet composition of herring in recent years to earlier studies, mainly on NSS herring, indicate that the herring might have shifted their feeding preference towards Euphausiacea instead of Copepoda. That is possibly a consequence of increased competition for food with NEAM, where the herring is overwhelmed and shifts towards other preys.

The WG is not aware of documentations of strong signals from ecosystem or environmental variables that impact the herring stock and could possibly be a basis for implementing ecosystem drivers in the analytical basis for its advice. For example, recruitment in the stock has been positively, but weakly, linked to NAO winter index (North Atlantic Oscillation) and sea temperature
(Óskarsson and Taggart, 2010), while indices representing zooplankton abundance in the spring have not been found to impact the recruitment (Óskarsson and Taggart, 2010) or body condition and growth rate of the adult part of the stock (Óskarsson, 2008).

Considering these relations derived from the historical data, relatively warm waters around Icelandic (MRI 2016), and high positive NAO in recent years
(http://www.cpc.ncep.noaa.gov/products/precip/CWlink /pna/nao.shtml), it was concluded in last year's report (ICES, 2021) that we could expect a good recruitment in the stock. It seems to be coming about with the 2017-year class and an encouraging measurement of the 2018-year class as well.

11.15 Comments on the PA reference points

The WG dealt with the reference points in 2016 and revised them in accordance to the ICES Technical Guidelines (ICES, 2016).

11.16 Comments on the assessment

The assessment shows that the stock size was declining 2000-2018 due to a combination of Ichthyophonus mortality and series of below average and poor year classes entering the stock. The 2017-year class which entered the reference biomass in autumn 2021 and a above average 2018year class as well, might cause an upward revision of the assessment in coming years, but time will tell.

There is compelling evidence for new infection by Ichthyophonus in the stock in the winter 2022/23, even if less intense than in the years before. This called for applying additional infection mortality. This current outbreak adds uncertainty to the assessment and advice.

11.17 References

Astthorsson, O. S., Valdimarsson H., Gudmundsdottir, A., Óskarsson, G. J. 2012. Climate-related variations in the occurrence and distribution of mackerel (Scomber scombrus) in Icelandic waters. ICES Journal of Marine Science. 69: 1289-1297.

Björnsson, H. 2018. Icelandic herring. ICES North Western Working Group, 27 April - 4 May 2018, Working Document No. 20. 2 pp.

Debes, H., Homrum, E., Jacobsen, J. A., Hátún, H., and Danielsen, J. 2012. The feeding ecology of pelagic fish in the southwestern Norwegian Sea - Inter species food competition between herring (Clupea harengus) and mackerel (Scomber scombrus). ICES CM 2012/M:07. 19 pp .

ICES. 2011a. Report of the Benchmark Workshop on Roundfish and Pelagic Stocks (WKBENCH 2011), 2431 January 2011, Lisbon, Portugal. ICES CM 2011/ACOM:38. 418 pp.

ICES. 2011b. Report of the North Western Working Group (NWWG), 26 April - 3 May 2011, ICES Headquarters, Copenhagen. ICES CM 2011/ACOM:7. 975 pp
ICES. 2014. Report of the North Western Working Group (NWWG), 24 April-1 May 2014, ICES HQ, Copenhagen, Denmark. ICES CM 2014/ACOM:07. 902 pp.

ICES. 2016. Report of the North-Western Working Group (NWWG), 27 April-4 May, 2016, ICES Headquarters, Copenhagen. ICES CM 2016/ACOM:08.

ICES. 2017a. Icelandic Waters ecoregion - Ecosystem overview. http://ices.dk/sites/pub/Publication\ Re-ports/Advice/2017/2017/Ecosystem_overview-Icelandic_Waters_ecoregion.pdf

ICES. 2017b. Report of the Workshop on Evaluation of the Adopted Harvest Control Rules for Icelandic Summer Spawning Herring, Ling and Tusk (WKICEMSE), 21-25 April 2017, Copenhagen, Denmark. ICES CM 2017/ACOM:45. 49 pp.

ICES. 2017c. Report of the North Western Working Group (NWWG), 27 April - 4 May 2017, Copenhagen, Denmark. ICES CM 2017/ACOM:08. 642 pp.
ICES. 2018. Report of the North-Western Working Group (NWWG), 26 April-3 May, 2018, ICES HQ, Copenhagen, Denmark. ICES CM 2018/ACOM:09. 733 pp.

Jones, S.R.M. and Dawe, S.C., 2002. Ichthyophonus hoferi Plehn \& Mulsow in British Columbia stocks of Pacific herring, Clupea pallasi Valenciennes, and its infectivity to chinook salmon, Oncorhynchus tshawytscha (Walbaum). Journal of Fish Diseases 25, 415-421.

Langøy, H., Nøttestad, L., Skaret, G., Broms, C. and Fernö, A. 2012. Overlap in distribution and diets of Atlantic mackerel (Scomber scombrus), Norwegian spring- spawning herring (Clupea harengus) and blue whiting (Micromesistius poutassou) in the Norwegian Sea during late summer. Marine biology research, 8: 442-460.
MRI 2016. Environmental conditions in Icelandic waters 2015. Marine and Freshwater Research Institute. HV 2016-001, ISSN 2298-9137 (https://www.hafogvatn.is/is/midlun/utgafa/haf-og-vatnarannsok-nir/thaettir-ur-vistfraedi-sjavar-2015)

Nøttestad, L., Utne, K.R., Guðmundur J. Óskarsson, Sigurður P. Jónsson, Jacobsen, J.A., Tangen, Ø., Anthonypillai, V., Aanes, S., Vølstad, J.H., Bernasconi, M., Debes, H., Smith, L., Sveinn Sveinbjörnsson, Holst, J.C., Jansen, T. og Slotte, A. 2016. Quantifying changes in abundance, biomass and spatial distribution of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic seas from 2007 to 2014. ICES Journal of Marine Science, 73: 359-373.

Óskarsson, G.J. 2008. Variation in body condition, fat content and growth rate of Icelandic summer-spawning herring (Clupea harengus L.). Journal of Fish Biology 72: 2655-2676.
Óskarsson, G.J. 2019. Estimation on number-at-age of the catch of Icelandic summer-spawning herring in 2018/2019 fishing season and the development of Ichthyophonus sp. infection in the stock. ICES North Western Working Group, 25 April - 1 May 2019, Working Document No. 5. 15 pp.
Óskarsson, G.J. and C.T. Taggart 2010. Variation in reproductive potential and influence on Icelandic herring recruitment. Fisheries Oceanography. 19: 412-426.

Óskarsson, G.J. and Pálsson, J. 2017. Estimation on number-at-age of the catch of Icelandic summer-spawning herring in 2016/2017 fishing season and the development of Ichthyophonus hoferi infection in the stock. ICES North Western Working Group, 27 April - 4 May 2017, Working Document No. 10.15 pp.
Óskarsson, G.J. and Pálsson, J. 2018. Estimation on number-at-age of the catch of Icelandic summer-spawning herring in 2017/2018 fishing season and the development of Ichthyophonus sp. infection in the stock. ICES North Western Working Group, 27 April - 4 May 2018, Working Document No. 2. 15 pp.
Óskarsson, G.J., J. Pálsson, and Á. Guðmundsdóttir 2009. Estimation of infection by Ichthyophonus hoferi in the Icelandic summer-spawning herring during the winter 2008/09. ICES North Western Working Group, 29 April- 5 May 2009, Working Document 1.10 p.

Óskarsson, G.J., P. Reynisson, and Á. Guðmundsdóttir 2010. Comparison of acoustic measurements of Icelandic summer-spawning herring the winter 2009/10 and selection of measurement for stock assessment. Marine Research Institute, Reykjavik, Iceland. An Internal Report. 14 pp.
Óskarsson, G.J., A. Gudmundsdottir, S. Sveinbjörnsson \& P. Sigurðsson 2016. Feeding ecology of mackerel and dietary overlap with herring in Icelandic waters. Marine Biology Research, 12: 16-29.

Óskarsson, G.J., Ólafsdóttir, S.R., Sigurðsson, P., and Valdimarsson, H. 2018a. Observation and quantification of two incidents of mass fish kill of Icelandic summer spawning herring (Clupea harengus) in the winter 2012/2013. Fisheries Oceanography. DOI: 10.1111/fog. 12253.
Óskarsson, G.J., Pálsson, J., and Gudmundsdottir, A. 2018b. An ichthyophoniasis epizootic in Atlantic herring in marine waters around Iceland. Can. J. Fish. Aquat. Sci. dx.doi.org/10.1139/cjfas-2017-0219.

Skagen, D. 2012. HCS program for simulating harvest control rules. Program description and instructions for users. Version HCS12_2. Available from the author.

11.18 Tables

Table 11.1.1.1. Icelandic summer-spawning herring. Acoustic estimates (in millions) in the winters 1973/74-2021/22 (age refers to the autumns). No surveys (and gaps in the time-series) were in 1976/77, 1982/83, 1986/87, 1994/95.

Year\age	2	3	4	5	6	7	8	9	10	11	12	13	14	15+	Total
1973/74	154.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	154
1974/75	5.000	137.000	19.000	21.000	2.000	2.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	186
1975/76	136.000	20.000	133.000	17.000	10.000	3.000	3.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	322
1977/78	212.000	424.000	46.000	19.000	139.000	18.000	18.000	10.000	0.000	0.000	0.000	0.000	0.000	0.000	886
1978/79	158.000	334.000	215.000	49.000	20.000	111.000	30.000	30.000	20.000	0.000	0.000	0.000	0.000	0.000	967
1979/80	19.000	177.000	360.000	253.000	51.000	41.000	93.000	10.000	0.000	0.000	0.000	0.000	0.000	0.000	1004
1980/81	361.000	462.000	85.000	170.000	182.000	33.000	29.000	58.000	10.000	0.000	0.000	0.000	0.000	0.000	1390
1981/82	17.000	75.000	159.000	42.000	123.000	162.000	24.000	8.000	46.000	10.000	0.000	0.000	0.000	0.000	666
1983/84	171.000	310.000	724.000	80.000	39.000	15.000	27.000	26.000	10.000	5.000	12.000	0.000	0.000	0.000	1419
1984/85	28.000	67.000	56.000	360.000	65.000	32.000	16.000	17.000	18.000	9.000	7.000	4.000	5.000	5.000	689
1985/86	652.000	208.000	110.000	86.000	425.000	67.000	41.000	17.000	27.000	26.000	16.000	6.000	6.000	1.000	1688
1987/88	115.544	401.246	858.012	308.065	57.103	32.532	70.426	36.713	23.586	18.401	24.278	10.127	3.926	4.858	1965
1988/89	635.675	201.284	232.808	381.417	188.456	46.448	25.798	32.819	17.439	10.373	9.081	5.419	3.128	5.007	1795
1989/90	138.780	655.361	179.364	278.836	592.982	179.665	22.182	21.768	13.080	9.941	1.989	0.000	0.000	0.000	2094
1990/91	403.661	132.235	258.591	94.373	191.054	514.403	79.353	37.618	9.394	12.636	0.000	0.000	0.000	0.000	1733
1991/92	598.157	1049.990	354.521	319.866	89.825	138.333	256.921	21.290	9.866	0.000	9.327	0.000	0.000	1.494	2850
1992/93	267.862	830.608	729.556	158.778	130.781	54.156	96.330	96.649	24.542	1.130	1.130	3.390	0.000	0.000	2395
1993/94	302.075	505.279	882.868	496.297	66.963	58.295	106.172	48.874	36.201	0.000	4.224	18.080	0.000	0.000	2525
1995/96	216.991	133.810	761.581	277.893	385.027	176.906	98.150	48.503	16.226	29.390	47.945	4.476	0.000	0.000	2197
1996/97	33.363	270.706	133.667	468.678	269.888	325.664	217.421	92.979	55.494	39.048	30.028	53.216	18.838	12.612	2022
1997/98	291.884	601.783	81.055	57.366	287.046	155.998	203.382	105.730	35.469	27.373	14.234	36.500	14.235	11.570	1924
1998/99	100.426	255.937	1081.504	103.344	51.786	135.246	70.514	101.626	53.935	17.414	13.636	2.642	4.209	8.775	2001
1999/00	516.153	839.491	239.064	605.858	88.214	43.353	165.716	89.916	121.345	77.600	21.542	3.740	11.149	0.000	2823
2000/01	190.281	966.960	1316.413	191.001	482.418	34.377	15.727	37.940	14.320	15.413	14.668	1.705	3.259	0.000	3284
2001/02	1047.643	287.004	217.441	260.497	161.049	345.852	62.451	57.105	38.405	46.044	38.114	21.062	3.663	0.000	2586

Year\age	2	3	4	5	6	7	8	9	10	11	12	13	14	15+	Total
2002/03	1731.809	1919.368	553.149	205.656	262.362	153.037	276.199	99.206	47.621	55.126	18.798	24.419	24.112	1.377	5372
2003/04	1115.255	1434.976	2058.222	330.800	109.146	100.785	38.693	45.582	7.039	6.362	7.509	10.894	0.000	2.289	5268
2004/05	2417.128	713.730	1022.326	1046.657	171.326	62.429	44.313	10.947	23.942	12.669	0.000	1.948	11.088	0.000	5539
2005/06	469.532	443.877	344.983	818.738	1220.902	281.448	122.183	129.588	73.339	65.287	10.115	9.205	3.548	12.417	4005
2006/07	109.959	608.205	1059.597	410.145	424.525	693.423	95.997	123.748	48.773	0.955	0.000	0.000	0.000	0.480	3576
2007/08	90.231	456.773	289.260	541.585	309.443	402.889	702.708	221.626	244.772	13.997	22.113	68.105	10.136	2.800	3376
2008/09	149.466	196.127	416.862	288.156	457.659	266.975	225.747	168.960	29.922	26.281	17.790	9.881	0.974	3.195	2258
2009/10	151.066	315.941	490.653	554.818	271.445	327.275	149.143	83.875	156.920	36.666	13.649	8.507	1.458	5.590	2567
2010/11	106.178	280.582	228.857	304.885	296.254	138.686	301.285	60.997	141.323	97.412	37.006	0.000	4.019	0.000	1997
2011/12	704.863	977.323	434.876	313.742	272.140	239.320	154.581	175.088	84.582	92.435	89.376	17.638	6.808	4,989	3676
2012/13	178.500	781.083	631.421	166.627	126.961	142.044	110.084	97.000	74.340	69.473	43.376	38.450	7.458	0.773	2468
2013/14	15.919	314.865	218.715	344.981	151.631	132.767	120.756	118.377	89.555	74.602	48.695	44.637	31.096	11.598	1718
2014/15	152.422	90,269	330.084	260.919	259.079	187.905	111.955	91.629	37.855	76.680	30.366	10.619	22.799	10.108	1667
2015/16	381.900	164.221	174.507	312.350	225.836	215.207	93.743	62.753	75.339	41.961	15.696	26.756	20.159	5.401	1816
2016/17	97.036	220.642	137.217	151.937	262.488	136.801	241.382	61.220	55.869	62.805	11.435	20.135	13.733	0.313	1473
2017/18	32.749	22.947	95.097	171.664	201.944	319.933	209.174	255.348	75.813	34.505	83.460	54.903	25.370	28.115	1611
2018/19	306.295	137.402	67.933	201.362	101.946	110.810	167.397	163.804	73.346	30.040	29.950	38.499	9.138	7.271	1445
2019/20	1525	229.841	158.605	103.631	211.106	98.785	53.723	59.527	42.221	37.186	21.341	15.089	10.393	0.986	2568
2020/21	1399.761	1114.743	424.292	138.193	81.983	127.703	66.488	102.847	82.755	63.522	56.970	22.767	11.122	21.563	3802
2021/22	16.189	629.418	655.481	400.632	153.292	237.094	179.000	174.174	81.586	83.935	82.750	32.917	46.798	21.847	2795

Table 11.1.1.2. Icelandic summers-spawning herring. Number of fish aged (number of scales) and number of samples taken in the annual acoustic surveys in the seasons 1987/88-2021/22 (age refers to the former year, i.e. autumns). In 2000 seven samples were used from the fishery.

Year/age	Number of scales															N of samples		
	2	3	4	5	6	7	8	9	10	11	12	13	14	15+	Total	$\begin{aligned} & \text { To- } \\ & \text { tal } \end{aligned}$	West	East
1987/88	11	59	246	156	37	28	58	33	22	16	23	10	5	8	712	8	1	7
1988/89	229	78	181	424	178	69	50	77	42	29	23	13	7	12	1412	18	5	10
1989/90	38	245	96	132	225	35	2	2	3	3	2	0	0	0	783	8		8
1990/91	418	229	303	90	131	257	28	6	3	8	0	0	0	0	1473	15		15
1991/92	414	439	127	127	33	48	84	5	3	0	2	0	0	1	1283	15		15
1992/93	122	513	289	68	73	28	38	34	6	2	2	6	0	0	1181	12		12
1993/94	63	285	343	129	13	15	7	14	11	0	1	3	0	0	884	9		9

1994/95*

1995/96	183	90	471	162	209	107	38	18	8	14	18	2	0	0	1320	14	9	5
1996/97	24	150	88	351	141	137	87	32	15	10	7	14	4	2	1062	11	4	7
1997/98	101	249	50	36	159	95	122	62	21	13	8	15	8	5	944	14	7	7
1998/99	130	216	777	72	31	65	59	86	37	22	17	5	6	11	1534	17	10	7
1999/00	116	227	72	144	17	13	26	26	27	10	8	2	1	0	689	7	3	4
2000/01	116	249	332	87	166	10	7	21	8	14	11	3	1	0	1025	14	10	4
2001/02	61	56	130	114	62	136	25	24	17	21	17	10	3	0	676	9	4	5
2002/03	520	705	258	104	130	74	128	46	26	25	13	15	10	1	2055	22	12	10
2003/04	126	301	415	88	35	32	15	17	3	4	4	6	1	1	1048	13	8	5
2004/05	304	159	284	326	70	29	17	5	8	4	0	3	3	0	1212	13	4	9
2005/06	217	312	190	420	501	110	40	38	26	18	5	5	5	7	1894	22	14	8
2006/07	19	77	134	64	71	88	22	4	2	2	0	0	0	1	484	6	4	2
2007/08	58	288	180	264	85	80	104	19	15	2	2	6	1	3	1107	17	13	4
2008/09	274	208	213	136	204	123	125	97	18	13	9	7	4	17	1448	29	19	10
2009/10	104	100	105	116	60	74	34	19	36	8	3	4	2	2	667	17	10	7
2010/11	35	74	102	157	139	61	119	22	52	36	13	0	1	0	811	11	8	3
2011/12	229	330	134	115	100	106	74	87	45	48	51	10	3	3	1335	15	9	6
2012/13 \ddagger	42	266	554	273	220	252	198	165	126	114	69	61	12	2	2370	60	55	5

* No survey \ddagger Samples in the western part were mainly from the commercial catch as there was impossible to secure a usable research survey samples from Kolgrafafjörður where most of the herring was observed. § Three samples were taken in the east and south in this survey (B1-2016), while four were taken in the west and used also in the agelength key.

Table 11.2.1. Icelandic summer spawners. Landings, catches, recommended TACs, and set National TACs in thousand tonnes.

Year	Landings	Catches	Recom. TACs	Nat. TACs	Year	Landings	Catches	Recom. TACs	Nat. TACs
1972	0.31	0.31			2007/2008	158.9	158.9	130	150
1973	0.254	0.254			2008/2009	151.8	151.8	130	150
1974	1.275	1.275			2009/2010	46.3	46.3	40	47
1975	13.28	13.28			2010/2011	43.5	43.5	40	40
1976	17.168	17.168			2011/2012 ${ }^{\ddagger}$	49.4	49.4	40	45
1977	28.925	28.925			2012/2013 ${ }^{\ddagger}$	72.0	72.0	67	68.5
1978	37.333	37.333			2013/2014 ${ }^{\ddagger}$	72.0	72.0	87	87
1979	45.072	45.072			2014/2015 ${ }^{\ddagger \S}$	95.0	95.0	83	83
1980	53.268	53.268			2015/2016 ${ }^{\ddagger}$	69.7	69.7	71	71
1981	39.544	39.544			2016/2017 ${ }^{\ddagger}$	60.4	60.4	63	63
1982	56.528	56.528			2017/2018 ${ }^{\ddagger}$	35.0	35.0	39	39
1983	58.867	58.867			2018/2019 ${ }^{\ddagger}$	40.7	40.7	35.1	35.1
1984	50.304	50.304			2019/2020	30.0	30.0	34.6	34.6
1985	49.368	49.368	50	50	2020/2021	36.1	36.1	35.5	35.5
1986	65.5	65.5	65	65	2021/2022	70.1	70.1	72.2	72.2
1987	75	75	70	73	2022/2023			66.2	66.2
1988	92.8	92.8	90	90					
1989	97.3	101	90	90					
1990/1991	101.6	105.1	80	110					
1991/1992	98.5	109.5	80	110					
1992/1993	106.7	108.5	90	110					
1993/1994	101.5	102.7	90	100					
1994/1995	132	134	120	120					
1995/1996	125	125.9	110	110					
1996/1997	95.9	95.9	100	100					
1997/1998	64.7	64.7	100	100					
1998/1999**	87	87	90	70					
1999/2000	92.9	92.9	100	100					
2000/2001	100.3	100.3	110	110					
2001/2002	95.7	95.7	125	125					
2002/2003*	96.1	96.1	105	105					
2003/2004*	130.7	130.7	110	110					
2004/2005	114.2	114.2	110	110					
2005/2006	103	103	110	110					
2006/2007	135	135	130	130					

*Summer fishery in 2002 and 2003 included
** TAC was decided 70 thousand tonnes but because of transfers from the previous quota year the national TAC became 90 thousand tonnes.
\ddagger Landings and catches include bycatch of Icelandic summer-spawning herring in the mackerel and NSS herring fishery during the preceding summer (i.e. from the fishing season before in June-August).
§ The landings and catches in 2014/2015 consist of transfer of 7 kt from the year before and 5 kt from the year to come, which explains the discrepancy to the TACs.

Table 11.2.2.1. Icelandic summer-spawning herring. Catch in numbers (millions) and total catch in weight (thousand tonnes) (1981 refers to season 1981/1982 etc).

Year\} age	2	3	4	5	6	7	8	9	10	11	12	13	14	15+	Catch
1975	1.518	2.049	31.975	6.493	7.905	0.863	0.442	0.345	0.114	0.004	0.001	0.001	0.001	0.001	13.280
1976	0.614	9.848	3.908	34.	7.009	5.481	1.045	0.438	0.296	0.134	0.092	. 001	. 001	. 001	17.168
1977	0.705	18.853	24.152	10.404	46.357	6.735	5.421	1.395	0.524	0.362	0.027	0.128	0.001	0.001	28.925
1978	2.634	22.551	50.995	13.846	8.738	9.492	7.253	6.35	1.616	0.926	0.4	. 01	. 025	0.051	37.333
1979	0.929	15.098	47.561	69.735	16.451	8.003	26.04	3.05	1.869	0.494	0.439	0.032	0.054	0.006	45.072
1980	3.147	14.347	20.761	60.72	65.32	11.54	9.285	19.	1.79	1.464	698	0.001	0.11	0.079	53.268
1981	2.283	4.629	16.771	12.126	36.871	41.917	7.299	4.863	13.416	1.032	0.884	0.760	0.101	0.062	39.544
1982	0.454	19.187	8.109	38.280	6.62	38.308	43.770	6.813	6.633	10.457	2.354	0.594	0.075	0.211	56.528
1983	1.475	22.499	151.718	30.285	21.599	8.667	14.065	13.713	3.728	2.381	3.436	0.554	. 100	. 003	58.867
1984	0.421	18.015	32.244	141.354	17.043	7.113	3.916	4.113	4.517	1.828	0.202	0.255	0.260	0.003	50.304
1985	0.11	12.8	24.659	21.656	210	11.903	5.740	2.336	4.363	4.053	2.773	0.975	. 480	. 581	49.368
1986	0.100	8.172	33.938	23.452	20.681	77.629	18.252	10.986	8.594	9.675	7.183	3.682	2.918	1.788	65.500
1987	0.029	3.1	44.590	60.285	. 62	19.751	46.240	15.232	13.963	10.179	13.216	6.224	. 723	2.280	39
1988	0.879	4.757	41.331	99.366	69.331	22.955	20.131	32.201	12.349	10.250	7.378	7.284	4.807	1.957	92.828
1989	3.974	22.628	26.649	77.824	188.654	43.114	8.116	5.897	7.292	4.780	3.449	1.410	0.844	0.348	101.000
1990	12.567	14.884	56.995	35.593	79.757	157.225	30.248	8.187	4.372	3.379	1.786	0.715	0.446	0.565	105.097
1991	37.085	88.683	49.081	86.292	34.793	55.228	110.132	10.079	4.155	2.735	2.003	0.519	0.339	0.416	109.489
1992	16.144	94.86	122.626	38.381	58.605	27.921	38.42	53.114	11.592	1.727	1.757	0.153	0.376	0.001	108.504
1993	2.467	51.153	177.78	92.68	20.791	28.56	13.313	19.617	15.266	4.254	0.797	0.254	0.001	0.001	102.741
1994	5.738	134.616	113.29	142.87	87.207	24.913	20.303	16.301	15.695	14.68	2.936	1.435	0.244	0.195	134.003
1995	4.555	20.991	137.232	86.864	109.14	76.78	21.361	15.225	8.541	9.617	7.034	2.291	0.621	0.235	125.851
1996	0.717	15.969	40.311	86.187	68.927	84.66	39.66	14.74	8.419	5.836	3.152	5.18	1.996	0.574	95.882
1997	2.008	39.24	30.141	26.307	36.738	33.705	31.022	22.277	8.531	3.383	1.141	10.296	0.947	2.524	64.682
1998	23.655	45.39	175.529	22.691	8.613	40.898	5.9	32.046	14.64	2.122	2.754	2.15	1.07	1.011	86.998
1999	5.306	56.315	54.779	140.913	16.093	13.506	31.467	19.845	22.031	12.609	2.673	2.746	1.416	2.514	92.896
2000	17.286	57.282	136.278	49.289	76.614	11.546	8.294	16.367	9.874	11.332	6.744	2.975	. 539	. 104	100.332
2001	27.486	42.304	86.422	93.597	30.336	54.491	10.375	8.762	12.244	9.907	8.259	6.088	1.491	1.259	95.675
2002	11.698	80.863	70.801	45.607	54.202	21.211	42.199	9.888	4.707	6.52	9.108	9.355	3.994	5.697	96.128
2003	24.477	211.495	286.017	58.120	27.979	25.592	14.203	10.944	2.230	3.424	4.225	2.562	1.575	1.370	130.741
2004	23.144	63.355	139.543	182.45	40.489	13.727	9.342	5.769	7.021	3.136	1.861	3.871	0.994	1.855	114.237
2005	6.088	26.091	42.116	117.91	133.437	27.565	12.074	9.203	5.172	5.116	1.045	1.706	2.11	0.757	103.043
2006	52.56	118.526	217.672	54.800	48.312	57.241	13.603	5.994	4.299	0.898	1.626	1.213	0.849	0.933	135.303
2007	10.817	94.250	83.631	163.294	61.207	87.541	92.126	23.238	11.728	7.319	2.593	4.961	2.302	1.420	158.917
2008	10.427	38.830	90.932	79.745	107.644	59.656	62.194	54.345	18.130	8.240	5.157	2.680	2.630	1.178	151.780
2009	5.431	21.856	35.221	31.914	18.826	22.725	10.425	9.213	9.549	2.238	1.033	0.768	0.406	0.298	46.332
2010	1.476	8.843	22.674	29.492	24.293	14.419	17.407	10.045	7.576	8.896	1.764	1.105	0.672	0.555	43.533
2011	0.521	9.357	24.621	20.046	22.869	23.706	13.749	16.967	10.039	7.623	7.745	1.441	0.618	0.785	49.446
2012*	0.403	17.827	89.432	51.257	43.079	51.224	41.846	34.653	27.215	24.946	15.473	13.575	2.595	0.253	125.369
2013	6.888	46.848	24.833	35.070	17.250	18.550	19.032	21.821	15.952	15.804	10.081	9.775	6.722	2.486	72.058
2014	0.000	3.537	53.241	50.609	70.044	34.393	22.084	22.138	13.298	17.761	7.974	4.461	2.862	1.746	94.975
2015	0.089	6.024	29.89	53.573	43.501	43.015	15.533	10.76	8.664	8.161	6.981	2.726	2.467	1.587	69.729
2016	0.072	10.740	25.575	29.908	41.952	25.823	24.925	9.516	7.734	6.088	4.284	7.154	3.108	0.827	60.403
2017	1.262	5.236	31.855	18.113	10.239	15.506	10.223	8.830	5.676	3.399	1.616	2.220	1.533	1.596	35.034
2018	0.000	8.911	19.642	34.284	16.847	12.376	17.161	6.978	7.379	3.482	1.713	1.153	2.159	0.489	40.683
2019	0.461	4.601	15.845	12.970	16.084	12.244	6.944	9.531	6.167	4.732	2.983	2.808	2.200	1.866	30.038

Year\} age	2	3	4	5	6	7	8	9	10	11	12	13	14	15+	Catch
2020	0.384	23.603	15.956	22.572	16.333	19.385	11.071	7.098	6.241	3.035	3.359	1.809	1.567	1.129	36.100
2021	12.440	21.018	88.992	37.291	37.244	17.231	21.230	13.155	11.781	7.270	5.213	3.549	2.771	1.583	70.084

* Includes both the landings (73.4 kt) and the herring that died in the mass mortality (52.0 kt) in the winter 2012/13 in Kolgrafarfjörður.

Table 11.2.2.2. Icelandic summer-spawning herring. The mean weight (g) at age from the commercial catch (1981 refers to season 1981/1982 etc.).

Year\age	2	3	4	5	6	7	8	9	10	11	12	13	14	15+
1975	110	179	241	291	319	339	365	364	407	389	430	416	416	416
1976	103	189	243	281	305	335	351	355	395	363	396	396	396	396
1977	84	157	217	261	285	313	326	347	364	362	358	355	400	420
1978	73	128	196	247	295	314	339	359	360	376	380	425	425	425
1979	75	145	182	231	285	316	334	350	367	368	371	350	350	450
1980	69	115	202	232	269	317	352	360	380	383	393	390	390	390
1981	61	141	190	246	269	298	330	356	368	405	382	400	400	400
1982	65	141	186	217	274	293	323	354	385	389	400	394	390	420
1983	59	132	180	218	260	309	329	356	370	407	437	459	430	472
1984	49	131	189	217	245	277	315	322	351	334	362	446	417	392
1985	53	146	219	266	285	315	335	365	388	400	453	469	433	447
1986	60	140	200	252	282	298	320	334	373	380	394	408	405	439
1987	60	168	200	240	278	304	325	339	356	378	400	404	424	430
1988	75	157	221	239	271	298	319	334	354	352	371	390	408	437
1989	63	130	206	246	261	290	331	338	352	369	389	380	434	409
1990	80	127	197	245	272	285	305	324	336	362	370	382	375	378
1991	74	135	188	232	267	289	304	323	340	352	369	402	406	388
1992	68	148	190	235	273	312	329	339	355	382	405	377	398	398
1993	66	145	211	246	292	324	350	362	376	386	419	389	389	389
1994	66	134	201	247	272	303	333	366	378	389	390	412	418	383
1995	68	130	183	240	277	298	325	358	378	397	409	431	430	467
1996	75	139	168	212	258	289	308	325	353	353	377	404	395	410
1997	63	131	191	233	269	300	324	341	355	362	367	393	398	411
1998	52	134	185	238	264	288	324	340	348	375	406	391	426	456
1999	74	137	204	233	268	294	311	339	353	362	378	385	411	422
2000	62	159	217	268	289	325	342	363	378	393	407	425	436	430
2001	74	139	214	244	286	296	324	347	354	385	403	421	421	433
2002	85	161	211	258	280	319	332	354	405	396	416	433	463	460
2003	72	156	189	229	260	283	309	336	336	369	394	378	412	423
2004	84	149	213	248	280	315	331	349	355	379	388	412	419	425
2005	106	170	224	262	275	298	324	335	335	356	372	394	405	413
2006	107	189	234	263	290	304	339	349	369	416	402	413	413	467
2007	93	158	221	245	261	277	287	311	339	334	346	356	384	390
2008	105	174	232	275	292	307	315	327	345	366	377	372	403	434
2009	113	190	237	274	304	318	326	335	342	360	372	394	409	421
2010	87	204	243	271	297	315	329	335	341	351	367	366	405	416
2011	97	187	245	283	309	328	343	352	356	364	375	386	378	432
2012	65	206	244	282	301	320	333	344	350	359	364	367	373	391
2013	95	182	238	271	300	322	337	349	360	365	362	375	377	394
2014		202	259	288	306	328	346	354	362	366	367	380	383	403
2015	107	203	249	275	299	313	329	347	352	358	361	368	380	378
2016	129	202	242	281	303	322	336	355	359	368	369	379	386	402
2017	95	192	252	281	303	324	341	350	367	376	384	389	395	402
2018		191	252	293	317	333	347	350	366	375	389	388	392	383
2019	103	175	244	282	305	308	328	340	349	357	360	366	374	374

Year\age	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
2020	81	140	229	267	288	311	329	345	351	367	372	370	382
2021	90	154	212	253	272	296	314	325	337	356	352	361	372

Table 11.2.2.3. Icelandic summer-spawning herring. Proportion mature at age (1981 refers to season 1981/1982 etc.).

Yearlage	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5 +}$
1975	0	0.27	0.97	1	1	1	1	1	1	1	1	1	1	1
1976	0	0.13	0.9	1	1	1	1	1	1	1	1	1	1	1
1977	0	0.02	0.87	1	1	1	1	1	1	1	1	1	1	1
1978	0	0.04	0.78	1	1	1	1	1	1	1	1	1	1	1
1979	0	0.07	0.65	0.98	1	1	1	1	1	1	1	1	1	1
1980	0	0.05	0.92	1	1	1	1	1	1	1	1	1	1	1
1982	0	0.03	0.65	0.99	1	1	1	1	1	1	1	1	1	1
1983	0	0	0.05	0.85	1	1	1	1	1	1	1	1	1	1
1984	0	0.01	0.82	1	1	1	1	1	1	1	1	1	1	1
1985	0	0	0.9	1	1	1	1	1	1	1	1	1	1	1
$1986-2022$	0	0.2	0.85	1	1	1	1	1	1	1	1	1	1	1

Table 11.3.2.1. Icelandic summer-spawning herring. Natural mortality at age for the different years (refers to the autumn) where the deviation from the fixed $M=0.1$ is due to the Ichthyophonus infection (1987 refers to season 1987/1988 etc.). The estimate of, for example, M for age 4 in 2022 represents estimated infection rate of age 3 in 2021.

Year\age	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	13	14	15
$1987-2008$	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
2009^{*}	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22
2010^{*}	0.29	0.29	0.28	0.26	0.25	0.24	0.24	0.24	0.23	0.23	0.23	0.23	0.23
2011^{*}	0.13	0.26	0.26	0.25	0.23	0.24	0.25	0.24	0.20	0.21	0.21	0.21	0.21
$2012-2016$	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
2017	0.111	0.118	0.124	0.173	0.175	0.175	0.207	0.187	0.256	0.279	0.210	0.180	0.191
2018	0.116	0.112	0.172	0.162	0.175	0.228	0.226	0.247	0.275	0.338	0.307	0.184	0.186
2019	0.111	0.135	0.144	0.168	0.216	0.169	0.171	0.183	0.245	0.189	0.243	0.182	0.140
2020	0.110	0.116	0.152	0.186	0.158	0.154	0.196	0.195	0.238	0.226	0.220	0.179	0.225
2021	0.119	0.146	0.122	0.155	0.191	0.164	0.193	0.159	0.230	0.100	0.146	0.151	0.100
$2022^{* *}$	0.100	0.111	0.120	0.115	0.149	0.177	0.159	0.176	0.163	0.198	0.218	0.236	0.172
0.218													

[^1]Table 11.3.2.2. Model settings and results of model parameters from the final NFT-Adapt run in $\mathbf{2 0 2 2}$ for Icelandic summer spawning herring.

VPA Version 3.3.0
Model ID: RUN1 2022
Date of Run: 10-APR-2022 Time of Run: 14:53
Levenburg-Marquardt Algorithm Completed 8 Iterations
Residual Sum of Squares $=65.4254$
Number of Residuals = 272
Number of Parameters $=9$
Degrees of Freedom = 263
Mean Squared Residual $=0.248766$
Standard Deviation $=0.498764$

Number of Years = 35
Number of Ages = 11
First Year = 1987
Youngest Age $=3$
Oldest True Age $=12$

Number of Survey Indices Available $=10$
Number of Survey Indices Used in Estimate $=8$
VPA Classic Method - Auto Estimated Q's
Stock Numbers Predicted in Terminal Year Plus One (2022)
Age Stock Predicted Std. Error CV
$4 \quad 671014.455 \quad 0.339944 \mathrm{E}+06 \quad 0.506613 \mathrm{E}+00$
$5 \quad 509204.179 \quad 0.195627 \mathrm{E}+06 \quad 0.384181 \mathrm{E}+00$
$6 \quad 157671.665 \quad 0.532277 \mathrm{E}+05 \quad 0.337586 \mathrm{E}+00$
$\begin{array}{lllll}7 & 82271.990 & 0.281588 \mathrm{E}+05 & 0.342264 \mathrm{E}+00\end{array}$
$8 \quad 32656.999 \quad 0.113016 \mathrm{E}+05 \quad 0.346068 \mathrm{E}+00$
$9 \quad 56923.876 \quad 0.175491 \mathrm{E}+05 \quad 0.308290 \mathrm{E}+00$
$10 \quad 29574.628 \quad 0.902573 \mathrm{E}+04 \quad 0.305185 \mathrm{E}+00$
$11 \quad 27000.180 \quad 0.784834 \mathrm{E}+04 \quad 0.290677 \mathrm{E}+00$
$12 \quad 29431.270 \quad 0.921902 \mathrm{E}+04 \quad 0.313239 \mathrm{E}+00$

Catchability Values for Each Survey Used in Estimate
INDEX Catchability Std. Error CV

```
    0.976851E+00 0.996878E-01 0.102050E+00
    0.122127E+01 0.107875E+00 0.883301E-01
    0.131558E+01 0.745975E-01 0.567031E-01
    0.148712E+01 0.913680E-01 0.614394E-01
    0.163428E+01 0.126798E+00 0.775868E-01
    0.180057E+01 0.150146E+00 0.833882E-01
    0.191803E+01 0.200064E+00 0.104307E+00
    0.182053E+01 0.187039E+00 0.102739E+00
```

-- Non-Linear Least Squares Fit --
Maximum Marquadt Iterations $=100$
Scaled Gradient Tolerance $=6.055454 \mathrm{E}-05$
Scaled Step Tolerance $=1.000000 \mathrm{E}-18$
Relative Function Tolerance $=1.000000 \mathrm{E}-18$
Absolute Function Tolerance $=4.930381 \mathrm{E}-32$
Reported Machine Precision $=$ 2.220446E-16

VPA Method Options

- Catchability Values Estimated as an Analytic Function of N
- Catch Equation Used in Cohort Solution
- Plus Group Forward Calculation Method Used
- Arithmetic Average Used in F-Oldest Calculation
- F-Oldest Calculation in Years Prior to Terminal Year

Uses Fishing Mortality in Ages 8 to 11

- Calculation of Population of Age 3 In Year 2022
$=$ Geometric Mean of First Age Populations
Year Range Applied $=1991$ to 2014
- Survey Weight Factors Were Used

Table 11.3.2.3. Icelandic summer spawners stock estimates (from NFT-Adapt in 2022) in numbers (millions) by age (years) at 1 January during 1987-2022.

Year\Age	3	4	5	6	7	8	9	10	11	12	13+	Total
1987	529.83	988.96	300.67	84.60	69.14	107.46	42.63	38.03	26.41	34.26	34.29	2256.28
1988	270.99	476.42	852.47	214.85	56.99	43.83	53.49	24.15	21.19	14.26	36.99	2065.62
1989	447.32	240.68	391.81	676.97	128.70	29.84	20.62	18.03	10.18	9.48	26.10	1999.74
1990	300.81	383.25	192.47	280.67	433.68	75.61	19.30	13.07	9.41	4.69	26.46	1739.42
1991	840.51	258.04	292.66	140.37	178.35	243.51	39.78	9.72	7.68	5.31	24.86	2040.79
1992	1033.06	676.29	186.91	183.01	94.01	109.04	116.17	26.44	4.86	4.36	24.19	2458.33
1993	635.38	844.63	495.54	132.70	110.06	58.60	62.27	54.88	12.95	2.76	23.67	2433.44
1994	691.67	526.31	595.56	360.42	100.33	72.50	40.39	37.75	35.19	7.69	22.92	2490.74
1995	202.67	498.10	368.74	403.36	243.40	67.15	46.35	21.12	19.31	17.94	23.14	1911.28
1996	181.36	163.45	320.58	251.25	261.49	147.48	40.52	27.52	11.03	8.38	27.53	1440.57
1997	772.44	148.93	109.66	208.35	161.99	156.39	95.83	22.70	16.92	4.46	22.16	1719.81
1998	320.39	661.64	106.15	74.27	153.65	114.59	112.06	65.58	12.46	12.10	10.02	1642.92
1999	552.38	246.80	432.23	74.52	59.02	100.25	79.07	71.02	45.44	9.26	13.40	1683.39
2000	391.05	446.32	171.35	257.57	52.16	40.59	60.89	52.73	43.38	29.16	11.66	1556.86
2001	468.22	299.45	274.68	108.31	160.44	36.24	28.86	39.57	38.34	28.51	25.23	1507.85
2002	1454.52	383.47	189.03	159.87	69.25	93.55	22.96	17.81	24.20	25.29	32.42	2472.37
2003	1074.13	1239.26	279.78	127.78	93.31	42.55	44.73	11.42	11.65	15.72	25.63	2965.96
2004	662.19	771.21	850.00	198.01	89.07	60.16	25.05	30.10	8.22	7.30	28.18	2729.47
2005	989.93	538.99	565.37	596.00	140.74	67.56	45.57	17.19	20.57	4.46	23.96	3010.34
2006	734.93	870.92	447.68	399.68	412.69	101.19	49.67	32.50	10.65	13.76	20.39	3094.06
2007	657.50	552.47	581.60	353.03	315.76	319.06	78.64	39.25	25.32	8.79	26.51	2957.93
2008	523.72	505.96	421.84	374.57	259.10	200.77	200.13	48.96	24.37	15.94	21.25	2596.61
2009	442.15	436.98	371.50	306.01	236.88	177.85	122.72	129.55	27.13	14.25	22.62	2287.64
2010	466.51	336.35	320.26	270.51	229.48	170.37	133.83	90.54	95.74	19.84	27.43	2160.86
2011	541.37	340.76	231.69	217.24	187.55	166.05	118.15	96.31	64.67	68.03	33.89	2065.71
2012	355.61	466.61	241.48	161.81	149.11	127.72	118.73	77.39	67.04	45.98	73.51	1884.98
2013	484.75	304.83	337.33	169.87	105.56	86.40	75.91	74.58	44.24	37.04	77.88	1798.38
2014	267.53	394.11	252.23	271.92	137.31	77.91	60.12	48.00	52.35	25.06	76.42	1662.94

Year 1 Age	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3 +}$	Total
2015	249.09	238.70	306.05	180.20	179.62	91.63	49.56	33.43	30.83	30.54	75.65	1465.29
2016	341.30	219.66	187.60	226.07	121.79	121.72	68.16	34.63	22.03	20.15	83.02	1446.14
2017	173.25	298.61	174.47	141.35	164.74	85.70	86.49	52.64	24.00	14.17	78.76	1294.17
2018	263.29	150.10	235.40	137.13	109.53	124.12	62.60	62.38	38.51	15.61	69.41	1268.08
2019	296.86	226.05	115.66	166.86	101.13	80.64	83.59	43.74	42.24	26.23	60.42	1243.42
2020	789.26	261.32	182.72	88.11	126.31	70.54	61.74	61.73	30.82	28.90	62.75	1764.18
2021	778.10	684.72	217.66	136.09	58.34	90.00	50.26	44.34	45.15	21.61	65.68	2191.95
2022	464.74	671.01	509.20	157.67	82.27	32.66	56.92	29.58	27.00	29.43	57.66	2118.15

Table 11.3.2.4. Estimated fishing mortality at age of Icelandic summer-spawning herring (from NFT-Adapt in 2022) by age (years) during 1987-2021 (referring to the autumn of the fishing season) and weighed average F by numbers for age 510.

Year\Age	3	4	5	6	7	8	9	10	11	12	13+	WF5-10
1987	0.006	0.049	0.236	0.295	0.356	0.598	0.468	0.485	0.516	0.517	0.517	0.347
1988	0.019	0.096	0.131	0.412	0.547	0.654	0.988	0.764	0.704	0.777	0.506	0.266
1989	0.055	0.124	0.234	0.345	0.432	0.336	0.356	0.550	0.674	0.479	0.111	0.322
1990	0.053	0.170	0.216	0.353	0.477	0.542	0.586	0.431	0.472	0.508	0.071	0.400
1991	0.117	0.223	0.370	0.301	0.392	0.640	0.309	0.593	0.466	0.502	0.055	0.436
1992	0.101	0.211	0.243	0.409	0.373	0.460	0.650	0.613	0.465	0.547	0.023	0.415
1993	0.088	0.249	0.218	0.180	0.317	0.272	0.400	0.345	0.421	0.360	0.011	0.248
1994	0.228	0.256	0.290	0.293	0.302	0.347	0.549	0.571	0.573	0.510	0.090	0.312
1995	0.115	0.341	0.284	0.333	0.401	0.405	0.422	0.550	0.735	0.528	0.154	0.343
1996	0.097	0.299	0.331	0.339	0.414	0.331	0.480	0.386	0.804	0.500	0.350	0.361
1997	0.055	0.239	0.290	0.205	0.246	0.233	0.279	0.500	0.235	0.312	1.043	0.250
1998	0.161	0.326	0.254	0.130	0.327	0.271	0.356	0.267	0.197	0.273	0.582	0.280
1999	0.113	0.265	0.418	0.257	0.274	0.399	0.305	0.393	0.344	0.360	0.735	0.377
2000	0.167	0.385	0.359	0.373	0.264	0.241	0.331	0.219	0.320	0.278	0.700	0.335
2001	0.100	0.360	0.441	0.347	0.439	0.357	0.383	0.392	0.316	0.362	0.457	0.415
2002	0.060	0.215	0.292	0.439	0.387	0.638	0.599	0.324	0.332	0.473	0.948	0.418
2003	0.231	0.277	0.246	0.261	0.339	0.430	0.296	0.229	0.368	0.331	0.255	0.280
2004	0.106	0.211	0.255	0.241	0.176	0.178	0.276	0.281	0.510	0.311	0.288	0.245
2005	0.028	0.086	0.247	0.268	0.230	0.208	0.238	0.379	0.302	0.282	0.223	0.253
2006	0.185	0.304	0.138	0.136	0.157	0.152	0.135	0.150	0.093	0.132	0.167	0.144
2007	0.162	0.170	0.340	0.209	0.353	0.366	0.374	0.377	0.363	0.370	0.420	0.322
2008	0.081	0.209	0.221	0.358	0.276	0.392	0.335	0.490	0.437	0.414	0.385	0.311
2009	0.057	0.094	0.100	0.071	0.113	0.067	0.087	0.085	0.096	0.084	0.075	0.089
2010	0.022	0.081	0.111	0.107	0.074	0.122	0.088	0.099	0.110	0.105	0.100	0.101
2011	0.019	0.085	0.103	0.126	0.152	0.098	0.176	0.124	0.139	0.134	0.097	0.127
2012*	0.054	0.224	0.252	0.327	0.446	0.420	0.365	0.459	0.493	0.434	0.267	0.357
2013	0.107	0.089	0.116	0.113	0.204	0.263	0.358	0.254	0.468	0.336	0.295	0.175
2014	0.014	0.153	0.236	0.315	0.305	0.352	0.487	0.343	0.439	0.405	0.133	0.307
2015	0.026	0.141	0.203	0.292	0.289	0.196	0.258	0.317	0.325	0.274	0.099	0.247
2016	0.034	0.130	0.183	0.217	0.252	0.242	0.158	0.267	0.342	0.252	0.151	0.215
2017	0.032	0.120	0.117	0.082	0.108	0.139	0.120	0.126	0.174	0.140	0.078	0.112
2018	0.037	0.149	0.172	0.143	0.131	0.167	0.133	0.143	0.109	0.138	0.064	0.154
2019	0.017	0.078	0.128	0.110	0.144	0.098	0.132	0.167	0.135	0.133	0.133	0.125
2020	0.032	0.067	0.143	0.226	0.181	0.185	0.135	0.118	0.117	0.139	0.084	0.165
2021	0.029	0.150	0.200	0.348	0.389	0.294	0.337	0.337	0.198	0.292	0.148	0.288

[^2]Table 11.3.2.5. Summary table from NFT-Adapt run in 2022 for Icelandic summer spawning herring.

Year	Recruits age 3 (millions)	Biomass age 3+ (kt)	Biomass age 4+ (kt)	$\begin{aligned} & \text { SSB } \\ & \text { (kt) } \end{aligned}$	Landings age 3+ (kt)	Yield/SSB	WF age $^{\text {5-10 }}$	HR 4+
1987	530	504	415	384	75	0.197	0.347	0.182
1988	271	495	452	423	93	0.219	0.266	0.205
1989	447	459	401	386	101	0.262	0.322	0.252
1990	301	410	371	350	105	0.300	0.400	0.283
1991	841	424	310	310	109	0.354	0.436	0.353
1992	1033	502	349	343	109	0.316	0.415	0.310
1993	635	546	454	424	103	0.243	0.248	0.227
1994	692	553	461	441	134	0.304	0.312	0.291
1995	203	462	435	406	126	0.310	0.343	0.289
1996	181	347	322	307	96	0.312	0.361	0.298
1997	772	368	267	269	65	0.242	0.250	0.244
1998	320	366	323	298	87	0.292	0.280	0.270
1999	552	372	297	290	93	0.321	0.377	0.313
2000	391	386	324	306	100	0.328	0.335	0.310
2001	468	347	282	272	96	0.352	0.415	0.339
2002	1455	512	278	297	96	0.324	0.418	0.347
2003	1074	578	411	389	126	0.323	0.280	0.306
2004	662	614	516	486	114	0.235	0.245	0.222
2005	990	705	536	525	103	0.196	0.253	0.192
2006	735	784	645	611	135	0.221	0.144	0.210
2007	658	697	594	568	159	0.280	0.322	0.267
2008	524	682	591	563	152	0.270	0.311	0.257
2009	442	625	541	487	46	0.095	0.089	0.086
2010	467	600	504	449	44	0.097	0.101	0.086
2011	541	575	473	427	49	0.116	0.127	0.104
2012	356	530	457	432	72	0.167	0.357	0.158
2013	485	479	390	378	72	0.191	0.175	0.185
2014	268	480	426	401	95	0.237	0.307	0.223

Year	Recruits age 3 (millions)	Biomass age 3+ (kt)	Biomass age 4+ (kt)	SSB (kt)	Landings age 3+ (kt)	Yield/SSB	WF age 5-10	HR 4+
2015	249	414	363	347	70	0.201	0.247	0.192
2016	341	407	338	327	60	0.184	0.215	0.178
2017	173	377	344	312	35	0.112	0.112	0.102
2018	263	372	322	296	41	0.137	0.154	0.126
2019	297	339	287	265	30	0.113	0.125	0.105
2020	789	396	285	275	36	0.131	0.165	0.127
2021	778	482	362	412	70	0.170	0.288	0.194
2022	465	514	441	421				

* The mass mortality of 52 thousand tonnes in Kolgrafafjörður in the winter 2012/13 is not included in the landings, yield/SSB, or WF, even if included as landings in the analytical assessment.

Table 11.3.2.6. The residuals from survey observations and NFT-Adapt 2022 results for Icelandic summer spawning herring (no surveys in 1987 and 1995) on 1 January.

Year\Age	4	5	6	7	8	9	10	11
1987								
1988	-0.148	-0.193	0.086	-0.395	-0.789	-0.313	-0.232	-0.492
1989	-0.155	-0.720	-0.848	-0.015	-0.049	-0.004	-0.001	-0.001
1990	0.560	-0.270	-0.281	-0.084	0.374	-0.449	-0.001	-0.003
1991	-0.645	-0.324	-0.671	-0.328	0.257	0.102	0.007	-0.004
1992	0.463	0.440	0.284	-0.442	-0.253	0.206	-0.868	0.001
1993	0.007	0.187	-0.095	-0.224	-0.570	-0.152	-0.085	0.040
1994	-0.017	0.194	0.046	-0.801	-0.709	0.378	-0.393	-0.571
1995								
1996	-0.177	0.665	-0.173	-0.010	-0.309	0.297	-0.084	-0.213
1997	0.621	-0.002	0.536	0.114	0.242	0.231	0.759	0.589
1998	-0.071	-0.470	-0.533	0.228	-0.183	0.008	-0.174	0.447
1999	0.060	0.717	0.053	-0.528	-0.192	-0.703	-0.293	-0.428
2000	0.655	0.133	0.581	0.129	-0.425	0.413	-0.118	0.429
2001	1.196	1.367	0.293	0.704	-0.544	-1.195	-0.693	-1.584
2002	-0.266	-0.060	0.214	0.447	0.816	0.413	0.514	-0.137
2003	0.461	0.482	0.202	0.637	0.789	1.232	1.511	0.809
2004	0.644	0.684	0.239	-0.194	0.025	-0.153	-0.236	-0.008
2005	0.304	0.392	0.289	-0.200	-0.570	-0.616	-1.103	-0.447
2006	-0.651	-0.460	0.443	0.688	0.532	0.312	0.732	1.330
2007	0.120	0.400	-0.124	-0.101	0.285	-0.389	0.497	0.056
2008	-0.079	-0.577	0.094	-0.219	0.205	0.668	0.859	1.708
2009	-0.778	-0.085	-0.334	0.262	-0.085	0.021	-0.386	-0.501
2010	-0.039	0.227	0.444	-0.229	0.162	-0.480	-0.728	-0.105
2011	-0.171	-0.212	0.065	0.060	-0.671	0.348	-1.108	0.183
2012	0.763	0.388	0.388	0.205	0.137	-0.324	0.165	-0.367
2013	0.964	0.427	-0.294	-0.212	0.006	-0.216	-0.388	-0.081
2014	-0.201	-0.342	-0.036	-0.298	0.042	0.109	0.251	-0.062
2015	-0.949	-0.124	0.096	-0.031	0.227	0.227	0.357	-0.394

Year\Age	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
2016	-0.267	-0.272	0.049	0.221	0.079	-0.269	-0.057	0.630
2017	-0.279	-0.440	-0.202	0.069	-0.023	0.438	-0.500	0.246
2018	-1.855	-1.106	-0.050	0.215	0.456	0.618	0.758	0.078
2019	-0.474	-0.732	-0.086	-0.389	-0.173	0.106	0.669	-0.047
2020	-0.105	-0.341	-0.112	0.117	-0.154	-0.727	-0.688	-0.284
2021	0.511	0.468	-0.259	-0.057	-0.141	-0.308	0.190	0.007
2022	0.000	-0.440	-0.302	0.662	1.210	0.530	0.363	0.535
Max. Residuals	1.196	1.367	0.581	0.704	1.210	1.232	1.511	1.708

Table 11.6.1.1. The input data used for prognosis of the Icelandic summer-spawning herring in the 2022 assessment: the predicted weights, the selection pattern, M, proportion of M before spawning, and the number-at-age derived from NFTAdapt run.

Age (year class)	Mean weights (kg)	M	Maturity ogive	Selection pattern	Mortality prop. before spawning		Number at age 1 January 2021
					F	M	
3 (2019)	0.160	0.10	0.200	0.138	0.000	0.500	464.7
4 (2018)	0.210	0.11	0.850	0.686	0.000	0.500	671.0
5 (2017)	0.255	0.12	1.000	1.000	0.000	0.500	509.2
6 (2016)	0.287	0.12	1.000	1.000	0.000	0.500	157.7
7 (2015)	0.302	0.15	1.000	1.000	0.000	0.500	82.3
8 (2014)	0.320	0.18	1.000	1.000	0.000	0.500	32.7
9 (2013)	0.334	0.16	1.000	1.000	0.000	0.500	56.9
10 (2012)	0.343	0.18	1.000	1.000	0.000	0.500	29.6
11 (2011)	0.352	0.16	1.000	1.000	0.000	0.500	27.0
12 (2010)	0.367	0.20	1.000	1.000	0.000	0.500	29.4
13+(2009+)	0.364	0.22	1.000	1.000	0.000	0.500	57.7

Table 11.6.2.1. Icelandic summer-spawning herring. Catch options table for the 2022/2023 season according to the Management plan where the basis is: SSB (1 July 2022) 384 kt (accounted for $\mathrm{M}_{\text {infection }}$ in 2022); Biomass age 4+ (1 January 2022) is 441.3 kt ; Catch (2021/22) 70.1 kt ; HR (2021) 0.19, and WF $\mathrm{F}_{5-10}(2021)$ 0.288.

Rationale	Catches (2022/2023)	Basis	F $(2022 / 2023)$	Biomass of age 4+ (2023)	SSB 2023	\%SSB change *	\% TAC change **
Management plan	66.2	$\mathrm{HR}=0.15$	0.202	423	404	-4	-8
MSY approach	72	$\mathrm{~F}_{\mathrm{MSY}}=0.22$	0.220	417	399	-5	-1
Zero catch	0	$\mathrm{~F}=0$	0	515	468	11	-100
$\mathrm{~F}_{\mathrm{pa}}$	128	$\mathrm{~F}_{\mathrm{pa}}=0.43$	0.430	379	344	-18	78
Flim	$\mathrm{Flim}_{\mathrm{m}}=0.61$	0.610	334	305	-28	135	

*SSB 2023 relative to SSB 2022
**TAC 2022/23 relative to landings 2021/22

11.19 Figures

Figure 11.1.2.1. The survey tracks of two acoustic surveys on Icelandic summer-spawning herring in the south and southeast (B12-2021; younger part of the stock; red) and in the west (B5-2022; adults; blue) in 2021/22 and locations of the areas that are referred to in the text.

Figure 11.1.3.1. The prevalence of the Ichthyophonus infection followed for each yearclass (starting at age 3) from 19992017. Only every second yearclass shown (and last three). Estimated from catch samples west of Iceland in the autumn (Oct.-Dec.) and samples southeast of Iceland from the acoustic survey (Nov).

Figure 11.2.1. Icelandic summer spawning herring. Seasonal total landings (in thousand tonnes) during 1947-2021, referring to the autumns, by different fishing gears from 1975 onwards).

Figure 11.2.2. The distribution of the fishery (in tonnes) of Icelandic summer spawning herring during the fishing season 2021/22, including the bycatch (mackerel and Norwegian spring spawning herring fishery) in July-September 2021.

Figure 11.3.1.1. Icelandic summer-spawning herring. Catch curves ($\log _{2}$ of catches) by year classes 1989-2017. Grey lines correspond to $\mathrm{Z}=\mathbf{0 . 4}$. Note that the mass mortality in Kolgrafafjörður is added to the catches in 2012.

Figure 11.3.1.2. Icelandic summer spawning herring. Catch curves ($\log _{2}$ of indices) from survey data by year classes 19892017. Grey lines correspond to $Z=0.4$.

Figure 11.3.2.1. Icelandic summer-spawning herring. The catchability ($\pm \mathbf{2} \mathbf{~ S E}$; left graph) and its CV (right graph) for the acoustic surveys used in the final Adapt run in 2022 (1987-2021) compared to the assessment in 2021 (red lines).

Figure 11.3.2.2. Icelandic summer-spawning herring. Comparisons of the final NFT-Adapt run in 2022, NFT-Adapt run in 2021 and a run from a separate model (Muppet) in 2022 concerning (a) number at age-3 (recruitment), (b) biomass of age 4+ (reference biomass), (c) SSB and (d) harvest rate of the reference biomass (HR MGT shown). Some reference points are also shown (see Table 11.6.2.1). Note that the mass mortality in Kolgrafafjörður in the winter 2012/13 is included in harvest rate (d) for Muppet but not in Adapt run 2022.

Figure 11.3.2.3. Icelandic summer spawning herring. Residuals of NFT-Adapt run in 2022 from survey observations (moved to 1 January). Filled bubbles are positive (i.e. survey estimates higher than the assessment) and open negative.

Figure 11.3.2.4. Icelandic summer spawning herring. Six years (2017-2021) retrospective pattern from NFT-Adapt in 2022 in recruitment as number at age 3 (the top panel), spawning stock biomass (middle panel) and \mathbf{N} weighted F_{5-10} (lowest panel).

Figure 11.3.2.5. Icelandic summer-spawning herring. Observed versus predicted survey values from NFT-Adapt run in 2022 for ages 4-11 with respect to numbers (upper) and biomass (lower). Note that there was no survey in 1995.

Year class

Figure 11.6.2.1. Icelandic summer spawning herring. The predicted biomass contribution of the different year classes to the catches in the fishing season 2022/2023 (total catch of 66195 tonnes).

12 Capelin in the Iceland-East Greenland-Jan Mayen Area

12.1 Stock description and management units

See stock annex.

12.2 Fishery independent abundance surveys

The capelin stock in Iceland-East Greenland-Jan Mayen area has been assessed by acoustics annually since 1978. The surveys have been conducted in autumn (September-December) and in winter (January-February). An overview is given in the stock annex.

12.2.1 Autumn survey during September and October 2020

The survey was conducted with the aim of assessing both the immature and the maturing part of the stock. Since 2010, the autumn surveys have started in September, a month earlier than in previous years because of difficulties in covering the stock due to drift ice and weather during later months. The survey was conducted by the research vessels Bjarni Sæmundsson on behalf of MFRI and Árni Friðriksson, rented by GINR.

The survey area was on and along the shelf edge off East Greenland from about $64^{\circ} 30^{\prime} \mathrm{N}$ towards about $75^{\circ} 15^{\prime} \mathrm{N}$, also covering the Denmark Strait and the slope off northwest Iceland. The Iceland Sea, Kolbeinsey ridge and Greenland basin were only briefly scouted due to time constraints and for same reason hydrographic measurements and zooplankton sampling were limited compared to previous years (Bardarson et al., 2021). Both vessels departed from Hafnarfjörður harbour on 6 September and sailed towards their first parallel transects crossing the Denmark Strait. From there Bjarni continued covering the East-Greenland shelf areas to southwest while Arni covered to northeast along the East-Greenland shelf and shelf edges. Based on weather prospects, Bjarni skipped the 6 southern most environmental and zooplankton sampling stations along the Denmark Strait sampling transect (Transect B) to make possible additional two transect passage across the Denmark Strait before having to halt measurements due to weather. It was essential to wait in the southern Denmark Strait because wind and sea were predicted to calm much sooner in the south. The 12 September Bjarni reached the shelf edge by Isafjardardjup in heavy wind and seas and sought shelter in Isafjordur harbour for two days. Following this delay it was evident that Bjarni would not be able to finish the scheduled transects within the survey time but it was endeavored to stay as long as possible on the scheduled parallel transects while mixtures of mature and immature capelin were still observed in the Denmark Strait but eventually the region west of Kangerlussuaq Fjord had to be covered by following more widely spread diagonal transects to make it possible to reach the southwestern extent of the survey area within the survey time. During the survey an acoustic probe (Simrad WBT-Tube) was launched from Bjarni for at depth measurements of acoustic properties of capelin. Further, one humpback whale was tagged with a satellite tag and two biopsy samples were collected from finwhales. Bjarni finished exploring the Greenlandic shelf areas on the morning of 21 September and arrived to Hafnarfjörður harbour in the afternoon of 22 September after crossing the Irminger Sea. While covering the northeastern survey areas Arni did not have substantial delays due to weather although order of transects was adapted outside Scoresby and a few hours halt was made by Pendulum Islands. About 25 nmi east of Scoresby an oceanographic mooring was successfully
retrieved for the Greenland Institute of Natural Resources (GINR). Arni finished the northern most transect east of Shannon Island in the evening of 19 September and sailed south following adapted (due to time constraints) coarse scouting zig-zag routes trough West Jan Mayen Ridge areas towards the Iceland Sea where high winds caused further delays and transects had to be adapted accordingly. Arni arrived in Hafnarfjordur harbour the 24 September. In general, drift ice did not limit the coverage of the survey vessels although icebergs and a lack of benthic mapping occasionally limited extension of transects towards the Greenlandic coast. Maturing capelin was mainly observed along the East Greenlandic continental shelf and shelf edges in Denmark Strait and the Scoresby Sund areas reaching north to $73^{\circ} 27$ N. In Denmark Strait maturing capelin was mixed with immature capelin, but mainly maturing capelin was found further north. No capelin was found by West Jan Mayen ridge or Kolbeinsey ridge. In general, there were no signs of any important quantities of capelin east of Kolbeinsey ridge nor along Icelandic shelf edges. Juveniles (0-group) of various species, including capelin (although not quantified) were observed along the continental shelf north of Iceland. Immature capelin was found along the Greenlandic shelf, dominating in southwestern part of the survey area and western Denmark Strait. In general the gonad development of maturing capelin was at unusually late stage making it more challenging to distinguish between mature and immature developmental stages. Macroscopic post survey analysis of frozen subsamples from the survey indicated that there might be an overestimate of the proportion of immatures. The distribution of capelin was westerly as in recent years. Figures 1 and 2 show the cruise tracks, distribution and relative density of the capelin during the survey. The total number of capelins amounted to 228 billions whereof the 1 -group was about 85.8 billions. The total estimate of 2 group capelin was about 133.5 billions. The total biomass estimate was 2894000 tonnes of which about 2447000 tonnes were 2 years and older. About 1.1% in numbers of the 1-group was estimated to be maturing to spawn, about 65.6% of the 2 -year-old and 90.8% of the 3 -year-old capelin appeared to be maturing. This gives about 1834000 tonnes of maturing 1-4-year-old capelin. Tables 1-6 give the age disaggregate biomass, numbers and weights of the capelin stock components. Maturity proportions may be subject to revision based on examination of frozen samples, further analyses and results from additional surveys this winter. Tables 12.2.2 and 12.2.3 show the historic time series of abundance and mean weights by age and maturity in autumn. Based on the estimate of the maturing part of the stock the Marine and Freshwater Research Institute recommended intermediate TAC of 904200 tonnes) for the fishing season 2021/2022 (MFRI, 2021). This recommendation was in accordance with existing HCR and management plan between Iceland, Norway and Greenland.

12.2.2 Surveys in winter 2021/2022

Winter surveys were conducted in January-February resulting in 4 separate coverages of stock components. The main objective of the winter surveys was to assess the maturing part of the stock with coverages designed for acoustic stock assessment. This was a coordinated collaboration of the research vessels Arni Friðriksson and Bjarni Sæmundsson where each coverage was based on combined acoustic and trawl data from both vessels. Scientists from MFRI were on board each vessel performing acoustic stock estimates and all assessments were based on acoustic data from calibrated echosounders.

12.2.2.1 Winter surveys 1. Coverage in 18-25 January 2022

The survey area was on and along the shelf edge from Norðfjarðardjúp east of Iceland to Strandagrunn northwest of Iceland (Figure 12.2.3). Árni Friðriksson started on the southernmost transects while Bjarni Sæmundsson started to the north near Héraðsdjúp. Both vessels progressed along the shelf north- northwest in a zig-zag coverage. Árni Friðriksson then moved to the west and started surveying again in the north, moving west along the shelf until ice coverage hindered further surveying of the Vestfirðir area. Due to bad weather both vessels had to stop
surveying for approximately 24 hours during the survey. The vessels managed to cover the planned survey area except for considerably hindered coverage in the area west of Iceland, due to sea ice. A complete coverage of the survey area was obtained on 24 January and subsequently it was decided to get a second, denser coverage.

Mature capelin dominated in the northwest area where multiple fishing vessels were trawling in the schools. Mixtures of immatures and mature capelin were found in the Northern areas, west of Kolbeinsey-ridge.

Total SSB was estimated 404000 tonnes but due to restricted coverage because of sea ice in the western area and sparge coverage over a large survey area, this was considered to be an underestimate.

12.2.2.2 Winter surveys 2. Coverage in 25January-2 February 2022

The survey area was similar to coverage 1 . only more focused on and along the shelf edge where capelin was located in the 1.st coverage, from Norðfjarðardjúp east of Iceland to Strandagrunn northwest of Iceland (Figure 12.2.4, blue and green track). Arni Fridriksson and Bjarni Sæmundsson started in the north where they finished the 1.st coverage and headed east in a zig-zag coverage. Once Arni Friðriksson reached the area where Bjarni Sæmundsson started, Arni Friðriksson leap-frogged west ahead of Bjarni Sæmundsson and continued surveying and Bjarni Sæmundsson did the same when approaching the area Arni Friðriksson had covered. Once both vessels had finished in the southeast of Iceland it was decided to survey the area on the shelf, close to Iceland as reports from fishing vessels indicated that capelin schools had gathered there. The vessels managed to cover the planned survey area except coverage near the Vestfjords was still considerably hindered due to sea ice.

Mature capelin dominated in main parts of the survey area although immature capelin was observed in occasional samples. Total SSB was estimated 903600 tonnes but due to restricted coverage because of sea ice near the Vestdjords, there was a risk of the total population not being covered. Also the SSB estimate from the previous autumn indicated that a portion of the stock would be arriving later to the spawning site due to underdeveloped gonads in autumn. Winter surveys 3 . Coverage in 10-15 February 2022

The acoustic measurements was conducted by the research vessel Arni Friðriksson.
Due to the area west of Iceland being unreachable during the first two coverages, it was decided to cover the are as soon as it cleared up of ice. The survey area was from Dohrnbanki in the west to Kolbeinsey-ridge (Figure 12.2.5). Ice did not hinder the survey coverage and the survey area was completed with no interuptions.

Immature capelin dominated the survey area and capelin with low maturity stage, although mature capelin was also found in the area. Total SSB was 105000 tonnes and 109000 tonnes of immature capelin. Part of the mature portion was considered to be an addition to the second coverage.

12.3 The fishery (fleet composition, behaviour and catch)

Initial catch quota for the 2021/2022 fishing season was 400000 tonnes (ICES, 2020), but no summer fishery took place in 2021.

The intermediate TAC advice based on the autumn survey 2021 recommended TAC = 904200 tonnes (MFRI, 2021) and this advice was updated to a final quota of 869600 t in winter 2022 (MFRI, 2022). In total, 689000 t were caught in the 2021/2022 fishing season.

The total catches in numbers by age during the summer/autumn since 1985 are given in Table 12.3.2 and for the winter since 1986 in Table 12.3.3.

Initial and final TAC as well as landings for the fishing seasons since 1992/93 are given in Table 12.3.4 and total catch by season is shown in Figure 12.3.1.

12.4 Biological data

12.4.1 Growth

Seasonal growth pattern, with considerably increased growth rate during summer and autumn has been observed in this capelin stock in a study of the period 1979-1992. Where immature fish had slower growth during winter, the maturing fish had faster summer growth that continued throughout the winter until spawning in March/April, followed by almost 100% spawning mortality (Vilhjalmsson, 1994). Further examination of the growth of immature capelin at age 1 in autumn to mature at age 2 in autumn the year after in the period 1979-2013 showed on average almost 4 -fold weight increase during one year (Gudmundsdottir and Sigurdsson, 2014). This considerable weight increase and seasonal pattern in growth the year before spawning should be taken into account when deciding the timing of the capelin fisheries.

Immature capelin has considerably low-fat content, usually less than $3-4 \%$. The fat content rises from approximately 5% in the summer to 20% in late autumn. In the fall and winter the fat content slowly declines, until the spawning migration begins in early January where the fat content drops drastically from about 15% to 5\% in mid-April (Engilbertsson et al., 2012).

12.5 Methods

The objective of the HCR for the stock is to leave at least 150000 tonnes (= $\mathrm{Blim}_{\mathrm{lim}}$) for spawning (escapement strategy). The initial (preliminary), intermediate and final TACs are based on acoustic surveys.
a) The initial TAC advice for the subsequent fishing season is issued by ICES around 1 December. It is based on the autumn survey abundance estimate of immature 1- and 2-year-old capelin. Before 2017, this advice was issued later (May/June).
b) The intermediate TAC advice is issued by MFRI in autumn based on the biomass estimate of maturing capelin.
c) The final TAC advice is issued by MFRI in January/February based on the biomass estimate of maturing capelin.

The initial (preliminary) quota follows a simple forecast that is based on a linear relation between historic observations of the abundance of 1- and 2-year-old juveniles from the acoustic autumn surveys and the corresponding final TACs nearly $1 \frac{1}{2}$ year later. This rule was applied by ICES NWWG (subgroup online video conferencing meeting in November 2021) to advice the initial quota for the fishing season 2022/23. Figure 12.8 .1 shows the relation and the associated precautionary initial quota.

The intermediate and final TACs are set so that there is at least 95% probability that there will be at least 150000 tonnes ($=\mathrm{Bl}_{\mathrm{lim}}$) of mature capelin left for spawning at the spawning time (15 March). This was done for the first time in 2015/2016 by the Icelandic Marine Research Institute and was not evaluated by ICES.

These methods were endorsed by the benchmark working group WKICE in 2015. See WKICE (ICES, 2015) and the Stock Annex for the capelin in the Iceland-East Greenland-Jan Mayen area.

Previously, (since early 1980s) the stock has been managed according to an escapement strategy, leaving 400000 tonnes for spawning (uncertainty of the estimates were not considered). To predict the TAC for the next fishing season a model was developed in the early 1990s (Gudmundsdottir and Vilhjalmsson, 2002). These models were not endorsed by the benchmark working group WKSHORT 2009.

12.6 Reference points

During WKICE, a Blim of 150000 tonnes was defined (ICES, 2015). No other reference points are defined for this stock.

12.7 State of the stock

The spawning stock biomass (SSB) was estimated to 1833630 in September-October 2021 and 938700 tonnes in January - February 2022. The predation model (ICES, 2015), accounting for catches (in this case total catch of 689000 t) and predation between surveys and spawning by cod, saithe and haddock, estimated that 699000 tonnes were left for spawning in spring 2022 (Table 12.7.1). Given the uncertainty estimates, there was more than 95% probability that at least 150000 tonnes was left for spawning. This was above Blim within the sustainable HCR.

The acoustic estimate of immature capelin at age 1 and 2 from the autumn survey in September 2020 was 130.2 billion. The estimate is above long-term average (Figure 12.7.1) and the initial advice according to the HCR is 400000 tonnes in the fishing season 2022/23 (Figure 12.7.2).

12.8 Uncertainties in assessment and forecast

The uncertainty of the assessment and forecast depends largely on the quality of the acoustic surveys in terms of coverage, conditions for acoustic measurements and the aggregation (high patchiness leads to high variance) of the capelin.

The uncertainty is estimated by bootstrapping (see stock annex). The CV for the immature abundance was estimated to 0.15 in the 2021 autumn survey. The CV for the mature biomass was estimated to 0.19 in the 2021 autumn survey but in the winter survey (January-February) used for the assessment in 2022 it was 0.17.

There was a good spatial coverage of the main distributions of the mature component of the stock in the autumn survey 2021 as sea ice distribution was limited to close proximities of the Greenlandic coast and survey tracks reached far north of the observed capelin distribution. Although, due to weather delays the region west of Denmark Strait had to be covered by following more widely spread diagonal transects to make it possible to reach the southwestern extent of the survey area within the survey time, potentially affecting quality of measurements of the immature stock component (used for intermediate TAC advice 2022/2023). In general, the gonad development of maturing capelin was at unusually late stage making it more challenging to distinguish between mature and immature developmental stages, but maturation estimates affect proportions of immature and mature stock components in the autumn stock estimate.

The final estimate was based on combination of partial coverages within two surveys as measurements of the northwestern survey area, off Vestfirðir, had to be delayed due to sea ice and weather. Possible migration during the few days interval between the estimates could not be accounted for. The final estimate did not involve repeated surveying with and against the migration direction. Although some components of the stock are likely to have been measured with the survey migration and others against it, there could be some bias due to migration direction.

12.9 Comparison with previous assessment and forecast

For the fishing season 2021/2022 400000 t initial quota was advised and intermediate TAC was set to 904000 tonnes while final advice was 870000 t . High juvenile index in autumn 2021 predicts large fishable stock in 2022/2023.

12.10 Management plans and evaluations

See Section 12.5.

12.11 Management considerations

The fishing season for capelin has since 1975 started in the period from late June to July/August when surveys on the juvenile part of the stock the year before have resulted in the setting of an initial (preliminary) catch quota. During summer, the availability of plankton is at its highest and the fishable stock of capelin is feeding very actively over large areas between Iceland, Greenland and Jan Mayen, increasing rapidly in length, weight and fat content. By late September/beginning of October this period of rapid growth is over. The growth is fastest the first two years, but the weight increase is highest in the year before spawning (Vilhjálmsson, 1994).

Given the large weight increase in the summer before spawning (Section 12.4) it is likely that there will be more biomass of maturing fish in autumn than in summer, even though the level of natural mortality is not well known during this time period. This should be considered for optimal timing of fishery in relation to yield and ecological impact. This is also supported by information for the Barents Sea capelin where it has been shown that fishing during autumn would maximize the yield, but from the ecosystem point of view a winter fishery were preferable (Gjøsæter et.al., 2002). As the biology and role in the ecosystem of these two capelin stocks are similar, this is considered to be valid for the capelin in the Iceland-East Greenland-Jan Mayen area as well-until it is studied for this specific stock.

During the autumn surveys, juvenile and adult capelin is often found together. This should be considered during summer and autumn fishing because the survival rate of juvenile capelin that escapes through the trawl net is unknown.

12.12 Ecosystem considerations

Capelin is an important forage fish and its dynamics are expected to have implications on the productivity of their predators (see further in Section 7.3).

The importance of capelin in East Greenlandic waters is not well documented but effort has been increased considerably during autumn surveys towards evaluation of capelin role in the ecosystem e.g. by research on feeding of capelin, estimates of prey availability, predators' distributions and environmental monitoring.

In Icelandic waters, capelin is the main single item in the diet of Icelandic cod, a key prey to several species of marine mammals and seabirds and also important as food for several other commercial fish species (see e.g. Vilhjálmsson, 2002).

12.13 Regulations and their effects

Over the years, the fishery has been closed during April-late June and the season has started in July/August or later, depending on the state of the stock.

Areas with high abundances of juvenile age 1 and 2 capelin (on the shelf region off $\mathrm{NW}-\mathrm{N}$ - and NE-Iceland) have usually been closed to the summer and autumn fishery.

It is permissible to transfer catches from the purse seine of one vessel to another vessel, in order to avoid slippage. However, if the catches are beyond the carrying capacity of the vessel and no other vessel is nearby, slippage is allowed. In recent years, reporting of such slippage has not been frequent. Industrial trawlers do not have the permission to slip capelin in order to harmonize catches to the processing.

In Icelandic waters, fishing with pelagic trawl is only allowed in limited area off the NE-coast (fishing in January) to protect juvenile capelin and to reduce the risk of affecting the spawning migration route (shuttering of migrating capelin schools by pelagic trawling has been hypothesized). In late November 2021 the western boundary of the allowed area for pelagic trawling was extended westwards, from $14^{\circ} 30 \mathrm{~W}$ to $18^{\circ} \mathrm{W}$, because the fishing fleet had problems to catch capelin with perse seines due to deep occurrences of the capelin schools in the area.

Taking precautionary measures to protect juvenile capelin, the coastal states (Iceland, Greenland and Norway) have agreed that from 2021 fishing shall not start until 15 October.

12.14 Changes in fishing technology and fishing patterns

The catches in 2021/22 (689 000 t , preliminary numbers) were taken by purse-seining (48%) and pelagic trawl (52\%), but historically a variable amount of the catches have been taken with pelagic trawl through the fishing seasons. Discards have been considered negligible.

12.15 Changes in the environment

Icelandic and East Greenlandic waters are characterized by highly variable hydrographical conditions, with temperatures and salinities depending on the strength of Atlantic inflow through the Denmark Strait and the variable flow of polar water from the north. A rise in ambient sea temperatures for the migrating and spawning capelin was especially abrupt around 2003, coinciding with a decrease in recruitment, and a change in nursery areas that may partly be a be a consequence of a change in spawning distribution (Jansen et al., 2021). Including consequences on the progress of spawning migration (Singh et al., 2020). The acoustic surveys in autumn 2010, 2012-2019 confirmed this change in distribution of immatures and maturing capelin. Fisheries data suggests that major part of the spawning still takes place on the usual grounds by the South and Southwest coasts of Iceland and possibly to increased extent by the North coast of Iceland.

A more detailed environmental description is in Section 7.3.

12.16 Recommendations

In coming years when experience of the new HCR will be gained it is recommended that assumptions and practical operation of the HCR will be evaluated. E.g. by refining the model for the initial TAC, reviewing the predation/prey relationships and how SSB estimates from autumn and winter surveys should be weighted when final TAC is calculated. NWWG therefore recommends that the assessment of this capelin stock goes through a benchmark workshop in near future. Further, it is recommended that the option to run this benchmark jointly with a benchmark workshop for the Barents Sea capelin stock will be examined.

Studies of optimal harvesting of capelin should be conducted. These estimates should take account of ecological impact, growth, mortality and gear selection in relation to the timing of the fishery.

Profound changes in the distribution, migration and productivity of this capelin stock, likely caused by environmental changes, urge the need for further biological studies i.e. regarding life history (including changes in spawning grounds, larval drift and migration at times not observed by autumn and winter surveys) and the role of capelin (predation/prey relationships) as a key species in the ecosystem.

The assessment and advice on the final TAC for capelin based on the autumn and winter surveys are issued directly to the Coastal States by the Icelandic Marine and Freshwater Research Institute. This process is not internationally peer reviewed prior to the release of the advice. Among the reasons for using this process is the need for fast advice once the survey result is available. The ICES ACOM procedure is more time consuming. NWWG has recommended that a fast track workflow based on online meetings is established if possible. The coastal states evaluated this recommendation in 2017 and concluded that a current regime for setting intermediate and final TAC should be maintained. When planning acoustic surveys for capelin stock assessment, allocation of effort in terms of ship time, number of ships and manpower, should be sufficient for a likely full coverage in the first attempt given the demanding weather and ice conditions during autumn and winter surveys.

12.17 References

Marine and Freshwater Research Institute. 2021. State of Marine Stocks and Advice 2021, advice on capelin. https://www.hafogvatn.is/static/extras/images/lodnahaust20211278546.pdf ICES. 2020. Capelin (Mallotus villosus) in subareas 5 and 14 and Division 2.a west of $5^{\circ} \mathrm{W}$ (Iceland and Faroes grounds, East Greenland, Jan Mayen area). In Report of the ICES Advisory Committee, 2020. ICES Advice 2020, cap.27.2a514. https://doi.org/10.17895/ices.advice.5890.

Bardarson, B., Jonsson, S.Th., Bjarnason, S, Heilman, L. and Jansen, T. 2021. Preliminary cruise report: Acoustic assessment of the Iceland-Greenland-Jan Mayen capelin stock in autumn 2021. ICES North Western Working Group, 2 - 7 May 2022, Working Document No. 14.10 pp.
. Marine and Freshwater Research Institute. 2022. State of Marine Stocks and Advice 2022, advice on capelin. https://www.hafogvatn.is/static/extras/images/lodnavetur2022_final1303547.pdfEngilbertsson, V., Óskarsson, G.J. and Marteinsdóttir, G. (2012). Inter-annual Variation in Fat Content of the Icelandic Capelin. ICES CM 2013/N:26.

Gjøsæter, H., Bogstad, B., and Tjelmeland, S. 2002. Assessment methodology for Barents Sea capelin, Mallotus villosus (Müller). - ICES Journal of Marine Science, 59: 1086-1095.

Gudmundsdottir, A., and Vilhjalmsson, H. 2002. Predicting Total Allowable Catches for Icelandic capelin, 1978-2001. ICES Journal of Marine Science, 59: 1105-1115.

Gudmundsdottir, A., and Sigurdsson, Th. 2014. Growth of capelin in the Iceland-East Greenland-Jan Mayen area. NWWG 2014/WD:29.

ICES 2015. Report of the Benchmark Workshop on Icelandic Stocks (WKICE), 26-30 January, 2015. ICES Headquarters. ICES CM 2015/ACOM:31.

Jansen, T, Hansen, F.T., Bardason, B. 2021. Larval drift dynamics, thermal conditions and the shift in juvenile capelin distribution and recruitment success around Iceland and East Greenland. Fish. Res. 236.
Vilhjálmsson, H. 2002. Capelin (Mallotus villosus) in the Iceland-East Greenland-Jan Mayen ecosystem.
ICES Journal of Marine Science: Journal du Conseil, 59: 870-883.
Vilhjálmsson, H. 2007. Impact of changes in natural conditions on ocean resources. Law, science and ocean management 11, 225.

Vilhjalmsson, H. 1994. The Icelandic capelin stock. Capelin, Mallotus villosus (Müller), in the Iceland-Greenland-Jan Mayen area. Rit Fiskideildar, 13: 281 pp.

12.18 Tables

Table 12.2.1 Icelandic Capelin. Estimated stock size of the capelin total stock component in numbers (millions) by age (years) and length (cm), and biomass (thous. tonnes) from the acoustic survey in 6. September - 24. October 2021.

Length (cm)	Numbers at Age (109)				Numbers (109)	Biomass ($10^{3} \mathrm{t}$)	Mean weight (g)
	1	2	3	4			
9	278.4	0	0	0	278.40	680.20	2.44
9.5	1947.51	0	0	0	1947.51	5645.12	2.90
10	6402.2	0	0	0	6402.20	22127.16	3.46
10.5	14693.62	0	0	0	14693.62	59582.09	4.05
11	21904.01	0	0	0	21904.01	102991.99	4.70
11.5	20239.66	759.56	0	0	20999.21	116025.29	5.53
12	11421.02	1305.57	0	0	12726.59	81701.34	6.42
12.5	5861.66	3297.28	0	0	9158.94	67352.36	7.35
13	2658.49	6683.11	0	0	9341.60	82423.35	8.82
13.5	240.77	7953.21	0	0	8193.98	84927.87	10.36
14	148.15	12664.87	120.38	0	12933.40	153282.58	11.85
14.5	0	16566.1	139.2	0	16705.30	227177.83	13.60
15	0	21694.26	290.01	0	21984.27	337206.62	15.34
15.5	0	18171.02	691.2	0	18862.22	328679.22	17.43
16	0	16208.72	770.87	0	16979.60	338849.83	19.96
16.5	0	13113.31	996.95	0	14110.25	318246.40	22.55
17	0	8019.78	1871.11	0	9890.89	252825.00	25.56
17.5	0	4277.44	1681.98	16.41	5975.83	164899.73	27.59
18	0	2009	1323.91	16.41	3349.33	102753.49	30.68
18.5	0	612.85	319.76	0	932.61	29981.06	32.15
19	0	153.21	251.7	0	404.91	15451.63	38.16
19.5	0	0	16.41	0	16.41	788.87	48.06
9	278.4	0	0	0	278.40	680.20	2.44

Table 12.2.1 Icelandic Capelin. Summary of the capelin stock components from the acoustic survey in 6. September - 24. October 2021. Age (years) aggregated spawning stock component summary. $\mathbf{T}=$ Total, $\mathbf{S}=$ Stock, $\mathbf{N}=$ Numbers (billions), W = Weight(grams), L = Length(Cm), p=\%

		Age		Total	Mean		
TSN	85.79548278	133.4892994	8.473480105	0.0328287	227.791091		
TSB	446.9879468	2232.442388	213.2121802	0.956518028	2893.599032		
MeanW	5.209924022	16.72375536	25.16229195	29.13664067	12.70286305	12.70286305	
MeanL	11.22693038	15.14547899	16.95204428	17.75	13.73716943	13.73716943	
TSNp	37.66410811	58.60163312	3.719847017	0.014411758	100	96.2579825	19

Table 12.2.2. Icelandic Capelin. Abundance of age-classes in numbers $\left(10^{9}\right)$ measured in acoustic surveys in autumn.

Year	Month	Day	Age1 Imm.	Age1 Mat.	Age2 Imm.	Age2 Mat.	Age3 Imm.	Age3 Mat.	Age4 Mat.	Age5 Mat.
1978	10	16				60.0		13.9	0.4	
1979	10	14	10.0			49.7		9.1	0.4	
1980	10	11	23.5			19.5		4.8		
1981	11	26	21.0		1.1	11.9		0.6		
1982	10	2	68.0		1.7	15.0		1.6		
1983	10	3	44.1		8.2	58.6		5.6	0.1	
1984	11	1	73.8		4.6	31.9		10.3	0.3	
1985	10	8	33.8		12.6	43.7		14.4	0.4	0.1
1986	10	4	58.6		1.4	19.9		29.8	0.3	
1987	11	18	21.3		2.5	52.0		13.5		
1988	10	6	43.9		6.7	53.0		17.0	0.4	
1989	10	26	29.2		1.8	2.9		0.6		
1990	11	8	24.9		1.3	16.4		2.7	0.1	
1991	11	15	60.0		5.3	44.7		4.2		
1992	10	13	104.6		2.3	54.5		4.3	0.1	
1993	11	18	100.4		9.8	55.1		4.9		
1994	11	25	119.0		6.9	29.2		4.4		
1995	11	30	165.0		30.1	84.6		7.0		
1996	11	27	111.9		16.4	70.0		15.9		
1997	11	1	66.8		30.8	52.5		8.5		
1998	11	13	121.0		5.9	20.5		3.3		
1999	11	15	89.8		4.4	18.1		0.9		
2000	11	10	103.7		10.9	11.6	0.1	0.6		
2001	11	12	101.8		2.4	22.1	0.0	0.7		
2002	11	12	1.0		0.5					
2003	11	6	4.9		3.1	1.7	0.1	0.2		
2004	11	22	7.9		0.1	7.3		0.8	0.0	
2005	11									

Year	Month	Day	Age1	Age1	Age2	Age2	Age3	Age3	Age4	Age5
			Imm.	Mat.	Imm.	Mat.	Imm.	Mat.	Mat.	Mat.
2006	11	6	44.7		0.3	5.2		0.4		
2007	11	7	5.7		0.1	1.3		0.0		
2008	11	17	7.5	5.1	0.4	12.1		1.8		
2009	11	24	13.0	2.4		5.0		0.7		
2010	10	1	91.6	9.6	6.3	25.8	0.1	0.8	0.02	
2011	11	29	9.0	0.6	3.6	19.9	0.05	2.1		
2012	10	3	18.5	0.9	2.0	21.2	0.07	11.4	0.1	
2013	9	17	60.1	0.6	6.9	25.0	1.3	6.9	0.1	
2014	9	16	57.0	1.0	3.3	26.5	0.2	7.6	0.1	
2015	9	16	5.0	0.4	1.2	21.2		6.7		
2016	9	10	8.7	0.5	0.7	4.5	0.0	0.9	0.01	
2017	9	7	24.6	1.3	1.5	35.5	0.0	5.1	0.05	
2018	9	6	10.3	1.5	0.4	8.8	0.0	1.0		
2019	9	12	81.5	1.8	1.1	6.1		0.6	0.0	
2020	9	7	139.8	0.8	6.5	13.5	0.0	1.44		
2021	9	6	84.8	1.0	45.9	87.6	0.8	7.7	0.03	

1987 - The number at age 1 was from survey earlier in autumn.
2005 - Scouting vessels searched for capelin. r/s ÁF measured. No samples taken for age determination. Estimated to be < 50000 t .
2011 - Only limited coverage of the traditional capelin distribution area. 2001-2009 and 2016-Not full coverage of stock.

Table 12.2.3. Icelandic Capelin. Mean weight (g) of age-classes measured in acoustic surveys in autumn. (imm = immature, mat = mature). See footnotes in Table 12.2.2.

Year	Mon	Age1	Age1	Age2	Age2	Age3	Age3	Age4	Age5
		Imm.	Mat.	Imm.	Mat.	Imm.	Mat.	Mat.	Mat.
1978	10				19.8		25.4	26.3	
1979	10	6.2			15.7	23.0	20.8		
1980	10	7.3			19.4	26.7			
1981	11	3.6	12.3	19.4	22.5				
1982	10	3.8	8.5	16.5	24.1				
1983	10	5.1	9.5	16.8	22.5	23.0			
1984	11	2.9	8.3	15.8	25.7	23.2			

Year	Mon	Age1	Age1 Mat.		Age2 Mat.		Age3 Mat.	Age4 Mat.	Age5 Mat.
		Imm.							
1985	10	3.8		8.5	15.5		23.8	29.5	31.0
1986	10	4.0		6.1	18.1		24.1	28.8	
1987	11	2.8		8.7	17.9		25.8		
1988	10	3.0		8.0	15.4		23.4	20.9	
1989	10	3.5		8.0	12.9		24.0		
1990	11	3.9		8.4	18.0		25.5	36.0	
1991	11	4.7		7.9	16.3		25.4		
1992	10	3.7		8.6	16.5		22.6	22.0	
1993	11	3.6		8.9	16.2		23.3		
1994	11	3.3		7.9	15.9		23.6		
1995	11	3.7		7.0	14.0		20.8		
1996	11	3.1		7.4	15.8		20.6		
1997	11	3.3		8.5	14.3		20.1		
1998	11	3.5		9.9	13.7		18.8		
1999	11	3.6		8.0	15.4		19.5		
2000	11	3.9		8.5	13.4	13.0	20.8		
2001	11	3.8		8.8	16.3	15.7	23.9		
2002	11								
2003	11	7.2		14.9	17.0	22.6	23.7		
2004	11	7.4		7.6	16.0		18.0	14.5	
2005									
2006	11	3.7		7.9	15.0		16.7		
2007	11	5.5		8.6	14.9		15.8		
2008	11	6.2	11.0	6.9	18.6		22.4		
2009	11	5.1	9.8		20.0		23.8		
2010	10	5.8	12.9	12.2	19.0	12.9	24.0	21.2	
2011	11	6.8	11.4	11.1	18.7	15.8	24.4		
2012	10	6.5	16.0	15.3	22.0	22.4	28.0	26.6	
2013	9	5.8	12.6	10.9	18.0	11.2	20.9	23.6	
2014	9	4.2	9.9	12.7	18.3	16.6	21.2	25.0	
2015	9	8.5	12.3	13.4	18.4	21.5	23.1		
2016	9	9.0	15.1	13.1	25.5	11.5	31.7	39.2	
2017	9	8.0	12.6	15.0	22.2	22.3	27.2	33.2	
2018	9	8.8	12.9	16.5	21.7	21.2	27.1		
2019	9	7.3	13.4	14.5	24.0	15.7	27.1	28.4	
2020	9	4.8	10.0	10.8	22.0	31.3	26.7		
2021	9	5.2	6.9	13.1	18.6	21.7	25.5	29.1	

Table 12.2.4. Icelandic Capelin. Estimated stock size of Iceland-Greenland-Jan Mayen capelin total stock in numbers (millions) by age (years) and length (cm), and biomass (thous. tonnes) from the acoustic surveys in 17. - 30. January 2021.

Length (cm)	Numbers at Age (109)				Numbers ($\mathbf{1 0}^{\mathbf{9}}$)	Biomass ($10^{3} \mathrm{t}$)	Mean weight (g)
	1	2	3	4			
9	0	28.43	0	0	28.43	69.65	2.45
9.5	0	85.29	0	0	85.29	226.01	2.65
10	0	184.78	0	0	184.78	590.88	3.2
10.5	0	787.6	0	0	787.6	2970.02	3.77
11	0	1039.31	0	0	1039.31	4529.8	4.36
11.5	0	1692.83	0	0	1692.83	8783.71	5.19
12	0	1799.37	0	0	1799.37	10798.35	6
12.5	0	2005.44	9.76	0	2015.2	14144.46	7.02
13	0	1748.12	23.97	0	1772.09	14481.92	8.17
13.5	0	984.87	53.24	2.52	1040.63	9660.07	9.28
14	0	813.08	138.19	0	951.27	10215.56	10.74
14.5	0	443.06	224.41	0	667.47	8350.4	12.51
15	0	169.52	765.45	0	934.97	13489.03	14.43
15.5	0	81.33	993.38	9.76	1084.46	17909.93	16.52
16	0	14.21	1809.52	35.77	1859.5	34906.54	18.77
16.5	0	4.58	2423.49	148.16	2576.23	55266.04	21.45
17	0	14.21	3228.05	148	3394.85	81416.96	23.98
17.5	0	0	3400.49	282.74	3683.22	98668.71	26.79
18	0	0	4149.24	518.67	4667.91	138373.6	29.64
18.5	0	0	3056.47	616.99	3673.46	120496.4	32.8
19	0	0	1887.82	92.98	1980.8	70261.6	35.47
19.5	0	0	590.08	139.87	729.95	28580.83	39.15
20	0	0	38.71	0	38.71	1703.16	44

Table 12.2.4 Icelandic Capelin. Summary of the capelin stock components from the acoustic surveys in 17. - 30. January 2021. Age (years) aggregated spawning stock component summary. $\mathrm{T}=$ Total, $\mathbf{S}=$ Stock, $\mathbf{N}=$ Numbers(billions), $\mathbf{W}=$ Weight(grams), $L=$ Length (Cm), $p=\%$

	Age					
		2	3		Total	Mean
TSN	0	11.9	22.79	2	36.69	
TSB	0	84.24	602	59.55	745.89	
MeanW	0	7.08	26.41	29.84		20.33
MeanL	0	12.35	17.37	18		15.78
TSNp	0	32.42	62.12	5.44	100	
SSN	0	0.77	21.43	1.97	24.17	
SSB	0	9.49	580.66	59.03	649.3	
MeanW	0	12.3	27.09	30.02		26.86
MeanL	0	14.16	17.49	18.03		17.43
SSNp	0	3.19	88.65	8.13	100	
ISN	0	11.12	1.36	0.03	12.51	
ISB	0	74.66	21.42	0.52	96.59	
MeanW	0	6.71	15.74	17.66		7.72
MeanL	0	12.22	15.48	16		12.59
ISNp	0	88.89	10.88	0.23	100	

Table 12.3.1 Capelin. The international catch since 1964 (thousand tonnes).

Year	Winter season				Summer and autumn season							
	Iceland	Norway	Faroes	Greenland	Season total	Iceland	Norway	Faroes	Greenland	EU	Season total	
1964	8.6	-	-		8.6	-	-	-		-	-	8.6
1965	49.7	-	-		49.7	-	-	-		-	-	49.7
1966	124.5	-	-		124.5	-	-	-		-	-	124.5
1967	97.2	-	-		97.2	-	-	-		-	-	97.2
1968	78.1	-	-		78.1	-	-	-		-	-	78.1
1969	170.6	-	-		170.6	-	-	-		-	-	170.6
1970	190.8	-	-		190.8	-	-	-		-	-	190.8
1971	182.9	-	-		182.9	-	-	-		-	-	182.9
1972	276.5	-	-		276.5	-	-	-		-	-	276.5
1973	440.9	-	-		440.9	-	-	-		-	-	440.9
1974	461.9	-	-		461.9	-	-	-		-	-	461.9
1975	457.1	-	-		457.1	3.1	-	-		-	3.1	460.2
1976	338.7	-	-		338.7	114.4	-	-		-	114.4	453.1
1977	549.2	-	24.3		573.5	259.7	-	-		-	259.7	833.2
1978	468.4	-	36.2		504.6	497.5	154.1	3.4		-	655	1,159.60
1979	521.7	-	18.2		539.9	442	124	22		-	588	1,127.90

Year	Winter season				Summer and autumn season							
	Iceland	Norway	Faroes	Greenland	Season total	Iceland	Norway	Faroes	Greenland	EU	Season total	
1980	392.1	-	-		392.1	367.4	118.7	24.2		17.3	527.6	919.7
1981	156	-	-		156	484.6	91.4	16.2		20.8	613	769
1982	13.2	-	-		13.2	-	-	-		-	-	13.2
1983	-	-	-		-	133.4	-	-		-	133.4	133.4
1984	439.6	-	-		439.6	425.2	104.6	10.2		8.5	548.5	988.1
1985	348.5	-	-		348.5	644.8	193	65.9		16	919.7	1,268.20
1986	341.8	50	-		391.8	552.5	149.7	65.4		5.3	772.9	1,164.70
1987	500.6	59.9	-		560.5	311.3	82.1	65.2		-	458.6	1,019.10
1988	600.6	56.6	-		657.2	311.4	11.5	48.5		-	371.4	1,028.60
1989	609.1	56	-		665.1	53.9	52.7	14.4		-	121	786,1
1990	612	62.5	12.3		686.8	83.7	21.9	5.6		-	111.2	798
1991	202.4	-	-		202.4	56	-	-		-	56	258.4
1992	573.5	47.6	-		621.1	213.4	65.3	18.9	0.5	-	298.1	919.2
1993	489.1	-	-	0.5	489.6	450	127.5	23.9	10.2	-	611.6	1,101.20
1994	550.3	15	-	1.8	567.1	210.7	99	12.3	2.1	-	324.1	891.2
1995	539.4	-	-	0.4	539.8	175.5	28	-	2.2	-	205.7	745.5
1996	707.9	-	10	5.7	723.6	474.3	206	17.6	15	60.9	773.8	1,497.40

Year	Winter season				Summer and autumn season							
	Iceland	Norway	Faroes	Greenland	Season total	Iceland	Norway	Faroes	Greenland	EU	Season total	
1997	774.9	-	16.1	6.1	797.1	536	153.6	20.5	6.5	47.1	763.6	1,561.50
1998	457	-	14.7	9.6	481.3	290.8	72.9	26.9	8	41.9	440.5	921.8
1999	607.8	14.8	13.8	22.5	658.9	83	11.4	6	2	-	102.4	761.3
2000	761.4	14.9	32	22	830.3	126.5	80.1	30	7.5	21	265.1	1,095.40
2001	767.2	-	10	29	806.2	150	106	12	9	17	294	1,061.20
2002	901	-	28	26	955	180	118.7	-	13	28	339.7	1,294.70
2003	585	-	40	23	648	96.5	78	3.5	2.5	18	198.5	846.5
2004	478.8	15.8	30.8	17.5	542.9	46	34	-	12		92	634.9
2005	594.1	69	19	10	692	9	-	-	-	-	9	701.1
2006	193	8	30	7	238	-	-	-	-		-	238
2007	307	38	19	12.8	376.8	-	-	-	-	-	-	376.8
2008	149	37.6	10.1	6.7	203.4	-	-	-	-	-	-	203.4
2009	15.1	-	-	-	15.1	-	-	-	-	-	-	15.1
2010	110.6	28.3	7.7	4.7	150.7	5.4	-	-	-	-	5.4	156.1
2011	321.8	30.8	19.5	13.1	385.2	8.4	58.5		5.2	-	72.1	457.3
2012	576.2	46.2	29.7	22.3	674.4	9	-	-	1	-	10	684.4
2013	454	40	30	17	541	-	-	-	-	-	-	541

Year	Winter season							Summer and autumn season				
	Iceland	Norway	Faroes	Greenland	Season total	Iceland	Norway	Faroes	Greenland	EU	Season total	
2014	111.4	6.2	8	16.1	141.7	-	30.5	-	5.3	9.7	45.5	187.2
2015	353.6	50.6	29.9	37.9	471.9	-	-	-	2.5	-	2.5	474.4
2016	101.1	58.2	8.5	3.3	171.1	-	-	-	-	-	-	171.1
2017	196.8	60.4	15	27.4	299.8	-	-	-	-	-	-	299.8
2018	186.3	74.5	14.3	11.4	286.5	-	-	-	-	-	-	286.5
2019	-	-	-	-	-	-	-	-	-	-	-	-
2020	-	-	-	-	-	-	-	-	-	-	-	-
2021	67	49.4	6.4	6.6	129.4	75.8	-	-	1.3	-	77.1	206.5
2022*	433.8	122.3	29.5	26.6	612.1							

* Preliminary, provided by working group members.

Table 12.3.2 Icelandic capelin. The total international catch of capelin in the Iceland-East Greenland-Jan Mayen area by age group in numbers (billions) and the total catch by numbers and weight (thousand tonnes) in the autumn season (August-December) since 1985.

Year	Age 1	Age 2	Age 3	Age 4	Age 5	Total number	Total weight
1985	0.8	25.6	15.4	0.2		42.0	919.7
1986	+	10.0	23.3	0.5		33.8	772.9
1987	+	27.7	6.7	+		34.4	458.6
1988	0.3	13.6	5.4	+		19.3	371.4
1989	1.7	6.0	1.5	+		9.2	121.0
1990	0.8	5.9	1.0	+		7.7	111.2
1991	0.3	2.7	0.4	+		3.4	56.0
1992	1.7	14.0	2.1	+		17.8	298.1
1993	0.2	24.9	5.4	0.2		30.7	611.6
1994	0.6	15.0	2.8	+		18.4	324.1
1995	1.5	9.7	1.1	+		12.3	205.7
1996	0.2	25.2	12.7	0.2		38.4	773.7
1997	1.8	33.4	10.2	0.4		45.8	763.6
1998	0.9	25.1	2.9	+		28.9	440.5
1999	0.3	4.7	0.7	+		5.7	102.4
2000	0.2	12.9	3.3	0.1		16.5	265.1
2001	+	17.6	1.2	+		18.8	294.0
2002	+	18.3	2.5	+		20.8	339.7
2003	0.3	11.8	1	+		14.3	199.5
2004	+	5.3	0.5	-		5.8	92.0
2005	-	0.4	+	-		0.4	9.0
2006	-	-	-	-		-	-
2007	-	-	-	-		-	-
2008	-	-	-	-		-	-
2009	-	-	-	-		-	-
2010	0.01	0.23	0.02	-		0.25	5.4
2011	-	2.45	1.61	-	0.08	4.13	72.1

Year	Age 1	Age 2	Age 3	Age 4	Age 5	Total number	Total weight
2012	-	0.2	0.2	-	-	0.4	10.4
2013	-	-	-	-	-	-	-
2014	0.01	2.22	0.6	0.02	-	2.8	45.5
2015	0.03	0.08	0.03			1.4	2.5
2016	-	-	-	-	-	-	-
2017	-	-	-	-	-	-	-
2018	-	-	-	-	-	-	-
2019	-	-	-	-	-	-	-
2020	-	-	-	-	-	-	-
2021	-	-	-	-	-	-	-
2022	-	2.6	0.6	0.01	-	4.2	77.1

Table 12.3.3 Icelandic capelin. The total international catch of capelin in the Iceland-East Greenland-Jan Mayen area by age group in numbers (billions) and the total catch by numbers and weight (thousand tonnes) in the winter season (Jan-uary-March) since 1986.

Year	age 1	age 2	age 3	age 4	age 5	Total number	Total weight
1986		0.1	9.8	6.9	0.2	17.0	391.8
1987		+	6.9	15.5	-	22.4	560.5
1988		+	23.4	7.2	0.3	30.9	657.2
1989		0.1	22.9	7.8	+	30.8	665.1
1990		1.4	24.8	9.6	0.1	35.9	686.8
1991		0.5	7.4	1.5	+	9.4	202.4
1992		2.7	29.4	2.8	+	34.9	621.1
1993		0.2	20.1	2.5	+	22.8	489.6
1994		0.6	22.7	3.9	+	27.2	567.1
1995		1.3	17.6	5.9	+	24.8	539.8
1996		0.6	27.4	7.7	+	35.7	723.6
1997		0.9	29.1	11	+	41.0	797.6
1998		0.3	20.4	5.4	+	26.1	481.3
1999		0.5	31.2	7.5	+	39.2	658.9
2000		0.3	36.3	5.4	+	42.0	830.3

Year	age 1	age 2	age 3	age 4	age 5	Total number	Total weight
2001		0.4	27.9	6.7	+	35.0	787.2
2002		0.1	33.1	4.2	+	37.4	955.0
2003		0.1	32.2	1.9	+	34.4	648.0
2004		0.6	24.6	3	+	28.3	542.9
2005		0.1	31.5	3.1	-	34.7	692.0
2006		0.1	10.4	0.3	-	10.8	230.0
2007		0.3	19.5	0.5	-	20.3	376.8
2008		0.5	10.6	0.4	-	11.5	202.4
2009		0.1	0.6	0.1	-	0.7	15.1
2010		0.7	5.3	0.9	0.01	6.9	150.7
2011		0.1	16.2	0.6	-	17.0	385.2
2012	0.02	0.6	25.0	6.1	0.02	31.8	674.4
2013	-	0.3	12.1	9.7	0.2	22.3	541.0
2014	-	0.1	4.8	1.3	+	6.1	141.8
2015	-	0.3	17.5	4.7	0.1	22.7	471.9
2016		0.4	5.5	2.0	0.02	8.0	171.1
2017		0.4	5.4	4.1	0.1	10.0	299.8
2018		0.6	10.4	0.9	0.01	11.91	286.5
2019	-	-	-	-	-	0	0
2020	-	-	-	-	-	-	-
2021	-	0.0	4.8	0.3	-	5.2	129.4
2022	-	0.2	22.6	1.5	0.01	24.3	612.1

Table 12.3.4. Initial quota and final TAC and landings by seasons.

Fishing season	Initial advice	Final TAC	Landings
$1992 / 931$	500	900	788
$1993 / 9^{1}$	900	1250	1179
$1994 / 95$	950	850	842
$1995 / 96^{1}$	800	1390	930
$1996 / 97^{1}$	1100	1600	1571

Fishing season	Initial advice	Final TAC	Landings
1997/98	850	1265	1245
1998/99	950	1200	1100
1999/00	866	1000	934
2000/01	650	1090	1065
2001/02	700	1300	1249
2002/03	690	1000	988
2003/04 ${ }^{2}$	555	900	741
2004/05 ${ }^{3}$	335	985	783
2005/06	No fishery	235	238
2006/07	No fishery	385	377
2007/08	207	207	202
2008/09 ${ }^{4}$	No fishery		15
2009/10	No fishery	150	151
2010/11	No fishery	390	391
2011/12	366	765	747
2012/13	No fishery	570	551
2013/14 ${ }^{1}$	No fishery	160	142
2014/15	2255	580	517
2015/16	No fishery ${ }^{5}$	173	174
2016/17	No fishery ${ }^{5}$	299	300
2017/18	No fishery ${ }^{5}$	285	287
2018/19	No fishery ${ }^{5}$	0	0
2019/20	No fishery ${ }^{5}$	0	0
2020/21	170^{5}	127	129
2021/22 ${ }^{6}$	4005	870	689

The final TAC was set on basis of autumn surveys in the season.
Indices from April 2003 were projected back to October 2002.
The initial quota was set on a basis of an acoustic survey in June/July 2004
No fishery was allowed, 15000 t was assigned to scouting vessels.
Initial advice based on low probability of exceeding final TAC.
Preliminary landings.

Table 12.7.1 Icelandic capelin in the Iceland-East Greenland-Jan Mayen area since the fishing season 1978/79. (A fishing season e.g. 1978/79 starts in summer 1978 and ends in March 1979). Recruitment of 1-year-old fish (unit 10 ${ }^{9}$) as measured in autumn survey. Spawning stock biomass (' 000 t) is given at the time of spawning at the end of the fishing season. Landings (' $\mathbf{0 0 0} \mathrm{t}$) are sum of total landings in the season.

Season (Summer/winter)	Recruitment	Landings	Spawning stock biomass
1978/79	-	1195	600
1979/80	22	980	300
1980/81	23.5	684	170
1981/82	21	626	140
1982/83	68	0	260
1983/84	44.1	573	440
1984/85	73.8	896	460
1985/86	33.8	1312	460
1986/87	58.6	1334	420
1987/88	2.6	1116	400
1988/89	43.9	1036	440
1989/90	29.2	807	115
1990/91	27.2	313	330
1991/92	60	677	475
1992/93	104.6	788	499
1993/94	100.4	1178	460
1994/95	119	864	420
1995/96	165	930	830
1996/97	111.9	1570	430
1997/98	66.8	1246	492
1998/99	121	1100	500
1999/00	89.8	932	650
2000/01	103.7	1071	450
2001/02	101.8	1249	475
2002/03	-	988	410
2003/04	4.9	742	535
2004/05	7.9	784	602

Season (Summer/winter)	Recruitment	Landings	Spawning stock biomass
2005/06	-	247	400
2006/07	44.7	377	410
2007/08	5.7	203	406
2008/09	12.6	150	328
2009/10	15.4	151	410
2010/11	101.2	391	411
2011/12	9.6	747	418
2012/13	19.4	551	417
2013/14	60.7	142	424
2014/15	58	518	460
2015/16	5.4	174	304*
2016/17	9.4	300	361*
2017/18	25.9	287	352*
2018/19	10.3	0	127*
2019/20	81.5	0	157*
2020/21	146.3	129	344*
2021/22	130.7	689	699

* Based on predation model in current HCR.

12.19 Figures

Figure 12.2.1. Icelandic capelin. Cruise tracks during an acoustic survey by r/v Arni Fridriksson (blue) and Bjarni Saemundsson (red) during 6-24 September 2021.

Figure 12.2.2. Icelandic capelin. Relative density and distribution of capelin shown as peri bars during an acoustic survey by r/v Arni Fridriksson and Bjarni Sæmundsson during 6-24 September 2021.

Figure 12.2.3. Icelandic capelin. Survey tracks (A) of the participating vessels during 18-25 January 2022 and distribution (B) of capelin.

Figure 12.2.4. Icelandic capelin. Survey tracks (A) of participating vessels during 25 January-2 February 2021 and distribution (B) of capelin.

Figure 12.2.5. Icelandic capelin. Survey tracks (A) of participating vessels on 10-15 February 2022 and distribution (B) of capelin.

Figure 12.3.1. Icelandic capelin. The total catch (in thousand tonnes) of the Icelandic capelin since 1963/64 by season.

Figure 12.7.1. Icelandic capelin. Indices of immature 1 and immature $\mathbf{2}$ years old capelin from acoustic surveys in autumn since 1979.

Figure 12.7.2 Icelandic Capelin. Catch advice according to the proposed stochastic HCR, based on the measured number of immature capelins about 15 months earlier. The figure shows the estimated final TAC (black unbroken line) and the initial (preliminary) TAC (blue dashed line). The latter is set using a Utrigger (red vertical line) of 50 billion immature fish, with a cap on the initial (preliminary) TAC of 400 kt . The green lines show the index value from the autumn survey 2021, with the corresponding initial TAC for 2022/2023 shown on the y-axis. (The figure adapted from stock-annex, WKICE 2015).

13 Overview on ecosystem, fisheries and their management in Greenland waters

13.1 Ecosystem considerations

The marine ecosystem around Greenland is located from arctic to Subarctic regions. The water masses in East Greenland are composed of the polar East Greenland Current and the warm and saline Irminger Current of Atlantic origin. As the currents round Cape Farewell at Southernmost Greenland the saline, warm Irminger water subducts the colder polar water and forms the relatively warm West Greenland Current. This flows along the West Greenland coast mixing extensively as it flows north. This current is of importance in the transport of larval and juvenile fish along the coast for important species such as cod and Greenland halibut. Additionally, cod from Icelandic waters spawning south and west of Iceland occasionally enters Greenland waters via the Irminger current and is distributed along both the Greenland East and West coast (Figure 1).

Figure 1. Spawning areas, egg and larval transport of Atlantic cod (Gadus morhus) in Greenlandic and Icelandic waters.
Depending of the relative strength of the two East Greenland currents, the Polar Current and the Irminger Current, the marine environment experience extensive variability with respect to the hydrographical properties of the West Greenland Current. The general effects of such changes have been increased production during warm periods as compared to cold periods, and resulted in extensive distribution and productivity changes of many commercial stocks. Historically, cod is the most prominent example of such a change (Hovgård and Wieland, 2008).
In recent years, temperature have increased significantly in Greenland waters. In West Greenland the sea temperature have increased particularly compared to the years in 1970s-mid1990s and historical highs was registered in 2005 for the time-series 1880-2012 (Figure 2).

Figure 2. Mean temperature on top of Fylla Bank (located outside Nuuk Fjord, 0-40 m depth) in the middle of June for the period 1950-2013. The curves are 3 year running mean values. The magenta/purple line is extended back to 1876 using Smed-data for area A1. From Ribergaard (2014).

Temperature in the centre of the Irminger Sea, in the depth interval 200-400 m, shows no such clear long-term trend (ICES, 2013c). However, Rudels et al. (2012) finds that between 1998-2010, the salinity and temperature of the deep water in the Greenland Sea increased. Furthermore, increasing temperatures in the Atlantic Water entering the Arctic in the Fram Strait has increased throughout the period 1996-2012, though with the highest observation in 2006 (ICES, 2013c). Such environmental changes might well propagate to different trophic levels. Accordingly, shrimp biomass fluctuations in Greenland waters as a result of environmental changes could affect fish predators such as cod (Hvingel and Kingsley, 2006) and the other way around.

The primary production period in Greenland is timely displaced along the coast due to increasing sea ice cover and a shorter summer period moving north (Blicher et al., 2007), but the main primary production takes place in May-June (Figure 3). The large latitudinal gradient spanned by Greenland, the ecosystem structure shifts moving north. For instance, the secondary producer assembly (e.g. mainly copepods) shifts from being dominated by smaller Atlantic species (Calanus finmarchicus and Calanus glacialis) to being increasingly dominated by the (sub)arctic species Calanus hyperboreus.

Figure 3. Annual variation in algal biomass and productivity at the inlet of Nuuk Fjord. a: chlorophyll ($\mu \mathrm{g} \mathrm{l}-1$), b: fluorescence, c: primary production (mg C m-2 d-1). Dots represent sampling points. From Mikkelsen et al. (2008).

Recently, the distribution of commercial species such as cod and shrimp has shifted considerably in the north. Such shifts have previously been associated with temperature, and may very well be linked to the observed increase in temperature. Additionally, changes in growth of fish may also increase as a result of temperature changes as seen for both Greenland halibut (Sünksen et al., 2010) and cod (Hovgård and Wieland, 2008).

In recent years, more southerly distributed species not normally seen in Greenland waters such as pearlside (Maurolicus muelleri), whiting (Merlangius merlangus), blackbelly rosefish (Helicolenus dactylopterus), angler (Lophius piscatorius) and snake pipefish (Entelurus aequoreus) have been observed in surveys in offshore West and East Greenland and inshore West Greenland and their presence is possibly linked to increases in temperature (Møller et al., 2010).

In 2011, a mackerel (Scomber scombrus) fishery was initiated in East Greenland waters. Previous to this, no catches had ever been reported for this area and in 2013 mackerel was for the first time documented along the West Greenland coast. The reasons) for the increased abundance of mackerel in Greenlandic waters has not been clarified, however factors such as changes in the regime for their usual food resources, a density-dependent effect and increased temperatures have been proposed (ICES, 2013a). The effects of increased pelagic fish abundance and their distributional shifts on demersal fish are unknown.

13.1.1 Atmospheric conditions

Cod and possibly other species recruitment in Greenland waters is significantly influenced by environmental factors such as sea surface temperatures in the important Dohrn Bank region during spawning and hence by air temperatures together with the meridional wind in the region between Iceland and Greenland (Stein and Borovkov, 2004). The effect of the meridional wind component in the region off South Greenland on the first winter of the offspring appears to play a vital role for the cod recruitment process. For instance, during 2003, when the strong 2003 YC was born, negative anomalies were more than $-2.0 \mathrm{~m} / \mathrm{sec}$, and that particular YC was large in East Greenland waters. In general, it seems that during anomalous east wind conditions during summer months, anomalous numbers of 0 -group cod are also found in Greenland waters.

Figure 4. NAO Index (Dec-Feb) 1950-2012.

The NAO index

The NAO index, as given for 1950-2012 (Figure 4), shows negative values for winter (DecemberFebruary) 2008/2009, 2009/2010 and 2010/2011. The 2009/2010 index is the strongest negative index (-1.64), encountered since 1950.

During the second half of the last century the 1960s were generally "low-index" years while the 1990s were "high-index" years. A major exception to this pattern occurred between the winter preceding 1995 and 1996, when the index flipped from being one of its most positive (1.36) values to a negative value (-0.62). The direct influence of NAO on Nuuk winter mean air temperatures is as follows: A "low-index" year corresponds to warmer-than-normal years. Colder-than-normol temperature conditions at Nuuk are linked to "high-index" years and hence indicate a nagative correlation of Nuuk winter air temperatures with the NAO. Correlation between both time sefries is significant ($\mathrm{r}=-0.73, \mathrm{p} \ll 0.001$; Stein, 2004). This is seen for instance in 2009, 2010 and 2011 where air temperature anomalies at $\operatorname{Nuuk}(1.0 \mathrm{~K}, 4.8 \mathrm{~K}$ and 2.9 K$)$ where associated with low

NAO values (Figure 5). The 2010 air temperature anomaly (4.0K) was the highest recorded, and was associated with the largest negative NAO anomaly (see Figure 6).

Figure 5. Time-series of annual mean winter (DEC-FEB) air temperature anomalies (K) at Nuuk (1876-2012, rel. 19611990)

Figure 6. Time-series of annual mean air temperature anomalies (K) at Nuuk (1876-2011, rel. 1961-1990), and 13 year running mean.

Zonal wind components

A negative anomaly of zonal wind components for the Northwest Atlantic is associated with atmospheric conditions in the Iceland-Greenland region enclosing strong easterly winds (Figure 7, top left panel). These winds favour surface water transports from Iceland to East Greenland and was particularly strong in 2009, while it was completely different during the same months in 2010 (Figure 7). During May-August in 2011, the cells of negative anomalies were seen to the east of Newfoundland (anomalies $<3.0 \mathrm{~m} / \mathrm{sec}$), and to the east of Iceland.

Figure 7. Zonal wind components for the North Atlantic (May-Aug), anomalies from 1981-2010.Top left: 2009; top right: 2010; bottom: 2011.

Meridional wind components

As discussed in Stein and Borovkov (2004), the meridional wind component (Dec-Jan) from the Southwest Greenland region correlated positively with the trend in Greenland cod recruitment time-series (first winter of age-0 cod). During winter 2009/2010, positive meridional wind anomalies were observed Southwest Greenland (Figure 8, top left panel). During winter 2010/2011, the center of positive meridional wind anomalies had moved to the Davis Strait region (Figure 5, top right panel), and during winter 2011/2012, positive meridional wind anomalies had moved to the Northeast off Newfoundland (bottom panel in Figure 8).

Figure 8. Meridional wind component (Dec-Jan), anomalies from 1981-2010. top left: 2009/2010; top right: 2010/2011; bottom: 2011/2012;

13.1.2 Description of the fisheries

Fisheries targeting marine resources off Greenland can be divided into inshore and offshore fleets. The majority of the Greenland fleet has been built up through the 60 s and is today comprised of approx. 450 larger vessels and a big fleet of small boats. It is estimated that around 1700 small boats are dissipating in some sort of artisanal fishery mainly for private use or in the poundnet fishery.

Active fishing fleet reported to Greenland statistic by GRT in 1996 - no later number is available:

All fleet (N)	< 5GRT	6-10GRT	11-20GRT	21-80GRT	> 80GRT
441	31%	34%	2%	9%	6%

There is a large difference between the fleet in the northern and southern part of Greenland. In south, were the cod fishery has historically been important the average vessel age is 22 years, in north only 9 years as it is mostly comprised of smaller boats targeting Greenland halibut using longlines.

13.1.3 Inshore fleets

The fleet is constituted by a variety of different platforms from dog sledges used for ice fishing, to small multipurpose boats engaged in whaling or deploying passive gears such as gillnets, poundnets, traps, dredges and longlines.

In the northern areas from Disko Bay at $72^{\circ} \mathrm{N}$ and north to Upernavik at 74.30 N , dog sledge are the platforms in winter and small open vessels the units in summer, both fishing with longlines to target Greenland halibut in the ice fjords. The main bycatch from this fishery is redfish, Greenland shark, roughhead grenadier and in recent years, cod in Disko Bay.

The coastal shrimp fisheries are distributed along most of the West coast from $61-72^{\circ} \mathrm{N}$. The main bycatch with the inshore shrimp trawlers is juvenile redfish, cod and Greenland halibut. An inshore shrimp fishery is conducted mainly in Disko Bay. Sorting grid is mandatory for the shrimp fishery; however, several small inshore shrimp trawlers have dispensation for using sorting grid.

Cod is targeted all year, but with a peak in effort in June-July as cod in this period is accessible in shallow waters facilitating the use of the main gear types, pound and gillnets. Bycatches are limited and are mainly Greenland cod (Gadus ogac) and wolffish.

In the recent years there has been an increasing exploitation rate for lumpfish. The fishing season is short, with the majority of the catch being caught in May-June. Lumpfish is caught along most of the West coast and is caught using gillnets. In small areas there is a substantial by catch of birds, especially common eiders (Somateria mollissima)

The scallop fishery is conducted with dredges at the West coast from $64-72{ }^{\circ} \mathrm{N}$, with the main landings at $66^{\circ} \mathrm{N}$. Bycatch in this fishery is considered insignificant.

Snow crabs are caught in traps in areas $62-70^{\circ}$ N. Problems with bycatch are at present unknown, but are believed to be insignificant.

Salmon are caught in August-October with drifting nets and gillnets. The fishery is a mix of salmon of European and North American origin.

The coastal fleets fishing for Atlantic cod, snow crab, scallops and shrimp are regulated by licenses, TAC and closed areas. Fishery for salmon and lumpfish are unregulated.

13.1.4 Offshore fleets

Apart from the Greenland fleet, the marine resources in Greenland waters are exploited by several nations, mainly EU, Iceland and Norway using bottom and pelagic trawls as well as long-lines.

The demersal offshore fishery is comprised of vessels primarily fishing Greenland halibut, shrimp, redfish and cod. Greenland halibut and redfish have been targeted since 1985 using demersal otter board trawls with a minimum mesh size of 140 mm . A cod fishery has previously been conducted since 1920s in West Greenland offshore waters but was absent from 1992-2000s. In 2010, the cod fishery was closed off West Greenland and catches has been insignificant since. The Greenland offshore shrimp fleet consist of 15 freezer trawlers. They exclusively target shrimp stocks off West and East Greenland with landings slightly below 100000 tonnes. The shrimp fleet is close to or above 80 BT and 75% of the fleet process the shrimp on board. Shrimp trawls are used with a minimum mesh size of 44 mm and a mandatory sorting grid (22 mm) to avoid bycatch of juvenile fish. The three most economically important fish species in Greenland: Greenland halibut, redfish and cod are found in relatively small proportions in the bycatch. However, when juvenile fish are caught, even small biomasses can correspond to relatively large numbers.

Longliners are operating on both the East and West coast with Greenland halibut and cod as targeted species. Bycatches include roundnose grenadier, roughhead grenadier, tusk, Atlantic halibut and Greenland shark (Gordon et al., 2003).

The pelagic fishery in Greenland waters is conducted in East Greenland and currently targeted species are mackerel and pelagic redfish. A relatively small fishery after herring is carried out in the border area between Greenland, Iceland and Jan Mayen. A capelin fishery has previously
been done but as the Greenland share of the TAC is taken in other waters. Generally, the pelagic fishery in Greenland is very clean, with small amounts of bycatch seen.

The demersal and pelagic offshore fishing, together with longlines are managed by TAC, minimum landing sizes, gear specifications and irregularly closed areas.

13.2 Overview of resources

In the last century, the main target species of the various fisheries in Greenland waters have changed. A large international fleet in the 1950s and 1960s landed large catches of cod reaching historic high in 1962 with about 450000 tonnes. The offshore stock collapsed in the late 1960searly 1970s due to heavy exploitation and possibly due to environmental conditions. Since then the stock has been low, with occasional larger YC being transported from Iceland (i.e. 1984 and 2003). Since 2010, the cod biomass has been concentrated in the spawning grounds off East Greenland. Following the cod collapse, the offshore shrimp fishery started in 1969 and has been increasing up to 2003 reaching a catch level close to 150000 tonnes. The stock decreased thereafter and is now at the low 1990 level with an advised TAC for 2015 of 60000 tonnes. The advised TAC for 2016 increased to 90000 tonnes.

13.2.1 Shrimp

The shrimp (Pandalus borealis) stock in Greenland waters has been declining since 2003. The stock in East Greenland is at a low level based on available information. The 2003 West Greenland shrimp biomass was at the highest in the time-series, but it has since decreased.

13.2.2 Snow crab

The biomass of snow crab (Chionoecetes opilio) in West Greenland waters has decreased substantially since 2001. Snow crab has been exploited inshore since the mid-1990s and offshore since 1999. Total landings have since 2010 been reported at around 2000 tonnes a decrease from a high level in 2001 at 15000 tonnes. After several years of decreasing CPUE it now appears to have stabilized at low levels in the majority of areas.

13.2.3 Scallops

The status of scallops in Greenland is unknown. From the mid-1980s to the start 1990s landings were between 4-600 tonnes yearly, increased to around 2000 tonnes in late 1990s. Catches decreased again and is below 600 tonnes in 2014 . The fishery is based on license and is exclusively at the west coast between $20-60 \mathrm{~m}$. The growth rate is considered very low reaching the minimum landing size on 65 mm in 10 years.

13.2.4 Squids

The status of squids in Greenland waters are unknown.

13.2.5 Cod

Since 2015, assessment and advice for cod in Greenland water take into account that three different stocks, based on spawning areas and genetics, are the basis for the cod fishery and the following management is therefore recommended for different three areas: a) inshore in Western Greenland (NAFO Subdivision 1A-1F), b) offshore Western Greenland (NAFO Subdivision

1A-1E) and offshore Eastern and South Greenland (ICES Subarea 14.b and NAFO Subdivision 1F). Current landings for inshore cod are 35000 tonnes, and have steadily increased since 2009 where landings were 7000 tonnes. Landing from offshore Western Greenland was minor (less than 500 tonnes since 2006) until 2015 where catches increased to 4600 tonnes. From offshore Eastern Greenland area 2015 landing was 15800 tonnes, an increase from the 2011-2013 level at 5000 tonnes.

Catches are high compared to the last three decades; however, they are only a fraction of the landings caught in the 1950s and 1960s. Recruitment has been negligible since the 1984- and 1985year classes, though it has improved in the last decade, especially inshore, where the 2009 YC is the best seen in the time-series since 1982. In 2007 and 2009, dense concentrations of unusually large cod were documented to be actively spawning off East Greenland, and management actions have been taken to protect these spawning aggregations. The inshore fishery has been regulated since 2009 and the offshore fishery is managed with license and minimum size $(40 \mathrm{~cm})$. As a response to the favourable environmental conditions (large shrimp stock, high temperatures) there is a possibility that the offshore cod will rebuild to historical levels if managed with this objective. A management plan with the objective of achieving this goal has been implemented for the fishing seasons 2014-2016. Several YC are present in the inshore fishery, and with the stable recruitment in recent years and widespread fishery there are several indications that the stock is experiencing favourable conditions and that recruitment is not impaired despite an increased fishing effort in later years. However, in 2015 signs of increasing fishing pressure is seen as the biomass index in the inshore survey is stable and recruitment is low.

13.2.6 Redfish

Redfish (Sebastes mentella and Sebastes norvegicus) are primarily caught of East Greenland. Catches have been small since 1994, but recently large year classes have given rise to a significant fishery with catches in 2010-16 being around 8000 tonnes. This includes both redfish species. The majority (e.g. $\sim 70 \%$) has earlier been identified as S. mentella. However, recent East Greenland survey estimates indicate a decline in S. mentella while S. norvegicus is increasing, and based on samples from the fishery the proportion of S. norvegicus exceeded S. mentella in 2016 for the first time.

13.2.7 Greenland halibut

Greenland halibut in the Greenland area consist of at least two stocks and several components; the status of the inshore component is not known, but it has sustained catches of 15-20 000 tonnes annually, taken primarily in the northern area (north of $68^{\circ} \mathrm{N}$). The offshore stock component in West Greenland (NAFO SA $0+1$) is a part of a shared stock between Greenland and Canada. The stock has remained stable in the last decade, sustaining a fishery of about 30000 tonnes annually (15000 tonnes in Greenland water). The East Greenland stock is a part of a stock complex extending from Greenland to the Barents Sea. The stock size is currently estimated as being at a historical low. In 2015, catches were around 9400 tonnes.

13.2.8 Lumpfish

The status of the lumpfish is unknown. The landing of lumpfish has increased dramatically in the last decades with catches being close to 13000 tonnes in 2013. Catches are highest in the southern-mid section of the Greenland west coast. There are no indications of the impact on the stock. A management plan was implemented in 2014 regulating the fishery with TAC and number of fishing days.

13.2.9 Capelin

On the Greenland East coast an offshore pelagic fleet have been conducting a fishery on capelin (2500 tonnes (summer/autumn) landed in 2015 by Greenland, EU, Norway and Iceland). The capelin has shifted distribution more west and north in recent years, and are believed to spend a substantial amount of time in Greenland waters. The west Greenland capelin stock is not fished and its size is unknown.

13.2.10 Mackerel

A mackerel fishery in Greenland waters initiated in 2011 with catches of 162 tonnes and increased to more than 32000 tonnes in 2015. Mackerel is known to feed on various species, including fish larvae, and it competes with others pelagic species, such as herring, for resources (Langøy et al., 2012). Thus, it might/can have a key role on the ecosystem of many commercial important species in Greenland.

13.2.11 Herring

A fishery for Norwegian spring-spawning herring in Greenland water has increased in recent years and in 2014 catches increased to 9000 tonnes. The herring has shifted distribution more west in recent years.

13.3 References

Blicher, M. E., Rysgaard, S. and Sejr, M. K. 2007. Growth and production of sea urchin Strongylocentrotus droebachiensis in a high-Arctic fjord, and growth along a climatic gradient (64 to 77 degrees N) (vol. 341, pg 89, 2007). Marine Ecology-Progress Series, 346: 314-314.

Gordon, J.D.M., Bergstad, O.A., Figueiredo, I. And G. Menezes. 2003. Deep-water Fisheries of the Northeast Atlantic: I Description and current Trends. J. Northw. Atl. Fish. Sci. Vol: 31; 37-150.

Hovgård, H. and K. Wieland, 2008. Fishery and environmental aspects relevant for the emergence and decline of Atlantic cod (Gadus morhua) in West Greenland waters. In: Resiliency of Gadid stocks to fishing and climate change, p 89-110 (Ed.: G.H. Kruse, K Drinkwater , J.N. Ianelle, J.S. Link, D.L. Stram, V. Wepestad and D.Woodby). Anchorage, Alaska, 2008.

Hvingel, C., Kingsley, M.C.S. 2006. A framework to model shrimp (Pandalus borealis) stock dynamics and quantity risk associated with alternative management options, using Bayesian methods, ICES J. Mar. Sci. 63; 68-82.

ICES. 2013a. Report of the Ad hoc Group on the Distribution and Migration of Northeast Atlantic Mackerel (AGDMM). ICES CM 2013/ACOM:58. 215 pp.

ICES. 2013c. ICES Report on Ocean Climate 2012 Prepared by the Working Group on Oceanic Hydrography. No. 321 Special Issue. 74 pp .

Langøy, H., Nøttestad, L., Skaret, G., Broms, C., and A. Fernø. 2012. Overlap in distribution and diets of Atlantic mackerel (Scomber scombrus), Norwegian spring-spawning herring (Clupea harengus) and blue whiting (Micromesistius poutassou) in the Norwegian Sea during late summer. Marine Biology Research 8: 442-460

Mikkelsen, D.M., Rysgaard, S., Mortensen, J., Retzel, A., Nygaard, R., Juul-Pedersen, T., Sejr, M., Blicher, M., Krause-Jensen, D., Christensen, P.B., Labansen, A., Egevang, C., Witting, L., Boye, T. K., Simon, M. 2008. Nuuk Basic: The Marine Basic programme 2007. GN Report 2008.

Møller, P. R., J.G. Nielsen, S. W. Knudsen, J. Y. Poulsen, K. Sünksen, O. A. Jørgensen. 2010. A checklist of the fish fauna of Greenland waters. Zootax 2378:1-84.

Ribergaard, M.H. 2014. Oceanographic Investigations off West Greenland 2013. Danish Meteorological Institute Centre for Ocean and Ice.

Rudels, B., Korhonen, M., Budéus, G., Beszczynska-Möller, A., Schauer, U., Nummelin, A., Quadfasel, D., and Valdimarsson, H. 2012. The East Greenland Current and its impacts on the Nordic Seas: observed trends in the past decade. - ICES Journal of Marine Science, 69:
Stein, M. 2004. Climatic Overview of NAFO Subarea 1, 1991-2000. J.Northw.Atl.Fish.Sci., 34: 29-41.
Stein, M. and V.A. Borovkov. 2004. Greenland cod (Gadus morhua): modelling recruitment variation during the second half of the 20th century. Fish. Oceanogr. 13(2): 111-120.

Sünksen, K., Stenberg, C., and Grønkjær, P. Temperature effects on growth of juvenile Greenland halibut (Reinhardtius hippoglossoides Walbaum) in West Greenland waters. Journal of Sea Research 64(1):125132.

14 Cod (Gadus morhua) in NAFO Subdivisions 1A-1E (Offshore West Greenland)

14.1 Stock definition

Abstract

The cod found in Greenland is derived from four separate "stocks" that each is labelled by their spawning areas: I) offshore West Greenland waters; II) West Greenland fiords; III) offshore East Greenland and Icelandic waters and IV) inshore Icelandic waters (Therkildsen et al., 2013), (Figure 14.1).

From 2012, the inshore component (West Greenland, NAFO Subarea 1) was assessed separately from all offshore components. From 2015 the offshore West Greenland (NAFO subdivisions 1AE) and East Greenland (NAFO subdivision 1F and ICES Subarea 14) components was assessed separately. The Stock Annex provides more details on the stock identities including the references to the primary literature.

14.2 Fishery

14.2.1 The emergence and collapse of the Greenland offshore cod fisheries

The Greenland commercial cod fishery in West Greenland started in the 1920s. The fishery gradually developed culminating with catch levels at 400000 tonnes annually in the 1960 s. Due to overfishing and deteriorating environmental conditions, the stock size declined and the fishery completely collapsed in the early 1990s (Table 14.2.1, Figure 14.2.1). More details on the historical development in the fisheries are provided in the Stock Annex.

In the period 2015-2018 a TAC of 5000 tonnes was introduced as an experimental fishery. In 2019 the start TAC was 0 tonne, but during the year 2000 tonnes were allocated from the inshore TAC. Since 2015 it has been allowed to fish offshore on the inshore quota. The offshore catches on the inshore quota have been between 400-600 t annually in the period 2015-2019.

14.2.2 The fishery in 2021

In 2021 TAC was 0 tonnes, however 96 tonnes were fished offshore on the inshore quota.
Main fishing ground was Tovqussaq Bank (NAFO division 1C, between $66^{\circ} 15-66^{\circ} 30 \mathrm{~N}$, Table 14.2.2.1, figures 14.2.2.1 and 14.2.2.2).

The fishery was conducted in September and October. One small trawler ($<25 \mathrm{~m}$) participated in the fishery (table 14.2.2.2).
No biological sampling (i.e. length measurement and otoliths) were taken from the fishery in 2020 and 2021. Catch-at-age and Weight-at-age in the period 2007-2019 can be seen in Table 14.2.3.1.

A detailed description of the fishery is available in Retzel, 2022.

14.3 Surveys

At present, two offshore trawl surveys (Greenland and German) provide the core information relevant for stock assessment purposes.

The German survey targets cod and has since 1982 covered the main cod grounds off West Greenland up to $67^{\circ} \mathrm{N}$ at depths down to 400 m , thus including periods of both high and low cod abundance. The German survey has not been conducted in the area in the period 2015-2019. Hoever in 2019 the southern part of the survey area (NAFO 1E) was covered.

The Greenland survey targets shrimp and cod off West Greenland up to $72^{\circ} \mathrm{N}$ and from 0 to 600 m from 1992, hereby extending into northern areas where large cod concentrations are not expected. Although most of the effort has previously been allocated towards shrimp, but since 2005 the addition of additional fish stations implies a fair coverage of the West Greenland cod habitat in this survey.

For details of survey design, see stock annex.
In 2018, 2019 and 2020 the annual trawl survey was conducted with a chartered vessel. All the standard gear from the research vessel Paamiut (such as cosmos trawl, doors, all equipment such as bridles ect., Marport sensors on doors and headlines) were used, in attempt to make the chartered surveys as identical as possible with the previous years' survey (Burmeister and Riget, 2018; Burmeister and Riget, 2019; Burmeister and Riget, 2020).

In 2020 trawling was conducted primarily at night-time in the shallow strata (51-100 + 101-150), whereas previously trawling was restricted to between 08.00 UTC and 20.00 UTC. In total 37 of the hauls was conducted during night-time and 3 during daytime. Preliminary analyses of commercial logbooks showed that standardized CPUE was $9-10 \%$ higher during daytime than during the nightline, however, the difference was not significant ($\mathrm{p}=0.32$). The introduction of night hauls in 2020 is evaluated to have a minor effect on the estimated abundance and biomass estimates. The gain by trawling around the clock instead of only daytime, by increased strata coverage is evaluated to be larger than the possible day and night influence, which may be able to correct for in the future.

14.3.1 Results of the Greenland Shrimp and Fish Survey

No survey was performed in 2021.
The numbers valid hauls were 208 in 2020 (Table 14.3.1.1, figures 14.3.1.1 and 14.3.1.2).
The 2020 survey abundance of Atlantic cod in West Greenland was estimated at 24 million individuals and the survey biomass at 15000 tonnes (tables 14.3.1.2 and 14.3.1.3). Survey abundance and biomass are on the same low level as the period 2016-2018.

Overall the 3-year olds (2017 YC) dominated the survey in 2020 (Table 14.3.1.4, Figure 14.3.1.3). However, the 2015 YC is more abundant in the southern part of the survey (NAFO 1E), whereas younger year classes, at size ranges $<40 \mathrm{~cm}$, are more abundant in the northern part of the survey area (NAFO 1A to 1D, Table 14.3.1.5, Figure 14.3.1.4).

The distribution pattern is similar with previous years with younger cod in the northern part of the survey area, and at older ages moving further to the south. Length distribution is similar to 2018 with few cod larger than 40 cm (figure 14.3.1.5).

The main part of cod found offshore in West Greenland have since the beginning of the survey been younger than 5 years. However, since 2017 increasing numbers of older cod (especially the 2009 and 2010 YC) have been registered in the survey (Table 14.3.1.4).

Genetics. In the 2019 survey samples for genetic analysis were taken from each NAFO division. In total 527 samples were analysed for genetic assignment. Samples with assignment probability $>70 \%$ (499) were used in the data analysis. In the northern area of the survey (NAFO 1A and 1B) the WestGreenland offshore component dominated (60%) followed by the EastGreenland-Iceland offshore component (30%, figure 14.3.1.6). The composition changed with latitude with the EastGreenland-Iceland offshore component dominating in the southern area (80%, NAFO 1E and 1F), followed by the WestGreenland offshore component (10%). The dominating YC in 2019 survey catches was the 2015 YC and the genetic composition showed that the overall majority belonged to the EastGreenland-Iceland offshore component (75%, figure 14.3.1.7). In general, the EastGreenland-Iceland offshore component is found in varying amounts in all year classes.

The survey biomass in 2019 was weighted with the genetic split in each NAFO area. This resulted in 75% of the total biomass index was assigned to the EastGreenland-Iceland component, followed by the WestGreenland offshore component with 20\% (figure 14.3.1.8).

The genetic composition between year classes between NAFO divisions reveals a pattern of West Greenland offshore component dominating the year classes in the north (NAFO 1A and 1B, figure 14.3.1.9) and EastGreenland-Iceland offshore component dominating in the south (NAFO 1D, 1E and 1F).

The overall patterns identified from the Greenland surveys are that a) Old and large cod (>6 years) are found off East Greenland primarily north of $63^{\circ} \mathrm{N}, \mathrm{b}$) Cod at ages $4-6$ years are found primarily in Southwest Greenland and c) Young cod (<3 years) are primarily found in the northern part of West Greenland. This pattern suggest that West Greenland is a nursing area for the East Greenland cod stock, and that the West Greenland cod stock is at a very low level. The increasing trend in the biomass in the southern part of the survey (NAFO 1E) in 2014 and 2015 with record high numbers of especially the 2009 YC has reversed in the period 2016 - 2018. In 2019 a massive increase in numbers and biomass was registered in the southern part of the survey (NAFO 1D and 1E), however interpretation of these findings must be precautious as they are caused by two very large hauls located in each NAFO division. The dominating year class in 2019 is the 2015 YC, and this YC is also dominating the same region in 2020 but not in the same high numbers. The genetic composition within the survey in 2019 revealed a north-south gradient with the WestGreenland offshore stock dominating in the northern areas corresponding to NAFO divisions 1A and 1B, whereas the EastGreenland-Iceland offshore stock is dominating in the southern region corresponding to NAFO divisions 1D and 1E.

A detailed description of the survey is available in Retzel (2021).

14.3.2 Results of the German groundfish survey

No survey was performed in 2021.
Due to technical problems and weather issues, the German survey did not manage to cover the West Greenland area in 2016, 2017 and 2018. In 2019, the survey managed to cover the southern part (NAFO 1E, strata 3).

The numbers valid hauls were 37 in 2020 (Table 14.3.2.1, figures 14.3.2.1).
The German survey in 2020 confirmed the findings of the Greenland survey, i.e. low abundance and biomass indices (table 14.3.2.2 and 14.3.2.3), a 2017 YC dominating the area especially in the northern part (NAFO 1C and 1D) and the presence of older year-classes (Table 14.3.2.4 and 14.3.2.6).

A detailed description of the survey is available in Werner \& Fock (2021).

14.4 Information on spawning

Before 2017, no spawning of significance has been documented on the banks in West Greenland (Retzel, 2015).

In 2017 and 2018, fishing was allowed outside a box covering Dana Bank in April and May with requirements of increased collection of biological sampling in order to investigate the maturity stage of the fish caught. In addition, samples of whole cod were sent to GINR for investigation of maturity. In general, the majority of the cod sent to GINR from the commercial fishery in NAFO division 1C and 1D were spawning (Retzel, 2018).

In 2019 (just prior to the NWWG meeting), a pilot cruise with GINR small research vessel Sanna was undertaken on Tovqussaq Bank in NAFO 1C with the objection to locate and investigate spawning on the bank in combination with tagging of spawning cod. The survey found actively spawning cod with several year-classes being part of the spawning stock (Retzel, 2020).

14.5 Tagging experiments

A total of 26596 cod have been tagged in different regions of Greenland in the period of 20032020 (Table 14.5.1). Cod on two banks in West Greenland have been tagged; 2667 on Tovqussaq bank in NAFO division 1C and 6649 on Dana Bank in NAFO division 1D+1E.
40% of recaptured fish tagged recently on the West Greenland banks are recaptured in the same area as tagged, 20% are recaptured inshore and 40% are recaptured in East Greenland/Iceland (table 14.5.2). The majority of recaptures are tagged on the southern Dana Bank (NAFO 1E) while very few recaptures are tagged on Tovqussaq Bank which is located further to the north in NAFO 1C. None of the recaptured cod tagged on Tovqussaq Bank (NAFO 1C) have been recaptured in East Greenland or Iceland.

Limited fishing in several areas and years influences the signal from the recaptures, and more analysis needs to be performed taking the fishing effort into account in order to investigate magnitude of the eastward migration rate.

14.6 State of the stock

The West Greenland offshore stock component has been severely depleted since the 1970s and collapsed in the 1990s. The surveys showed only an increase in biomass until 2015 and has since 2016 been low. Abundance however has fluctuated since 2005, indicating that small fish enter the survey but are not caught at older ages. This is caused by an eastward migration out of the area, and the area is presently considered to act mainly as a nursing area for the East Greenland and Icelandic stock components.

Until 2015, the 2009 and 2010 YCs have been caught in considerable numbers in the survey. Since then few cod older than 3 years and larger than 40 cm have been caught especially in 2018. The fishery between 3000-5000 tonnes in 2015-2017 primarily fished the 2009 and 2010 YC's. The reason for the reduction of the 2009 and the 2010 YC in 2016 is considered to be caused by a combined effect of migration out of the area and fishery. However, abundance indices in the Greenland survey of these year-classes are highest observed in the survey in 2017-2019 compared to same ages in previous years.

The stock is considered to be at a very low level compared to historic.
As described in Section 1.3, MSY proxies should be evaluated to determine stock status. ICES suggested four methods for this purpose, and all methods were tested on the stock (Hedeholm,

2017; ICES, 2017). All the length-based indicators rely heavily on length distributions from the commercial fishery. For this stock, the fishery has been very limited since the early 1990 collapse. Hence, commercial data are limited and not really suited for such analysis; especially with the general assumptions of no migration underlying most of the approaches.

With these shortcomings, the results from all analysis support the general notion from surveys: this stock is at a low level and no fishing should take place until a spawning component is established that is composed of a number of year classes. Spawning investigations in 2017-2019 indicate that a spawning stock composed of several year classes is recovering.

14.7 Implemented management measures for 2022

No fishery is allowed in 2022 in NAFO subdivision 1A-1E. It is however allowed to fish parts of the inshore West Greenland quota in the offshore West Greenland areas.

14.8 Management plan

There is no management plan for the offshore fishery in NAFO Subdivision 1A-1E.

14.9 Management considerations

The fishery in West Greenland should be considered a mixed stock fishery, containing fish from both Greenland and Iceland stocks. There is currently no standardized procedure to determine the proportional contribution of each stock to the landings.

The traditional spawning grounds in West Greenland are well described and if any fishing is allowed such areas should be protected. This will both protect any present spawning stock and minimize the proportion of the West Greenland stock in the catches.

From 2015, it is allowed to fish parts of the inshore West Greenland quota in the offshore West Greenland areas. These catches are additional to the offshore TAC, and have been between 400-600 tonnes annually.

14.10 Basis for advice

Basis for advice is the precautionary approach where biomass is extremely low and ICES advised zero catch for 2022 and 2023.

14.11 Benchmark 2023

The stock is proposed to go through a benchmark in 2023.
Survey indices are variable and recent decline in offshore indices coincides with historic high catches inshore. Genetic analysis of inshore commercial and survey catches reveals a mix of different stocks. Genetics from inshore areas on the west coast reveal that the offshore stock may contribute a large part to the catches in these areas. Further analysis of the genetic composition in combination with tagging studies is needed to gain further insight into migration pattern across areas and year classes.

Survey trends are basis for advice. Zero advice have been given for several decades. Data on spawning indicate stock is reproducing and spawning stock is established. Genetic data suggest
large migration and mixing with the inshore cod stock (cod.21.1, Christensen et al., 2022; Buch et al., 2022).

The main aim of the benchmark is to move away from using the current simplified geographical borders to separate the three cod stocks in Greenland waters. This will be done by developing a modelling approach that can use genetic data based on samples covering the distribution of the three stocks (Buch et al., 2022). The model will utilize the spatial resolution of the genetics data to estimate the split between the stocks along a spatial gradient. The catch and survey data will then be split into separate stocks and used as input into an analytical assessment models for each stock. This would account for differences in stock dynamics between stocks and may improve the understanding of migration patterns.
The benchmark also aims to improve the estimation of the survey indices available for the stocks. There are currently two offshore surveys in Greenland waters. One Greenlandic survey, covering the West and East coast up to and including the Dohrn bank area. One German survey covers a similar area on the east coast and some of the west coast. A spatial model will be developed to allow combination of the survey data and allow incorporation of spatial patterns. The new model will also be able to better account for occasionally large catches.

14.12 References

Buch, T.B., Retzel, A., Riget, F., Jansen, T., Boje, J., Berg, C. 2022. DNA split of Atlantic cod (Gadus morhua) stocks in Greenland waters. An Overview of data. ICES North Western Working Group (NWWG) May 2-7, 2022, WD 13.

Burmeister, A, Riget, F.F. 2018. The West Greenland trawl survey for Pandalus borealis 2018, with reference to earlier results. NAFO SCR Doc. 018/055.

Burmeister, A, Riget, F.F. 2019. The West Greenland trawl survey for Pandalus borealis 2019, with reference to earlier results. NAFO SCR Doc. 019/043.

Burmeister, A, Riget, F.F. 2020. The West Greenland trawl survey for Pandalus borealis 2020, with reference to earlier results. NAFO SCR Doc. 20/53.

Christensen, H.T., Rigét, F., Retzel, A., Nielsen, E.H., Nielsen, E.E., Hedeholm, R.B. 2022. Year-round genetic monitoring of mixed stocks in an Atlantic cod (Gadus morhua) fishery; implications for management. ICES Journal of Marine Science. 0, 1-15. DOI: 10.1093/icesjms/fsac076
ICES. 2017. Report of the North Western Working Group (NWWG). ICES CM 2017/ACOM:08.
Hedeholm, R.B. 2017. Length Based indicators and SPiCT in relation to reference points for the West Greenland offshore Atlantic cod stock (cod-wegr). ICES North Western Working Group (NWWG) April 27May 4, 2017, WD 09.

Horsted, S.A. 2000. A review of the cod fisheries at Greenland, 1910-1995. J.Northw.Atl.Fish.Sci. 28: 1-112.
Retzel, A. 2015. Greenland commercial data for Atlantic cod in West Greenland offshore waters for 2014.
ICES North Western Working Group (NWWG) April 28May 5, 2015, WD 20.
Retzel, A. 2018. Greenland commercial data for Atlantic cod in West Greenland offshore waters for 2017. ICES North Western Working Group (NWWG) April 26May 3, 2018, WD 07.

Retzel, A. 2020. Greenland Shrimp and Fish survey results for Atlantic cod in NAFO subareas 1A-1E (West Greenland) and results from survey on spawning cod in NAFO subarea 1C in 2020. ICES North Western Working Group (NWWG) April 23-28, 2020, WD 05.

Retzel, A. 2022. Greenland commercial data for Atlantic cod in West Greenland offshore waters for 2021. ICES North Western Working Group (NWWG) May 2-7, 2022, WD 07.

Retzel, A. 2021. Greenland Shrimp and Fish survey results for Atlantic cod in NAFO subareas 1A-1E (West Greenland) 2021. ICES North Western Working Group (NWWG) April 22-29, 2021, WD 08.

Therkildsen, N.O.,Hemmer-Hansen, J., Hedeholm, R.B., Wisz, M.S., Pampoulie, C., Meldrup, D., Bonanomi, S., Retzel, A., Olsen, S.M., Nielsen, E.E. 2013. Spatiotemporal SNP analysis reveal pronounced biocomplexity at the northern renge margin of Atlantic cod Gadus morhua. Evoltutionary Applications. DOI 10.1111/eva. 12055

Werner, K., Fock, H., 2021. Update of Groundfish Survey Results for the Atlantic Cod Greenland offshore component. ICES North Western Working Group (NWWG) April 22-29, 2021, WD 18.

14.13 Tables

Table 14.2.1. Offshore catches (t) divided into NAFO divisions in West Greenland. 1924-1991: Horsted 2000, 2004-present: Greenland Fisheries License Control.
$\left.\begin{array}{llll}\text { Year } & \text { NAFO 1A NAFO 1B } & \text { NAFO 1C } & \text { NAFO 1D } \\ \text { NAFO 1E } \\ \text { 1F }\end{array}\right\}$

Year	NAFO 1A	NAFO 1B	NAFO 1C	NAFO 1D	NAFO 1E	NAFO 1F	Unknown NAFO div.	NAFO 1A1E
1950							179398	
1951							222340	
1952	0	261	2996	18188	707	37905	257488	117126*
1953	4546	46546	10611	38915	932	25242	98225	180220*
1954	2811	97306	18192	91555	727	15350	60179	266682*
1955	773	50106	32829	87327	3753	4655	68488	241499*
1956	15	56011	38428	128255	8721	4922	66265	296315*
1957	0	58575	32594	62106	29093	16317	47357	225836*
1958	168	55626	41074	73067	21624	26765	75795	258062*
1959	986	74304	10954	30254	12560	11009	67598	191343*
1960	35	58648	18493	35939	16396	9885	76431	200522*
1961	503	78018	43351	70881	16031	14618	90224	293104*
1962	1017	122388	75380	57972	25336	17289	125896	400719*
1963	66	70236	73142	76579	46370	16440	122653	381917*
1964	96	49049	49102	82936	33287	13844	99438	307878*
1965	385	80931	66817	71036	15594	15002	92630	321829*
1966	12	99495	43557	62594	19579	18769	95124	313044*
1967	361	58612	78270	122518	34096	12187	95911	385949*
1968	881	12333	89636	94820	61591	16362	97390	350870*
1969	490	7652	31140	65115	41648	11507	35611	179055*
1970	278	3719	13244	23496	23215	15519	18420	78775*
1971	39	1621	28839	21188	9088	20515	26384	80501*
1972	0	3033	42736	18699	7022	4396	20083	90410*
1973	0	2341	17735	18587	10581	2908	1168	50347*
1974	36	1430	12452	14747	8701	1374	656	37999*
1975	0	49	18258	12494	6880	3124	549	38188*
1976	0	442	5418	10704	8446	2873	229	25215*
1977	127	301	4472	7943	8506	2175	$35477{ }^{1}$	53546*
1978	0	0	11856	2638	3715	549	$34563{ }^{1}$	51760*

Year	NAFO 1A	NAFO 1B	NAFO 1C	NAFO 1D	NAFO 1E	NAFO 1F	Unknown NAFO div.	$\begin{aligned} & \text { NAFO 1A- } \\ & \text { 1E } \end{aligned}$
1979	0	16	6561	4042	1115	537	51139^{1}	60635*
1980	0	1800	2200	2117	1687	384	$7241{ }^{1}$	14705*
1981	0	0	4289	4701	4508	255	0	13498
1982	0	133	6143	10977	11222	692	1174	29621*
1983	0	0	717	6223	16518	4628	293	23703*
1984	0	0	0	4921	5453	3083	0	10374
1985	0	0	0	145	1961	1927	2402	3360*
1986	0	0	0	2	72	24	1203	982*
1987	0	0	5	815	67	43	3041	3787*
1988	0	0	919	17463	10913	6466	8101	35931*
1989	0	0	0	11071	48092	14248	2	59165
1990	0	0	2	563	21513	10580	7503	27151*
1991	0	0	0	0	104	1942	0	104
1992	0	0	0	0	0	0	0	0
1993	0	0	0	0	0	0	0	0
1994	0	0	0	0	0	0	0	0
1995	0	0	0	0	0	0	0	0
1996	0	0	0	0	0	0	0	0
1997	0	0	0	0	0	0	0	0
1998	0	0	0	0	0	0	0	0
1999	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0
2001	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0
2004	0	0	0	5	3	1	0	8
2005	0	0	1	0	0	71	0	1
2006	0	0	0	0	0	414	0	0
2007	0	0	0	31	435	$2011{ }^{2}$	0	466

Year	NAFO 1A	NAFO 1B	NAFO 1C	NAFO 1D	NAFO 1E	NAFO 1F	Unknown NAFO div.	$\begin{aligned} & \text { NAFO 1A- } \\ & \text { 1E } \end{aligned}$
2008	0	0	0	23	526	11370^{2}	0	549
2009	0	0	0	0	6	$3323{ }^{2}$	0	6
2010	0	0	0	0	2	281	0	2
2011	0	0	0	0	8	542	0	8
2012	0	0	1	95	236	1470	0	332
2013	0	0	0	209	270	1405	0	479
2014	0	0	30	68	18	1833	0	116
2015	0	0	341	954	3564	3984	0	4860
2016	0	0	67	1911	1762	2335	0	3740
2017	0	1	1442	730	852	2560	0	3025
2018	0	0	1988	678	1521	1820	0	4187
2019	0	0	656	57	186	916	0	899
2020	0	0	102	0	1	675	0	103
2021	0	0	96	0	0	192	0	96

1 Estimates for assessment include estimates of unreported catches. The total estimated value for West Greenland (inshore + offshore) was 73000 t in 1977 and 1978, 1979: 99000 t , 1980: 54000 t . The value given in the table are these values minus the inshore catches minus known offshore NAFO Division catches.

2 Include catches taken with small vessels and landed to a factory in South Greenland (Qaqortoq), 2007: 597 t, 2008: 2262 t, 2009: 136 t.

* Unknown NAFO Division catches added accordingly to the proportion of known catch in NAFO divisions 1A-1E to known total catch in all NAFO divisions.

Table 14.2.2.1: Cod catches (t) divided into month and NAFO areas, caught by the offshore fisheries.

| NAFO Jan Feb Mar Apr May Jun Jul Aug Sep | Oct | Nov | Dec
 To-
 tal | $\%$ | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1 C$ | | | | | | 61 | 31 | 4 | | 96 | 100% |

Table 14.2.2.2: Cod catches (t) by gear, area and month in West Greenland.

| Gear | NAFO | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Dec | Total |
| :---: |
| Trawl |
| 1C |

Table 14.2.3.1. Cod in Greenland. Catch at age (' 000) and Weight at age ($\mathbf{k g}$) for offshore fleets in West Greenland (NAFO 1A-1E). No samples from commercial fishery in 2008-2011, 2020 and 2021.

CATCH AT AGE								
Year/age	3	4	5	6	7	8	9	10+
2007	6	167	66	42	6	1		
2008								
2009								
2010								
2011								
2012	8	33	107	38	18	2	0.01	0.003
2013		15	44	113	29	15	4	1
2014	1	18	45	7	9	2	0.02	
2015	6	67	502	1061	240	158	45	16
2016	1	12	198	923	490	69	20	5
2017	2	20	132	340	532	272	55	23
2018		37	130	521	600	434	173	51
2019		29	56	54	74	80	32	15
2020								
2021								
WEIGHT AT AGE								
2007	0.647	0.906	1.949	3.440	5.817	6.053		
2008								
2009								
2010								
2011								
2012	0.560	0.935	1.395	2.139	3.232	4.194	8.325	12.500
2013		1.120	1.462	1.947	2.978	3.754	6.398	7.342

2014	0.488	0.693	1.199	1.738	3.040	4.817	5.318	
2015	0.474	0.734	1.316	1.982	3.186	5.043	7.167	10.329
2016	0.345	0.810	1.237	1.931	2.560	4.299	5.573	7.947
2017	0.404	0.776	1.230	1.580	2.138	2.830	4.340	7.091
2018	0.390	1.008	1.500	1.997	2.646	3.126	4.006	6.895
2019								4.259
2020								
2021								

Table 14.3.1.1. Number of hauls in the Greenland Shrimp and Fish survey in West Greenland by year and NAFO subdivisions. No survey in 2021.

WEST GREENLAND							
Year/NAFO	OA	1A	1B	1C	1D	1E	Total
1992		92	44	18	18	11	183
1993		69	49	21	15	12	166
1994		76	58	23	8	9	174
1995		83	61	29	13	14	200
1996		71	57	29	12	9	178
1997		84	56	32	12	12	196
1998		77	80	27	19	14	217
1999		84	81	33	16	14	228
2000		56	62	37	23	14	192
2001		60	75	36	24	15	210
2002		50	80	32	18	20	200
2003		51	63	30	18	15	177
2004		54	55	24	22	20	175
NEW SURVEY GEAR INTRODUCED							
2005	6	65	56	26	19	23	195
2006	5	86	60	26	20	21	218
2007	8	73	58	26	27	31	223
2008	6	69	61	28	23	25	212
2009	8	74	75	28	22	24	231
2010	10	95	76	30	23	25	259
2011	0	73	64	24	18	12	191
2012	0	73	64	21	18	18	194
2013	4	73	52	20	13	21	183
2014	0	78	57	19	17	23	194
2015	0	70	49	24	22	21	186
2016	0	59	38	26	14	19	156
2017	3	99	52	25	18	25	222
2018	0	78	42	26	23	20	189
2019	0	86	36	20	18	14	174
2020	0	84	51	29	21	23	208

Table 14.3.1.2 Cod abundance indices ('000) from the Greenland Shrimp and Fish survey in West Greenland by year and NAFO subdivisions. No survey in 2021.

WEST GREENLAND								
Year	OA	1A	1B	1C	1D	1E	Total	CV
1992		4	53	243	345	0	645	
1993		2	16	54	135	286	493	
1994		10	41	87	0	6	144	
1995		0	51	380	44	62	537	
1996		0	0	46	68	87	201	
1997		0	7	31	0	0	38	
1998		0	4	0	26	26	56	
1999		32	136	16	23	6	213	
2000		585	437	71	58	9	1160	
2001		26	305	110	448	305	1194	
2002		13	203	78	3294	114	3702	
2003		492	1395	351	727	214	3179	
2004		197	152	379	2630	1538	4896	
NEW SURVEY GEAR INTRODUCED								
2005	143	198	871	1845	4796	6683	14537	25
2006	453	371	4454	2564	15703	3359	26905	45
2007	737	1318	3302	7353	3624	3296	19628	31
2008	1209	897	4185	4068	9008	11553	30913	27
2009	881	889	4195	3272	2788	1252	13277	12
2010	338	720	2837	2712	8295	2745	17647	23
2011		8756	47092	2179	26510	1013	85549	14
2012		7661	10228	3017	1270	27081	49258	54
2013	4613	8951	12864	5673	7887	29924	69911	43
2014		6911	5670	78854	2456	16254	110145	67
2015		6542	11213	27248	31703	26980	103685	33
2016		4892	3243	6961	1564	3437	20096	26
2017	451	2562	4302	15723	4877	6305	34220	35
2018		2725	14808	8019	6449	5889	37890	16
2019		3818	9126	19836	170252	112712	315744	61
2020		1203	10456	3684	1987	6834	24164	24

Table 14.3.1.3. Cod biomass indices (tonnes) from the Greenland Shrimp and Fish survey in West Greenland by year and NAFO subdivisions. No survey in 2021.

WEST GREENLAND								
	OA	1A	1B	1C	1D	1E	Total	CV
1992		23	54	75	118	0	270	
1993		2	5	25	39	124	195	
1994		3	9	38	0	1	51	
1995		5	6	120	23	3	157	
1996		0	0	15	23	27	65	
1997		0	2	53	0	0	55	
1998		1	1	0	47	50	99	
1999		29	28	1	17	1	76	
2000		226	130	21	9	2	388	
2001		140	155	56	178	98	627	
2002		67	128	41	1489	42	1767	
2003		444	323	264	453	118	1602	
2004		542	53	176	680	685	2136	
NEW SURVEY GEAR INTRODUCED								
2005	38	69	364	458	1084	1141	3155	26
2006	114	62	677	537	5131	525	7046	64
2007	247	387	872	1562	628	659	4355	31
2008	413	377	2046	929	1633	3227	8625	28
2009	208	230	1251	711	439	253	3092	14
2010	180	263	999	543	2426	908	5319	22
2011		1569	9654	408	5316	191	17140	14
2012		1932	2938	1125	464	14103	20562	69
2013	2395	2692	3960	1732	4551	19017	34345	53
2014		2639	2305	56061	2511	21381	84897	64
2015		3463	4456	19705	33169	40525	101318	36
2016		2256	1174	5817	1347	2697	13290	32
2017	697	1273	1254	14111	3032	4721	25088	49
2018		1084	2108	2369	2796	2289	10646	20
2019		1350	1778	7123	170822	84352	265425	69
2020		490	2824	1043	774	9842	14973	58

Table 14.3.1.4: Abundance indices (' 000) by year-class/age from the Greenland Shrimp and Fish survey in West Greenland (NAFO 1A-1E). No survey in 2021.

WEST GREENLAND											
Year/age	0	1	2	3	4	5	6	7	8	9	10+
2005	134	815	10247	1604	1514	186	35	2	0	0	0
2006	249	6543	3577	12677	3395	401	47	16	0	0	0
2007	152	270	13792	3439	1934	37	4	0	0	0	0
2008	31	3472	2692	18780	4904	868	121	44	0	0	0
2009	0	124	9442	1666	1717	326	3	0	0	0	0
2010	209	2703	2094	10566	1252	775	42	7	0	0	0
2011	19	4940	71837	4453	3735	391	175	0	0	0	0
2012	0	204	11264	31593	3648	2427	116	7	0	0	0
2013	0	2904	8912	15168	36226	5665	848	142	22	25	0
2014	0	471	4792	8088	56469	35839	2597	1718	125	35	11
2015	0	2210	3932	15038	21509	34766	21117	1196	348	70	12
2016	0	1155	5103	2746	5680	3487	1442	418	56	0	0
2017	0	1214	6926	7128	3917	7452	5384	1905	288	6	0
2018	26	9205	9008	13155	4312	639	601	264	564	123	28
2019	290	136	14793	45862	107027	89246	22279	20476	12341	1971	1322
2020	31	3008	1670	10563	3150	3127	1328	562	533	115	76

Table 14.3.1.5 Abundance indices ('000) by age and NAFO divisions from the Greenland Shrimp and Fish survey in West Greenland. NAFO division 1E furthest to the south. No survey in 2021.

WEST GREENLAND											
Year class	2020	2019	2018	2017	2016	2015	2014	2013	2012	2011	<2010
Age	0	1	2	3	4	5	6	7	8	9	10+
Div. OA											
Div. 1A											
Div. 1B											
Div. 1C											
Div. 1D											
Div. 1E											

Table 14.3.1.6 Mean weight of cod from the Greenland Shrimp and Fish survey in West Greenland (NAFO 1A-1E). No survey in 2021.

Year/age	0	1	2	3	WEST GREENLAND		6	7	8	9	10+
					4	5					
2005	0.002	0.031	0.146	0.298	0.596	1.208	1.800	3.338			
2006	0.004	0.025	0.120	0.338	0.477	0.680	2.581	2.714			
2007	0.002	0.026	0.138	0.320	0.601	1.446	4.375				
2008	0.006	0.025	0.098	0.239	0.497	0.939	1.774	2.742			
2009		0.024	0.104	0.329	0.620	1.353	2.103				
2010	0.003	0.017	0.136	0.291	0.683	1.191	1.952	3.066			
2011	0.001	0.038	0.164	0.377	0.626	1.151	2.081				
2012		0.019	0.137	0.419	0.763	1.200	1.371	3.396			
2013		0.038	0.112	0.337	0.611	0.781	1.722	2.905	3.560	6.460	
2014		0.014	0.133	0.300	0.675	0.977	1.708	2.704	4.108	5.710	9.245
2015		0.011	0.102	0.349	0.623	1.062	1.594	2.478	4.276	5.308	9.065
2016		0.028	0.094	0.314	0.711	1.145	1.742	2.542	3.844		
2017		0.015	0.097	0.262	0.622	1.009	1.404	1.843	3.254	5.345	
2018	0.003	0.012	0.078	0.272	0.551	0.867	1.409	1.923	2.536	3.419	3.529
2019	0.000	0.015	0.096	0.305	0.575	0.911	1.227	1.745	2.057	2.357	5.020
2020	0.004	0.020	0.101	0.284	0.530	1.192	1.796	3.148	3.427	4.492	4.666

Table 14.3.2.1 German survey. Numbers of valid hauls by stratum in West Greenland (NAFO 1C-E): No survey in 2016, 2017, 2018 and 2021. 2019: only strata 3 covered.

Year	NAFO 1C		NAFO 1D		NAFO 1E		Sum
	Str 1.1	Str. 1.2	Str. 2.1	Str. 2.2	Str. 3.1	Str. 3.2	
1981	1	1	13	2	3	1	21
1982	20	11	16	7	9	6	69
1983	26	11	25	11	17	5	95
1984	25	13	26	8	19	6	97
1985	10	8	26	10	17	5	76
1986	27	9	21	9	16	7	89
1987	25	19	21	4	18	4	91
1988	34	21	28	5	18	5	111
1989	25	14	30	9	8	3	89
1990	19	7	23	8	16	3	76
1991	19	11	23	7	13	6	79
1992	6	6	6	5	6	6	35
1993	9	7	9	6	10	8	49
1994	16	13	13	8	10	6	66
1995	.	.	3	.	10	7	20
1996	5	5	8	5	12	5	40
1997	5	6	5	5	6	5	32
1998	9	5	10	7	11	6	48
1999	8	7	14	8	13	6	56
2000	13	6	15	6	14	5	59
2001	.	.	15	7	15	5	42
2002	.	.	7	2	5	6	20
2003	.	.	7	6	7	7	27
2004	8	8	11	9	9	5	50
2005	.	.	9	7	8	6	30
2006	6	5	7	5	7	7	37
2007	5	5	7	5	6	5	33
2008	5	.	7	7	7	9	35
2009	2	.	5	5	6	6	24
2010	5	5	10	5	7	9	41
2011	.	.	5	5	5	5	20
2012	5	5	10	8	9	7	44
2013	6	6	8	6	10	7	43
2014	5	5	10	8	10	7	45
2015	7	7	7	4	5	5	35
2016	3	2	.
2017	.	-	.	\cdot	.	.	-
2018

Year	NAFO 1C				NAFO 1D				NAFO 1E			Sum
	Str 1.1		Str. 1.2		Str. 2.1		Str. 2.2		Str. 3.1		Str. 3.2	
2019			9	7	
2020		9		6		12		4		2	4	37

Table 14.3.2.2 German survey. Cod abundance indices ('000) from the German survey in West Greenland (NAFO 1C- 1E) by year and stratum: No survey in 2016, 2017, 2018 and 2021. 2019: only strata 3 covered. * Calculated by Greenland.

Year	NAFO 1C		NAFO 1D		NAFO 1E		Sum	SD
	str1_1	str1_2	str2_1	str2_2	str3_1	str3_2		
1982	2364	408	27594	920	7401	1801	40488	18605
1983	177	196	7079	2230	8678	1230	19590	7266
1984	189	90	2524	98	2666	364	5931	3629
1985	8094	1107	7237	2348	4984	840	24610	10809
1986	4716	630	22985	108	16570	609	55618	29631
1987	3517	482	115172	3790	72349	186	365496	331763
1988	6027	1106	186523	43090	21037	51	297834	216925
1989	1362	483	16280	325	129005	678	148133	65933
1990	619	299	2279	235	3827	61	7320	5462
1991	142	116	88	92	474	387	1299	412
1992	274	334	72	127	57	38	902	314
1993	327	243	105	109	53	21	858	195
1994	95	53	16	17	34	11	226	79
1995	.	.	27	.	72	34	133	60
1996	82	70	42	20	65	0	279	80
1997	0	24	17	0	57	3	101	45
1998	793	0	23	28	7	0	851	573
1999	103	33	33	11	197	7	384	171
2000	205	250	50	174	288	9	976	383
2001	.	.	584	36	3020	9	3649	3481
2002	.	.	238	21	342	23	624	257
2003	.	.	625	99	1625	73	2422	945
2004	503	213	1522	123	2709	638	5708	1592
2005	.	.	1586	264	5666	419	7935	3115
2006	495	485	87439	858	4481	1323	95081	99523
2007	1430	3261	3417	687	9861	71	18727	8645
2008	2666	.	916	911	23527	616	28636	26712
2009	72	.	1370	850	1068	378	3738	879
2010	2644	464	4451	631	5148	274	13612	6231
2011	.	.	716	375	1242	337	2670	782
2012	99609	1253	6007	442	8455	1251	117017	68441
2013	4457	1585	20122	221	7138	252	33775	22438

Year	NAFO 1C		NAFO 1D		NAFO 1E		Sum	SD
	str1_1	str1_2	str2_1	str2_2	str3_1	str3_2		
2014	9952	2008	28102	413	1261	86	41822	38616
2015	13315	906	73434	471	2432	102	90660	73453
2016
2017
2018
2019*					13032	59		
2020	1744	355	1455	212	476	48	4290	1997

Table 14.3.2.3 German survey, Cod biomass indices (tonnes) from the German survey in West Greenland (NAFO 1C-1E) by year and stratum: No survey in 2016, 2017, 2018 and 2021. 2019: only strata 3 covered.

Year	NAFO 1C		NAFO 1D		NAFO 1E		Sum	SD
	str1_1	str1_2	str2_1	str2_2	str3_1	str3_2		
1982	1113	163	37404	1280	9970	4483	54413	26014
1983	144	87	9052	3381	12953	5015	30632	10295
1984	406	104	3998	137	3643	551	8839	5507
1985	1046	112	6543	1181	4700	506	14088	18209
1986	4858	254	11787	36	12381	651	29967	13885
1987	148896	156	93292	2446	54178	107	299075	299459
1988	47085	579	190073	39548	19663	54	297002	227428
1989	384	124	15061	211	113614	710	130104	55334
1990	130	66	1948	123	3652	56	5975	4986
1991	45	38	36	28	549	374	1070	529
1992	65	104	15	33	10	7	234	97
1993	77	45	27	27	30	6	212	53
1994	13	17	3	12	11	5	61	17
1995	.	.	14	.	13	7	34	12
1996	13	35	12	11	28	0	99	29
1997	0	21	11	0	50	3	85	43
1998	38	0	1	7	1	0	47	25
1999	16	11	6	3	63	5	104	57
2000	54	71	11	83	73	5	297	117
2001	.	.	163	17	1024	5	1209	1212
2002	.	.	89	16	136	7	248	108
2003	.	.	98	44	736	32	910	461
2004	172	83	274	45	547	186	1307	342
2005	.	.	605	124	1796	146	2671	1057
2006	102	138	45616	250	2046	614	48766	52298
2007	319	885	1579	244	7804	43	10874	7524
2008	872	.	193	206	11479	175	12925	13686
2009	19	.	309	293	372	153	1146	255
2010	1012	244	2234	312	2703	173	6678	3057
2011	.	.	189	128	1040	194	1551	602
2012	52497	588	4185	240	8203	848	66561	35693
2013	2703	1670	17316	142	11251	544	33626	18801

Year	NAFO 1C		NAFO 1D		NAFO 1E		Sum	SD
	str1_1	str1_2	str2_1	str2_2	str3_1	str3_2		
2014	10597	2154	35741	422	3561	397	52872	47451
2015	17221	1105	109073	522	5999	216	134136	108717
2016	
2017
2018
2019	20577	130		
2020	2817	314	1655	145	2588	51	7570	3802

Table 14.3.2.4 German survey, West Greenland (NAFO 1C-E). Age disaggregated abundance indices ('1000): No survey in 2016, 2017, 2018 and 2021. 2019: only strata 3 covered.

Year	0	1	2	3	4	5	6	7	8	9	10	11+	TOTAL
1982		77	505	14266	5195	14798	4144	908	178	344	35	34	40484
1983*)													
1984	80	3	13	709	604	3495	289	628	32	61	13	0	5927
1985	202	16823	623	330	2271	1100	2982	112	164	2	3	0	24612
1986		3600	45772	1686	321	2386	652	1098	22	74	3	1	55615
1987		147	22578	318948	13977	2930	4603	649	1506		131	13	365482
1988		124	1357	44364	247618	2660	311	521	318	529	12	15	297829
1989	0	163	1293	3821	79642	62126	1008		47	7	24	0	148131
1990	11	17	595	1242	368	4089	990	6	0	0		1	7319
1991		86	94	193	350	36	461	57	2			0	1279
1992		88	672	100	17	25		0				0	902
1993		8	499	318	12	21						0	858
1994		98	18	90	14	3		2				0	225
1995			111	6	16							0	133
1996		76	6	193	5		0					0	280
1997		6	13	7	76							0	102
1998	0	845		3	3	0						0	851
1999	8	165	166	36	3		3					0	381
2000		60	524	328	62							0	974
2001		266	2753	527	65	20						0	3631
2002	0	6	309	290	17							0	622
2003		1368	205	511	284	36	9					0	2413
2004	132	3078	2008	307	108	55	15	0				0	5703
2005	91	156	6893	653	40	16	14	0	0			0	7863
2006	157	1949	6961	83106	2708	45	51	67	0			0	95044
2007	139	229	9402	1655	6989	227	35	38	12			0	18726
2008	8	1224	2317	20080	3747	1235	20	3	2	0	0	0	28636
2009	36	326	2513	363	406	37	40	14				0	3735

Year	0	1	2	3	4	5	6	7	8	9	10	11+	TOTAL
2010	208	1531	1726	9201	577	259	51	48	3	3		5	13612
2011		195	1572	385	368	68	33	26	24	0	0	0	2671
2012	142	1191	37872	66947	7682	2847	227	76	8	18		0	117010
2013		152	1562	12824	15859	1783	1135	234	86	23	18	4	33680
2014			880	4629	17021	17863	1080	277	32	0	4	0	41786
2015	159	189	1353	10921	16208	43991	16909	708	87	117	8	12	90660
2016	.	-	
2017	
2018	-	
2019	17	0	0	1191	8374	1843	381	365	328	348	217	27	13091
2020	54	317	157	1376	963	532	130	49	131	243	188	148	4290

*) calculated proportionally using age compositions reported by the ICES Working Group on Cod Stocks off East Greenland (ICES, 1984).

Table 14.3.2.5 German survey, West Greenland (NAFO 1C-E). Mean weight at age. No survey in 2016, 2017, 2018 and 2021. 2019: only strata 3 covered.

Year	0	1	2	3	4	5	6	7	8	9	10	11+
1982												
1983												
1984												
1985												
1986												
1987												
1988												
1989		34	144	278	874	1636	1456				6535	
1990		20	135	288	474	877	2076					3935
1991		52	157	371	586	873	1173	1711	1260			
1992		61	220	332	797	974						
1993		35	119	356	457	832						
1994		50	157	418	573	1090		2240				
1995			172	410	511							
1996		51	90	480	690							
1997		65	288	360	1032							

Year	0	1	2	3	4	5	6	7	8	9	10	11+
1998		49		610	1320							
1999		67	354	658	950		2985					
2000		36	228	431	821							
2001		62	297	651	1229	1063						
2002		55	231	548	821							
2003		114	412	669	1169	1572	2415					
2004		78	314	534	1105	1508	3007					
2005		67	292	830	1254	3066	5383					
2006	21	49	226	543	1166	2314	4099	8710				
2007	21	121	227	540	937	3051	6899	5600	8010			
2008		52	143	449	738	1581	5246	0	5192			
2009		50	183	431	694	1453	3252	4796				
2010	59	102	294	540	944	1608	2010	6019	3729	8870		11360
2011		234	228	542	1041	1201	3356	4562	6962			
2012	93	135	355	665	1145	2147	3827	5337	7299	9150		
2013		71	269	706	1145	1907	3333	5707	8445	8907	18270	18200
2014			271	574	1099	1698	4118	4929	6418			28180
2015		57	216	697	1242	2003	2597	3211	6428	3145		
2016	-	-	.	-
2017
2018	-
2019	.	-	.	-	.	-	-	.	-	-	-	.

Table 14.3.2.6 German survey, The abundance indices ('000) by year class/age, 2019. West Greenland. Calculated by Greenland.

| Year class | $\mathbf{2 0 2 0}$ | 2019 | $\mathbf{2 0 1 8}$ | $\mathbf{2 0 1 7}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 1 5}$ | 2014 | $\mathbf{2 0 1 3}$ | $\mathbf{2 0 1 2}$ | $\mathbf{2 0 1 1}$ | <2010 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Age | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0 +}$ |
| Strat 1
 (NAFO 1C) | 49 | 78 | 128 | 787 | 500 | 215 | 51 | 20 | 51 | 131 | |
| Strat 2
 (NAFO 1D) | 4 | 214 | 22 | 570 | 445 | 243 | 55 | 11 | 31 | 43 | |
| Strat 3
 (NAFO 1E) | 0 | 25 | 6 | 18 | 19 | 74 | 24 | 16 | 49 | 128 | 165 |

Table 14.5.1. Number of tagged cod in the period of 2003 to 2019 in different regions. Bank (West) = NAFO Division 1D+1E. East Greenland = NAFO Division 1F + ICES Division 14.b.

Year	TAGGED			
	Fjord		Bank (West) NAFO 1D+1E Dana	East Greenland
		NAFO 1C		
		Tovqussaq		
2003	599		1061	
2004	658			
2005	565			
2006	41			
2007	1137			1047
2008	231			1296
2009	633			526
2010	88			
2011	28			403
2012	86		1563	2359
2013	186		2321	
2014				1203
2015		57		1220
2016		299	998	1912
2017	350	1871	706	
2018		115		
2019	1040	325		
2020				458
2021	131			1084

Table 14.5.2: Number of recaptured cod in the period of 2003 to 2019 in different regions. Fjord (West) = NAFO divisions 1B-1F. Bank (West) = NAFO Division 1D+1E. East Greenland = NAFO division 1F + ICES Division 14.

	RECAPTURES			
	Fjord (West)	Bank (West) NAFO 1C Tovqussaq	Bank (West) NAFO 1D+1E Dana	East Greenland
Fjord (West)	562	3	29	8
Bank (West)		1		4
NAFO 1C, Tovqussaq				
Bank (West)		2	69	
NAFO 1D+1E, Dana				
East Greenland			36	124
Iceland	3		47	197

14.14 Figures

Figure. 14.1. Sampling location of spawning cod in Greenland and Iceland in the genetic project. The colours of the dots represent the blends of sample mean of the different spawning population: West offshore, Nuuk (inshore), East (Greenland and offshore Iceland) and Iceland inshore as signal intensities of green and red, respectively. After Therkildsen et al. (2013).

Figure 14.2.1. Annual catch of cod in offshore West Greenland (NAFO subdivisions 1A-1E) used by the Working Group. Top: from 1952, bottom from 2000.

Figure 14.2.2.1: Annual distribution of total catches of Atlantic cod in West and East Greenland. Q1-Q6 illustrates survey areas (strata) in the East Greenland shrimp and fish survey.

Figure 14.2.2.1: Continued. Annual distribution of total catches of Atlantic cod in West and East Greenland. Q1-Q6 illustrates survey areas (strata) in the East Greenland shrimp and fish survey.

Figure 14.2.2.1: Continued. Annual distribution of total catches of Atlantic cod in West and East Greenland. Q1-Q6 illustrates survey areas (strata) in the East Greenland shrimp and fish survey.

Figure 14.2.2.2: Distribution of Longline and Trawl catches of Atlantic cod in West and East Greenland. Q1-Q6 illustrates survey areas (strata) in the East Greenland shrimp and fish survey.

Figure 14.3.1.1. Greenland shrimp and fish survey. Abundance per km².

Figure14.3.1.1. continued. Greenland shrimp and fish survey. Abundance per $\mathbf{k m}^{2}$.

Figure 14.3.1.1. continued. Greenland shrimp and fish survey. Abundance per $\mathbf{k m}^{2}$. No survey in 2021.

Figure 14.3.1.2. Greenland shrimp and fish survey. Catch weight kg per km².

Figure 14.3.1.2. continued. Greenland shrimp and fish survey. Catch weight kg per $\mathbf{k m}^{2}$.

Figure 14.3.1.2. continued. Greenland shrimp and fish survey. Catch weight kg per km^{2}. No survey in 2021.

Figure 14.3.1.3: Abundance index by age in NAFO 1A-1E combined. Size of circles represents index size of index. No survey in 2021.

Figure 14.3.1.4: West Greenland Shrimp and fish survey. Abundance index by length (cm) and area. Areas from north (top) to south (bottom) are: NAFO division 1A; 1B+0A; 1C, 1D, 1E. No survey in 2021.

Figure 14.3.1.5: Total abundance indices by length in West Greenland shrimp and fish survey (NAFO 1A-1E). No survey in 2021.

Figure 14.3.1.6: Genetic split in the 2019 trawl survey by NAFO divisions in numbers analyzed and \%.

Figure 14.3.1.7: Genetic split in 2019 trawl survey by year-class in numbers analyzed and \%.

Figure 14.3.1.8: Genetic split weighted with biomass from each NAFO area in the 2019 survey biomass indices.

Figure 14.3.1.9: Genetic split in 2019 trawl survey by year class within NAFO divisions in numbers analyzed and \%.

Figure 14.3.2.1. German ground fish survey. Abundance per nm². No survey in 2021.

15 Cod (Gadus morhua) in NAFO Subarea 1, inshore (West Greenland cod)

15.1 Stock description and management units

Cod in Greenland originate from four distinct stocks that are labelled by their spawning areas: I) offshore West Greenland; II) West Greenland fjords (inshore); III) East Greenland and offshore Icelandic and IV) inshore Icelandic waters (Therkildsen et al., 2013).

The inshore component (West Greenland, NAFO Subarea 1) has since 2012 been assessed separately from the offshore stocks. The Stock Annex provides more details on the stock identities including the references to the primary literature.

15.2 Scientific data

Historical trends in landings and fisheries

Details on the historical development of the fishery is described in the stock annex. The fishery developed in the yearly part of the $20^{\text {th }}$ century, and by 1960 it peaked at 35000 t (Figure 15.2.1). The fishery then declined but additional peaks in landings resulted from single large year classes during the 1970s and 1980s. Between 1990 and 2000, landings were below 5000 t , but has since increased gradually to a historic high of 35.000 tonnes in 2016. Catches have since then declined.

The present fishery

The TAC in 2021 was 21000 tonnes. The 2021 catches were 13580 t , which is a decrease of 25% compared to 2020 (Table 15.2.1). Pound net remains the dominant gear, accounting for 62% of the catches followed by the longlines (18%), hooks (13%) and gill nets (7%) (Table 15.2.2, Figure 15.2.1,). Approximately 63% of the total catch is fished from May-August with a peak (23\%) in June (Table 15.2.3). More details on the inshore fishery are given in Retzel, 2022a.

North Greenland (NAFO division 1A, subarea 1AX (Disco Bay))

Catches in North Greenland have gradually increased from 500 t in 2012 to an historic high of nearly 6000 t comprising close to 20% of the catches in 2017 (Table 15.2.1, Figure 15.2.2). Since 2017 catches decreased with app. 80% in 2021 to 1133 t . and they accounted for 8% of the total catch in 2021 (Table 15.2.3). Cod are caught as a combination of bycatch in the gillnet and longline fishery for Greenland Halibut and a pound net directed fishery (Table 15.2.2).

Midgreenland (NAFO divisions 1B and 1C)

7000 tonnes were fished in Midgreenland in 2021 which is a decrease of 70% from the historic high of 22000 t in 2016 and 2017 (Table 15.2.1, Figure 15.2.2). In both areas the dominating gear are pound nets which caught 37% of the total catch in 2021 (Table 15.2.2). The fishery is concentrated around the towns of Kangatsiaq, Sisimiut and Maniitsoq (figures 15.2.3 and 15.2.4).

Midgreenland (NAFO divisions 1D)

The fishery in NAFO division 1D south of 1C has in contrast with the northern areas increased to historic height in 2019 with 8700 tonnes. This is the highest caught since 1990. Since then catches have decreased with almost 50% to 4700 t in 2021 (Table 15.2.3). The catches in NAFO 1D comprised 34% of the total catch in 2021.

South Greenland (NAFO divisions 1E and 1F)

The catches in South Greenland have over the last decade gradually declined to 421 tonnes in 2018 corresponding to 2% of the total inshore catch (Table 15.2.1, Figure 15.2.2). In 2019 and 2020 however a drastic increase from 390 t in 2018 to 1823 t in 2019 and 2104 t in 2020 occurred in NAFO 1F resulting in 12% of the total inshore catch was caught in this region (table 15.2.3). Same increase was not seen in NAFO 1E. In 2021 catches in NAFO 1F decreased to 629 t .

East Greenland (ICES Subdivision 14.b)

Over the past five years, a small inshore fishery using hooks has developed in East Greenland, but less than 300 t are caught annually (Table 15.2.1, Figure 15.2.3). No length measurements are available from this fishery but individuals in this area do not belong to the West Greenland inshore cod stock. These fish are therefore not included in the overall calculations of catch and weight at age, but since the area is by definition part of the inshore area the catches are compiled here.

Catch-at-age

Several YC (YC 2014-2017) were caught in the inshore fishery in 2021, with the 2014 YC (age 5) dominating the catches (Table 15.2.4, Figure 15.2.5, Figure 15.2.6).

Weight-at-age

Geographical conditions, i.e. the existence of many small landing sites separated along more than 1000 km of coastline prevents a well-balanced sampling of the Greenland coastal fleets catches. Cod are also landed without head, which hinder otolith sampling. This means that age information from the commercial fishery is limited. The mean weight-at-age in the landings are therefore primarily based on survey sampling and set equal to stock mean weight-at-age in the assessment. A more comprehensive description of the fishery and sampling procedures are provided in the stock annex.

Maturity-at-age

Maturity information from the early period of the assessment is only available for November 1987 ($\mathrm{n}=484 \mathrm{cod}$). Although of limited size, the sample is from the bottom of the fjord where there is minimal mixing with the offshore stock (Storr-Poulsen et al., 2004) and represents the best estimate of maturity during this period. Recent maturity (2007-2015) information is available from the spawning season ($\mathrm{n}=3326 \mathrm{cod}$). The maturity ogive for the two periods was estimated by a general linear model (GLM) with binomial errors. The ogives for the two periods are different: L50 was 5.07 years in $1987(\mathrm{SE}=0.18)$, and 4.32 years $(\mathrm{SE}=0.04)$ from 2007 to 2015. It was decided to use the years with very low catches (600-800 t) as transition years between the two maturity ogives. The maturity ogive for the period 1976-2006 was set to that of the 1987 ogive. For the remaining period (2007-present) the maturity ogive was set constant based on maturity information from 2007-2015. The reason for not applying different maturity ogives for each year is due to high variation in number of samples between years that results in noisy data. Even though the maturity ogive for the period 1976-2006 is based on relatively few fish caught outside spawning season it was decided to use it as this maturity ogive is supported by earlier maturity ogives from the 1930s with a similar L50 (Hansen, 1949).

Results of the West Greenland gillnet survey

The numbers of valid net settings in 2021 was 54 in NAFO 1B and 53 in NAFO 1D (Table 15.2.5). Area and site-specific catch rates can be seen in Figure 15.2.7.

In Sisimiut (NAFO 1B) The index of age 2 (261 cod/100hr) has increased compared to 2020 and is well above time-series mean (Table 15.2.6 and figure 15.2.8). The index of age 3 ($74 \mathrm{cod} / 100 \mathrm{hr}$) has decreased compared to 2020. As a consequence of the high numbers of 2-year olds the overall
abundance index including all ages has increased ($397 \mathrm{cod} / 100 \mathrm{hr}$) and is above the time-series mean (236 cod/100hr).

In NAFO 1D the abundance index of age $2(46 \mathrm{cod} / 100 \mathrm{hr})$ increased whereas the index of age 3 $(20 \mathrm{cod} / 100 \mathrm{hr})$ decreased compared to 2020 (Table 15.2.6). The combined index for age 2 and 3 are around the time-series mean (figure 15.2.8). The overall abundance index including all ages has increased considerably ($318 \mathrm{cod} / 100 \mathrm{hr}$) and is above well above the time-series mean (119 $\operatorname{cod} / 100 \mathrm{hr}$). This is primarily caused by higher abundance of older ages from age 4 and up.

Combining 1B and 1D in a joint index across all ages results in an considerable increase compared to 2020, and is well above the time-series mean (Figure 15.2.8). The index is record high and is similar to the values in 2010-2013, a period of historic high recruitment. Normally, catch rates are highest in 1B, but in the period 2014-2018, the two areas have had similar recruitment (Table 15.2.6, Figure 15.2.8). In 2020 and 2021 recruitment was higher in 1B.

In 2017 and 2019 the survey was extended to include Kangaatsiaq (NAFO 1B) and since 2017 to include Maniitsoq (NAFO 1C). A similar number of stations as in the traditional areas were successfully fished (Table 15.2.5). In Maniitsoq, the index combining all ages was similar to 1B and 1D in 2017. The index decreased in 2018 and further in 2019 and increased slightly in 2020 (Table 15.2.6). In 2021, the overall index is at its lowest, caused by decreasing numbers of 5 and 6 year olds. Similar to 1B and 1D, however the number of 2 year olds increased to the highest level seen. In Kangatsiaq, the index combining all ages was much lower than in Sisimiut, Maniitsoq and Nuuk in both 2017 and 2019.

Disko Bay survey

For 202146 gillnets where set targeting Greenland Halibut at fixed stations corresponding to previous years in the Disko Bay. Catches in the Disko Bay gill net survey were low from 20052012 (Table 15.2.7). From 2013-2016, catches of cod increased substantially, mainly driven by the 2009 and 2010 YCs. Catches declined in 2017, 2018 and 2020 but were in 2019 slightly below the high catch rates in the period 2013-2016. In 2021 catch rates are still low.

Disko Bay is also covered as part of the annual bottom trawl survey in West Greenland. The trawl survey catches smaller cod, and a similar increase as seen in the gill net survey was documented two years earlier, driven by the 2009 YC and subsequently by the relatively large 2010 and 2011 YCs (Table 15.2.8). Since 2016 catches have remained stable at a low level in the survey in Disko Bay. No survey was performed in 2021.
More details on inshore survey results can be found in Retzel (2022b).

Genetics

In 2019 samples for genetic analysis were taken from the inshore fishery in 5 areas from NAFO 1B (Kangaatsiaq) in the north to NAFO 1F in the South. A shift in genetic composition in the inshore fishery is seen from north to south (figure 15.2.9). In the north (Kangaatsiaq) the WestGreenland offshore stock is dominating with 40% in the catches followed by the WestGreenland inshore stock (35\%) and the EastGreenland-Iceland offshore stock (25%). In contrast the WestGreenland Inshore stock is dominating in MidGreenland, especially in Sisimiut where 70% belongs to the WestGreenland inshore stock. In Maniitsoq and Nuuk 50\% belong to this stock. In SouthGreenland (NAFO 1F) the dominating stock is the EastGreenland-Iceland offshore stock with 60%, followed by the WestGreenland inshore stock with 30%. Ages were only obtained from the collections from the fishery in the Nuuk (NAFO 1D) area and South Greenland (NAFO 1F). The composition between Year classes seems stable in the Nuuk area (figure 15.2.10), whereas the 2015 and 2014 YC in SouthGreenland predominantly belongs to the EastGreenlandIceland offshore stock and the 2013 YC belongs to the WestGreenland inshore stock.

In 2019 genetic samples were taken from every inshore survey. The results of the genetic investigation in 2019 showed that the majority (50%) of the cod in the surveys in the northern area (Disco Bay and Kangaatsiaq, figure 15.2.11) belong to the WestGreenland offshore stock component. The WestGreenland inshore and EastGreenland-Iceland stock component constituted 25% each. In contrast further south the WestGreenland inshore stock component dominates, especially in the Sisimiut area where 70% belong to this stock. In Maniitsoq and Nuuk 55\% belong to this stock. The WestGreenland offshore stock component is the second largest in the survey with 25% in Sisimiut and 30% in Maniitsoq and Nuuk. Investigations of the split in year classes revealed that in the Sisimiut area older year classes belong almost exclusively to the WestGreenland inshore stock component (figure 15.2.12). This pattern seems only to be evident in Sisimiut.

15.3 Tagging experiments

A total of 5773 cod have been tagged inshore in West Greenland from 2003-2021, primarily in NAFO 1B, 1D and 1F (table 15.3.1).

Inshore recaptures are found almost exclusively in the same fjord as tagged (Table 15.3.2). No tags from the inshore area have been recaptured offshore except three that were recaptured in Iceland. These three cod were tagged in the South Greenland (1F) inshore area. Three cod tagged offshore in NAFO 1C was recaptured inshore in NAFO 1E, 29 cod tagged offshore on Dana Bank have been recaptured in the inshore fjord system. Most of these were recaptured in the inshore area south of Dana Bank, but four were recaptured inshore north of Dana Bank. These results confirm the general perception: adult cod present deep in the fjords tends to remain in the same area and that the southern part of the inshore area is a mixing area of different stocks.

15.4 Methods

The stock was benchmarked in 2018 (ICES, 2018). It was decided to use the SAM model and perform an analytical assessment. Hence, the assessment was upgraded from a category 3 (Data Limited Stock) to a category 1 stock. This is considered a vast improvement, as all data are now utilized, and the assessment is presented with uncertainty estimates and multiple catch options.

15.5 Reference points

Reference points were defined at IBPGCod (ICES, 2018). The estimations were conducted in EQSIM according to ICES guidelines (see ICES (2018) for details). The reference points are shown in Table 15.5.1. However, $\mathrm{F}_{\text {lim }}$ and F_{pa} has not be defined. A benchmark for the stock is proposed to take place in 2023.

15.6 State of the stock

There have been several years of high recruitment between 2003 and 2012 and the spawning stock biomass was at a level not seen for 25 years in 2015 , since then it has declined. The recruitment has been stable on a low level in the last five years. The recent decrease in stock size was expected as the failing recruitment begins to affect the number of adults. The catches have decreased since the time-series highs in 2016 and 2017. Catches are comprised of ages $4-7$ and low recruitment for a few consecutive years will quickly affect the fishable biomass, which is evident in the catches of 2021 that was around half compared to 2016. TACs have not been obtained the last four years and it is unlikely that the TAC of 21000 t in 2022 will be caught.

Genetic studies have been carried out on catches from the surveys and the fishery along the coast line from Disko Bay in the north to South Greenland. Both in surveys and the fishery a gradient is evident with the West Greenland Offshore stock dominating in the north (NAFO 1A+ northern part of NAFO 1B), the Inshore stock dominating in mid (Southern part of NAFO 1B+NAFO 1C and 1D) and the East Greenland - Iceland offshore stock dominating in the South (NAFO 1F). The main part of the fishery is conducted in mid Greenland where the Inshore stock is dominating the catches, the proportion varies between $50 \%-70 \%$ (Christensen, 2019, Retzel, 2021a).

However, a considerable proportion (30\%) of the inshore catches belongs to the West Greenland offshore stock. The stock is in a depleted condition and the current ICES advice is zero catch. A continued high fishing pressure in the inshore areas can prolong the recovery time of the offshore stock.

The remaining part (20\%) of the inshore catches belongs to the East Greenland/Icelandic offshore stock. It is assumed that a large part of these cod migrates to East Greenland/Iceland to spawn. The spawning stock in East Greenland has in recent years declined. A continued high fishing pressure in the inshore areas can have a negative influence on the spawning stock in East Greenland.

15.7 Short-term forecast

Input data

The SAM model provides predictions that carry the signals from the assessment into the shortterm forecast. The forecast procedure starts from the last year's estimate of the state $(\log (N)$ and $\log (\mathrm{F}))$. One thousand replicates of the last state are simulated from the estimated joint distribution. Each of these replicates are then simulated forward according to the assumptions and parameter estimates found by the assessment model.

In the forward simulations, a 5-year average (up to the assessment year) is used for catch mean weight, stock mean weight, proportion mature, and natural mortality. Recruitment is re-sampled from the entire time-series. In each forward simulation step the fishing mortality is scaled, such that the median of the distribution is matching the requirement in the scenario (e.g. hitting a specific mean F value, a specific catch or level of SSB).

Results

The results from the assessment are shown as estimated numbers-at-age and F-at-age in Tables
15.7.1 and 15.7.2. All other output can be found on stockassessment.org (run: codWestInsNWWG2022, Buch et al., 2022a).

The forecasts from the different scenarios are presented in Table 15.7.3. Fishing at Fmsy in 2023 will result in catches of $4590 t$ and a spawning stock biomass increase with 20% in 2024 . Recently the catches have been above the ICES advice, and an F status quo will result in catches of 9913 t , but at the same time a decrease in the spawning stock biomass of 9\% in 2024.

15.8 Long-term forecast

No long-term forecast was performed for this stock.

15.9 Uncertainties in assessment and forecast

The major uncertainty of the assessment is related to mixing of cod stocks (West Greenland offshore and East Greenland/Icelandic offshore).

There is no incentive to discard fish or misreport catches under the current management system and any small cod released from the pound nets survive. The surveys show relatively good internal consistency and jointly data input to the assessment is of high quality and the time-series are long which should provide a good basis for a robust assessment.

The model fits the data relatively well (Figure 15.9.2) but does consistently underestimate the spawning stock biomass (Figure 15.9.3). Although this is consistently a way-residual, the Mohn's rho measure of uncertainty is -0.166 , which is not considered high (Hurtado-Ferro et al., 2015) and the 95% confidence intervals include the most recent years retrospective runs. For the fishing mortality, there are also year-to-year changes in the perception (Figure 15.9.4). These are, however, both positive and negative, and the resulting Mohn's rho is only -0.024 with all retrospective runs being inside the model 95% confidence intervals.

The poorest model performance is in the fit between actual and estimated catches (Figure 15.9.2). Especially the poor fit to the catches in years with large catches is noteworthy, as catches are known with a high degree of certainty. The cause of this is emigration; immigration and mixing of stocks both in the survey and in the catches (see 'State of the stock'). The general picture of the stock dynamics is relatively well understood, but difficult to quantify, especially on an annual basis. It does present a challenge in the forecast. The TAC in the intermediate year is known at the time of the assessment meeting. This TAC is valid for the mixed fishery and does not reflect the expected catch of solely the inshore stock. Because of this, the TAC is not used in the forecast. Instead, we have assumed that F will be similar and applied an F-scaler of 1 in the intermediate year. This then assumes that the model output is a valid estimate of the inshore cod stock landings and not total catches. In the current period, with very high landings, the model has estimated the actual landings to be roughly double the model estimate.

Hence, the forecast should be considered as an estimate of the development of the inshore cod stock and not cod in the inshore area.

15.10 Comparison with previous assessment and forecast

The stock was benchmarked in 2018 (ICES, 2018) and the SAM model accepted. The spawningstock biomass (SSB) of West Greenland inshore cod has decreased since 2015 after having been at a historical high level. Fishing mortality (F) has increased slightly in recent years and have been above FMSY during the whole time-series. Recent recruitment has gradually decreased from a decade of high values and is currently close to historically low levels.

15.11 Management plans and evaluations

There is no management plan for this stock.

15.12 Management considerations

The TAC for this stock has consistently been set above the ICES advice. The quota is a common TAC for the entire inshore area and does not distinguish between stocks. Furthermore, it is allowed to fish offshore on the inshore quota. Historically, when the TAC was reached, the TAC was increased. Hence, the fishery in the West Greenland inshore area has always been an unlimited fishery.

Due to stock mixing, ICES is currently not able to accurately estimate the stock proportions in the catches. Therefore, the TAC can be set higher than the ICES advice, while still being in accordance with the advice. ICES cannot advice on such a TAC level.

15.13 Ecosystem considerations

The gear used for this fishery have little effect on the ecosystem, especially the main gear (poundnet).

15.14 Regulations and their effects

The fishery has never been limited by a TAC, as the TAC has always been set well above the fleet capacity or raised when reached. Therefore, it is unknown what the effect would be of limiting the fishery.

15.15 Changes in fishing technology and fishing patterns

With the northward expansion of the fishery over the past decade, there has been an increase in the importance of the gill nets, long liners and hooks. This has changed the selectivity of the fishery, as these gears have a higher selectivity for the older ages. This is also reflected in the assessment, where the F selectivity has gradually increased in recent years and the SAM model is explicitly able to handle time-varying selectively (Nielsen and Berg, 2014).

15.16 Changes in the environment

No data is collected to support any conclusions.

15.17 Benchmark 2023

Inshore catches have recently increased to historic highs. New genetic investigations of especially the inshore component reveals that the WestGreenland offshore component (cod.21.1.a-e) is mixing with the inshore component to a larger extent than previously thought (Christensen et al. 2022, Buch et al., 2022b, Retzel, 2022a, Retzel, 2022c).

The main aim of the benchmark is to move away from using the current simplified geographical borders to separate the three cod stocks in Greenland waters. This will be done by developing a modelling approach that can use genetic data based on samples covering the distribution of the three stocks (Buch et al., 2022b). The model will utilize the spatial resolution of the genetics data to estimate the split between the stocks along a spatial gradient. The catch and survey data will then be split into separate stocks and used as input into an analytical assessment models for each stock. This would account for differences in stock dynamics between stocks and may improve the understanding of migration patterns.

15.18 References

Buch, T., Riget, F., Retzel, A., 2022a. A SAM assessment of the West Greenland Inshore cod stock (cod 21.1). ICES North Western Working Group (NWWG) Mai 2-7, 2022, WD 04.

Buch, T.B., Retzel, A., Riget, F., Jansen, T., Boje, J., Berg, C. 2022b. DNA split of Atlantic cod (Gadus morhua) stocks in Greenland waters. An Overview of data. ICES North Western Working Group (NWWG) May 2-7, 2022, WD 13.

Christensen, H.T., Rigét, F., Retzel, A., Nielsen, E.H., Nielsen, E.E., Hedeholm, R.B. 2022. Year-round genetic monitoring of mixed stocks in an Atlantic cod (Gadus morhua) fishery; implications for management. ICES Journal of Marine Science. 0, 1-15. DOI: 10.1093/icesjms/fsac076

Hansen, P.M. 1949. Studies on the biology of the cod in Greenland waters. B. Luno.
Horsted, S.A. 2000. A review of the cod fisheries at Greenland, 1910-1995. J.Northw.Atl.Fish.Sci. 28: 1-112.
Hurtado-Ferro, F., Szuwalski, C. S., Valero, J. L., Anderson, S. C., Cunningham, C. J., Johnson, K. F., Licandeo, R., McGilliard, C. R., Monnahan, C. C., Muradian, M. L., Ono, K., Vert-Pre, K. A., Whitten, A. R., and Punt, A. E. 2015 Looking in the rear-view mirror: bias and retrospective patterns in integrated, age-structured stock assessment models. ICES J. Mar. Sci., 72: 99-110.

ICES, 2007. Cod Stocks in the Greenland Area (NAFO Area 1 and ICES subdivision 14B). North Western Working Group (NWWG) report.

ICES. 2018. Report of the InterBenchmark Protocol on Greenland Cod (IBPGCod). ICES IBPGCod Report 2018 8-9 January 2018. Copenhagen, Denmark. ICES CM 2018/ ACOM:30. 205 pp.

Nielsen A, Berg CW. 2014. Estimation of time-varying selectivity in stock assessments using state-space models. Fisheries Research. 158: 96-101.

Retzel, A. and Hedeholm, R. 2012. Greenland commercial data for Atlantic cod in Greenland inshore waters for 2011. ICES North Western Working Group, 26 April-3 May 2012, Working Doc. 22

Retzel, A. 2022a. Greenland commercial data for Atlantic cod in Greenland inshore waters for 2021. ICES North Western Working Group (NWWG) Mai 2-7, 2022, WD 02.

Retzel, A. 2022b. Greenland inshore survey results for Atlantic cod in 2021. ICES North Western Working Group (NWWG) Mai 2-7, 2022, WD 03.

Statistics Greenland. http://www.stat.gl/dialog/topmain.asp?lang=da\&subject=Fiskeri og fangst\&sc=FI
Storr-Paulsen M., Wieland K., Hovgård H. and Rätz H.-J. (2004) Stock structure of Atlantic cod (Gadus morhua) in West Greenland: implications of transport and migra-tion. ICES Journal of Marine Science 61: 972-982.

Therkildsen, N.O., Hemmer-Hansen, J., Hedeholm, R.B., Wisz, M.S., Pampoulie, C., Meldrup, D., Bonanomi, S., Retzel, A., Olsen, S.M., Nielsen, E.E. 2013. Spatiotemporal SNP analysis reveal pronounced biocomplexity at the northern renge margin of At-lantic cod Gadus morhua. Evoltutionary Applications. DOI 10.1111/eva. 12055.

15.19 Tables

Table 15.2.1. Cod catches (t) divided into NAFO divisions, caught in the inshore fishery (1911-1993: Horsted 2000, 19942006: ICES 2007, Statistic Greenland, 2007-present: Greenland Fisheries License Control). ICES 14.b = inshore East Greenland.

NAFO divisions									
Year	1A	1B	1C	1D	1E	1F	Unknown NAFO div.	Total West Greenland	ICES 14b
1911				19				19	
1912				5				5	
1913				66				66	
1914				60				60	
1915		47	6	45				98	
1916		66	24	103				193	
1917		67	28	59				154	
1918		106	26	140		169		441	
1919		39	37	140	148	137		501	
1920		117	32	187	23	95		454	
1921		116	92	97	7	196		508	
1922		82	178	144	40	158		602	
1923		120	116	147	0	307		690	
1924		131	223	221	1	267		843	
1925		122	371	318	45	168		1024	
1926		97	785	673	170	499		2224	
1927		282	974	982	305	1027		3570	
1928		426	888	1153	497	1199		4163	
1929		1479	1572	1335	642	2052		7080	
1930	137	2208	2326	1681	994	2312		9658	
1931	315	1905	2026	1520	835	2453		9054	
1932	358	1713	2130	1042	731	3258		9232	
1933	304	1799	1743	1148	948	2296		8238	
1934	451	2080	1473	652	921	3591		9168	

NAFO divisions									
Year	1A	1B	1C	1D	1E	1F	Unknown NAFO div.	Total West Greenland	ICES 14b
1935	524	1870	1277	769	670	2466		7576	
1936	329	2039	1199	705	717	2185		7174	
1937	135	1982	1433	854	496	2061		6961	
1938	258	1743	1406	703	347	1035		5492	
1939	416	2256	1732	896	431	1430		7161	
1940	482	2478	1600	1061	646	1759		8026	
1941	636	3229	1473	823	593	1868		8622	
1942	879	3831	2249	1332	1003	2733		12027	
1943	1507	5056	2016	1240	1134	2073		13026	
1944	1795	4322	2355	1547	1198	2168		13385	
1945	1585	4987	2844	1207	1474	2192		14289	
1946	1889	5210	2871	1438	1139	2715		15262	
1947	1573	5261	3323	2096	1658	4118		18029	
1948	1130	5660	3756	1657	1652	4820		18675	
1949	1403	4580	3666	2110	2151	3140		17050	
1950	1657	6358	4140	2357	2278	4383		21173	
1951	1277	5322	3324	2571	2101	3605		18200	
1952	646	4443	2906	2437	2216	4078		16726	
1953	1092	5030	3662	5513	3093	4261		22651	
1954	950	6164	3118	3275	1773	3418		18698	
1955	591	5523	3225	4061	2773	3614		19787	
1956	475	5373	3175	5127	3292	3586		21028	
1957	277	6146	3282	5257	4380	5251		24593	
1958	19	6178	3724	5456	3975	6450		25802	
1959	237	6404	5590	5009	3767	6570		27577	
1960	188	6741	6230	3614	3626	6610		27009	
1961	601	6569	6726	4178	6182	9709		33965	

NAFO divisions									
Year	1A	1B	1C	1D	1E	1F	Unknown NAFO div.	Total West Greenland	ICES 14b
1962	315	7809	6269	3824	5638	11525		35380	
1963	295	4877	3178	2804	3078	9037		23269	
1964	275	3311	2447	8766	2206	4981		21986	
1965	325	5209	4818	6046	2477	5447		24322	
1966	483	8738	5669	7022	2335	4799		29046	
1967	310	5658	6248	6747	2429	6132		27524	
1968	142	1669	2738	6123	2837	7207		20716	
1969	57	1767	4287	7540	2017	5568		21236	
1970	136	1469	2219	3661	2424	5654		15563	
1971	255	1807	2011	3802	1698	3933		13506	
1972	263	1855	3328	3973	1533	3696		14648	
1973	158	1362	1225	3682	1614	1581		9622	
1974	454	926	1449	2588	1628	1593		8638	
1975	216	1038	1930	1269	964	1140		6557	
1976	204	644	1224	904	1367	831		5174	
1977	216	580	2505	2946	3521	4231		13999	
1978	348	1587	3244	2614	4642	7244		19679	
1979	433	1768	2201	6378	9609	15201		35590	
1980	719	2303	2269	7781	10647	14852		38571	
1981	281	2810	3599	6119	7711	11505	7678	39703	
1982	206	2448	3176	7186	4536	3621	5491	26664	
1983	148	2803	3640	7430	5016	2500	7205	28742	
1984	175	3908	1889	5414	1149	1333	6090	19958	
1985	149	2936	957	1976	1178	1245		8441	
1986	76	1038	255	1209	1456	1268		5302	
1987	77	2366	423	6407	3602	1326	403	14604	
1988	333	6294	1342	2992	3346	4484		18791	

NAFO divisions									
Year	1A	1B	1C	1D	1E	1F	Unknown NAFO div.	Total West Greenland	ICES 14b
1989	634	8491	5671	8212	10845	4676		38529	
1990	476	9857	1482	9826	1917	5241		28799	
1991	876	8641	917	2782	1089	4007		18312	
1992	695	2710	563	1070	239	450		5727	
1993	333	327	168	970	19	109		1926	
1994	209	332	589	914	11	62		2117	
1995	53	521	710	332	4	81		1701	
1996	41	211	471	164	11	46		944	
1997	18	446	198	99	13	130	282	1186	
1998	9	118	79	78	0	38		322	
1999	68	142	55	336	8	4		613	
2000	154	266	0	332	0	12		764	
2001	117	1183	245	54	0	81		1680	
2002	263	1803	505	214	24	813		3622	
2003	1109	1522	334	274	3	479	1494	5215	
2004	535	1316	242	116	47	84	2608	4948	
2005	650	2351	1137	1162	278	382	83	6043	
2006	922	1682	577	943	630	1461	1173	7388	
2007	416	2547	1195	1842	659	4391		11050	42
2008	870	3066	1539	3172	225	1133		10005	6
2009	325	1288	1189	2009	1142	1581		7534	2
2010	559	2990	1607	1795	1458	859		9268	2
2011	567	2364	2850	2905	1274	1047		11007	0
2012	546	1376	2061	4375	1989	325		10672	0.02
2013	1506	2552	2784	4711	1450	198		13202	35
2014	3084	6142	3710	4629	684	82		18331	38
2015	4088	7912	6426	6613	117	115		25272	50

$\left.\begin{array}{lllllllll}\hline \text { NAFO divisions } & & \\ \hline \text { Year } & \text { 1A } & \text { 1B } & \text { 1C } & \text { 1D } & \text { 1E } & \text { 1F } & \begin{array}{l}\text { Unknown } \\ \text { NAFO div. }\end{array} & \begin{array}{c}\text { Total West } \\ \text { Greenland }\end{array} \\ \hline \text { ICES 14b }\end{array}\right]$

Table 15.2.2: Landings (\%) divided into month and gear and NAFO divisions and gear.

Gear/Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Poundnet	0.3\%	0.01\%	0.4\%	1\%	11\%	22\%	16\%	6\%	2\%	1\%	0.4\%	1\%	62\%
Gillnet	0.5\%	0.3\%	1\%	1\%	0.3\%	0.1\%	0.2\%	0.02\%	0.3\%	1\%	2\%	1\%	7\%
Jig	0.2\%	0.3\%	0.3\%	0.1\%	0.3\%	1\%	2\%	2\%	2\%	3\%	1\%	0.2\%	13\%
Longline	3\%	2\%	1\%	0.5\%	1\%	0.5\%	0.4\%	0.5\%	1\%	3\%	3\%	2\%	18\%
Total	4\%	2\%	3\%	3\%	12\%	23\%	19\%	9\%	6\%	7\%	6\%	5\%	
Gear/NAFO	1AUM	1AUP	1AX	1B	1C	1D	1E	1F		Total		14b	
Poundnet	1\%		1\%	16\%	21\%	21\%	0.4\%	3\%		62\%			
Gillnet	0.1\%		2\%	4\%	0.2\%	1\%	0.1\%	0.4\%		7\%			
Jig	0.04\%	0.3\%	2\%	1\%	5\%	3\%	0.1\%	1\%		13\%		1\%	
Longline	1\%	0.1\%	1\%	0.1\%	5\%	10\%	0.04\%	1\%		18\%		99\%	
Total	2\%	0.3\%	6\%	21\%	31\%	34\%	1\%	5\%					

Table 15.2.3 Catches (t) divided into month and NAFO Divisions, caught by the coastal fisheries.

NAFO	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	\%
1AUM	38	9	3	3	25	12	5	51	123	19	5	4	297	2\%
1AUP			0.1	2	2	5	1	14	9	11	0.1		44	0.3\%
1AX	24	36	42	33	27	42	148	121	124	82	97	16	792	6\%
1B	49	4	28	91	228	779	869	131	111	152	183	284	2910	21\%
1 C	128	74	26	7	633	1009	819	412	161	390	360	124	4144	31\%
1D	289	202	275	198	582	1127	630	446	272	276	192	183	4671	34\%
1E	0.5	0.2	1	1	1	11	18	16	27	10	6	1	93	1\%
1F	5	2	2	53	183	168	47	26	35	67	31	10	629	5\%
Total	533	328	376	388	1680	3154	2538	1218	861	1007	875	622	13580	
\%	4\%	2\%	3\%	3\%	12\%	23\%	19\%	9\%	6\%	7\%	6\%	5\%		
ICES 14b						0		61	83	93	49		286	

Table 15.2.4 Estimated commercial landings in numbers (‘ 000) at age, and total tones by year. * no sampling.

Year	Age								Tonnes Landed
	3	4	5	6	7	8	9	10+	
1976	2508	924	556	287	38	31	11	7	5174
1977	467	5437	1100	883	179	7	142	46	13999
1978	97	1262	9904	132	68	7	3		19679
1979	323	2297	2380	8281	170	96	4	14	35590
1980	4343	4334	1646	806	6492	106	29	37	38571
1981	87	15793	5225	725	499	2906	61	17	39703
1982	3013	1587	6309	1545	798	152	610	154	26664
1983	229	16877	1381	4352	368	139	65	75	28742
1984	520	4451	9269	346	634	18	42	12	19958
1985	5	2400	1028	2229	196	363	14	78	8441
1986	286	178	896	460	721	16	102	38	5302
1987	5503	1334	228	710	340	1084	46	265	14604
1988	419	15588	150	51	39	90	161	12	18791
1989	15	5962	23956	271	46	2	93	176	38529
1990	212	2997	15403	6732	33	11	7	16	28799
1991	124	6022	4910	5695	330	0			18312
1992	8	2408	2344	452	139	46	13	5	5727
1993	28	661	575	206	34	41	10	7	1926
1994	22	1468	342	62	45	8	11	1	2117
1995	1	834	773	37	5	0	0		1701
1996	2	165	362	130	25	3	1	0	944
1997	1	397	311	179	31	0			1186
1998*									322
1999	87	465	105	1	0	0			613
2000	4	228	336	7	0	0			764
2001*									1680
2002	532	2243	657	29	9	1	0	0	3622

Year	Age								Tonnes Landed
	3	4	5	6	7	8	9	10+	
2003	152	581	1547	258	51	16	15	11	5215
2004	530	1669	1095	228	37	3			4948
2005	1392	2408	944	186	36	10	4	0	6043
2006	4256	3363	680	22	0	0	0		7388
2007	1944	7910	1010	116	38	13	8	4	11050
2008	1176	5012	2793	319	36	6	2		10005
2009	487	3540	2372	194	13	3	0	4	7534
2010	301	1091	2475	1524	141	32	21	27	9268
2011	129	2929	2567	1480	255	90	12	7	11007
2012	735	1725	2681	850	182	21	13	13	10672
2013	143	3806	2477	1083	361	115	67	9	13202
2014	40	1389	4024	2292	328	168	103	52	18331
2015	20	2006	5680	3008	1337	133	9	8	25272
2016	32	2146	9701	5732	1179	239	57	7	34203
2017	44	1384	6351	5241	3370	498	168	48	31220
2018	21	2214	4255	4180	2319	850	169	76	22290
2019	47	1941	6727	3679	1885	624	145	46	19753
2020	113	1686	4418	4437	987	534	136	63	17926
2021	3	1410	3775	1988	1334	222	133	27	13580

Table 15.2.5: Survey effort in the Greenland Inshore Gill-net survey (nos. of valid net settings)

Division (area)	1B (Kangtsiaq)	1B (Sisimiut)	1C	1D

Division (area)	1B (Kangtsiaq)	1B (Sisimiut)	1C	1D	1F	Total
2013		58		52	-	110
2014		60		41	-	101
2015		59		44	-	103
2016		58		40	-	98
2017	60	57	59	46	-	222
2018		58	61	52	-	171
2019	50	48	47	54	-	199
2020	-	53	50	50	-	153
2021	-	54	51	53	-	158

Table 15.2.6: NAFO Div. 1B. Cod abundance indices (numbers of cod caught per 100 hours net settings) by age in the West Greenland inshore gill-net survey. $\mathrm{Na}=$ data not available.

Year	Age								All
	1	2	3	4	5	6	7	8+	
1985	26	23	0	6	0	0	0	0	54
1986	4	245	16	8	2	2	0	0	278
1987	0	122	233	25	1	0	0	0	381
1988	0	33	130	111	2	0	0	0	276
1989	1	110	83	57	32	1	0	0	283
1990	0	109	108	62	53	12	0	0	344
1991	0	3	131	53	11	3	0	0	202
1992	0	43	10	18	3	0	0	0	74
1993	0	22	22	2	1	0	0	0	47
1994	4	8	19	12	0	0	0	0	43
1995	2	115	19	7	1	0	0	0	143
1996	0	28	40	7	1	0	0	0	77
1997	0	14	8	3	1	0	0	0	26
1998	2	7	4	6	3	0	0	0	23
1999	na								
2000	na								

Year	Age								All
	1	2	3	4	5	6	7	8+	
2001	na								
2002	31	207	72	21	9	1	0	0	340
2003	1	68	69	21	3	0	0	0	163
2004	32	28	29	9	5	0		0	102
2005	47	123	35	7	5	1	3	0	221
2006	32	148	60	24	1	1	0	0	170
2007	7	170	82	15	1	0	0	0	275
2008	na								
2009	na								
2010	138	155	120	58	12	1	0	0	484
2011	20	526	106	44	19	1	0	0	717
2012	7	184	304	30	8	3	0	0	536
2013	4	158	105	104	27	8	1	1	408
2014	7	46	45	25	19	4	0	1	146
2015	2	39	44	59	49	39	3	1	236
2016	6	31	98	42	36	23	7	2	245
2017	1	6	71	79	33	23	10	2	225
2018	1	27	25	26	15	6	2	1	103
2019	0	80	136	19	35	12	1	2	285
2020	17	45	99	51	15	5	0	1	233
2021	2	261	74	26	30	2	2	0	397

Table 15.2.6, continued : NAFO Div. 1D. Cod abundance indices (numbers of cod caught per 100 hours net settings) by age in the West Greenland inshore gill-net survey.

Year	Age								All
	1	2	3	4	5	6	7	8+	
1985	68	77	0	3	3	3	0	1	155
1986	0	96	15	0	0	0	0	0	114
1987	1	16	68	5	0	0	0	0	90
1988	0	20	48	30	1	0	0	0	99
1989	0	78	47	13	13	0	0	0	152
1990	0	14	35	4	4	3	0	0	60
1991	124	3	17	6	2	1	0	0	154
1992	0	61	22	10	7	1	0	0	100
1993	0	4	57	20	2	0	0	0	83
1994	0	0	6	5	1	0	0	0	12
1995	0	3	2	4	4	0	0	0	12
1996	0	1	1	1	2	0	0	0	4
1997	3	3	1	0.2	0.5	0.4	0.1	0	8
1998	0	10	17	1	0	0	0	0	28
1999	0	0	1	3	0	0	0	0	5
2000	0	2	2	1	1	0	0	0	6
2001	na								
2002	0	7	4	3	0	0	0	0	14
2003	0	6	4	2	1	0	0	0	13
2004	3	43	6	3	1	1	0	0	57
2005	9	27	7	2	0	0	0	0	45
2006	2	114	37	13	4	0	0	0	170
2007	na								
2008	4	4	47	63	7	0	0	0	124
2009	4	52	14	72	23	1	0	0	166
2010	1	33	107	18	27	3	0	0	189
2011	10	45	3	18	6	4	1	0	88

Year	Age								
				4					
2012	2	52	46	21	28	2	0	1	151
2013	0	91	61	77	25	8	3	2	267
2014	0	41	74	46	27	6	1	0	196
2015	2	42	79	68	30	7	2	0	229
2016	1	59	92	34	47	9	1	1	243
2017	0	8	81	57	51	18	1	1	217
2018	0	14	50	59	44	31	10	2	210
2019	0	29	41	60	60	20	7	0	217
2020	1	7	60	24	31	32	5	5	165
2021	0	46	20	119	68	43	19	3	318

Table 15.2.6, continued : NAFO division 1F, 1B (Kangatsiaq) and 1C Cod abundance indices (numbers of cod caught per 100 hours net settings) by age in the West Greenland inshore gill-net survey. $\mathrm{Na}=$ Data not available.

Year	Age NAFO 1B (Kangatsiaq)								
	1	2	3	4	5	6	7	8+	
2017	1	2	40	8	13	6	5	1	75
2018	na								
2019	0	26	14	6	5	1	0	0	52
2020-2021	na								

Table 15.2.7: Cod abundance indices (numbers of cod caught per 100 hours net settings) by age in the Greenland Halibut gill net survey in Disco Bay. $\mathrm{Na}=$ Data not available.

Year/age	1	2	3	4	5	6	7	8	9	10+	Total
2005	0	0.07	0.35	0.51	0.51	0.04	0.04	0	0	0	1.52
2006	0	0.21	0.12	0.02	0	0.07	0.04	0	0	0	0.46
2007	n.a.										
2008	0	0.01	0.01	0.63	3.38	1.80	0.46	0	0	0	6.29
2009	n.a.										
2010	0	0	0.01	0.98	2.71	1.81	0.13	0	0	0	5.64
2011	0	0.48	0.17	1.26	0.93	2.94	1.38	0.10	0	0	7.26
2012	0	0.01	2.09	2.75	1.65	1.09	0.24	0.16	0	0	7.99
2013	0	0	3.45	43.43	38.21	13.59	2.58	1.06	0.41	0	102.73
2014	0	0	0.37	23.92	46.16	20.56	0.78	0.08	0.26	0.23	92.36
2015	0	0	1.18	8.13	53.86	31.50	6.05	1.70	0	0.40	102.82
2016	0	0	0.6	11	29	59	17	1	0.4	0.1	119
$\begin{aligned} & 2016 \text { cod } \\ & \text { st. } \end{aligned}$	0	0	0	5	9	12	4	0.1	0	0	30
2017	0	0	3	4	11	13	17	2	0	0	50
2018		0.2	1	3	3	7	6	8	1	0.3	28
2019			3	3	10	10	31	20	6	0.3	83
2020			0.5	2.6	0.5	2.5	2.1	2.7	2.6	0.7	14.2
2021		1.8	1.2	1.9	4.2	1.5	2.9	1.0	2.3	0.4	17.2

Table 15.2.8: Cod abundance indices (' 000) by age and total in Disco Bay (NAFO 1AX) in the Greenland Shrimp and Fish bottom trawl survey. No trawl survey in 2021.

Year/age	0	1	2	3	4	5	6	7	8	9	10+	All
2005	0	52	0	0	90	0	0	0	0	0	0	142
2006	0	0	117	1	1	0	0	0	0	0	0	119
2007	0	20	142	98	0	0	0	0	0	0	0	261
2008	0	38	21	25	24	0	0	0	0	0	0	108
2009	0	0	14	1	16	11	0	0	0	0	0	41
2010	0	0	7	0	9	0	0	0	0	0	0	16
2011	0	400	2907	324	47	26	5	0	0	0	0	3710
2012	0	0	1967	661	31	0	0	0	0	0	0	2659
2013	0	137	1420	1656	479	111	14	0	0	0	0	3817
2014	0	14	159	119	79	25	8	0	13	0	10	428
2015	0	93	411	1271	502	429	197	27	4	0	0	2935
2016	0	24	177	76	38	95	56	40	0	0	0	506
2017	0	19	42	386	84	50	21	64	15	0	0	681
2018	24	29	204	99	121	26	30	44	31	0	0	607
2019	0	0	103	341	139	71	0	22	18	1	0	693
2020	0	0	20	80	110	0	16	0	0	10	0	236
2021	-	-	-	-	-	-	-	-	-	-	-	-

Table 15.3.1. Number of tagged cod in the period of 2003 to 2021 in different regions. Bank (West) = NAFO Division 1D+1E. East Greenland = NAFO Division 1F + ICES Division 14.b.
\(\left.$$
\begin{array}{ccccc}\hline \text { Year } & \text { Fjord } & \begin{array}{c}\text { Bank (West) } \\
\text { NAFO 1C } \\
\text { Tovqussaq }\end{array} & \begin{array}{c}\text { TAGGED } \\
\text { Bank (West) } \\
\text { NAFO 1D + 1E } \\
\text { Dana }\end{array}
$$

\hline 2003 \& 599 \& \& \& East Greenland\end{array}\right]\)| |
| :--- |
| 2004 |
| 2005 |

Table 15.3.2: Number of recaptured cod in the period of 2003 to 2019 in different regions. Fjord (West) = NAFO divisions 1B-1F. Bank (West) = NAFO Division 1D+1E. East Greenland = NAFO division 1F + ICES Division 14.

	Fjord (West)	Bank (West) NAFO 1C Tovqussaq	Bank (West) NAFO 1D + 1E Dana	East Greenland

Table 15.5.1: Reference points

Framework	Reference point	Value	Technical basis	Source
MSY approach	MSY $\mathrm{B}_{\text {trigger }}$	5983 t	Assumed at B_{pa}	ICES (2018a)
	$\mathrm{F}_{\text {MSY }}$	0.27	Stochastic simulations with segmented regression and a Beverton-Holt stock-recruitment curve from 1973 to 2018.	ICES (2018a)
Precautionary approach	$\mathrm{Blim}_{\text {l }}$	4346 t	Breakpoint in segmented regression	ICES (2018a)
	B_{pa}	5983 t	$\mathrm{B}_{\lim } \times \mathrm{e}^{1.645 \sigma}, \sigma=0.194$	ICES (2018a)
	$\mathrm{F}_{\text {lim }}$	-	Not defined	
	F_{pa}	-	Not defined	
Management plan	$S_{S B}{ }_{\text {mgt }}$	-	-	
	$\mathrm{F}_{\mathrm{mgt}}$	-	-	

Table 15.7.1: Estimated number at age in the stock

Year										
/	1	2	3	4	5	6	7	8	9	10
Age										
1976	14554	12654	62138	3690	1944	422	65	277	63	29
1977	21442	11359	10360	47937	2253	966	149	19	179	54
1978	39305	17087	8865	7874	31350	1010	359	39	10	115
1979	17135	38432	13617	7439	4779	15657	494	143	20	63
1980	36164	11544	37579	10779	4435	2055	7171	217	68	45
1981	15837	35962	7777	30947	5578	1963	858	2420	108	50
1982	8185	12703	35761	5657	15510	1848	841	269	843	73
1983	3044	6979	10190	30955	2569	5897	510	253	106	247
1984	8117	1953	5952	8173	14999	868	1883	112	110	108
1985	35014	6263	1253	4365	3465	5740	285	621	49	97
1986	24564	35883	4831	953	1630	1349	2143	88	290	58
1987	12732	20878	36773	3314	432	495	472	875	43	130
1988	16954	9930	19053	31023	1119	157	90	171	393	43
1989	8581	15644	8049	16546	14806	399	47	22	83	134
1990	4462	7937	12970	7011	8767	4162	88	15	11	53
1991	12937	2954	6795	9844	3214	2069	434	29	7	19

Year / Age	1	2	3	4	5	6	7	8	9	10
1992	4620	9707	2398	4829	3362	503	241	85	14	8
1993	2209	3648	6688	1934	1353	320	66	68	24	7
1994	2782	1605	2991	4500	693	100	50	18	26	8
1995	1859	2229	1183	2366	1575	90	20	13	7	13
1996	2488	1297	1502	971	1035	239	30	7	5	9
1997	3304	2039	863	1113	471	232	89	11	3	7
1998	3101	2448	1672	687	480	72	108	37	5	5
1999	4477	2340	1797	1322	291	33	39	49	20	5
2000	6382	3672	1767	1256	610	38	19	18	28	12
2001	7812	5324	3327	1697	626	103	22	9	11	20
2002	9932	6366	4442	2945	1002	130	54	11	6	16
2003	10254	7042	4628	3130	1376	252	60	28	8	10
2004	24124	8734	5078	3363	1376	293	98	23	17	7
2005	37563	19491	7181	3465	1280	260	105	39	13	10
2006	27236	30112	15956	5406	1153	202	89	43	22	10
2007	15189	22851	22936	10972	1710	205	83	33	24	15
2008	22106	11068	18772	16646	3916	314	73	35	16	19
2009	21517	18949	9233	14107	7012	686	97	31	22	18
2010	39687	16179	15614	7353	6826	1559	228	50	19	21
2011	34967	35136	11483	11559	4293	1802	417	100	26	16
2012	24730	27687	29365	9807	6739	1399	487	162	43	17
2013	18950	22410	21538	22289	7030	2650	424	197	83	21
2014	19494	16079	18569	17104	13394	3394	888	144	81	36
2015	15474	16888	14081	17563	13425	6389	1428	324	42	29
2016	10375	14901	15425	13564	14264	7356	2431	528	120	22
2017	11606	8234	14670	13709	11322	7576	3100	813	202	51
2018	13572	11008	8287	13871	10048	6101	2912	958	256	79
2019	9732	13944	11600	8418	11327	5182	2390	815	258	87
2020	15978	7192	14136	10871	6657	5766	1741	689	202	84

| Year
 /
 Age | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2021 | 9146 | 15122 | 5556 | 12111 | 8596 | 3368 | 1985 | 450 | 182 | 60 |

Table 15.7.2: Estimated fishing mortality-at-age in the stock

Year Age	12	3	4	5	6	7	8	9	10
1976		0.037	0.281	0.53	0.812	1.029	0.326	0.419	0.419
1977		0.035	0.274	0.567	0.749	1.034	0.391	0.511	0.511
1978		0.032	0.304	0.568	0.605	0.791	0.447	0.494	0.494
1979		0.034	0.362	0.633	0.632	0.751	0.541	0.496	0.496
1980		0.039	0.435	0.681	0.677	0.88	0.607	0.619	0.619
1981		0.035	0.496	0.815	0.743	0.96	0.748	0.708	0.708
1982		0.038	0.54	0.796	0.954	1.046	0.715	0.967	0.967
1983		0.035	0.585	0.831	0.94	1.174	0.651	0.871	0.871
1984		0.034	0.648	0.799	0.895	0.967	0.588	0.693	0.693
1985		0.027	0.688	0.791	0.858	0.93	0.578	0.752	0.752
1986		0.03	0.635	0.893	0.952	0.815	0.546	0.855	0.855
1987		0.028	0.691	0.865	1.327	0.889	0.598	1.107	1.107
1988		0.019	0.63	0.902	1.141	1.046	0.559	1.023	1.023
1989		0.012	0.602	1.129	1.346	0.982	0.52	1.157	1.157
1990		0.011	0.669	1.325	1.795	0.97	0.602	1.012	1.012
1991		0.01	0.825	1.676	1.96	1.141	0.648	0.967	0.967
1992		0.007	0.904	2.105	1.814	1.084	0.759	0.953	0.953
1993		0.006	0.802	2.325	1.624	1.067	0.747	0.919	0.919
1994		0.005	0.755	1.867	1.349	1.056	0.706	0.692	0.692
1995		0.004	0.638	1.678	0.955	0.871	0.673	0.617	0.617
1996		0.004	0.555	1.43	0.77	0.798	0.587	0.551	0.551
1997		0.005	0.581	1.702	0.597	0.687	0.507	0.543	0.543
1998		0.008	0.574	2.278	0.447	0.62	0.439	0.536	0.536
1999		0.012	0.54	1.84	0.34	0.578	0.382	0.53	0.53

$\begin{aligned} & \text { Year } \\ & \text { Age } \end{aligned}$	12	3	4	5	6	7	8	9	10
2000		0.014	0.502	1.577	0.37	0.55	0.34	0.53	0.53
2001		0.024	0.501	1.377	0.444	0.535	0.305	0.55	0.55
2002		0.039	0.581	1.222	0.531	0.545	0.278	0.606	0.606
2003		0.051	0.632	1.378	0.697	0.679	0.317	0.732	0.732
2004		0.071	0.766	1.474	0.779	0.688	0.314	0.666	0.666
2005		0.087	0.882	1.571	0.79	0.693	0.337	0.603	0.603
2006		0.089	0.866	1.529	0.71	0.715	0.358	0.562	0.562
2007		0.072	0.778	1.53	0.827	0.667	0.377	0.508	0.508
2008		0.054	0.588	1.484	0.943	0.627	0.35	0.484	0.484
2009		0.039	0.444	1.254	0.957	0.563	0.362	0.536	0.536
2010		0.026	0.339	1.074	1.118	0.644	0.47	0.711	0.711
2011		0.018	0.29	0.903	1.118	0.717	0.563	0.74	0.74
2012		0.013	0.235	0.735	0.998	0.742	0.559	0.824	0.824
2013		0.008	0.201	0.6	0.869	0.834	0.71	0.914	0.914
2014		0.005	0.165	0.555	0.788	0.82	0.89	1.103	1.103
2015		0.004	0.152	0.514	0.765	0.855	0.828	0.936	0.936
2016		0.003	0.15	0.515	0.756	0.908	0.836	0.893	0.893
2017		0.003	0.147	0.505	0.776	0.997	0.958	1.015	1.015
2018		0.003	0.152	0.51	0.798	1.063	1.094	1.142	1.142
2019		0.003	0.158	0.519	0.855	1.077	1.163	1.218	1.218
2020		0.003	0.154	0.525	0.874	1.127	1.139	1.317	1.317
2021		0.002	0.15	0.514	0.862	1.136	1.111	1.278	1.278

Table 15.7.3: Cod in NAFO Subarea 1, inshore. Catch scenarios for 2023 assuming $F_{2021}=F_{2022}$. All weights are in tonnes.

Rationale	$\begin{aligned} & \text { Catch } \\ & \text { (2023) } \end{aligned}$	$\begin{gathered} F \\ (2023) \end{gathered}$	$\begin{gathered} \text { SSB } \\ (2024) \end{gathered}$	$\begin{gathered} \text { \% SSB } \\ \text { change * } \end{gathered}$	\% advice change **	$\% \text { TAC }$ change ***
ICES advice basis						
MSY approach: $\mathrm{F}_{\text {MSY }}$	4590	0.268	24549	+20\%	-4\%	-78\%
Other scenarios						
$F=0$	0	0	30348	+49\%	-100\%	-100\%
$\mathrm{F}=\mathrm{F}_{2020}$ (status quo)	9913	0.755	18549	-9\%	+107\%	-53\%
$\mathrm{SSB}_{2022}=\mathrm{Bl}_{\text {lim }}$	25408	12.992	4346	-79\%	+410\%	+21\%
$S^{\text {S }} \mathrm{E}_{2022}=\mathrm{B}_{\mathrm{pa}}=$ MSY $\mathrm{B}_{\text {trigger }}$	23195	6.959	5983	-71\%	+364\%	+10\%

* SSB2024 relative to SSB2023.
** Advice value for 2023 relative to the advice value for 2022, from this updated assessment.
*** Advice value for 2023 relative to the TAC in 2022, from this updated assessment.

15.20 Figures

Figure 15.2.1 Inshore landings from West Greenland (Horsted, 1994; 2000). From 2012 divided into gears.

Figure 15.2.2. Total (top) and percentage (bottom) cod catches and TAC in the inshore fishery by NAFO divisions from 2000.

Figure 15.2.3. Distribution of commercial fishery along the coastline of West Greenland in total tonnes by field code.

Figure 15.2.4 Distribution of the inshore commercial fishery by gear (tonnes/fieldcode).

Figure 15.2.5. Total length and age distributions of inshore cod catches.

Inshore CAA commercial fishery

Figure 15.2.6. Catch-at-age in the commercial fishery in the West Greenland inshore area. Size of circles represents size of catch numbers.

Figure 15.2.7. The inshore gill net survey area on the Greenland West coast. Survey catch rates are indicated on both as \#caught/100h.

Figure 15.2.8: Recruitment indices (numbers caught/100 hr.) for ages 2 and 3 in 1B (top), 1D (middle) and all age groups (ages 1-8) 1B and 1D combined (lower) in West Greenland. Simultaneous surveys were not carried out 1999-2001 and 2007-2009.

Figure 15.2.9: Genetic composition in the inshore fishery in 2019 by NAFO divisions. Left: Samples analysed, right: In percentage.

Figure 15.2.10: Genetic composition in the inshore fishery in 2019 by Year classes within NAFO division 1D and 1F. Left: Samples analysed, Right: in percentage.

Figure 15.2.11: Genetic composition in the inshore surveys by fjord systems. Left: Samples analysed, right: In percentage.

Figure 15.2.12: Genetic composition in the inshore surveys by year class and fjord systems. Left: Samples analysed, right: In percentage.

Figure 15.6.1: Standardized reciprocal variance from left to right: catches, $1 B$ survey and 1D survey.

Figure 15.9.1: Normalized residuals derived from the SAM base run. Blue circles indicate positive residuals (observation larger than predicted) and filled red circles indicate negative residuals.

Figure 15.9.2: Estimated (line) and observed catch (x). Estimated catch is shown with 95% confidence intervals.

Figure 15.9.3: Analytical retrospective plots of spawning stock biomass. Mohn's rho is given in the upper right corner.

Figure 15.9.4: Analytical retrospective plots of $\mathrm{F}_{4-8 \mathrm{~s}}$. Mohn's rho is given in the upper right corner.

Figure 15.9.5: Analytical retrospective plots of Recruit. Mohn's rho is given in the upper right corner.

Figure 15.9.6: Leave out plot of F_{4-8}.

16 Cod (Gadus morhua) in ICES Subarea 14 and NAFO Division 1.F (East Greenland, South Greenland)

16.1 Stock definition

The cod found in Greenland is derived from four separate "stocks" that each is labelled by their spawning areas: I) offshore West Greenland waters; II) West Greenland inshore fiords; III) East Greenland and offshore Icelandic waters and IV) inshore Icelandic waters (Therkildsen et al., 2013), (Figure 16.1).

From 2012 the inshore component (West Greenland, NAFO Subarea 1) was assessed separately from all offshore components. From 2016 the offshore West Greenland (NAFO subdivisions 1A-
E) and East Greenland (NAFO Subdivision 1F and ICES Subarea 14) components was assessed separately. The Stock Annex provides more details on the stock identities including the references to primary works.

16.2 Scientific data

Historical trends in landings and fisheries

The Greenland commercial cod fishery in East Greenland started in 1954 but started earlier in Southwest Greenland (NAFO Subdivision 1F, Table 16.2.1, Figure 16.2.1). The fishery gradually developed culminating with catch levels above 40000 tonnes annually in the 1960s. Due to overfishing, deteriorating environmental conditions and emigration to Iceland the stock size declined and the fishery completely collapsed in the early 1990s. More details on the historical development in the fisheries are provided in the stock annex.

The present fishery

TAC for 2021 was set at 26091 t . The TAC was divided between the following countries and management areas (se section 16.12 for definition of management areas):

Management Area	TAC (tonnes)	Country
Dohrn Bank	20000	Greenland (17 800 t), EU (1950 t), Norway (250 t)
South and East Greenland	6091	Greenland $(2691 \mathrm{t})$, Faeroes Island $(2500 \mathrm{t})$, Norway $(1100 \mathrm{t})$

In 2021 a total of 25829 tonnes with 192 tonnes caught in SouthWest Greenland (NAFO 1F) and 25637 tonnes caught in East Greenland (Tables 16.2.1 and 16.2.2).

Trawlers fished 77% of the total catch (Table 16.2.3, Figure 16.2.1) almost exclusively (94% of their total catch) in the Dohrn Bank management areain a small square between $65-66^{\circ} \mathrm{N} ; 29-31^{\circ} \mathrm{W}$ on the edge of the continental shelf close to the EEZ to Iceland (figure 16.2.2 and 16.2.3). The longlining fishery fished almost exclusively (86% of their total catch) south of Dohrn Bank management area mainly on the Heimlandsridge (between $63-64^{\circ} \mathrm{N}$).

A detailed description of the fishery is found in Retzel, 2022.

Catch-at-age

The 2015 YC (age 6) is dominating the total catches followed by the 2011 and older YC's (Table 16.2.4, Figure 16.2.4 and 16.2.5). The 2015 YC is dominating the catch in all areas, whereas the oldest of ages 10+ is found further to the north in Dohrn Bank area (Q1Q2, table 16.2.5).

Weight-at-age

Annual weight-at-age are obtained from sampling on board fishing vessels since 2005, see stock annex for further details.

Maturity-at-age

Maturity at age is fixed for 1973-2017 and is based on samples from an experimental fishery in the spawning areas in 2007 (see stock annex for further details). Since 2018 a separate ogive was estimated based on cod sampled from an experimental fishery in the same spawning area as in 2007 (GINR, 2018). The two maturity ogives were similar.

Surveys

Two offshore bottom trawl surveys (Greenlandic and German) are conducted in the offshore region of Greenland. The German survey targets mainly cod and has since 1982 covered the main cod grounds off both East and West Greenland at depths down to 400 m . The Greenland survey in West Greenland targets shrimp and cod down to 600 m . The Greenland survey is believed to provide a better coverage of the cod distribution in especially East Greenland as the survey has twice as many stations covering both shelf edge and top, whereas the stations in the German survey are usually concentrated at the shelf edge. For details of survey design see stock annex.

Neither the Greenland nor the German survey was performed in 2021.

Greenland Shrimp and Fish survey

No survey was carried out in 2018, 2019 and 2021 as the Greenland research vessel (Paamiut) was scrapped. However West Greenland, including NAFO 1F (South West Greenland), was surveyed by a hired vessel with same gear rigging. In 2020 the survey was conducted with a chartered fishing vessel Helga Maria. All fishing gear were removed from Paamiut and installed at the chartered vessel. Fishing practice and handling of catch were exactly as used on the research ship Paamiut to make it as comparable as possible with previous year's survey.

In 2020 trawling was conducted both during daytime and night-time, whereas previously trawling was restricted to between 08.00 UTC and 20.00 UTC. In total 77 hauls were conducted during daytime and 65 during the night. In all area strata the number of day and night hauls were about equal. In general, no differences between day and night hauls densities were found ($p=0.53$). In accordance, preliminary analyses of commercial logbooks showed that standardized CPUE was $5-6 \%$ higher during daytime than during the nightline, however, the difference was not significant ($p=0.06$). The introduction of night hauls in 2020 is evaluated to have a minor effect on the estimated abundance and biomass estimates. The gain by trawling around the clock instead of only daytime, by increased strata coverage is evaluated to be larger than the possible day and night influence, which may be able to correct for in the future.

A total number of 142 valid hauls were made in 2020 (table 16.2.6, figures 16.2.6 and 16.2.7). For Atlantic cod the abundance index was estimated at 57.7 million individuals and the survey biomass at 117000 tonnes, close to the average for the survey period (tables 16.2.7 and 16.2.8). The CV of the abundance and biomass estimates were 23% and 18%, respectively and below the average of the timeseries. The dominating cohort is the 2015 and to some extent 2014 YC (table 16.2.9).

A detailed description of the survey is available in Retzel, 2021.

German groundfish survey

No survey was carried out in 2018 and 2021.
In 2020, 53 valid trawl stations were sampled during the autumn in the German Greenland offshore groundfish survey (table 16.2.11). The abundance and biomass indices amounted to 15 mill. Individuals and 12 million tonnes respectively, and was highest in NAFO 1F (strata 4, table 16.2.12 and 16.2.13, figure 16.2.8). The 2015-year class (age 5) dominated the survey, followed by the 2014-year class (age 6, table 16.2.14). The 2015-year class dominated the survey in all areas (table 16.2.15). A detailed description of the survey in 2020 is found in Werner \& Fock 2021.

Weight-at-age

During exploration of the survey data for the analytical assessment, it became clear that a substantial discrepancy between the German and the Greenland age-readings of cod otoliths exists. That became obvious, because mean weight-at-age data from both surveys differed systemically between German mean-weights-at-age, which were always considerably higher than the Greenlandic ones. An otolith exchange in order to compare age readings between both Institutes was conducted in the spring 2018 and showed that age readings of the same set of otoliths showed a one-year systemic difference between both institutes. Age readings were on average one year older for the same fish as read by the Greenlandic institute compared to the German institute (Hedeholm et al., 2018).

To investigate the issue a workshop on age reading of cod in Greenland was arranged with participants from the Greenland Institute of Natural Resources and the Thünen Institute of Sea Fisheries in Germany (Retzel, 2019). The Icelandic Marine and Freshwater Research Institute hosted the workshop that was held January 8-9, 2019, Reykjavik, Iceland. The cause for the discrepancy was identified as the German Institute not reading the last wintering on the edge of the otolith. Afterwards CAA were calculated for the German survey based on Greenland age-length keys in order to identify in which period age readings went wrong by the German Institute (Retzel, 2019). It was recommended that the German Institute reread their survey otolith from 2011 and onwards. By the time of the 2019 NWWG meeting the otoliths from the German surveys in 2016 and 2017 had been reread but there were still considerable differences in weight-at-age (Fock \& Werner, 2019). By the time of the 2022 NWWG no further years in the German survey had been reread.

A thorough analysis was performed on survey data from the German and Greenland survey in order to further investigate the differences between the two surveys (Bjare, 2022). It was found that the German survey capture cod that are on average 15 cm larger than those sampled by the Greenland survey. Several possible explanations such as seasonal effects and catch efficiency was investigated, but no clear explanations were found. The following studies are recommended:

- Conduct future surveys at the same time and at close locations using the same towing speed
- Compare observed size differences by area with knowledge of local population seasonal patterns (ie. migration) to assess potential biological effects
- Detailed analysis of the gears and procedures used by either survey to uncover potential selectivity issues
- More detailed analysis of CPUE by size-class for either survey compared with biological knowledge to see if the Greenlandic survey catches surprisingly few large fish or the German survey catches surprisingly few small fish (or both)
- Comparison of Greenlandic survey and commercial data as a reference dataset

16.3 Tagging

An extensive analysis of tagging results from the period 2003-2016 suggest that 50% of each year class in East Greenland migrate to Iceland (Hedeholm, 2018). This has been incorporated in the assessment (ICES, 2018).

16.4 Methods

The stock was benchmarked in 2018 (ICES, 2018). It was decided to use the SAM model and perform an analytical assessment. Hence, the assessment was upgraded from a category 3 (Data Limited Stock) to a category 1 stock. However, in August 2021 an Inter-Benchmark Protocol on East and Southwest Greenland Cod 2 (IBPGCOD2) (ICES,2021) was established as a result of the rejection of the regular assessment in 2021 conducted by the North Western Working Group (NWWG) due to a violation of the predefined limits for retrospective bias. The most likely explanation for the difficulties in assessing the stock arises from the mixing of the stock with the neighbouring Icelandic cod on Dohrn Bank, an increasing fishing effort in the Dohrn bank area by the Greenlandic fleet means more of these fish are being caught. Furthermore, there is a drift of larvae from east to west, these migrate back to east Greenland and Icelandic waters for spawning. It was decided to focus on a short-term technical fix to solve the assessment problems, which was done by altering the natural mortality (M) to account for changes in immigration and emigration. A benchmark of the East Greenland cod is scheduled for the year 2023.

In connection with the Inter-Benchmark in August 2021 reference points were updated (ICES, 2021). The estimations were conducted in EqSim according to ICES guidelines (see ICES (2018) for details). The reference points are shown in Table 16.5.1.

16.5 State of the stock

The SSB has increased compared to year 2000 after having been decreasing since 2017. The SSB er well above MSY $\mathrm{B}_{\text {trigger. }}$ The F_{5-10} has increased since 2010 and is above the revised $\mathrm{F}_{\text {msy. }}$. No survey was performed in 2021 so no new information of number of recruits is available.

16.6 Short term forecast

The State-space model (SAM) was applied for the offshore cod stock in ICES Division 14. and NAFO Division 1F (Riget et al., 2022).

Input data

The SAM model provides predictions that carry the signals from the assessment into the shortterm forecast. The forecast procedure starts from the last year's estimate of the state $(\log (N)$ and $\log (\mathrm{F})$). One thousand replicates of the last state are simulated from the estimated joint distribution. Each of these replicates are then simulated forward according to the assumptions and parameter estimates found by the assessment model.

In the forward simulations a 5-year average (up to the assessment year) is used for catch mean weight, stock mean weight, proportion mature, and natural mortality. Recruitment is re-sampled from the entire time series. In each forward simulation step the fishing mortality is scaled, such that the median of the distribution is matching the requirement in the scenario (e.g. hitting a specific mean F value, a specific catch or level of SSB).

Results

Number at age and F at age estimated by SAM are shown in Table 16.7.1 and 16.7.2, respectively. The TAC for 2022 are set to $27430 t$ and we assumed that managers will keep the already set TAC rather than following the advice. However, catching 27430 t in 2022 implies a F of 1.0 which may be unrealistic high. Therefore, the catch will be followed through the year and if necessary, a new national advice will be given. The forecasts for the assumption Catch $=$ $\mathrm{TAC}_{2022}(27430 \mathrm{t})$ from the different scenarios are presented in Table 16.7.3.

16.7 Long term forecast

No long-term forecast was performed for this stock.

16.8 Uncertainties in assessment and forecast

There is no incentive to discard fish or misreport catches under the current management system. In 2018 no survey data were available, and in 2019 German survey data were available but no Greenland survey data. Again in 2021 no survey data was available. This adds uncertainties to the assessment.

The model fits the data relatively well Figure 16.9.1. Figure 16.9.2-4 shows the retrospective plots of SSB, F_{510} and recruits. The retrospective runs show values of Mohn's rho ($\mathrm{F}_{5-10} 0.149$ and SSB -0.122, which are within the acceptable range.

The NWWG group realized that changing the natural mortality in the most recent years as proposed and accepted in the Inter-Benchman in August 2021 (Riget et al., 2021) should be considered as a technical fix to solve the retro bias rather than trying to reflect the cod stocks dynamic.

16.9 Comparison with previous assessment and forecast

The analytical assessment model (SAM) was accepted at the benchmark January 2018 (ICES 2018) and only three years of the analytical assessment exist. In the years before the advice was based on a DLS assessment. The assessment in 2021 was rejected and an Inter-Benchmark Protocol on East and Southwest Greenland Cod 2 (IBPGCOD2) (ICES, 2021) was established due to a violation of the predefined limits for retrospective bias. The Inter-Benchmark group found a solution (see above) that solved the problems with the retro bias. The East Greenland cod stock is planned for a benchmark in 2023.

16.10 Implemented management measures for 2022

The offshore quota for the total international fishery is set at 27430 t . The following table shows the distribution of the TAC across management areas and countries.

Area	TAC (tonnes)
Dohrn Bank	20000
South and East Greenland	7430

To protect the spawning stock, no fishing is allowed from 1 March to 31 May in a square in and around Kleine Bank (see figure below).

16.11 Management plan

In 2021, a management plan was implemented for the offshore cod fishery in Greenland but it has not been evaluated by ICES. The management plan distinguished between 3 areas: NorthEast Greenland (east of $27^{\prime} 00^{\circ} \mathrm{W}$), Dohrn Bank and South of Dohrn Bank. The management plan tries to take the scientific advice, migration between the Dohrn Bank region and Iceland and protection of spawning grounds into account. In order to protect the spawning stock, it is not allowed to fish from 1 March to 31 May in a square comprising Kleine Bank (shaded black in the figure below):

TAC is set by the following rules:

Area	TAC (tonnes)
NorthEast Greenland east of $27^{\prime} 00^{\circ} \mathrm{W}$	Free
Dohrn Bank	20000
South and East Greenland (South of Dohrn Bank)	TAC (year) $=0.5^{*}$ TAC (year-1) $+0.5^{*}$ ICES advice (year)

16.12 Management considerations

Larger and older fish (8+ year old) are located furthest to the north in the Dohrn Bank area, whereas younger fish dominate in the South (5-6-year-old). This reflects the eastward migration behaviour towards the spawning grounds in East Greenland and Iceland. Further, the genetic studies combined with tagging results suggest that the spawning stock component in East Greenland is associated with the offshore spawning population in Iceland, and the two stock cannot be genetically separated. Tagging suggest that a substantial part of the cod in East Greenland migrate to Iceland. Since 2018 a considerable part of the fishery (70%) has taken place on the continental slope south of Dohrn Bank close to the EEZ to Iceland. It is speculated that a migration back and forth between Iceland and Greenland exist in this region. It has however not been scientifically proven.

16.13 Basis for advice

The State-space model (SAM) was applied for the offshore cod stock in ICES Division 14. and NAFO Division 1F (Riget et al., 2022).

16.14 Benchmark 2023

The main aim of the benchmark is to move away from using the current simplified geographical borders to separate the three cod stocks in Greenland waters. This will be done by developing a modelling approach that can use genetic data based on samples covering the distribution of the three stocks (Buch et al., 2021). The model will utilize the spatial resolution of the genetics data to estimate the split between the stocks along a spatial gradient. The catch and survey data will then be split into separate stocks and used as input into an analytical assessment models for each stock. This would account for differences in stock dynamics between stocks and may improve the understanding of migration patterns.
The benchmark also aims to improve the estimation of the survey indices available for the stocks. There are currently two offshore surveys in Greenland waters. One Greenlandic survey, covering the West and East coast up to and including the Dohrn bank area. One German survey covers a similar area on the east coast and some of the west coast. A spatial model will be developed to allow combination of the survey data and allow incorporation of spatial patterns. The new model will also be able to better account for occasionally large catches.

16.15 Recommendations

Based on genetic analysis it is not possible to distinguish between an East Greenland and Icelandic offshore stock and especially the East and South Greenland area is highly influenced by the inflow of egg and larvae from the spawning grounds in Iceland. To gain further insight into stock structure and migration patterns across areas targeted work using both genetic and tagging data is needed.

The Greenland and German trawl surveys are fundamental to the assessment of cod in East Greenland. The two surveys provide similar signals and similar age compositions, but the mean weights-at-age differ considerably. A workshop in 2019 identified wrong age-readings in the German survey, but even after age-readings in the German survey have been corrected the difference in mean weight-at-age persist. In addition, several inconsistencies in survey calculations have been identified in the German survey. A dedicated workshop prior to the benchmark to identify and solve these data issues is strongly recommended.

16.16 References

Bjare, F. (2022). Mean length and length at age comparison for cod caught in German and Greenlandic surveys. ICES North Western Working Group (NWWG), May 2-7, WD 11.

Buch, T.B., Retzel, A., Riget, F., Jansen, T., Boje, J., Berg, C. 2022. DNA split of Atlantic cod (Gadus morhua) stocks in Greenland waters. An Overview of data. ICES North Western Working Group (NWWG) May 2-7, WD 13.

GINR, 2018. Report on experimental fishery in East Greenland in April 2018. Greenland Institute of Natural Resources (GINR). ICES North Western Working Group (NWWG) April 25-May 1, 2019, WD 08.

Fock, H., Werner, K.M. 2019. Applying revised otolith age reading to groundfish survey results for the Atlantic Cod Greenland offshore component. ICES North Western Working Group (NWWG) April 26May 1, 2019, WD 25.

Hedeholm, R., Riget, F., Retzel, A. 2018. Notes on the apparent differences in cod aging between Greenland and Germany. ICES North Western Working Group (NWWG) April 26-May 3, 2018, WD 13.

Hedeholm, R. 2018. Analysis of 2003-2016 tagging data from Greenland waters as it relates to assessment of the East Greenland offshore stock and the West Greenland inshore stock. WD03 in Report of the InterBenchmark Protocol on Greenland Cod (IBPGCod). ICES CM 2018/ACOM:30.

Horsted, S.A. 2000. A review of the cod fisheries at Greenland, 1910-1995. J.Northw.Atl.Fish.Sci. 28: 1-112. ICES, 2018. Report of the InterBenchmark Protocol on Greenland Cod (IBPGCod). ICES CM 2018/ACOM:30. Retzel, A., 2019. Report of the Workshop on Age Reading of Cod in Greenland. ICES North Western Working Group (NWWG) April 25-May 1, 2019, WD 09.
ICES. 2021. Inter-Benchmark Protocol on East and Southwest Greenland Cod 2 (IBPGCOD2). ICES Scientific Reports. 3:88. https://doi.org/10.17895/ices.pub. 8288.

Retzel, A. 2022. Greenland commercial data for Atlantic cod in East Greenland offshore waters for 2021. ICES North Western Working Group (NWWG) May 2-7, 2022, WD 05.

Retzel, A 2021. Greenland Shrimp and Fish survey results for Atlantic cod in ICES subarea 14b (East Greenland) and NAFO subarea 1F (SouthWest Greenland) in 2020. ICES North Western Working Group (NWWG) April 2229, 2021, WD 04.

Riget, F., Retzel, A., Boje, J., Buch, T. B. 2022. Cod East Greenland SAM assessment. ICES North Western Working Group (NWWG) May 2022, WD06.

Riget, F., Retzel, A., Boje, J., Buch T.B. 2021. Changing the migration pattern in the East Greenland cod stock SAM. ICES North Western Working Group (NWWG) April 22-29, 2021, WD 13

Therkildsen, N.O.,Hemmer-Hansen, J., Hedeholm, R.B., Wisz, M.S., Pampoulie, C., Meldrup, D., Bonanomi, S., Retzel, A., Olsen, S.M., Nielsen, E.E. 2013. Spatiotemporal SNP analysis reveal pronounced biocomplexity at the northern renge margin of Atlantic cod Gadus morhua. Evoltutionary Applications. DOI 10.1111/eva. 12055.

Werner, K., Fock, H., 2021. Update of Groundfish Survey Results for the Atlantic Cod Greenland offshore component. ICES North Western Working Group (NWWG) April 22-29, 2021, WD 18.

16.17 Tables

Table 16.2.1. Offshore catches (t) divided into NAFO divisions in West Greenland and East Greenland (ICES 14.b). 1924-1995: Horsted 2000, 1995-2000: ICES Catch Statistics, 2001-present: Greenland Fisheries License Control.

Year	NAFO 1A	NAFO 1B	NAFO 1C	NAFO 1D	NAFO 1E	NAFO 1F	Unknown NAFO div.	ICES 14.b	NAFO $1 \mathrm{~F}+\mathrm{ICES}$ 14.b
1924							200		
1925							1871		
1926							4452		
1927							4427		
1928							5871		
1929							22304		
1930							94722		
1931							120858		
1932							87273		
1933							54351		
1934							88422		
1935							65796		
1936							125972		
1937							90296		
1938							90042		

Year	NAFO 1A	NAFO 1B	NAFO 1C	NAFO 1D	NAFO 1E	NAFO 1F	Unknown NAFO div.	ICES 14.b	NAFO 1F + ICES 14.b
1939							62807		
1940							43122		
1941							35000		
1942							40814		
1943							47400		
1944							51627		
1945							45800		
1946							44395		
1947							63458		
1948							109058		
1949							156015		
1950							179398		
1951							222340		
1952	0	261	2996	18188	707	37905	257488		
1953	4546	46546	10611	38915	932	25242	98225		
1954	2811	97306	18192	91555	727	15350	60179	4321	23759*
1955	773	50106	32829	87327	3753	4655	68488	5135	11567*
1956	15	56011	38428	128255	8721	4922	66265	12887	19189*

Year	NAFO 1A	NAFO 1B	NAFO 1C	NAFO 1D	NAFO 1E	NAFO 1F	Unknown NAFO div.	ICES 14.b	NAFO 1F + ICES 14.b
1957	0	58575	32594	62106	29093	16317	47357	10453	30659*
1958	168	55626	41074	73067	21624	26765	75795	10915	46972*
1959	986	74304	10954	30254	12560	11009	67598	19178	35500*
1960	35	58648	18493	35939	16396	9885	76431	23914	39219*
1961	503	78018	43351	70881	16031	14618	90224	19690	40212*
1962	1017	122388	75380	57972	25336	17289	125896	17315	41874*
1963	66	70236	73142	76579	46370	16440	122653	23057	46626*
1964	96	49049	49102	82936	33287	13844	99438	35577	55451*
1965	385	80931	66817	71036	15594	15002	92630	17497	38063*
1966	12	99495	43557	62594	19579	18769	95124	12870	38956*
1967	361	58612	78270	122518	34096	12187	95911	24732	40738*
1968	881	12333	89636	94820	61591	16362	97390	15701	37844*
1969	490	7652	31140	65115	41648	11507	35611	17771	31879*
1970	278	3719	13244	23496	23215	15519	18420	20907	40023*
1971	39	1621	28839	21188	9088	20515	26384	32616	59789*
1972	0	3033	42736	18699	7022	4396	20083	26629	32188*
1973	0	2341	17735	18587	10581	2908	1168	11752	14725*
1974	36	1430	12452	14747	8701	1374	656	6553	7950*

Year	NAFO 1A	NAFO 1B	NAFO 1C	NAFO 1D	NAFO 1E	NAFO 1F	Unknown NAFO div.	ICES 14.b	NAFO 1F + ICES 14.b
1975	0	49	18258	12494	6880	3124	549	5925	9091*
1976	0	442	5418	10704	8446	2873	229	13025	15922*
1977	127	301	4472	7943	8506	2175	354771	180002	23455*
1978	0	0	11856	2638	3715	549	345631	260002	27561*
1979	0	16	6561	4042	1115	537	511391	340002	36775*
1980	0	1800	2200	2117	1687	384	72411	120002	12724*
1981	0	0	4289	4701	4508	255	0	160002	16255
1982	0	133	6143	10977	11222	692	1174	270002	27720*
1983	0	0	717	6223	16518	4628	293	13378	18054*
1984	0	0	0	4921	5453	3083	0	8914	11997
1985	0	0	0	145	1961	1927	2402	2112	5187*
1986	0	0	0	2	72	24	1203	4755	5074*
1987	0	0	5	815	67	43	3041	6909	7093*
1988	0	0	919	17463	10913	6466	8101	9457	17388*
1989	0	0	0	11071	48092	14248	2	14669	28917
1990	0	0	2	563	21513	10580	7503	33508	46519*
1991	0	0	0	0	104	1942	0	21596	23538
1992	0	0	0	0	0	0	0	11349	11349

Year	NAFO 1A	NAFO 1B	NAFO 1C	NAFO 1D	NAFO 1E	NAFO 1F	Unknown NAFO div.	ICES 14.b	NAFO 1F + ICES 14.b
1993	0	0	0	0	0	0	0	1135	1135
1994	0	0	0	0	0	0	0	437	437
1995	0	0	0	0	0	0	0	284	284
1996	0	0	0	0	0	0	0	192	192
1997	0	0	0	0	0	0	0	355	355
1998	0	0	0	0	0	0	0	345	345
1999	0	0	0	0	0	0	0	116	116
2000	0	0	0	0	0	0	0	152	152
2001	0	0	0	0	0	0	0	125	125
2002	0	0	0	0	0	0	0	401	401
2003	0	0	0	0	0	0	0	485	485
2004	0	0	0	5	3	1	0	774	775
2005	0	0	1	0	0	71	0	819	890
2006	0	0	0	0	0	414	0	2042	2456
2007	0	0	0	31	435	20113	0	3194	5205
2008	0	0	0	23	526	113703	0	3258	14628
2009	0	0	0	0	6	33233	0	1642	4965
2010	0	0	0	0	2	281	0	2388	2669

Year	NAFO 1A	NAFO 1B	NAFO 1C	NAFO 1D	NAFO 1E	NAFO 1F	Unknown NAFO div.	ICES 14.b	NAFO 1F + ICES 14.b
2011	0	0	0	0	8	542	0	4571	5113
2012	0	0	1	95	236	1470	0	3941	5411
2013	0	0	0	209	270	1405	0	4104	5509
2014	0	0	30	68	18	1833	0	6060	7893
2015	0	0	341	954	3564	3984	0	11771	15755
2016	0	0	67	1911	1762	2335	0	12483	14818
2017	0	1	1442	730	852	2560	0	13740	16300
2018	0	0	1989	678	1520	1819	0	13249	15068
2019	0	0	654	57	186	916	0	17158	18074
2020	0	0	102	0	1	675	0	15258	15933
2021	0	0	96	0	0	192	0	25637	25829

1) Estimates for assessment include estimates of unreported catches. The total estimated value for West Greenland (inshore + offshore) was 73000 t in 1977 and 1978 , 1979 : 99000 $\mathrm{t}, 1980$: 54000 t . The value given in the table are these values minus the inshore catches minus known offshore NAFO Division catches.
2) Estimates for assessment include estimates of unreported catches in East Greenland.
3) Include catches taken with small vessels and landed to a factory in South Greenland (Qaqortoq), 2007: 597 t, 2008: 2262 t, 2009 : 136 t .
*) Unknown NAFO Division catches added accordingly to the proportion of known catch in NAFO Division 1F to known total catch in all NAFO divisions.

Table 16.2.2: Cod catches (t) by area and month. East Greenland (14.b) divided into five areas. NQ1 furthest to the north.

ICES/NAFO	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	\%
14.b (NQ1)						1	24	25	2				51	0.2\%
14.b (Q1Q2)	2661	1755	1959	1325	4688	2523	936	72	125	93	690	2867	19696	76\%
14.b (Q3Q4)		898	698	744	1847	140	14	52	88	67	14	11	4572	18\%
14.b (Q5Q6)			202	85	874	142	0.2				15	0.4	1317	5\%
1F										136	55		192	1\%
Total	2661	2653	2859	2155	7409	2806	973	149	214	297	774	2878	25829	
\%	10\%	10\%	11\%	8\%	29\%	11\%	4\%	1\%	1\%	1\%	3\%	11\%		

Table 16.2.3: Cod catches (t) by gear, area and month. East Greenland (14.b) divided into five areas. NQ1 furthest to the north.

Gear	ICES/NAFO	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Longline	14.b (NQ1)						1	22	18	1				43
	14.b (Q1Q2)				5	15	2	36	71	125	93	86	368	801
	14.b (Q3Q4)		245	641	729	1847	133	13	51	88	67	14		3828
	14.b (Q5Q6)				44	873	82					15		1014
	1F										136	55		192
	Total		245	641	777	2735	218	71	141	214	297	170	368	5876
Trawl	14.b (NQ1)							2	7	0.5				9
	14.b (Q1Q2)	2661	1755	1959	1321	4673	2522	900	1			604	2499	18896
	14.b (Q3Q4)		653	58	16		6	0.4	1				11	745
	14.b (Q5Q6)			202	41	0.4	59	0.2					0.4	303
	1F													
	Total	2661	2408	2219	1378	4674	2588	902	8	0.5		604	2510	19952

Table 16.2.4. Cod in Greenland. Catch at age ('000) and Weight at age (kg) for offshore fleets in East Greenland (ICES $14 . \mathrm{b}+$ NAFO 1F).

Catch at age								
Year/age	3	4	5	6	7	8	9	10+
2005	5	33	57	103	94	57	16	7
2006	232	376	135	175	115	14	1	0
2007	49	1529	668	158	124	120	18	15
2008	77	586	6015	2417	592	44	26	12
2009	307	1287	1231	434	119	28	16	2
2010	10	87	331	193	334	58	8	5
2011	3	70	137	425	355	371	96	31
2012	13	109	471	281	258	253	148	59
2013	0	36	127	615	237	226	153	104
2014	1	4	279	434	658	335	173	131
2015	3	57	457	1554	1324	828	242	182
2016	4	33	343	736	1130	766	427	257
2017	6	15	137	519	1214	1432	527	251
2018	7	27	67	217	498	1023	855	496
2019	0	150	331	358	426	679	948	1090
2020	6	14	701	545	374	429	463	913
2021	52	97	365	2245	1052	434	378	1177

Weight at age								
2005	0.354	0.717	1.073	1.963	2.737	3.699	5.271	7.366
2006	1.323	1.602	2.349	3.608	4.420	5.440	7.191	8.127
2007	0.387	0.917	1.597	3.294	6.092	8.524	11.114	14.435
2008	0.359	0.644	1.266	1.799	3.025	4.936	5.840	8.290
2009	0.489	0.776	1.396	2.797	4.634	6.453	7.804	9.993
2010	0.699	1.125	1.636	2.494	3.354	5.334	8.063	10.475
2011	0.553	1.026	1.541	2.297	3.377	4.685	6.285	10.022
2012	0.502	0.892	1.440	2.380	3.570	5.142	7.172	11.417
2013	0.480	0.998	1.698	2.272	3.408	4.745	6.827	9.024
2014	0.564	1.163	1.853	2.603	3.636	4.732	6.400	8.841
2015	0.484	0.833	1.435	2.097	3.460	4.699	6.846	9.115
2016	0.406	0.845	1.420	2.135	3.267	4.693	6.693	10.071
2017	0.392	0.711	1.641	2.213	3.063	4.167	6.094	8.034
2018	0.378	0.812	1.258	2.032	2.948	4.561	5.663	7.135
2019	0.307	1.168	1.775	2.687	3.257	4.052	5.291	6.601
2020	0.613	1.247	2.102	3.373	4.079	4.898	5.816	6.878
2021	0.569	1.035	2.027	3.266	4.274	5.228	6.271	7.217

Table 16.2.5. Cod in Greenland. Catch at age ('000) for offshore fleets by area (ICES 14b + NAFO 1F). Q1Q2 furthest to the north in East Greenland. NAFO 1F + 14b(Q5Q6) = South Greenland.

Catch at age								
Area/age	3	4	5	6	7	8	9	10+
14b (NQ1)				4	2	1	1	2
14.b (Q1Q2)	16	37	221	1660	821	318	284	867
14.b (Q3Q4)	18	37	102	417	169	87	71	227
$\begin{gathered} \text { NAFO } 1 F+14 . b \\ (0.5 Q 6) \end{gathered}$	18	22	42	164	60	29	23	80

Table 16.2.6. Number of hauls in the Greenland Shrimp and Fish survey in ICES 14.b and NAFO 1 F .

Year/Strata	ICES 14.b					NAFO		Total
	Q1	Q2	Q3	Q4	Q5	Q6	1F	
2009	22	11	25	20	6	13	48	145
2010	19	14	24	9	6	10	40	122
2011	20	11	21	12	7	14	25	110
2012	20	16	28	13	7	15	26	125
2013	25	12	22	14	5	14	28	120
2014	22	14	12	9	8	16	32	113
2015	26	11	24	12	8	14	36	131
2016	29	10	26	13	7	16	36	137
2017	2	4	7	6	6	11	35	71
2018	0	0	0	0	0	0	35	
2019	0	0	0	0	0	0	24	
2020	23	13	27	13	7	16	43	142
2021	-	-	-	-	-	-	-	-

Table 16.2.7 Cod abundance indices ('000) from the Greenland Shrimp and Fish survey by year and strata divisions in ICES 14.b and NAFO 1F. Q1 being the northern strata in East Greenland. * Incomplete coverage in strata Q1-Q4.

Year	ICES 14.b						NAFO		
	Q1	Q2	Q3	Q4	Q5	Q6	1F	Total	CV
1992									
1993									
1994									
1995									
1996									
1997									
1998									
1999									
2000									
2001									
2002									
2003									
2004									
New survey Gear Introduced									
2005									
2006									

Year	ICES 14.b						NAFO		
	Q1	Q2	Q3	Q4	Q5	Q6	1F	Total	CV
2007							32575		
2008	5456	1361	13043	1975	1635	7958	22887	54314	22
2009	14304	2191	28539	4374	548	4753	1776	56486	15
2010	5844	732	30042	3975	115	4633	6557	51897	45
2011	7843	1357	5178	7733	1470	19072	6330	48983	22
2012	5475	2164	3658	2453	352	8635	21238	43975	20
2013	11102	1420	5667	17360	537	27145	49874	113104	32
2014	4168	3445	2622	19267	493	5412	22702	58106	36
2015	6396	4074	6941	3093	231	8322	34032	63090	28
2016	8338	909	9737	1031	233	3412	4393	28052	16
2017*	7429	4559	5242	5816	627	18694	12466	54833	28
2018							5302		
2019							5233		
2020	11061	1204	19578	406	138	3613	21690	57690	23
2021	-	-	-	-	-	-	-	-	-

Table 16.2.8. Cod biomass indices (tonnes) from the Greenland Shrimp and Fish survey by year and strata divisions in ICES 14.b (Q1-Q6) and NAFO 1F. * Incomplete coverage in strata Q1-Q4.

Year	ICES 14.b						NAFO		
	Q1	Q2	Q3	Q4	Q5	Q6	1F	Total	cv
1992									
1993									
1994									
1995									
1996									
1997									
1998									
1999									
2000									
2001									
2002									
2003									
2004									
New survey Gear Introduced									
2005									
2006									
2007									

Year	ICES 14.b						NAFO		
	Q1	Q2	Q3	Q4	Q5	Q6	1F	Total	CV
2008	8692	2430	24101	1482	2173	8838	21236	68952	23
2009	10844	8874	27251	7827	252	3094	503	58645	28
2010	16014	3151	81064	6202	23	4203	3142	113799	51
2011	27064	8128	5561	12486	5235	22664	3280	84418	19
2012	24736	10058	9347	5802	160	14322	16213	80638	16
2013	45018	9639	15017	48518	977	40319	47818	207306	22
2014	17182	20637	15574	90795	734	8884	30754	184560	45
2015	33105	13803	27050	11609	513	18724	49931	154735	20
2016	40580	4831	33065	4841	426	5670	4671	94084	18
2017	45774	27405	18257	4777	1749	31635	7823	137420	41
2018							8498		
2019							3841		
2020	49921	2185	33763	584	262	5478	24780	116973	18
2021	-	-	-	-	-	-	-	-	-

Table 16.2.9: Abundance indices (' 000) by age from the Greenland Shrimp and Fish survey by year in ICES 14.b + NAFO 1F. *Incomplete coverage. Indices for 2019 is for NAFO 1F only.

East Greenland											
Year/age	0	1	2	3	4	5	6	7	8	9	10+
2008	4355	326	1168	7460	6937	24058	5279	2227	613	1225	671
2009	14970	7642	8019	4504	5378	5664	6610	2537	225	554	385
2010	150	2436	3959	5759	3253	12785	7969	11264	2958	450	914
2011	315	162	5682	8288	16346	5409	4707	2226	3382	1834	634
2012	0	258	1208	12748	7154	12041	4155	2428	1345	1849	790
2013	0	157	1432	1954	44843	25373	26654	5209	3440	1852	2190
2014	692	15	207	1849	1558	21863	8805	12411	2875	3790	4041
2015	0	86	38	1259	4916	11445	29010	7407	4793	1954	2181
2016	279	3847	1818	998	555	2089	2399	6779	4874	3398	1018
2017*	242	111	14938	5234	6797	4470	5791	4307	7746	4352	845
2018					No	survey					
2019					No	survey					
2020	267	1169	957	3879	8018	23647	12195	1557	1094	1528	3378
2021					No	survey					

Table 16.2.10: Mean weight (kg) at age from the Greenland Shrimp and Fish survey by year in ICES 14.b + NAFO 1F.

East Greenland											
Year/age	0	1	2	3	4	5	6	7	8	9	10+
2008	0.003	0.019	0.088	0.262	0.520	1.067	1.982	3.385	5.699	8.447	8.564
2009	0.004	0.059	0.140	0.452	0.976	1.730	2.977	4.186	5.447	7.423	10.800
2010	0.002	0.041	0.206	0.406	0.823	1.728	2.499	3.496	5.480	7.363	10.686
2011	0.001	0.017	0.152	0.366	0.783	1.408	2.209	3.891	5.711	7.218	10.859
2012		0.025	0.201	0.367	0.916	1.519	2.634	4.068	5.658	7.565	10.000
2013		0.020	0.194	0.450	0.771	1.396	2.353	3.663	5.140	7.062	10.354
2014	0.001	0.003	0.129	0.360	0.773	1.402	2.758	4.145	5.173	6.217	9.060
2015		0.017	0.100	0.357	0.697	1.194	1.808	3.241	4.835	6.809	10.000
2016	0.001	0.025	0.116	0.327	0.831	1.623	2.245	3.557	5.299	6.879	9.973
2017	0.001	0.047	0.186	0.369	0.782	1.485	2.338	3.995	5.714	8.168	10.674
2018						rvey					
2019						rvey					
2020	0.002	0.022	0.123	0.441	0.677	1.522	2.371	4.093	5.285	6.995	7.610
2021		No				rvey					

Table 16.2.11 German survey. Numbers of valid hauls by stratum in South and East Greenland, stratum 9 furthest to the north.

year	NAFO 1 F		ICES 14.b	Str 5.2	Str 7.1	Str 7.2	Str 8.2	Str 9.2	Sum
	Str 4.1	Str 4.2	Str 5.1						
1981	1	2	2	12	4	12	19	10	62
1982	13	2	.	12	1	9	15	15	67
1983	18	4	1	26	8	14	25	10	106
1984	20	4	4	5	1	5	7	2	48
1985	21	4	5	22	11	26	35	18	142
1986	20	3	2	27	11	14	31	34	142
1987	21	5	16	25	7	21	26	11	132
1988	18	2	20	19	10	13	36	9	127
1989	25	3	37	.	20	.	26	4	115
1990	21	6	15	24	4	6	15	12	103
1991	14	5	9	18	11	7	45	13	122
1992	7	5	4	2	18
1993	7	.	9	9	5	5	15	10	60
1994	7	5	6	18
1995	10	5	8	8	5	4	16	8	64
1996	10	5	7	9	5	3	13	6	58
1997	8	5	5	6	4	1	9	5	43
1998	10	5	5	9	6	2	12	6	55
1999	9	3	5	7	4	4	10	6	48
2000	9	5	6	7	8	4	12	9	60
2001	11	6	5	8	8	2	17	12	69
2002	8	4	6	7	5	2	10	7	49
2003	7	5	5	5	5	1	12	10	50
2004	9	5	7	7	8	3	13	11	63
2005	6	5	6	7	8	4	12	9	57
2006	8	5	3	1	5	4	11	7	44
2007	9	5	4	6	4	3	13	8	52

year	NAFO 1 F		ICES 14.b	Str 5.2	Str 7.1	Str 7.2	Str 8.2	Str 9.2	Sum
	Str 4.1	Str 4.2	Str 5.1						
2008	7	6	6	8	4	3	10	8	52
2009	5	5	2	5	5	4	9	8	43
2010	10	6	1	3	8	3	14	8	53
2011	6	6	5	8	6	4	14	9	58
2012	10	6	6	7	8	3	12	9	61
2013	9	6	5	9	7	5	15	9	65
2014	10	6	5	7	10	6	20	11	75
2015	8	6	6	8	9	10	19	9	75
2016	11	6	5	8	8	6	13	6	63
2017	7	.	3	2	6	6	13	9	46
2018				No survey					
2019	16	7	3	8	8	9	19	8	78
2020	6		8	5	8	2	16	8	53
2021				No survey					

Table 16.2.12 German survey. Cod abundance indices ('000) from the German survey in South and East Greenland by year and stratum. Incomplete coverage in 2017.

Year	NAFO 1F		ICES 14.b	str5_2	str7_1	str7_2	str8_2	str9_2	Sum	SD
	str4_1	str4_2	str5_1							
1982	8540	1245	.	366	297	1493	664	385	12990	4973
1983	5267	2870	209	715	149	564	529	726	11029	3796
1984	3296	42	1268	413	138	750	173	333	6413	3845
1985	3492	1164	920	166	560	1554	401	310	8567	1978
1986	8967	492	3509	359	776	2641	1207	337	18288	5097
1987	23219	306	5655	4145	399	6298	1293	234	41549	14816
1988	28259	17	2590	2073	302	1175	738	601	35755	16719
1989	31810	31442	9979	.	880	.	2128	639	76878	42682
1990	7052	6306	2808	1155	861	4295	2799	468	25744	7720
1991	1367	233	790	937	122	368	652	510	4979	1548
1992	113	134	228	367	842	192
1993	0		613	62	127	317	114	148	1381	521
1994	44	12	234	290	135
1995	27	8	89	25	450	3082	77	91	3849	1314
1996	156	0	109	0	37	279	29	160	770	173
1997	49	0	25	17	200	54	145	1107	1597	479
1998	40	8	97	0	57	57	24	266	549	142
1999	155	0	198	8	165	1267	116	105	2014	582
2000	76	13	348	15	431	180	25	143	1231	251
2001	343	3	319	27	309	299	204	1071	2575	544
2002	1739	0	116	273	769	459	186	875	4417	1352
2003	840	8	199	183	1250	1399	1100	1438	6417	1004
2004	10902	107	1684	133	285	1817	1401	1073	17402	8499
2005	24438	1399	16577	3078	718	7157	1580	2070	57017	11411
2006	28894	486	14733	3686	6044	7378	2779	2700	66700	15653
2007	67049	772	2283	3256	758	5363	2080	2093	83654	56843
2008	18730	292	2036	4898	2203	9460	1285	2678	41582	10268

Year	NAFO 1F		ICES 14.b	str5_2	str7_1	str7_2	str8_2	str9_2	Sum	SD
	str4_1	str4_2	str5_1							
2009	1286	283	1017	567	3129	8755	1566	3275	19878	3581
2010	2372	141	532	1703	1101	8875	933	1748	17405	2958
2011	7547	162	3027	1326	868	1971	1243	2816	18960	3196
2012	23964	132	5689	167	901	2117	1114	3982	38066	22168
2013	41722	1947	2193	818	874	3121	1157	1342	53174	43105
2014	73612	111	8612	4013	228	1089	1436	5461	94562	77704
2015	3187	361	1186	267	113	834	2265	3395	11833	3703
2016	2875	361	1186	267	113	793	2152	4086	9114	1647
2017	1499	104	1498	262	336	1126	1126	3307	12421	3727
2018					No survey					
2019	11679	17	416	550	122	350	305	2123	15564	
2020	9824	.	1696	43	57	1004	282	2231	15137	
2021	No survey									

Table 16.2.13 German survey. Cod biomass indices (tonnes) from the German survey in South and East Greenland by year and stratum. Incomplete coverage in 2017.

year	NAFO 1F		ICES 14.bstr5_1	str5_2	str7_1	str7_2	str8_2	str9_2	Sum	SD
	str4_1	str4_2								
1982	14607	3690	.	1201	1036	3342	2576	1900	28352	8415
1983	9797	6219	653	2209	402	2294	2605	4442	28621	8201
1984	5326	82	3115	1444	346	1782	540	2553	15188	6650
1985	2942	1976	1812	803	1393	3875	1187	1605	15593	3099
1986	8005	943	1044	873	2537	3921	2301	709	20333	6054
1987	17186	276	2889	3735	504	10243	4558	1414	40805	16521
1988	26349	17	2812	4605	964	2297	3475	2012	42531	18651
1989	36912	35281	23605	.	2518	.	6889	2174	107379	61579
1990	9212	5897	5361	3215	2517	10386	6551	1620	44759	10905
1991	2088	200	1465	2759	196	1008	2610	2100	12426	4657
1992	79	50	171	734	1034	286

year	NAFO 1F		ICES 14.b	str5_2	str7_1	str7_2	str8_2	str9_2	Sum	SD
	str4_1	str4_2	str5_1							
1993	0	.	431	73	247	532	254	547	2084	588
1994	2	7	779	788	514
1995	6	4	32	62	166	11744	250	123	12387	5550
1996	101	0	63	0	109	708	99	511	1591	333
1997	53	0	18	20	358	70	337	4017	4873	1800
1998	12	11	29	0	87	122	123	986	1370	554
1999	39	0	24	1	162	2229	492	201	3148	1184
2000	13	9	132	17	206	616	75	540	1608	366
2001	88	5	130	19	345	382	387	3005	4361	1593
2002	976	0	38	224	1547	531	541	2214	6071	1306
2003	361	17	121	266	3787	2440	1716	4169	12877	2817
2004	1945	177	359	55	957	2319	3264	3240	12316	3070
2005	9055	1870	8135	2537	3155	17882	3590	6806	53030	7772
2006	31616	681	8616	4130	3557	10291	6084	11567	76542	24680
2007	74671	1045	3749	5042	1363	14456	5374	8540	114240	58452
2008	18543	344	3630	9790	5075	26506	3772	11908	79568	12433
2009	583	277	1361	1726	10145	28613	6351	15520	64576	13358
2010	3629	273	741	5085	5244	31745	4282	10932	61931	11626
2011	12398	385	5839	4364	1658	8051	5735	17487	55917	10240
2012	33871	370	15679	579	2596	6245	5445	26885	91670	30054
2013	74193	6525	6672	2737	2577	9752	4853	7575	114884	75148
2014	132706	428	31885	15935	1060	4322	6480	29358	222174	132209
2015	10777	1534	3938	1804	522	3346	9396	24306	55623	17157
2016	4521	305	7360	1727	2129	6341	4906	9367	36656	6954
2017	5836	.	7687	0	616	9704	4067	31088	58998	20593
2018						survey				
2019	19292	32	1927	1245	397	685	1610	11072	36260	11857
2020	25442	-	4677	140	255	1260	1270	14764	47808	12299
2021						No survey				

Table 16.2.14 German survey, South and East Greenland (NAFO 1F and ICES 14.). Age disaggregate abundance indices ('1000). Incomplete coverage in 201

Year	0	1	2	3	4	5	6	7	8	9	10	11+
1982		23	214	2500	1760	4451	1952	793	223	927	57	74
1983												
1984	23	8	54	1134	507	2434	582	1242	229	125	17	49
1985	279	2521	242	160	1658	947	1439	344	831	96	27	27
1986		3367	9255	1128	273	1631	603	1300	165	473	31	58
1987		4	10193	24656	2689	720	1368	296	966	80	487	49
1988	6	18	335	9769	23391	876	200	559	83	337	31	146
1989	12	2	111	732	23945	49864	1007	44	756	70	282	76
1990	58	36	58	715	706	11679	12101	139	15	74		148
1991		73	150	171	539	102	2128	1762	31	11	3	9
1992	214	10	196	103	61	53	67	67	51			21
1993		4	15	869	152	95	97	31	83	34		2
1994		71	5	16	84	39	22	38		8		0
1995		1	621	347	260	1399	372	120	403	32	192	102
1996		0	0	353	130	131	110	23	25			0
1997		0	12	17	687	557	191	78	48			5
1998	51	73	39	4	11	173	138	48	10			0
1999	105	426	389	346	118	257	174	156		29	16	0

Year	0	1	2	3	4	5	6	7	8	9	10	11+
2000		202	243	323	208	40	72	20	46	61	15	0
2001		166	568	493	631	362	190	60	50	18	10	2
2002	40	1	395	2119	601	477	454	217	61	21	11	7
2003	579	629	53	553	1761	1026	1015	541	220	37	.	4
2004	386	10687	1770	448	617	1667	921	620	228	39	10	8
2005	80	1603	39549	8091	1250	2819	2549	727	189	40		0
2006	80	439	3375	48140	9269	1328	2404	1309	193	30	9	0
2007	128	154	2007	5149	65974	8166	713	658	634	70		0
2008	14	265	513	8213	4401	22939	4201	516	220	199	44	29
2009	98	322	1057	391	1620	2863	11241	1964	111	134	64	17
2010	22	700	1425	1388	845	2887	2518	5707	1362	236	163	139
2011		120	1246	3475	4874	2402	2949	1179	2324	310	23	49
2012	6	50	1624	10093	10233	9846	2827	1778	1166	379	35	5
2013		17	35	4312	27014	11146	7455	1314	517	291	126	68
2014		7	55	602	20847	58174	9275	3284	1316	494	441	52
2015	105	37	68	341	752	3688	3598	1881	644	187	106	160
2016	35	419	98	56	255	677	874	3325	1741	1072	199	209
2017		8	1650	479	190	549	1243	2341	3640	1356	533	195

| Year | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2018 | | | | | | | | | No survey | | | | |
| 2019 | 52 | \cdot | \cdot | 679 | 8296 | 2301 | 516 | 468 | 554 | 820 | 626 | | |
| 2020 | 332 | 196 | 198 | 424 | 821 | 6816 | 2193 | 811 | 880 | 709 | 857 | 896 | |

Table 16.2.15 German survey, The abundance indices ('000) by year class/age, 2019. South and East Greenland (NAFO 1 (Strat 4) and ICES 14.b, Strat 9 furthest to the north).

year	stratum	index0	index1	index2	index3	index 4	index5	index6	index7	index8	index9	index10	index11+
2020	4.1	16	91	23	195	650	5218	1285	449	687	428	552	229
2020	4.2	0	0	10	13	88	1022	450	68	11	5	8	20
2020	5.1	0	0	0	4	7	13	6	3	4	2	3	2
2020	5.2	3	1	0	0	1	15	12	8	3	3	4	8
2020	7.1	313	104	162	204	63	0	0	17	16	31	29	64
2020	7.2	0	0	0	0	0	100	87	41	11	12	14	22
2020	8.2	0	0	3	8	12	450	355	225	148	228	247	554
2020	9.2	16	91	23	195	650	5218	1285	449	687	428	552	229
2021						No survey							

Table 16.5.1. Updated reference point.

Framework	Reference Point	Value	Technical basis
MSY approach	MSY $\mathrm{B}_{\text {trigger }}$	18146	MSY $\mathrm{B}_{\text {trigger }}=\mathrm{B}_{\mathrm{pa}}$
	$\mathrm{F}_{\mathrm{MSY}}$	0.29	Simulated (below $\mathrm{F}_{\mathrm{p} 05}$)
Precautionary approach	$\mathrm{Bl}_{\text {lim }}$	11738	Mean of 2003, 2004, 2005
	B_{pa}	18146	$\begin{aligned} & \mathrm{Blim} * \exp (1.645 * \sigma), \sigma= \\ & 0.27 \end{aligned}$
	$\mathrm{Flim}^{\text {lim }}$	1.98	F50 deterministic simulated
	F_{pa}	0.65	$\begin{aligned} & \text { Flim } * \exp (-1.645 * \sigma), \sigma= \\ & 0.32 \end{aligned}$

Table 16.7.1. Estimated stock numbers at age.

$\begin{aligned} & \text { Year } \\ & \text { Age } \end{aligned}$	1	2	3	4	5	6	7	8	9	10
1973	52079	10990	7040	3737	18143	3485	2513	621	2454	3889
1974	193807	40278	8998	5987	2831	12604	2144	1276	284	2573
1975	30891	181896	31151	7752	5692	2157	8465	1213	614	1211
1976	13778	24188	170718	24286	5976	4160	1373	4573	587	905
1977	13006	10920	18940	131185	20118	4086	2282	666	1673	676
1978	21256	10398	8654	14553	86427	13918	2185	856	227	853
1979	7639	18584	8313	8071	10706	47850	7701	1177	261	200
1980	15784	5798	16248	6587	6185	5594	22288	2590	254	84
1981	5361	13975	4400	12998	5149	4478	3285	10087	776	115
1982	5621	4180	12373	3332	11917	4355	3189	1703	3308	303
1983	2342	5502	3258	12296	3099	10090	2281	1093	355	836
1984	4301	1798	5385	2873	9250	1823	4994	671	337	359
1985	155111	4092	1518	4664	2282	5999	790	1927	180	233
1986	119280	134745	3794	1035	3784	1460	3641	363	987	164
1987	3091	92050	111040	3084	737	2620	789	2021	178	710
1988	2638	3068	61882	94823	2106	421	1663	378	902	372
1989	756	2374	2659	41777	71234	1148	168	766	165	428
1990	1503	707	2171	2132	26096	36220	456	57	270	135

Year Age	1	2	3	4	5	6	7	8	9	10
1991	2455	1040	607	1708	1083	10252	9993	128	28	74
1992	854	1733	598	405	713	284	2437	1389	37	13
1993	753	639	1061	376	202	317	75	222	159	9
1994	3492	629	550	755	255	118	182	34	50	60
1995	244	2959	732	430	562	181	74	117	17	55
1996	321	202	1949	620	339	290	105	42	61	39
1997	1577	248	167	1263	575	245	154	65	23	58
1998	5223	1313	194	150	709	336	148	69	34	45
1999	10150	4037	1205	218	171	322	196	84	36	43
2000	13984	6395	2787	1007	223	141	158	102	53	45
2001	8561	10876	4248	2030	878	232	108	85	52	55
2002	1605	6420	8426	3064	1612	794	217	75	47	63
2003	37736	1713	4658	6016	2252	1122	584	150	46	64
2004	329291	28833	1999	3594	4407	1523	656	347	84	64
2005	64328	252303	21322	2216	3039	3030	899	293	185	89
2006	35350	41901	158271	17481	2253	2298	1840	383	99	161
2007	14656	27604	25165	83361	12576	1781	1265	965	207	164
2008	22127	11013	20241	14820	39318	7793	1263	600	430	190
2009	49915	20488	9442	13343	9384	14690	3236	439	340	226
2010	54005	30636	14978	6236	9026	5501	7686	1715	278	274
2011	10715	41842	20137	14981	5431	5877	3242	3432	976	338
2012	5636	10067	37114	17712	15011	4555	3463	1759	1474	671
2013	2720	4340	8270	33031	14725	12467	3293	2005	955	1037
2014	1033	2115	3841	6684	25132	10487	7552	2002	1202	976
2015	5298	999	2099	4066	6764	15763	6847	3634	991	1038
2016	47421	5414	1326	1803	3370	4462	7893	3427	1684	926
2017	3874	38500	5479	1658	1924	3155	4050	5381	2261	1407
2018	7781	3788	25566	5096	1582	1703	2442	2983	3158	2150
2019	10314	6486	3704	21234	5035	1530	1411	1744	1853	3071

Year Age	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
2020	25521	8219	5407	3565	16608	4571	1247	1007	1053	2457
2021	25521	20894	8103	5087	3183	13142	3274	781	538	1739

Table 16.7.2. Estimated fishing mortality at age.

Year Age	12	3	4	5	6	7	8	9	10
1973		0.001	0.028	0.05	0.079	0.157	0.274	0.381	0.001
1974		0.002	0.022	0.046	0.076	0.14	0.26	0.335	0.002
1975		0.003	0.033	0.08	0.119	0.189	0.319	0.291	0.003
1976		0.005	0.034	0.085	0.189	0.267	0.505	0.417	0.005
1977		0.003	0.056	0.106	0.206	0.363	0.595	0.616	0.003
1978		0.002	0.053	0.131	0.196	0.253	0.668	1.152	0.002
1979		0.002	0.051	0.145	0.16	0.422	0.991	1.118	0.002
1980		0.003	0.024	0.068	0.091	0.241	0.671	0.6	0.003
1981		0.002	0.011	0.043	0.111	0.258	0.66	0.62	0.002
1982		0.002	0.012	0.076	0.277	0.594	1.08	0.899	0.002
1983		0.003	0.054	0.184	0.39	0.68	0.732	0.68	0.003
1984		0.012	0.082	0.181	0.386	0.509	0.679	0.539	0.012
1985		0.028	0.068	0.17	0.275	0.296	0.316	0.286	0.028
1986		0.017	0.062	0.142	0.242	0.27	0.283	0.197	0.017
1987		0.01	0.07	0.135	0.208	0.295	0.377	0.448	0.01
1988		0.01	0.11	0.207	0.345	0.39	0.435	0.642	0.01
1989		0.01	0.13	0.306	0.398	0.514	0.431	0.931	0.01
1990		0.011	0.325	0.508	0.767	0.728	0.373	1.11	0.011
1991		0.011	0.467	0.96	0.96	1.38	0.752	1.387	0.011
1992		0.005	0.301	0.547	0.809	1.907	1.707	1.159	0.005
1993		0.004	0.085	0.187	0.304	0.357	0.889	0.529	0.004
1994		0.027	0.064	0.136	0.169	0.179	0.339	0.183	0.027
1995		0.027	0.031	0.1	0.084	0.082	0.146	0.098	0.027
1996		0.017	0.029	0.106	0.073	0.084	0.133	0.084	0.017

Year Age	12	3	4	5	6	7	8	9	10
1997		0.011	0.03	0.155	0.074	0.095	0.136	0.091	0.011
1998		0.008	0.024	0.156	0.065	0.081	0.125	0.08	0.008
1999		0.005	0.02	0.076	0.045	0.059	0.089	0.059	0.005
2000		0.004	0.018	0.052	0.043	0.064	0.09	0.059	0.004
2001		0.002	0.014	0.034	0.039	0.055	0.075	0.048	0.002
2002		0.002	0.018	0.043	0.05	0.065	0.089	0.062	0.002
2003		0.001	0.017	0.035	0.047	0.071	0.101	0.065	0.001
2004		0.001	0.018	0.033	0.05	0.093	0.13	0.071	0.001
2005		0.001	0.018	0.032	0.054	0.119	0.176	0.078	0.001
2006		0.001	0.023	0.058	0.087	0.109	0.09	0.036	0.001
2007		0.002	0.026	0.079	0.119	0.155	0.126	0.086	0.002
2008		0.004	0.041	0.147	0.19	0.268	0.102	0.071	0.004
2009		0.008	0.052	0.121	0.067	0.09	0.086	0.034	0.008
2010		0.001	0.017	0.054	0.057	0.079	0.071	0.035	0.001
2011		0	0.007	0.034	0.076	0.115	0.129	0.101	0
2012		0	0.005	0.029	0.073	0.105	0.168	0.132	0
2013		0	0.002	0.016	0.066	0.106	0.172	0.171	0
2014		0	0.002	0.02	0.069	0.135	0.225	0.201	0
2015		0.001	0.008	0.056	0.119	0.21	0.301	0.285	0.001
2016		0.002	0.013	0.084	0.165	0.212	0.297	0.32	0.002
2017		0.001	0.01	0.073	0.172	0.27	0.337	0.285	0.001
2018		0.001	0.007	0.058	0.163	0.262	0.389	0.348	0.001
2019		0.001	0.007	0.066	0.201	0.316	0.451	0.52	0.001
2020		0.002	0.007	0.064	0.164	0.341	0.508	0.57	0.002
2021		0.004	0.014	0.1	0.189	0.388	0.665	0.915	0.004

Table 16.7.3. Short-term forecast for 2022 assuming that Catch $=$ TAC2022 $^{(27430 t)}$

Variable	Value					
$\mathrm{F}_{\text {ages 5-10 }}$ (2022)	0.995					
SSB (2023)	48317					
$\mathrm{R}_{\text {age } 1}(2022)$	7781					
Total catch (2022)	27430 t					
Rationale	$\begin{aligned} & \text { Catch } \\ & \text { (2023) } \end{aligned}$	F (2023)	SSB (2024)	$\begin{gathered} \text { \% SSB } \\ \text { change * } \end{gathered}$	\% advice change **	\% TAC change ***
ICES advice basis						
MSY approach: $\mathrm{F}_{\text {MSY }}$	8460	0.290	60722	+26\%	-4\%	-69\%
Other scenarios						
$\mathrm{F}=0$	0	0	76675	+59\%	-100\%	-100\%
$\mathrm{F}=\mathrm{F}_{2022}$ (status quo)	19782	0.995	45552	-6	+126\%	-28\%

16.18 Figures


```
West offshore
- Nuuk
O East
Iceland inshore
```

Figure. 16.1. Sampling location of spawning cod in Greenland and Iceland in the genetic project. The colours of the dots represent the blends of sample mean of the different spawning population: West offshore, Nuuk (inshore), East (Greenland and offshore Iceland) and Iceland inshore as signal intensities of green and red respectively. After Therkildsen et al., 2013.

Figure 16.2.1. Annual total catch in South and East Greenland (NAFO Subarea 1F and ICES Subarea 14.b). From 2001 divided into gear. TAC until 2013 is for all the offshore area including West Greenland (NAFO Subarea 1A-1E).

Figure 16.2.2: Annual distribution of total catches of Atlantic cod in West and East Greenland. Q1-Q6 illustrates survey areas (strata) in the East Greenland shrimp and fish survey.

Figure 16.2.2: Continued. Annual distribution of total catches of Atlantic cod in West and East Greenland. Q1-Q6 illustrates survey areas (strata) in the East Greenland shrimp and fish survey.

Figure 16.2.2: Continued. Annual distribution of total catches of Atlantic cod in West and East Greenland. Q1-Q6 illustrates survey areas (strata) in the East Greenland shrimp and fish survey.

Figure 16.2.3: Distribution of Longline and Trawl catches of Atlantic cod in West and East Greenland. Q1-Q6 illustrates survey areas (strata) in the East Greenland shrimp and fish survey.

East CAA commercial fishery

Figure 16.2.4: Catch at Age in the East Greenland (ICES 14. + NAFO 1F) commercial fishery. Size of circles represents size of catch numbers.

Figure 16.2.5. Age and Length distributions total and by gear of commercial cod catches in 4 management areas of South (ICES 14b (Q5Q6) + NAFO 1F) and East Greenland (Q1Q2 furthest north).

Figure 16.2.6. Greenland shrimp and fish survey. Abundance per km². No survey in 2021.

Figure 16.2.7. Greenland shrimp and fish survey. Catch weight kg per km². No survey in 2021.

Figure 16.2.8. German ground fish survey. Abundance per nm². No survey in 2021.

Figure 16.9.1. Estimated catch and with observed catch shown as crosses. Note the period 1996-2004 with near zero catches because no age disaggregated catch data were available.

Figure 16.9.2. Retrospective plot of SSB.

Figure 16.9.3. Retrospective plot of F5-10.

Figure 16.9.4. Retrospective plot of Recruits.

Figure 16.9.5. Leave out plot of SSB.

17 Greenland Halibut in Subareas 5, 6, 12, and 14

Greenland halibut in ICES Subareas 5, 6, 12 and 14 are assessed as one stock unit although precise stock associations are not known.

17.1 Catches, Fisheries, Fleet and Stock Perception

17.1.1 Catches

Total annual catches in Divisions 5.a, 5.b, and Subareas 6, 12 and 14 are presented for the years 1981-2021 in Tables 17.1.1-17.1.6 and since 1961 in Figure 17.1.1. Catches increased in 2021 by 5% to 23802 t . Landings in Iceland waters (usually allocated to Division 5.a) have historically predominated the total landings in areas $5+14$, but since the mid-1990s also fisheries in Subarea 14 and Division 5.b have developed. Total landings have since 1997 been between 20 and 31 kt . Catches in 5b decreased slightly in 2021 while it increased in 5a and 14.

17.1.2 Fisheries and fleets

In 2021 quotas in Greenland EEZ and Iceland EEZ were almost utilized as in the preceding fishing years. In the Faroe EEZ the fishery is regulated by a fixed number of licenses and technical measures like by-catch regulations for the trawlers and depth and gear restrictions for the gillnetters.

Most of the fishery for Greenland halibut in Divisions 5.a, 5.b and $14 . \mathrm{b}$ is still a directed trawl fishery, but a gillnet fishery has gained importance in Iceland where the proportions of both gillnets and longlines have increased especially in the northern area, where the catches in gillnets are now more than 50% of the catches in 5 a. Only minor catches in 5 a and 14 b are taken as bycatches in a redfish fishery (see section 22 on Greenland slope redfish). No or insignificant discarding has been observed in this fishery.

Spatial distribution of the 2021 fishery and historic effort and catch in the trawl fishery in Subareas $5,6,12$ and 14 is provided in Figures 17.1.2-3. Fishery in the entire area did in the past occur in a more or less continuous belt on the continental slope from the slope of the Faroe plateau to southeast of Iceland extending north and west of Iceland and further south to southeast Greenland. Fishing depth ranges from 350-500 m southeast, east and north of Iceland to deeper than 1000 m at East Greenland (Figure 17.1.4). In recent years and in 2021 the distribution of the fishery covered all areas but bottom trawling has moved towards a more discontinuous distribution. Catches by gillnets has increased substantially in 5.a, north of Iceland and in 2019-21 a significant part of the landings were from gillnets (Figure 17.1.5).

In 2001-2008 a directed and a by-catch fishery by Spain, France, Lithuania, UK and Norway developed in the Hatton Bank area of Division 6.b, however, most of these fisheries ceased after 2008. Presently UK and France have a small fishery in the area. All catches in Subareas 6 and 12 are assumed to derive from the Hatton Bank area (Tables 17.1.5-17.1.6).

17.1.3 By-catch and discard

The Greenland halibut trawl fishery is mostly a clean fishery with little by-catches. Eventual bycatches are mainly redfish and cod. Southeast of Iceland the cod fishery and a minor Greenland halibut fishery are coinciding spatially. In East Greenland where fishery is located on the steep
slope, fishing grounds for cod and redfish are close to the Greenland halibut fishing grounds, but nevertheless the catches from single hauls are clean catches of Greenland halibut.

The mandatory use of sorting grids in the shrimp fishery in Iceland since the late 1980s and in Greenland since 2002 was observed to have reduced by-catches considerably. Based on few samplings in 2006-2007, scientific staff observed by-catches of Greenland halibut to be less than 1% compared to about 50% by weight observed before the implementation of sorting grids (Sünksen, 2007). No information has since been available but the fishery in Division 14b generally report discard rates less than 1% by weight in logbooks.

17.2 Trends in Effort and CPUE

17.2.1 Division 5.a

Indices of CPUE for the Icelandic trawl fleet directed at Greenland halibut for the period 19852021 is provided in Table 17.2.1 and Figures 17.2.1-2. The overall CPUE index for the Icelandic fishery is compiled as the average of the standardised indices from four areas. In 2021 there was a slight overall decrease in catch rates in this fishery.
Catch rates of Icelandic bottom trawlers decreased for all fishing grounds during 1990-1996 (Figure 17.2.1), but have since peaked in 2001 and have in recent years been variable without a trend. The overall tendency is the same for four areas in 5a (Figure 17.2.2). In 2021 the western and northern areas decreased in their catch rates while the southern and eastern increased.

17.2.2 Division 5.b

Information from logbooks from the Faroese otterboard trawl fleet ($>1000 \mathrm{hp}$) was available for the years 1995-2021 (Table 17.2.1, Figure 17.2.3.). The bulk of the fishery has historically been on the south-east slope of the Faroe Plateau. CPUE has generally fluctuated in this fishery, but there is an overall trend of a decrease until 2018 from where catch rates has increased to 2021.

17.2.3 Division 14.b

CPUE and effort from logbooks in area 14 are provided in Table 17.2.1 and Figure 17.2.4-5. After a record high CPUE of $450 \mathrm{~kg} / \mathrm{hr}$ trawling in 2016 a decrease is evident since then although still above time series average ($330 \mathrm{~kg}(\mathrm{hr}$). There is no clear latitudinal trend in catch rates (Fig. 17.2.5).

17.2.4 Divisions 6.b and 12.b

Since 2001 a fishery developed in Divisions 6.b and 12.b in the Hatton Bank area by Spain, UK and France. The recent catches are stable but small (Table 17.1.5-6). Limited fleet information is available from this area (ICES WGDEEP).

17.3 Catch composition

Length compositions of catches from the commercial trawl fishery in Division 5a are rather stable from year to year. In Figure 17.3.1 length distributions are shown since 1996 from Icelandic trawlers. Norwegian length measurements are available for Subarea 14 and France has provided length measurements from Division 6.a.

17.4 Survey information

Three surveys are conducted in the distribution area of the Greenland halibut stock; in East Greenland (14.b), in Iceland waters (5.a) and in Faroese waters (5.b). The total surveyed area is provided in Figure 17.4.1. The two surveys in $5 . a$ and $14 . \mathrm{b}$ are combined to one index and used as biomass index input for the assessment model. Since the Greenland survey in 14.b has not been conducted since 2016, the index from 2016 are used onwards. The distribution of the historic catch rates from the two surveys are provided in Figure 17.4.2.

17.4.1 Division 5.a

Since 2006 the total biomass of Greenland halibut has increased significantly in Icelandic waters until 2017 (Figure 17.4.3). In 2018 and 2019 the total biomass decreased significantly mainly due to lower abundance of smaller fish (less than 40 cm), but in 2020 biomass increased again (Figures 17.4.3 and 17.4.4). Given the continued low abundance of smaller fish, a decrease in total biomass is expected in the near future.
Catch composition data is available from the survey in Icelandic waters are illustrated in Figures
17.4.4 (size) and 17.4.5 (age).

17.4.2 Division 5.b

The catch rates from the available time series of the Faroese survey have declined from a record high level in 2012-13 to low levels in recent years. (Figure 17.4.6).

17.4.3 Division 14.b

The Greenland survey have not been conducted since 2016 due to a shift in research vessel without possibilities to have a replacement before delivery of a new vessel. It is expected that the new research vessel TARAJOQ will resume the survey in autumn 2022. From 1995 to 2016 the total biomass index from this survey in $14 . \mathrm{b}$ did show a decreasing trend. The stock annex provides more extensive descriptions of all surveys.

17.5 Stock Assessment

17.5.1 Stock production model

The assessment uses a stochastic version of the logistic production model and Bayesian inference according to the Stock Annex in which a more detailed formulation of the model and its performance is found.

17.5.1.1 Input data

The model synthesizes information from input priors and two independent series of Greenland halibut biomass indices and one series of catches by the fishery (Table 17.5.1). The two series of biomass indices are a revised annually for use in assessment: a standardised series of annual commercial-vessel catch rates in 5a in 1985-2020, CPUE E_{t}, and a combined trawl-survey biomass index (5 a and 14b) for 1996-2020, Isurt,. From 2017 to 2020 the survey index is based on the Icelandic survey and the 2016 values from the Greenland survey due to lack Greenland survey data (see section 17.4.3). This is a necessary approach since the combined survey index is a sum of the two indices.

Total reported catch or WGs best estimates in ICES Subareas 5, 6, 12 and 14 1961-2021 was used as yield data (Table 17.5.1, Figure. 17.2.1). Since the fishery has no major discarding or misreporting, the reported catches were entered into the model as error-free.

17.5.1.2 Model performance

The model parameters were estimated (posterior) based on the prior assumptions (Table 17.5.2-3 and Figure 17.5.1). The data could not be expected to carry much information on the parameter P_{1960} - the initial stock size 25 years prior to when the series of stock biomass series start - and the posterior resembled the prior (Figure 17.5.1). The prior for K was updated but similar to previous estimates. However, the posterior still had a wide distribution with an inter-quartile range of 721-1067 kt (Table 17.5.3).

The posterior for MSY was positively skewed with upper and lower quartiles at 27 kt and 38 kt (Table 17.5.3). As mentioned above, MSY was relatively insensitive to changes in prior distributions.

The model was able to produce a reasonable simulation of the observed data (Figure 17.5.2). The probabilities of getting more extreme observations than the realized ones given in the data series on stock size were in the range of 0.04 to 0.95 i.e. the observations did not lie in the extreme tails of their posterior distributions (Table 17.5.4). Exceptions are observed for the survey in 1997 $(p=0.95)$ and in $2019(p=0.04)$. The 2021 observations have, however, high residuals for both indices (-4% and 18%) but inside the $95 \% \mathrm{CI}$ of the model estimate (Figure. 17.5.2).
The retrospective runs suggest high consistency for both biomass and fishing mortality within +- 20% (range $2.2 \%-5.4 \%$, Figure 17.5.3).

17.5.1.3 Assessment results

The time series of estimated median biomass-ratios starts in 1960 as a virgin stock at $\mathrm{K}(2 \times B$ mSy, Figure. 17.5.4-5). The fishery on the stock starts in 1961. Under continuously increasing fishing mortality the stock declined sharply in the mid-1990s to levels below the optimum, Bmš. Some rebuilding towards Bmsy was then seen in the late 1990s. Since then the stock started to increase from its lowest level in 2004-5 of approx. 48\% of BMSY and has in recent years increased to about 80% of Bmsy. The median fishing mortality ratio ($\mathrm{F} / \mathrm{F}_{\mathrm{MSY}}$) has exceeded Fmsy since the 1990 s, but has in recent years decreased and are in 2021 below Fmsy (0.94 , Figures 17.5.4-5 and Table 17.5.5- 2 6). Relative fishing mortality can only be estimated with large uncertainty and the posteriors therefore also include values below Fmsy. However, the probability that F exceed Fmsy is high for most of the years.

17.5.2 Short-term forecast and management options

The assumed catches for the intermediate year (2022) is 25000 t based on agreed TACs for Iceland and Greenland EEZ and a continued catch level in Faroese waters.

Assuming catches of 25000 t in 2022, a fishery at $\mathrm{F}_{\text {MSY }}$ (F / $\mathrm{FmSY}_{\text {M }}=1$) in 2023 will lead to catches of 26710 t (Table 17.5.7). Fishing at this level in 2023 will result in a 5\% increase in biomass in 2024 compared to 2023 and is an increase in advice of 0.2%.

Biomass scenarios at various catch options are provided in Figures 17.5.6-7. Catches below 30 kt is estimated to lead to an increase in biomass, while catches of 30 kt will remain biomass at current level over the next decade (Figure 17.5.7 upper left panel)). Only catches of less or equal to 20 kt will lead the biomass to reach Bmš within the next decade (Figure 17.5.6).

The risk trajectory associated with ten-year projections of stock development assuming a maintained annual catch in the entire period ranging from 0 to 27 kt were investigated (Figure 17.5.6.7). The calculated risk is a result of the projected development of the stock and the increase in
uncertainty as projections are carried forward. It must be noted that a catch scenario of a maintained constant catch over a decade without considering arrival of new biological information and advice is unrealistic.

Scenarios of fixed levels of fishing mortality ratios within the range of 0.3 to 1.7 were conducted and are shown in Figure 17.5.8. Present biomass is above the MSY Btrigger (50% of $\mathrm{B}_{\mathrm{MSY}}$) and a fishery at Fmš is advised according the ICES MSY advice rule. Fishing at Fmsy will result in slowly increasing yield the next decade.

17.5.3 Reference points

Reference points are unchanged from last benchmark in 2013 (WKBUT, ICES 2013).

17.6 Management considerations

Available biological information and information on distribution of the fisheries suggest that Greenland halibut in East Greenland, Iceland and Faroe Islands might be separated into subpopulations but that they do mix between these. Recent information of tagging experiments in the Barents Sea suggests high mixing between the Barents Sea and Iceland and also connectivity to West Greenland. This connectivity is not accommodated for in the present assessment. At the forthcoming planned benchmark of the Greenland halibut stocks in this area $(5,6,12$ and 14$)$ and the North East Arctic (1+2), the stock identity of both stocks will be evaluated based on ongoing research projects.

A bilateral agreement between Iceland and Greenland since 2014 have limited the overall catches in recent years and assured that fishing pressure is around Fmsy. This agreement is no longer in place; however, Iceland and Greenland are following the agreement at large when setting TACs.

17.7 Data consideration and Assessment quality

The Icelandic CPUE series has for many years been used as a biomass indicator in the assessment of the stock. The CPUE of the Greenlandic trawlers and the biomass indices from the Faroese waters have not been used in the assessment, mainly because the stock production model is not able to accommodate contrasting indices (Icelandic CPUE and Greenlandic/Icelandic autumn surveys). A common analysis of all CPUE data from the stock area should possibly be utilized for a combined standardised CPUE index for the assessment. Likewise, the Faroese survey should be merged into a combined survey index. This lack of optimal usage of available information need to be solved at the next benchmark. Further work should also investigate effects of the changes in effort in $5 . a$ as the proportion of landings from and distribution of effort of bottom trawls has been substantially reduced.

With the foreseen change to an age-based assessment more requirements will be put on biological sampling and sampling from the fisheries. This is especially the case for SA 14 (East Greenland) where sampling have been inadequate so far.

17.8 Research needs and recommendations

Stock structure and connectivity between the main fishing areas and neighbouring regions remains unquantified. Basic biological information on spawning and nursery grounds for the juveniles also remains poorly known. Trends of biomass indices over the entire assessment area are not similar and may suggest different dynamics between areas. Further, tagging experiments in the Barents Sea suggest a high connectivity with Iceland waters. Therefore, a compilation of present
knowledge of stock identification for Greenland halibut in the East Greenland, Iceland, Faroese and Norwegian waters are being reviewed. Ongoing projects with trans-Atlantic participation from major fishery research institutes have analysed historic tag-recapture data with the objective to outline stock structure with focus on evaluating present stock entities in the entire North Atlantic. This knowledge will be combined with studies based on several methods,. genetics, otolith microstructure, drift modelling and use of survey and fisheries data. These studies will be final in early 2023 and most likely contribute with valuable biological information to re-evaluate stock perception

A number of issues on the quality of the input biomass indices to the present assessment model are questioned. The Icelandic CPUE series that is based on the principal trawler fleet is assumed to have undergone marked changes with respect to management regulations and spatial distribution. The possibility to estimate these effects by standardization of catch rates should be explored. Similar analyses should be conducted on the remaining CPUE series, in order to evaluate them as indicative of biomass development.

The present assessment model, a stock production model in Bayesian framework, is criticized for its behaviour in relation to the biomass indices. The models use of process error and sensitivity to various priors should be further scrutinized.

At the benchmark in 2013 (WKBUT, ICES 2013) an alternative assessment model, Gadget, was presented. Presently input to the Gadget model is not complete and the approach need further exploration and especially age data from the entire stock distribution area is required. The Gadget model will be a first alternative assessment model to the present stock production model at the next benchmark.

Ageing of Greenland halibut ceased for many of the marine institutes in Greenland, Iceland, Faroe Island and Norway around 2000 due to reading difficulties and lack of inter-calibration. A new method has been agreed upon and cooperation between institutes has been initiated on age calibration. With respect to this stock Iceland has now progressed so far that an ALK is available for the 6 previous years. The Greenland institute of Natural Resources has also initiated age reading. With an ALK some years back and assumptions on constant growth initial exercises with agebased assessment models should be conducted.

17.9 References

ICES. 2013. Report of the Benchmark Workshop on Greenland Halibut Stocks (WKBUT), 26-29 November 2013, Copenhagen, Denmark. ICES CM 2013/ ACOM:44. 367 pp.

ICES. 2017. Report of the Workshop on age reading of Greenland halibut 2 (WKARGH2), 22-26 August 2016, Reykjavik, Iceland. ICES CM 2016/SSGIEOM:16. 40 pp.

Sünksen, K. 2007. Bycatch in the fishery for Greenland halibut. WD 17, NWWG 2007.

17.10 Tables

Table 17.1.1 GREENLAND HALIBUT. Nominal landings (tonnes) by countries, in Sub-areas 5,6,12 and 14 as officially reported to ICES and estimated by WG

Country	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990
Denmark	-	-	-	-	-	-	6	+	-	
Faroe Islands	767	1,532	1,146	2,502	1,052	853	1,096	1,378	2,319	1,803
France	8	27	236	489	845	52	19	25	-	-
Germany	3,007	2,581	1,142	936	863	858	565	637	493	336
Greenland	+	1	5	15	81	177	154	37	11	40
Iceland	15,457	28,300	28,360	30,080	29,231	31,044	44,780	49,040	58,330	36,557
Norway	-	-	2	2	3	+	2	1	3	50
Russia	-	-	-	-	-	-	-	-	-	-
UK (Engl. and Wales)	-	-	-	-	-	-	-	-	-	27
UK (Scotland)	-	-	-	-	-	-	-	-	-	
United Kingdom	-	-	-	-	-	-	-	-	-	
Total	19,239	32,441	30,891	34,024	32,075	32,984	46,622	51,118	61,156	38,813
Working Group estimate	-	-	-	-	-	-	-	-	61,396	39,326
Country	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Denmark	-	-	-	-	-	1	-			0
Faroe Islands	1,566	2,128	4,405	6,241	3,763	6,148	4,971	3,817	3,884	-
France	-	3	2	-	-	29	11	8	-	2
Germany	303	382	415	648	811	3,368	3,342	3,056	3,082	3,265
Greenland	66	437	288	867	533	1,162	1,129	747	200	1,740
Iceland	34,883	31,955	33,987	27,778	27,383	22,055	18,569	10,728	11,180	14,537
Norway	34	221	846	1,173 ${ }^{1}$	1,810	2,164	1,939	1,367	1,187	1,750
Russia	-	5	-	-	10	424	37	52	138	183
Spain								89		779
UK (Engl. and Wales)	38	109	811	513	1,436	386	218	190	261	370
UK (Scotland)	-	19	26	84	232	25	26	43	69	121
United Kingdom									-	166
Total	36,890	35,259	40,780	37,305	36,006	35,762	30,242	20,360	20,226	22,913
Working Group estimate	37,950	35,423	40,817	36,958	36,300	35,825	30,309	20,382	20,371	26,644

Country	2001	2002	$2003{ }^{1}$	$2004{ }^{1}$	$2005{ }^{1}$	$2006{ }^{1}$	$2007{ }^{1}$	$2008{ }^{1}$	$2009{ }^{1}$	$2010{ }^{1}$
Denmark	-	-	-	-	-	-	-	-	-	-
Estonia	-	8	-	-	5	3	-	-	-	-
Faroe Islands	121	334	458	338	1,150	855	1,142	-	270	1,408
France	32	290	177	157	-	62	17	114	-	-
Germany	2,800	2,050	2,948	5,169	5,150	4,299	4,930	4,846	427	5,287
Greenland	1,553	1,887	1,459	-	-	-	155	-	2,819	-
Iceland	16,590	19,224	20,366	15,478	13,023	11,798	9,567	11,671	-	13,293
Ireland	56	-	-	-	-	-	-	-	-	-
Lithuania	-	-	2	1	-	2	3	566		-
Norway	2,243	1,998	1,074	1,233	1,124	1,097	78	639	124	233
Poland	2	16	93	207	-	-	-	1,354	988	960
Portugal	6	130	-	-	-	1,094	-	-	-	-
Russia	187	44	-	262	-	552	501	799	762	1,070
Spain	1,698	1,395	3,075	4,721	506	33	-	-	-	-
UK (Engl. and Wales)	227	71	40	49	10	1	-	-	-	-
UK (Scotland)	130	181	367	367	391	1	-	-	-	-
United Kingdom	252	255	841	1,304	220	93	17	422	581	577
Total	25,897	27,609	30,900	29,286	21,579	19,890	16,410	20,411	5,974	22,901
Working Group estimate	20,703	19,714	20,680	27,102	24,978	21,466	21,402	15,379	28,197	25,995

Country	$2011{ }^{1}$	$2012{ }^{1}$	$2013{ }^{1}$	2014	$2015{ }^{1}$	$2016{ }^{1}$	$2017{ }^{1}$	$2018{ }^{1}$	$2019{ }^{1}$	$2020{ }^{1}$
Estonia	-	-	-	429	-	-	-	-	-	
Faroe Islands	1,705	2,811	2,788	3,393	3,214	4,656	3,999	2,949	1,973	1,888
France	150	67	133	-	117	88	51	71	78	97
Germany	5,782	4,620	3,814	3,701	3,808	4,420	2,994	4,463	4,483	4,769
Greenland	3,415	5,239	3,251	1,897	3,642	1,511	2,692	2,970	2,999	1,992
Iceland	13,192	13,749	14,859	9,861	12,400	12,652	11,926	15,214	12,390	12,535
Ireland	-	-	-	-	-	-	-	-	-	-
Lithuania	-	99	-	-	-	-	-	-	-	-
Norway	171	856	614	764	1,126	1,007	1,002	937	995	813
Poland	-	786	-	-	-	-	-	-	-	-
Portugal	-	-	-	-	-	-	-	-	-	-
Russia	1,095	1,168	1,369	587	600	600	599	400	398	399
Spain	-	-	-		110	2,105	114	125	82	100
United Kingdom	323	12	95		127	348	90	13	29	76
Total	25,693	29,407	26,923	20,743	25,145	27,388	23,466	27,142	23,428	22,669
Working Group estimate	26,347			21,069	25,677	25,397				

1) Provisional data

Table 17.1.1 Continued. GREENLAND HALIBUT. Nominal landings (tonnes) by countries, in Sub-areas 5,6,12 and 14 as officially reported to ICES and estimated by WG

Country	2021^{1}
Estonia	-
Faroe Islands	2,070
France	82
Germany	4,354
Greenland	2,834
Iceland	12,837
Ireland	
Lithuania	
Norway	993
Poland	
Portugal	
Russia	390
Spain	
United Kingdom	243
Total	
Working Group estimate	

Table 17.1.2 GREENLAND HALIBUT. Nominal landings (tonnes) by countries, in Division 5a, as officially reported to ICES and estimated by WG.

Country	1981	1982	1983	1984	1985	1986	1987	1988	1989
Faroe Islands	325	669	33	46			15	379	719
Germany Greenland									
Iceland Norway	15,455	28,300	28,359	30,078	29,195	31,027	44,644	49,000	58,330
Total			+	+	2				
Working Group estimate	15,780	28,969	28,392	30,124	29,197	31,027	44,659	49,379	59,049

Country	1990	1991	1992	1993	1994	1995	1996	1997	1998
Faroe Islands	739	273	23	166	910	13	14	26	6
Germany					1	2	4		9
Greenland					1				
Iceland	36,557	34,883	31,955	33,968	27,696	27,376	22,055	16,766	10,580
Norway									
Total	37,296	35,156	31,978	34,134	28,608	27,391	22,073	16,792	10,595
Working Group estimate	37,308 ${ }^{2}$	35,413 ${ }^{2}$							

Country	2008^{1}	2009^{1}	2010^{1}	2011^{1}	2012^{1}	2013^{1}	2014^{1}	2015^{1}	2016^{1}
Faroe Islands	26	93	37	123	585	103	30	18	15
Germany	4	423	797	576	269	386	587	265	
Greenland	224	1285	64	157		92		1	
Iceland	11,671	15,765	13,293	13,192	6,459	14,859	9,859	12,309	12,652
Norway	15		39						
Russia	4								
Poland	3	270							
UK	179								
Total	12,126	17,837	14,230	14,048	7,313	15,440	10,476	12,593	12,667
Working Group estimate	11,859	15,782	14,230	14,048	14,603	3	15,440	10,476	12,593

Country	2017^{1}	2018^{1}	$2019{ }^{1}$	2020^{1}	2021^{1}
Faroe Islands	17	31			24
Germany	246	552	259		391
Greenland	3		1	110	
lceland	11,926	15,214	12,390	12,535	12,837
Norway					158
Russia					
Poland	15				
UK	12,207	15,797	12,649	12,645	13,410
Total					
Working Group estimate					
1) Provisional data					
2) Includes 223 t catch by Norway.					
3) Includes 7290 t taken in SA14 in Iceland EEZ					

Table 17.1.3 GREENLAND HALIBUT. Nominal landings (tonnes) by countries, in Division 5b as officially reported to ICES and estimated by WG.

Country	1981	1982	1983		1984	1985	1986	1987	1988	1989
Denmark	-	-	-		-	-	-	6	+	-
Faroe Islands	442	863	1,112		2,456	1,052	775	907	901	1,513
France	8	27	236		489	845	52	19	25	...
Germany	114	142	86		118	227	113	109	42	73
Greenland	-	-	-		-	-	-	-	-	-
Norway	2	+	2		2	2	+	2	1	3
UK (Engl. and Wales)	-	-	-		-	-	-	-	-	-
UK(Scotland)	-	-	-		-	-	-	-	-	-
United Kingdom	-	-	-		-	-	-	-	-	-
Total	566	1,032	1,436		3,065	2,126	940	1,043	969	1,589
Working Group estimate	-	-	-		-	-	-	-	-	1,606 ${ }^{2}$
Country	1990	1991	1992		1993	1994	1995	1996	1997	1998
Denmark	-	-	-		-	-	-	-	-	
Faroe Islands	1,064	1,293	$\begin{array}{r} 2,105 \\ 3 \end{array}$		$\begin{array}{r} 4,058 \\ 2 \end{array}$	$\begin{array}{r} 5,163 \\ 1 \end{array}$	$\begin{array}{r} 3,603 \\ 28 \end{array}$	$\begin{array}{r} 6,004 \\ 29 \end{array}$	$\begin{array}{r} 4,750 \\ 11 \end{array}$	$\begin{array}{r} 3,660 \\ 8 \end{array}$
Germany	43	24	71		24	8	1	21	41	
Greenland	-	-	-		-	-	-	-	-	
Norway	42	16	25		335	53	142	281	42^{1}	$114{ }^{1}$
UK (Engl. and Wales)	-	-	1		15	-	31	122		
UK(Scotland)	-	-	1		-	-	27	12	26	43
United Kingdom	-	-	-		-	-				
Total	1,149	1,333	2,206		4,434	5,225	3,832	6,469	4,870	3,825
Working Group estimate	1,282 ${ }^{2}$	1,662 ${ }^{2}$	2,269	2	-	-		-	-	-

Country	1999		2000^{1}		$2001{ }^{1}$		$2002{ }^{1}$		$2003{ }^{1} 1$		$2004{ }^{1}$	2005^{1}	$2006{ }^{1}$	$2007{ }^{1}$
Denmark														
Faroe Islands	3873				106		13		58		35	887	817	1,116
France			1		32		4		8		17		40	9
Germany	22													
Norway	87		1		2		1		1			1		1
UK (Engl. and Wales)	9		35		77		50		24		41	2		
UK(Scotland)	66		116		118		141		174		87	204		
United Kingdom													19	1
Total	4057		153		335		209		265		180	1,094	876	1,127
Working Group estimate	0^{2}		5079		3,951		0		265		1,771	892	873	1,060
Country 2008		2009		2010		2011		2012		2013		2014	2015	2016
Denmark														
Faroe Islands				1,037		1,476		2,149		2,560		2,953	3,139	4,633
France 36				35		1		13	3	20			28	16
Germany														
Iceland													45	
Ireland														
Norway 1		1		5								3	10	8
United Kingdom 32		117		336		11				2	2	2	9	
Total 69		118		1,413		1,489		2,162		2,582		2,958	3,231	4,658
Working Group esti- 1,759		1,739		1,413		1,489		2,162		2,582		2,958	3,231	4,658
Country	2017	1	2018	1	2019	1	20201		2021					
Denmark														
Faroe Islands	3,548		2,903		1,973		1,888		1,825					
France	7		8		7		18		15					
Germany														
Iceland														
Ireland														
Norway	6		5		1		2		4					
United Kingdom	15		1		5		10		22					
Total	3,576		2,917		1.98		1.919		1,865					
Working Group estimate,														

1) Provisional data
2) WGestimate includes additional catches as described in Working Group reports for each year and in the report from 2001.

Table 17.1.4 GREENLAND HALIBUT. Nominal landings (tonnes) by countries, in Sub-area 14 as officially reported to ICES and estimated by WG.

Country	1981	1982	1983	1984	1985	1986	1987	1988	1989
Faroe Islands	-	-	-	-	-	78	74	98	87
Germany	2,893	2,439	1,054	818	636	745	456	595	420
Greenland	+	1	5	15	81	177	154	37	11
Iceland	-	-	1	2	36	17	136	40	+
Norway	-	-	-	+	-	-	-	-	-
Russia	-	-	-	-	-	-	-	-	-
UK (Engl. and Wales)	-	-	-	-	-	-	-	-	
UK (Scotland)	-	-	-	-	-	-	-	-	
United Kingdom	-	-	-	-	-	-	-	-	-
Total	2,893	2,440	1,060	835	753	1,017	820	770	518
Working Group estimate	-	-	-	-	-	-	-	-	-
Country	1990	1991	1992	1993	1994	1995	1996	1997	1998
				-	-	-	-	-	1

Country	$2017{ }^{1}$	$2018{ }^{1}$	$2019{ }^{1}$	$2020{ }^{1}$	$2021{ }^{1}$
Estonia					
Faroe Islands	434	15	0		220
Germany	2,747	3,911	4,225	4,769	3963
Greenland	2,689	2,970	2,999	1,882	2834
Iceland					
Ireland					
Norway	995	931	993	811	831
Poland					
Portugal					
Russia	599	400	398	399	390
Spain					
United King-	1	1	0	3	
Total	7,466	8,228	8,615	7,864	8,238
Working Group	0	0	0		

[^3]Includes 125 t by Faroe Islands and 206 t by Greenland.
Excluding 4732 t reported as area unknown.
Includes 1523 t by Norway, 102 t by Faroe Islands, 3343 t by Germany, 1910 t by Greenland, 180 t by Russia, as reported to Greenland
authorities.
Does not include most of the Icelandic catch as those are included in WG estimate of Va.
Excluding 138 t reported as area unknown.

Table 17.1.5 GREENLAND HALBUT. Nominal landings (tonnes) by countries inSub-area 12, as officially reported to the ICES and estimated by WG.

Country	1996	1997	1998	1999	2000	2001	2002	2003^{1}	2004^{11}
Faroe Islands		47			1		40		
France					1	49		4	30
Ireland								2	1
Lithuania						2		2	1
Poland	2	42	67	137	751	1338	28	730	1145
Spain 2					7	5			
UK	2				553	500	316	201	119
Russia									
Norway Estonia	4	89	67	137	1,312	1,894	384	939	1,296
Total									
WG estimate									

Country	2005^{1}	2006^{1}	2007^{1}	2008^{1}	2009^{1}	2010^{1}	2011^{1}	2012^{1}	2013^{1}
Faroe Islands								106	
France Ire-									
land Lithua- nia		2	3	566				97	
Poland									
Spain ${ }^{2}$	501								
UK	3								
Russia		46	1		762				
Norway		2			94				
Estonia									
Total	504	50	4	566	856	0	106	97	0
WG estimate	504	50	4	566	856	0	106	97	0

Country	2014^{1}	2015^{1}	2016^{1}	2017^{1}	2018^{1}	2019^{1}	2020^{1}	2021^{1}
Faroe Islands France Ire- land Lithua- nia Poland								
Spain ${ }^{2}$								

Table 17.1.6 GREENLAND HALIBUT. Nominal landings (tonnes) by countries in Sub-area 6, as officially reported to the ICES and estimated by WG.

Table 17.2.1. CPUE indices from trawl fleets in Division 5.a, 5.b and 14.b as derived from GLM multiplicative models.

area	year	rel. CPUE	\% change in CPUE between years	landings (tonnes)	relative derived effort	\% change in effort between years
Iceland 5a	1985	1.00		29,197	29	
	1986	0.98	-2	31,027	32	8
	1987	0.93	-5	44,659	48	52
	1988	0.88	-5	49,379	56	16
	1989	1.04	19	59,272	57	1
	1990	0.75	-28	37,308	50	-12
	1991	0.74	-1	35,413	48	-4
	1992	0.67	-9	31,978	48	0
	1993	0.53	-21	34,134	64	34
	1994	0.44	-18	28,608	65	2
	1995	0.35	-20	27,391	78	20
	1996	0.30	-13	22,073	73	-7
	1997	0.33	7	16,792	51	-29
	1998	0.51	56	10,595	21	-59
	1999	0.57	12	11,138	20	-6
	2000	0.60	6	14,607	24	24
	2001	0.62	3	16,752	27	12
	2002	0.49	-21	19,714	41	49
	2003	0.36	-26	20,415	57	41
	2004	0.30	-17	15,477	52	-8
	2005	0.28	-6	13,172	47	-10
	2006	0.37	34	11,817	32	-33
	2007	0.47	25	10,525	23	-29
	2008	0.41	-13	9,580	24	5
	2009	0.42	4	15,782	37	58
	2010	0.42	-1	13,565	33	-13
	2011	0.44	5	14,048	32	-1
	2012	0.46	5	7,312	16	-50
	2013	0.47	2	15,439	33	107
	2014	0.43	-7	10,475	24	-27
	2015	0.46	8	12,593	27	12
	2016	0.45	-3	12,667	28	4
	2017	0.43	-5	12,207	29	2
	2018	0.42	-2	15,797	38	33
	2019	0.48	15	12,649	26	-31
	2020	0.52	9	12,645	24	-8
	2021	0.51	-2	13,410	26	8
Greenland 14b	1991	1.0		875	1	
	1992	1.0	-3	1,176	1	39
	1993	2.5	160	2,249	1	-27
	1994	3.3	32	3,125	1	5
	1995	3.3	-2	5,077	2	66
	1996	3.1	-5	7,283	2	51
	1997	3.2	2	8,558	3	15
	1998	3.1	-3	5,940	2	-28
	1999	2.3	-24	5,376	2	19
	2000	2.1	-9	6,958	3	43
	2001	2.2	7	7,216	3	-3
	2002	2.4	8	6,621	3	-15
	2003	2.4	0	8,017	3	21
	2004	2.3	-6	9,854	4	31
	2005	3.2	40	10,185	3	-26
	2006	3.3	3	8590	3	-18
		3.1	-5	10261	3	26
	2008	3.1	0	8,952	3	-13
	2009	2.6	-17	10,567	4	42
	2010	2.7	4	10,402	4	-5
	2011	2.7	0	10,761	4	4
	2012	3.1	17	12,475	4	-1
	2013	2.9	-8	12,476	4	8
	2014	3.1	5	7,526	2	-43
	2015	3.4	11	9,534	3	14
	2016	4.3	26	7,534	2	-37
	2017	4.2	-3	7,466	2	2
	2018	4.0	-4	8,228	2	14
	2019	3.9	-3	8,615	2	8
	2020	3.7	-4	7,864	2	-5
	2021	3.3	-12	8,238	2	19
Faroe Islands 5b	1995	1.00		3,832	4	
	1996	0.98	-2	6,469	7	72
	1997	0.98	-1	4,870	5	-24
	1998	0.95	-3	3,825	4	-19
	1999	0.99	4	4,057	4	2
	2000	0.98	-1	5,079	5	26
	2001	0.98	0	3,951	4	-22
	2002	0.92	-6	209	0	-94
	2003	0.98	6	265	0	19
	2004	0.92	-6	1,771	2	609
	2005	0.94	1	892	1	-50
	2006	0.94	1	873	1	-3
	2007	0.91	-4	1,060	1	27
	2008	0.96	6	1,759	2	57
	2009	0.98	2	1,739	2	-4
	2010	0.93	-5	1,413	2	-14
	2011	0.94	1	1,489	2	4
	2012	0.97	3	2,162	2	41
	2013	0.89	-8	2,582	3	30
	2014	0.94	6	2,958	3	8
	2015	0.90	-5	3,231	4	15
	2016	0.91	1	4,658	5	42
	2017	0.86	-5	3,576	4	-19
	2018	0.80	-7	2,917	4	-12
	2019	0.83	3	1,986	2	-34
	2020	0.85	2	1,919	2	-6
	2,021	0.88	4	1,865	2	-7

Table 17.5.1. Assessment input data series: Catch by the fishery; three indices of stock biomass - a standardized catch rate index based on fishery data (CPUE) from the Iceland EEZ, a combined Icelandic and Greenland research survey index.

Year	$\begin{array}{r} \text { Catch } \\ \text { (ktons) } \end{array}$	CPUE (index)	$\begin{gathered} \begin{array}{c} \text { Survey } \\ \text { (ktons) } \end{array} \\ \hline \end{gathered}$
1960	0	-	-
1961	0.029	-	-
1962	3.071	-	-
1963	4.275	-	-
1964	4.748	-	-
1965	7.421	-	-
1966	8.030	-	-
1967	9.597	-	-
1968	8.337	-	-
1969	26.200	-	-
1970	33.823	-	-
1971	28.973	-	-
1972	26.473	-	-
1973	20.463	-	-
1974	36.280	-	-
1975	23.494	-	-
1976	6.045	-	-
1977	16.578	-	-
1978	14.349	-	-
1979	23.622	-	-
1980	31.157	-	-
1981	19.239	-	-
1982	32.441	-	-
1983	30.891	-	-
1984	34.024	-	-
1985	32.075	1.76	-
1986	32.984	1.73	-
1987	46.622	1.63	-
1988	51.118	1.55	-
1989	61.396	1.84	-
1990	39.326	1.32	-
1991	37.950	1.31	-
1992	35.487	1.18	-
1993	41.247	0.94	-
1994	37.190	0.77	-
1995	36.288	0.62	-
1996	35.932	0.54	63.8
1997	30.309	0.57	81.1
1998	20.382	0.89	90.4
1999	20.371	1.00	87.9
2000	26.644	1.06	91.4
2001	27.291	1.08	104.0
2002	29.158	0.86	60.8
2003	30.891	0.63	48.8
2004	27.102	0.52	34.9
2005	24.249	0.49	54.7
2006	21.432	0.66	36.1
2007	20.957	0.82	46.9
2008	22.169	0.71	54.1
2009	27.349	0.74	78.4
2010	25.995	0.74	54.2
2011	26.424	0.77	67.3
2012	29.309	0.81	79.1
2013	27.045	0.82	83.8
2014	21.069	0.76	73.3
2015	25.677	0.82	78.7
2016	25.397	0.79	72.2
2017	23.466	0.75	84.0
2018	27.141	0.73	58.8
2019	23.428	0.84	45.8
2020	22.643	0.91	58.5
2021	23.802	0.90	61.8
2022	25.000		

Table 17.5.2. Priors used in the assessment model. ~ means "distributed as..", dunif = uniform-, dlnorm = lognormal-, dnorm= normal- and dgamma = gammadistributed. Symbols as in text.

Parameter		Prior	
Name	Symbol	Type	Distribution
Maximal Suatainable Yield	MSY	reference	dunif(1,300)
Carrying capacity	K	low informative	dnorm(750,300)
Catchability Iceland survey	$q_{\text {Ice }}$	reference	$\ln \left(\mathrm{q}_{\text {Ice }}\right) \sim \operatorname{dunif}(-10,1)$
Catchability Greenland survey	$q_{\text {Green }}$	reference	$\ln \left(\mathrm{q}_{\text {Green }}\right) \sim \operatorname{dunif}(-10,1)$
Catchability Iceland CPUE	$q_{\text {cpue }}$	reference	$\ln \left(\mathrm{q}_{\text {cpue }}\right) \sim \operatorname{dunif}(-10,1)$
Initial biomass ratio	P_{1}	informative	dnorm(2,0.071)
Precision survey	$1 / s_{\text {surv }}{ }^{2}$	low informative	dgamma $(2.5,0.03)$
Precision Iceland CPUE	$1 / s_{\text {cpue }}{ }^{2}$	low informative	dgamma $(2.5,0.03)$
Precision model	$1 / s_{P}{ }^{2}$	reference	dgamma(0.01,0.01)

Table 17.5.3. Summary of parameter estimates: mean, standard deviation (sd) and $\mathbf{2 5}, \mathbf{5 0}$, and 75 percentiles of the posterior distribution of selected parameters (symbols as in the text).

	Mean	sd	25%	Median	75%
$M S Y$ (ktons)	32.90	9.59	27.05	32.44	38.10
K (ktons)	901	251	721	890	1067
r	0.16	0.07	0.11	0.15	0.20
$q_{\text {cpue }}$	0.003	0.001	0.002	0.002	0.003
$q_{\text {Survey }}$	0.23	0.08	0.17	0.21	0.27
P_{1985}	1.57	0.12	1.49	1.57	1.65
P_{2020}	0.79	0.11	0.72	0.79	0.86
$s_{\text {cpue }}$	0.09	0.02	0.08	0.09	0.10
$s_{\text {Survey }}$	0.20	0.03	0.18	0.20	0.22
S_{P}	0.15	0.02	0.13	0.15	0.16

Table 17.5.4. Model diagnostics: residuals (\% of observed value), probability of getting a more extreme observation (p.extreme; see text for explanation).

Year	CPUE		Survey	
	resid (\%)	Pr	resid (\%)	Pr
1985	-2.21	0.57		-
1986	-1.11	0.54		-
1987	1.07	0.46		-
1988	3.02	0.40		-
1989	-8.79	0.77		-
1990	3.43	0.38		-
1991	-2.16	0.57		-
1992	-3.17	0.60		-
1993	0.35	0.49		-
1994	0.68	0.48		-
1995	4.71	0.35		-
1996	12.55	0.15	-22.00	0.84
1997	14.50	0.11	-36.97	0.95
1998	-2.56	0.59	-20.32	0.82
1999	-1.58	0.55	-4.89	0.59
2000	-1.52	0.55	-2.87	0.55
2001	-4.94	0.66	-16.43	0.78
2002	-4.18	0.64	14.28	0.25
2003	1.08	0.46	10.59	0.31
2004	2.04	0.43	25.65	0.12
2005	8.64	0.23	-18.60	0.81
2006	-7.39	0.74	36.74	0.05
2007	-12.76	0.86	26.82	0.11
2008	0.34	0.48	11.41	0.30
2009	2.41	0.42	-21.03	0.83
2010	-0.52	0.52	14.58	0.25
2011	0.53	0.48	-1.99	0.54
2012	1.99	0.43	-13.15	0.73
2013	1.13	0.46	-17.26	0.79
2014	4.28	0.36	-8.17	0.65
2015	0.59	0.48	-11.50	0.70
2016	1.35	0.46	-5.79	0.61
2017	4.05	0.37	-23.38	0.86
2018	2.32	0.42	7.72	0.36
2019	-7.06	0.72	37.35	0.04
2020	-6.97	0.72	21.06	0.17
2021	-3.87	0.62	17.64	0.21

Table 17.5.5. Stock status for 2021 and predicted to the end of 2022 assuming catches of 25000 t in 2022.

Status	2021	2022
Risk of falling below $B_{\text {lim }}\left(0.3 B_{M S Y}\right)$	0%	0%
Risk of falling below $B_{M S Y}$	100%	79%
Risk of exceeding $F_{M S Y}$	43%	44%
Risk of exceeding $F_{\text {lim }}\left(1.7 F_{M S Y}\right)$	7%	9%
Stock size $(\mathrm{B} /$ Bmsy), median	0.79	0.80
Fishing mortality (F/Fmsy),	0.94	0.93
Productivity (\% of MSY)	95%	96%

*Predicted catch in $2022=25$ ktons

Table 17.5.6. Summary of assessment. High and low refer to 95% confidence limits.

Year	B/Bmsy	high	low	Catch (ktons)	F/Fmsy	high	low
1960	2.000	2.138	1.863	0.000	0.803	1.212	0.531
1961	2.000	2.131	1.869	0.029	0.000	0.001	0.000
1962	2.000	2.127	1.872	3.071	0.047	0.102	0.028
1963	1.992	2.118	1.867	4.275	0.066	0.142	0.039
1964	1.982	2.109	1.860	4.748	0.074	0.159	0.044
1965	1.973	2.101	1.851	7.421	0.115	0.249	0.069
1966	1.960	2.088	1.837	8.030	0.126	0.272	0.075
1967	1.947	2.076	1.824	9.597	0.152	0.326	0.090
1968	1.932	2.064	1.809	8.337	0.133	0.285	0.079
1969	1.923	2.056	1.799	26.200	0.419	0.902	0.248
1970	1.871	2.014	1.740	33.823	0.558	1.191	0.326
1971	1.810	1.965	1.660	28.973	0.496	1.051	0.287
1972	1.769	1.931	1.609	26.473	0.464	0.983	0.266
1973	1.739	1.907	1.573	20.463	0.365	0.776	0.207
1974	1.727	1.896	1.563	36.280	0.652	1.395	0.368
1975	1.679	1.859	1.497	23.494	0.435	0.933	0.243
1976	1.666	1.849	1.484	6.045	0.113	0.244	0.063
1977	1.697	1.872	1.524	16.578	0.302	0.666	0.169
1978	1.699	1.874	1.524	14.349	0.261	0.580	0.146
1979	1.707	1.881	1.528	23.622	0.427	0.960	0.239
1980	1.689	1.868	1.506	31.157	0.569	1.284	0.316
1981	1.656	1.844	1.466	19.239	0.359	0.814	0.198
1982	1.656	1.845	1.461	32.441	0.605	1.385	0.333
1983	1.623	1.821	1.421	30.891	0.588	1.352	0.321
1984	1.597	1.806	1.387	34.024	0.658	1.527	0.356
1985	1.567	1.785	1.346	32.075	0.633	1.478	0.340
1986	1.549	1.962	1.238	32.984	0.659	1.545	0.339
1987	1.490	1.923	1.177	46.622	0.968	2.268	0.496
1988	1.445	1.872	1.134	51.118	1.094	2.565	0.559
1989	1.526	1.983	1.180	61.396	1.249	2.932	0.628
1990	1.235	1.612	0.965	39.326	0.986	2.310	0.503
1991	1.161	1.508	0.904	37.950	1.014	2.372	0.514
1992	1.035	1.344	0.807	35.487	1.064	2.499	0.539
1993	0.853	1.108	0.670	41.247	1.496	3.500	0.762
1994	0.701	0.911	0.550	37.190	1.642	3.832	0.839
1995	0.587	0.770	0.462	36.288	1.908	4.472	0.983
1996	0.542	0.720	0.426	35.932	2.043	4.808	1.050
1997	0.594	0.795	0.466	30.309	1.574	3.694	0.804
1998	0.783	1.024	0.614	20.382	0.806	1.873	0.406
1999	0.890	1.154	0.698	20.371	0.709	1.658	0.360
2000	0.945	1.222	0.741	26.644	0.874	2.050	0.445
2001	0.939	1.218	0.733	27.291	0.902	2.113	0.455
2002	0.747	0.961	0.585	29.158	1.211	2.835	0.617
2003	0.576	0.742	0.454	30.891	1.659	3.881	0.854
2004	0.480	0.620	0.378	27.102	1.745	4.107	0.901
2005	0.483	0.628	0.381	24.249	1.552	3.641	0.798
2006	0.556	0.715	0.432	21.432	1.197	2.811	0.610
2007	0.655	0.845	0.504	20.957	0.994	2.342	0.502
2008	0.644	0.830	0.507	22.169	1.197	2.803	0.612
2009	0.675	0.876	0.532	27.349	1.254	2.940	0.640
2010	0.665	0.859	0.524	25.995	1.209	2.833	0.619
2011	0.700	0.906	0.552	26.424	1.168	2.734	0.597
2012	0.736	0.958	0.581	29.309	1.231	2.877	0.627
2013	0.749	0.976	0.590	27.045	1.118	2.612	0.568
2014	0.716	0.934	0.564	21.069	0.910	2.126	0.464
2015	0.745	0.968	0.587	25.677	1.066	2.500	0.544
2016	0.724	0.941	0.571	25.397	1.085	2.537	0.554
2017	0.705	0.920	0.557	23.466	1.029	2.408	0.524
2018	0.675	0.872	0.532	27.141	1.242	2.916	0.637
2019	0.709	0.913	0.550	23.428	1.025	2.406	0.522
2020	0.769	0.991	0.595	22.643	0.916	2.159	0.465
2021	0.785	1.020	0.604	23.802	0.941	2.244	0.475
2022	0.803	1.212	0.531				

Table 17.5.7. Catch forecast. Upper: Assumptions for interim year (2022) and Lower: catch scenarios for 2023.

Variable	Value	Source	Notes
F (2022)	0.93	ICES (2022)	F/F 25000 set eq to catches of 2022
Biomass $(2023)^{*}$	0.802	ICES (2022)	B/B F/FY
Total catch (2022) fishing at			
F	25000	ICES (2022)	Based on TACs of Iceland, Greenland, and assumed catches from Faroe Islands. Tonnes

Basis	Total catch (2023) In 000 tonnes	$F_{\text {total }}(2023)$ F/Fmsy	Biomass (2024) B/Bmsy	Biomass change *	Advice change
ICES advice basis					
MSY approach: $\mathrm{F}_{\text {MSY }}$	26.710	1	0.84	5\%	0.23\%
Other options					
$\mathrm{F}=0$	0	0	0.88	10\%	-100\%
$\mathrm{F}=\mathrm{F}_{2021}$	25.190	0.93	0.85	6\%	-5.48\%
$\mathrm{F}=\mathrm{F}_{\text {lim }}$	45.380	1.70	0.79	-1\%	70\%

17.11 Figures

Fig. 17.1.1. Landings of Greenland halibut in Divisions 5, 6, 12 and 14. As the landings within Icelandic waters, since 1976, have not officially been separated and reported according to the defined ICES statistical areas, they are set under area 5a by the NWWG. In 2012 Icelandic landings in Div 14 were only partly recorded in 14, while for remaining years all landings are recorded in 5a.

Effort (hrs/nm2)
$\square(0,100]$

- $(100,200]$
(200, 300]
$-\quad(400,500$
(500, 60
$(600,700$

$(700,800$
$(800,900$
$\square(900,1000)$
(1000, 10000

Fig. 17.1.2 Greenland halibut 5+14. Distribution of fishing effort 2016-2021. 500m and 1000 m depth contours are shown.

Fig. 17.1.3. Greenland halibut 5+14. Distribution of catches in the fishery 2016-2021. 500m and 1000 m depth contours are shown.

Fig 17.1.4. Greenland halibut 5+14. Depth distribution by EEZ from 1990 to 2021.

Fig. 17.1.5. Greenland halibut 5+14. Landings by gear in 5 a.

Fig. 17.2.1. Standardised CPUEs from the Icelandic trawler fleet in 5a. Area 1-4 are west, north, east and south-east, respectively. The average index of the four areas is used as biomass indicator in the stock production model.

Fig. 17.2.2 Standardised CPUE from the Icelandic trawler fleet in Div 5a by four main fishing areas in 5a. 95\% Cl indicated. Areas 1-4 are West, North, East and South-east of Iceland, respectively. (see Fig. 17.3.1).

Figure 17. 2.3. Standardised CPUE from the Faroese trawler fleet. 95\% CI indicated

Fig. 17.2.4. Standardised CPUE from trawler fleets in 14 b . $95 \% \mathrm{Cl}$ and observed CPUE (avg) indicated.
subdivision=14b1

14b
subdivision $=14 \mathrm{~b} 6$

Fig. 17.2.5. Standardised CPUE from trawler fleets in 14b shown by subdivisions in a north-south direction. 95\% Cl indicated.

Fig. 17.3.1. Length distributions from the commercial trawl fishery in the western fishing grounds of Iceland (5a) in the years 1991-2021. Blue indicate males and red indicates females.

Fig. 17.4.1. Stations covered by scientific surveys in SA 5 in 2021 by Iceland. The Greenland survey stations are from last conducted survey in 2016. Red indicate Iceland survey, green is Greenland survey and blue is Faroe survey. Size of circles indicate catch rates and grey crosses are zero catches. The Greenland survey has not been conducted since 2016 and 2016 values are shown here.

Fig. 17.4.2. Distribution of Greenland halibut catch rates from the three national surveys since 1996.

Fig. 17.4.3. Index of Greenland halibut in the Iceland, Greenland and the combined survey. No Iceland survey was conducted in 2011 and Greenland survey ceased in 2016. Greenland survey values are considered constant since 2016.

Fig. 17.4.4. Abundance indices by length for the Icelandic fall survey 1996-2021. No survey was conducted in 2011.

Figure 17.4.5. Age/sex distribution from Icelandic fall survey 2015-2021.

Figure 17.4.6. Standardised catch rates from a combined survey/fisherman's survey in $\mathbf{5 b}$.

Figure 17.5.1. Probability density distributions of model parameters: estimated posterior (solid line) and prior (broken line) distributions.

Figure 17.5.2. Observed (red curve) and predicted (dashed lines) series of the two biomass indices input to the model. Dashed lines 95\% CI of the model estimates.

Figure 17.5.3. Retrospective analyses of medians of relative biomass ($B / B_{m s y}$) and fishing mortality ($F / F m s y$)

Figure 17.5.4. Stock trajectory 1960-2021. Estimated annual median biomass-ratio (B/BMSY) and fishing mortality-ratio (F/FMSY). $\mathrm{B}_{\text {lim }}$, MSY $\mathrm{B}_{\text {trigger }}$ and $\mathrm{F}_{\text {lim }}$ are indicated.

Figure 17.5.5. Stock summary, upper panel right: fishing mortality (F/Fmsy) and 95\% conf limits, left: total biomass ($B / B m s y$) and 95% conf limits and lower panel is landings since start of the fishery. MSY $B_{\text {triger }}$ (green dashed line), $B_{\text {lim }}$ and $\mathrm{F}_{\text {lim }}$ (blue dashed lines) are indicated.

Fig. 17.5.6 Estimated time series of relative biomass ($B_{t} / B_{m s y}$) under different catch option scenarios: $0,10,15,20$ and 27 kt catch from upper to lower panel. Bold red lines are inter-quartile ranges and the solid black line is the median; the error bars extend to cover the central 90 per cent of the distribution.

Figure 17.5.7. Projections: Medians of estimated posterior biomass- and fishing mortality ratios; estimated risk of exceeding $F_{m s y}$ or going below and $B_{M S Y t r i g g e r}$ given catch ranges at $0-30$ ktons.

Figure 17.5.8. Historic landings and projected landings 2023-2033 under various F ratio options from 0.3-1.7 F/Fmsy Solid red line is median, quartiles and 90% conf limit indicated.

Figure 17.5.9. The logistic production curve in relation to stock biomass (B/Bmsy) (upper) and fishing mortality (F/Fmsy) (lower). Upper: points of maximum sustainable yield (MSY) and corresponding stock size are shown as well as the slope (red line) of the production curve (blue line); lower: points of MSY and corresponding fishing mortality and Fcrash ($F \geq$ Fcrash do not have stable equilibriums and will drive the stock to zero).

18 Redfish in subareas 5, 6, 12 and 14

This chapter deals with fisheries directed to Sebastes species in subareas 5, 6, 12 and 14 (sections and 18.7), and the abundance and distribution of juveniles (Section 18.2.1), among other issues.

The "Workshop on Redfish Stock Structure" (WKREDS, 22-23 January 2009, Copenhagen, Denmark; ICES 2009) reviewed the stock structure of Sebastes mentella in the Irminger Sea and adjacent waters. ACOM concluded, based on the outcome of the WKREDS meeting, that there are three biological stocks of S. mentella in the Irminger Sea and adjacent waters:

- a 'Deep Pelagic' stock (NAFO 1-2, ICES 5, 12, $14>500 \mathrm{~m}$) - primarily pelagic habitats, and including demersal habitats west of the Faeroe Islands;
- a 'Shallow Pelagic' stock (NAFO 1-2, ICES 5, 12, $14<500 \mathrm{~m}$) - extends to ICES 1 and 2, but primarily pelagic habitats, and includes demersal habitats east of the Faeroe Islands;
- an 'Icelandic Slope' stock (ICES 5.a, 14) - primarily demersal habitats.

This conclusion is primarily based on genetic information, i.e. microsatellite information, and supported by analysis of allozymes, fatty acids and other biological information on stock structure, such as some parasite patterns. The Russian Federation maintains the point of view that there is only one stock of S. mentella in the pelagic waters of the Irminger Sea. Accordingly, the Russian Federation presented alternative approaches to stock assessment as well as environmental influence on stock dynamics. Briefly, it is claimed that the current survey-based assessment does not adequately reflect stock status and that environmental factors - temperature causes major distributional changes of redfish - affect stock status more than fisheries and the use of the current management areas is rejected (see WD22, WD23 and Annex 7). The other NWWG members did not agree with the Russian Federation's view on stock structure and did not consider the presented assessment approach sufficiently documented.
The adult redfish on the Greenland shelf has traditionally been attributed to several stocks, and there remains the need to investigate the affinity of adult S. mentella in this region. Recent studies confirm the connectivity between S. mentella in East-Greenland and other areas (Saha et al., 2016). Further studies are needed to understand e.g. the connection between the slope stocks in both East-Greenland, Iceland and the Faroe Islands.

ICES past advice for S. mentella fisheries was provided for two distinct management units, i.e. a demersal unit on the continental shelves and slopes and pelagic unit in the Irminger Sea and adjacent waters. However, based on the new stock identification information, ICES recommended three potential management units that are geographic proxies for biological stocks that were partly defined by depth and whose boundaries are based on the spatial distribution pattern of the fishery to minimize mixed stock catches (Figure 18.1.1):

- Management Unit in the northeast Irminger Sea: ICES subareas 5.a, 12, and 14.
- Management Unit in the southwest Irminger Sea: NAFO Areas 1 and 2, ICES subareas 5.b, 12 and 14.
- Management Unit on the Icelandic slope: ICES subareas 5.a and 14, and to the north and east of the boundary proposed in the MU in the northeast Irminger Sea.

The pelagic fishery in the Irminger Sea and adjacent waters shows a clear distinction between two widely separated grounds fished at different seasons and depths. Spatial analysis of the pelagic fishery catch and effort by depth, inside and outside the boundaries proposed for the management units in the northeast Irminger Sea, indicate that the boundaries effectively delineate the pelagic fishery in the northeast Irminger Sea from the pelagic fishery in the southwest Irminger Sea, with a small portion of mixed-stock catches. In the last decade the majority (more
than 90%) of the catches have been taken in the northeast Irminger Sea. The northeastern fisheries on the pelagic S. mentella occur at the start of the fishing season at depths below 500 m and overlap to some extent with demersal fisheries on the continental slopes of Iceland (Sigurdsson et al., 2006).

A schematic illustration of the relationship between the management units and biological stocks is given in Figure 18.1.2.

For the above-mentioned reasons, the group now provides advice for the following Sebastes units:

- the S. norvegicus on the continental shelves of ICES divisions 5.a, 5.b and subareas 6 and 14 (Section 19);
- the demersal S. mentella on the Icelandic slope (Section 20);
- the shallow and deep pelagic S. mentella units in the Irminger Sea and adjacent waters (sections 21 and 22, respectively);
- \quad the Greenland shelf S. mentella (Section 23).

18.1 Environmental and ecosystem information

Species of the genus Sebastes are common and widely distributed in the North Atlantic. They are found off the coast of Great Britain, along Norway and Spitzbergen, in the Barents Sea, off the Faroe Islands, Iceland, East and West Greenland, and along the east coast of North America from Baffin Island to Cape Cod. All Sebastes species are viviparous. Copulation occurs in autumnearly winter and larvae extrusion takes place in late winter-late spring/early summer. Little is known about the copulation areas.

The increase of water temperature in the Irminger Sea may have an effect on spatial and vertical distribution of S. mentella in the feeding area (Pedchenko, 2005). The abundance and distribution of pelagic S. mentella in relation to oceanographic conditions were analyzed in a special multistage workshop (ICES, 2012). Based on 20 years of survey data, the results reveal the average relation of pelagic redfish to their physical habitat in shallow and intermediate waters: The most preferred latitude, longitude, depth, salinity and temperature for S. mentella are approximately $58^{\circ} \mathrm{N}, 40^{\circ} \mathrm{W}, 300 \mathrm{~m}, 34.89$ and $4.4^{\circ} \mathrm{C}$, respectively. The spatial distribution of S. mentella in the Irminger Sea mainly in waters $<500 \mathrm{~m}$ (and thus mainly relating to the "shallow" stock) appears strongly influenced by the Irminger Current Water (ICW) temperature changes, linked to the Subpolar Gyre (SPG) circulation and the North Atlantic Oscillation (NAO). The fish avoid waters mainly associated with the ICW $\left(>4.5^{\circ} \mathrm{C}\right.$ and $\left.>34.94\right)$ in the northeastern Irminger Sea, which may cause displacement of the fish towards the southwest, where fresher and colder water occurs.

Results based on international redfish survey data suggest that the interannual distribution of fish above 500 m will shift in a southwest/northeast direction depending on integrated oceanographic conditions (ICES, 2012).

18.2 Environmental drivers of productivity

18.2.1 Abundance and distribution of 0 group and juvenile redfish

Available data on the distribution of juvenile S. norvegicus indicate that the nursery grounds are located in Icelandic and Greenland waters. No nursery grounds have been found in Faroese waters. Studies indicate that considerable amounts of juvenile S. norvegicus off East Greenland are mixed with juvenile S. mentella (Magnússon et al., 1988; 1990, ICES CM 1998/G:3). The 1983 Redfish Study Group report (ICES CM 1983/G:3) and Magnússon and Jóhannesson (1997) describe the distribution of 0 -group S. norvegicus off East Greenland. The nursery areas for S. norvegicus
in Icelandic waters are found all around Iceland but are mainly located west and north of the island at depths between 50 and 350 m (ICES CM 1983/G:3; Einarsson, 1960; Magnússon and Magnússon, 1975; Pálsson et al., 1997). As they grow, the juveniles migrate along the north coast towards the most important fishing areas off the west coast.

Indices for 0-group redfish in the Irminger Sea and at East Greenland areas were available from the Icelandic 0-group surveys from 1970-1995. Thereafter, the survey was discontinued. Above average year class strengths were observed in 1972, 1973-1974, 1985-1991, and in 1995.

There are very few juvenile demersal S. mentella in Icelandic waters (see Section 20), and the main nursery area for this species is located off East Greenland (Magnússon et al., 1988; Saborido-Rey et al., 2004). Abundance and biomass indices of redfish smaller than 17 cm from the German annual groundfish survey, conducted on the continental shelf and slope of West and East Greenland down to 400 m , show that juveniles were abundant in 1993 and 1995-1998 (Figure 18.2.1). The 1999-2006 survey results indicate low abundance and were similar to those observed in the late 1980s. Since 2008, the survey index has been very low and was in 2013-2016 the lowest value recorded since 1982. Juvenile redfish were only classified to the genus Sebastes spp., as identification of small specimens to species level is difficult due to very similar morphological features. Observations on length distributions of S. mentella fished deeper than 400 m indicate that a part of the juvenile S. mentella on the East Greenland shelf migrates into deeper shelf areas and into the pelagic zone in the Irminger Sea and adjacent waters (Stransky, 2000), with unknown shares.

18.3 Ecosystem considerations

Information on the ecosystems around the Faroe Islands is given in Section 2, in Icelandic waters in Section 7 and Greenland waters in Section 13.

Analysis of the oceanographic situation in the Irminger Sea during the 2013 international survey and long-term data including 2003, allows the following conclusions:

Strong positive anomalies of temperature observed in the upper layer of the Irminger Sea with a maximum in 1998 are related to an overall warming of water in the Irminger Sea and adjacent areas in 1994-2013. These changes were also observed in the Irminger Current above the Reykjanes Ridge (Pedchenko, 2000), off Iceland (Malmberg et al., 2001) and in the Labrador Sea water (Mortensen and Valdimarsson, 1999). Thus, temperature and salinity in the Irminger Current have increased since 1997 to the highest values seen for decades.

The 2003 survey detected high temperature anomalies within the $0-200 \mathrm{~m}$ layer in the Irminger Sea and adjacent waters. At 200-500 m depth and deeper waters, positive anomalies were observed in most of the surveyed area. However, increasing temperature as compared to the survey in June-July 2001 was detected only north of $60^{\circ} \mathrm{N}$ in the flow of the Irminger Current above the Reykjanes Ridge and the northwestern part of the Irminger Sea. These changes in oceanographic conditions might have an effect on the seasonal distribution of redfish and its aggregations in the layer shallower than 500 m in the survey area (ICES, 2003).

In June/July 2005 and 2007, water temperature in the shallower layer ($0-500 \mathrm{~m}$) of the Irminger Sea was higher than normal (ICES, 2005; ICES, 2007). As in the surveys 1999-2003, the redfish were aggregating in the southwestern part of the survey area, partly influenced by these hydrographic conditions. Favourable conditions for aggregation of redfish in an acoustic layer have been marked only in the southwestern part of the survey area with temperatures between 3.6$4.5^{\circ} \mathrm{C}$, as confirmed by the survey results obtained in 2009 (ICES, 2009b). The hydrography in the survey of June/July 2013 shows that temperature in the survey area is above average but it was lower than in 2011 in most of the surveyed area, except for the Irminger Current (ICES, 2013a).

18.4 Description of fisheries

There are three species of commercially exploited redfish in ICES subareas $5,6,12$, and 14: S. norvegicus (in publication both names S. norvegicus and S. marinus can be found, but according to Fernholm and Wheeler (1983) the first name is the correct name), S. mentella and S. viviparus.
S. viviparus has only been of a minor commercial value in Icelandic waters and it is exploited in two small areas south of Iceland at depths of $150-250 \mathrm{~m}$. The landings of S. viviparus decreased from 1160 t in 1997 to $2-9 \mathrm{t}$ in 2003-2006 (Table 18.4.1) due to decreased commercial interest in this species. The landings in 2009 amounted to 37 t , more than a twofold increase in comparison with 2008. After a directed fishery developed in 2010, with a total catch of 2600 t , the MRI (now MFRI) advised on a 1500 t TAC for the 2012-2013 fishing year. Annual catches 2012-2015 were about 500 t but have since then decreased and were 117 t in 2018.

The group has in the past included the fraction of S. mentella that are caught with pelagic trawls above the western, south-western and southern continental slope of Iceland as part of the landing statistics of the demersal S. mentella. This practice has been in accordance with Icelandic legislation, where captains are obligated to report their S. mentella catch as either "pelagic redfish" or as "demersal redfish/Icelandic slope S. mentella" depending in which fishing area they fish. According to this legislation, all catch outside the Icelandic EEZ and west of the 'redfish line' (red line shown in Figure 18.1.1, which is drawn approximately over the 1000 m isoclines within the Icelandic EEZ) shall be reported as pelagic S. mentella. All fish caught east of the 'redfish line' shall be reported as Icelandic slope S. mentella. Most of the catches since 1991 have been taken by bottom trawlers along the shelf west, southwest, and southeast of Iceland at depths between 500 and 800 m . The Group accepts this praxis as a pragmatic management measure but notes that there is no biological information that could support this catch allocation.

As the Review Group in 2005 noted that this issue needed more elaboration, detailed portrayals of the geographical, vertical, and seasonal distribution of the Icelandic slope S. mentella fisheries with different gears are presented here, as done previously (see below). Quantitative information on the fractions of the pelagic catches of Icelandic slope S. mentella is given in chapter 20 . The proportion of the total Icelandic slope S. mentella catches taken by pelagic trawls has ranged since 1991 between 0% and 44% (Table 20.3.2) and is on average 15%. With exception of 2007, no Icelandic slope S. mentella has been caught with pelagic trawls since 2004. The geographic distribution of the Icelandic fishery for S. mentella since 1991 was in general close to the redfish line, off South Iceland, and has expanded into the NAFO Convention Area since 2003 (Figure 18.4.1). The pelagic catches of Icelandic slope S. mentella were taken in similar areas and depths as the bottom trawl catches (Figure 18.4.2). The vertical and horizontal distribution of the pelagic catches focused, however, on smaller areas and shallower depth layers than the bottom trawl catches. The seasonal distribution by depth (Figure 18.4.3) shows that the pelagic catches of Icelandic slope S. mentella were in general taken in autumn and overlapped in June with the traditional pelagic fishery only in 2003 and 2007. The bottom trawl catches of the Icelandic slope S. mentella were mainly taken in the first quarter of the year and during autumn/winter. The length distributions of the Icelandic slope S. mentella catches in Iceland by gear and area are given in Figure 18.4.4. During 1994-1999 and in 2003, the fish taken with pelagic trawls were considerably larger than the fish caught with bottom trawls, but they were of similar length during 2000-2002. The fish caught in the north-eastern area were on average about 5 cm larger than those caught in the south-western area. The length distribution also shows that the fish caught in north-east area since 2011 is smaller than during the period 1998-2010 and have now a size similar to that registered in the beginning of the fishery.

18.5 Demersal S. mentella in 5.b and 6

18.5.1 Demersal S. mentella in 5.b

18.5.1.1 Surveys

The Faroese spring and summer surveys in Division $5 . \mathrm{b}$ are mainly designed for species inhabiting depths down to 500 m and do not cover the vertical distribution of demersal S. mentella fully. Therefore, the surveys are not used to evaluate the stock status.

18.5.1.2 Fisheries

In Division 5.b, landings gradually decreased from 15000 t in 1986 to about 5000 t in 2001 (Table 18.6.1). Between 2002 and 2011 annual landings varied between 1100 and 4000 t . In 2012, landings decreased drastically from 1126 t in 2011 to 263 t but has since then increased and were 863 t in 2021.

Length distributions from the landings in 2001-2018 indicate that the fish caught in 5.b in 2018 are between $35-50 \mathrm{~cm}$ and the mode of the distribution is around 42 cm (Figure 18.7.1).

Non-standardized CPUE indices in Division $5 . b$ were obtained from the Faroese otter board (OB) trawlers (> 1000 HP) towing deeper than 450 m and where demersal S. mentella composed at least 70% of the total catch in each tow. The OB trawlers have in recent years landed about 50% of the total demersal S. mentella landings from 5b. CPUE decreased from $500 \mathrm{~kg} / \mathrm{hour}$ in 1991 to $300 \mathrm{~kg} /$ hour in 1993 and remained at that level until 2013, when it reached a historical low (Figure 18.7.2). The CPUE has since remained at that level. Data for 2018-2020 were not available.

Fishing effort has decreased since the beginning of the time-series and has remained very low since 2008.

18.5.2 Demersal S. mentella in 6

18.5.2.1 Fisheries

In Subarea 6, the annual landings varied between 200 t and 1100 t in 1978-2000 (Table 18.6.1). The landings from 6 in 2004 were negligible (6 t), the lowest recorded since 1978. They increased again to 111 t in 2005 and 179 t in 2006. The reported landings in 2008 were 50 t and no catches have been taken since 2009.

18.6 Regulations (TAC, effort control, area closure, mesh size etc.)

Management of redfish differs between stock units and is described in sections 19.14 for S. norvegicus, Section 20.7 for Icelandic slope S. mentella, Section 21.10 for shallow pelagic S. mentella, Section 22.10 for deep pelagic S. mentella, and Section 23 for Greenland slope S. mentella.

The allocation of Icelandic S. mentella catches to the pelagic and demersal management unit has been based on the "redfish line" (see Section 18.4).

18.7 Mixed fisheries, capacity, and effort

The official statistics reported to ICES do not divide catch by species/stocks, and since the Review Group in 2005 recommended that "multispecies catch tables are not relevant to management of redfish resources", these data are not given here and the best estimates on the landings by species/stock unit are given in the relevant chapters. Preliminary official landings data were
provided by the ICES Secretariat, NEAFC and NAFO, and various national data were reported to the Group. The Group, however, repeatedly faced problems in obtaining catch data, especially with respect to pelagic S. mentella. Detailed descriptions of the fisheries are given in the respec-tive sections: S. norvegicus in Section 19.3, Icelandic slope S. mentella in Section 20.3, shallow pelagic S. mentella in Section 21.2, deep pelagic S. mentella in Section 22.2 and Greenland slope S. mentella in Section 23.3.

Information from various sources is used to split demersal landings into two redfish species, S. norvegicus and S. mentella (see stock annexes for Icelandic slope S. mentella and S. norvegicus). In Division 5.a, if no direct information is available on the catches for a given vessel, the landings are allocated based on logbooks and samples from the fishery. According to the proportion of biological samples from each cell (one fourth of ICES statistical square), the unknown catches within that cell are split accordingly and raised to the landings of a given vessel. For other areas, samples from the landings are used as basis for dividing the demersal redfish catches between S. norvegicus and S. mentella.

18.8 References

Artamonova V., Makhrov A., Karabanov D., Rolskiy A., Bakay Yu., Popov V. 2013. Hybridization of beaked redfish (Sebastes mentella) with small redfish (S. viviparus) and diversification of redfishes in the Irminger Sea. Journal of Natural History, DOI:10.1080/00222933.2012.752539.
Einarsson, H., 1960. The fry of Sebastes in Icelandic waters and adjacent seas. Rit Fiskideildar 2: 1-67. Fernholm, B. and A. Wheeler 1983. Linnaean fish specimens in the Swedish Museum of Natural History,

Stockholm. Zool. J. Linn. Soc. 78: 199-286.
ICES 1983. Report on the NAFO/ICES Study Group on biological relationships of the West Greenland and Irminger Sea redfish stocks. ICES CM 1983/G:3, 11 pp.
ICES 1998. Report of the Study Group on Redfish Stocks. ICES CM 1998/G:3, 30 pp.
ICES. 2003. Report of the Planning Group on Redfish Stocks (PGRS), 9-10 July 2003, Hamburg, Germany.
ICES CM 2003/D:08. 43 pp.
ICES. 2005. Report of the Study Group on Redfish Stocks (SGRS), 25-27 July 2005, ICES Headquarters, Copenhagen. ICES CM 2005/D:03. 49 pp .
ICES. 2007. Report of the Study Group on Redfish Stocks (SGRS), 31 July -2 August 2007, Hamburg, Germany. ICES CM 2007/RMC:12. 54 pp.

ICES. 2009a. Report of the Workshop on Redfish Stock Structure (WKREDS), 22-23 January 2009, ICES Headquarters, Copenhagen. ICES CM 2009/ACOM:37. 71 pp.
ICES. 2009b. Report of the Planning Group on Redfish Surveys (PGRS), 28-30 July 2009, Reykjavík, Iceland.
ICES CM 2009/RMC:05. 56 pp.
ICES. 2012. Report of the Third Workshop on Redfish and Oceanographic Conditions (WKRDOCE3), 16-17 August 2012, Johann Heinrich von Thunen Institute, Hamburg, Germany. ICES CM 2012/ACOM:25. 70 pp .
ICES. 2013a. Report of the Working Group on Redfish Surveys (WGRS), 6-8 August 2013, Hamburg, Germany. ICES CM 2013/SSGESST:14. 56 pp.

ICES. 2013b. ICES Advice 2013, Book 2.
Magnússon, J. and Magnússon, J.V. 1975. On the distribution and abundance of young redfish at Iceland 1974. Rit Fiskideilar 5(3), 22 pp.

Magnusson, J., Kosswig, K. and Magnusson, J.V. 1988. Young redfish on the nursery grounds in the East Greenland shelf area. ICES CM 1988/G:38, 13 pp.

Magnusson, J., Kosswig, K. and Magnusson, J.V. 1990. Further studies on young redfish in the East Greenland shelf area. ICES CM 1990/G:43, 15 pp .
Magnússon, J.V. and Jóhannesson, G. 1997. Distribution and abundance of 0-group redfish in the Irminger Sea and off East Greenland: relationships with adult abundance indices. ICES J. Mar. Sci. 54, 830-845.
Makhrov A. A., Artamonova V. S., Popov, V. I., Rolskiy A. Yu., and Bakay Y. I. 2011. Comment on: Cadrinet al. (2010) "Population structure of beaked redfish, Sebastes mentella: evidence of divergence associated with different habitats. ICES Journal of Marine Science, 67: 1617-1630.
Malmberg, S. A. Mortensen, J., and Jonsson, S. 2001. Ocean fluxes in Icelandic waters, 2001. ICES CM 2001/W: 08

Mortensen, J., and Valdimarsson. H. 1999. Thermohaline changes in the Irminger Sea. ICES CM 1999/L: II. 11 pp
Palsson, Ó. K., Steinarsson, B. Æ., Jonsson, E., Gudmundsson, G, Stefansson, G., Bjornsson, H. and Schopka, S.A. 1997. Icelandic groundfish survey. ICES CM 1997/Y:29, 35 pp.

Pedchenko, A. P. 2005. The role of interannual environmental variations in the geographic range of spawning and feeding concentrations of redfish Sebastesmentella in the Irminger Sea. ICES Journal of Marine Science 62: 1501-1510.

Saborido-Rey, F., Garabana, D., Stransky, C., Melnikov, S. and Shibanov, V. 2004. Review of the population structure and ecology of S. mentella in the Irminger Sea and adjacent waters. Rev. Fish Biol. Fish. 14: 455-479.

Saha, A., Johansen, T., Hedeholm, R., Nielsen, E.E., Westgaard, J-I., Hauser, L., Planque, B., Cadrin, S.X. and Boje, J. 2016. Geographic extent of introgression in Sebastes mentella and its effect on genetic population structure. Evolutionary Application 1-14. DOI: 10.1111/eva. 12429.
Sigurdsson, T., Kristinsson, K., Rätz, H.-J., Nedreaas, K.H., Melnikov, S.P. and Reinert, J. 2006. The fishery for pelagic redfish (Sebastes mentella) in the Irminger Sea and adjacent waters. ICES J. Mar. Sci., 63: 725-736.

Stransky, C. 2000. Migration of juvenile deep-sea redfish (Sebastes mentellaTravin) from the East Greenland shelf into the central Irminger Sea. ICES CM 2000/N:28, 10 pp.
Zelenina D.A., Shchepetov D.M., Volkov A.A., Barmitseva A.E., Mel'nikov S.P., Miuge N.S. 2011. Population structure of beaked redfish (Sebastes mentellaTravin, 1951) in the Irminger Sea and adjacent waters inferred from microsatellite data. Genetika. 2011 Nov; 47(11):1501-13.

18.9 Tables

Table 18.4.1. Landings of S. viviparus in Division 5.a 1996-2021.

Year	Landings (t)
1996	22
1997	1159
1998	994
1999	498
2000	227
2001	21
2002	20
2003	3
2004	2
2005	4
2006	9
2007	24
2008	15
2009	37
2010	2602
2011	1427
2012	535
2013	532
2014	550
2015	468
2016	234
2017	161
2018	117
2019	143
2020	118
2021	96

Table 18.6.1. Nominal landings (tonnes) of demersal S. mentella 1978-2021 in ICES divisions 5.b and 6.

Year	5.b	6
1978	7767	18
1979	7869	819
1980	5119	1109
1981	4607	1008
1982	7631	626
1983	5990	396
1984	7704	609
1985	10560	247
1986	15176	242
1987	11395	478
1988	10488	590
1989	10928	424
1990	9330	348
1991	12897	273
1992	12533	134
1993	7801	346
1994	6899	642
1995	5670	536
1996	5337	1048
1997	4558	419
1998	4089	298
1999	5294	243
2000	4841	885
2001	4696	36
2002	2552	20
2003	2114	197
2004	3931	6
2005	1593	111
2006	3421	179

Year	5.b	6
2007	1376	1
2008	750	50
2009	1077	0
2010	1202	0
2011	1126	0
2012	263	0
2013	398	0
2014	370	0
2015	537	0
2016	717	0
2017	375	0
2018	438	0
2019	367	0
2020	427	0
2021 ${ }^{1)}$	863	0

1) Provisional

18.10 Figures

Figure 18.1.1 Potential management unit boundaries. The polygon bounded by blue lines, i.e., 1, indicates the region for the 'deep pelagic' management unit in the northwest Irminger Sea, 2 is the "shallow pelagic" management unit in the southwest Irminger Sea, and $\mathbf{3}$ is the Icelandic slope management unit.

Figure 18.1.2 Schematic representation of biological stocks and potential management units of S. mentella in the Irminger Sea and adjacent waters. The management units are shown in Figure 18.1.1. Included is a schematic representation of the geographical catch distribution in recent years. Note that the shallow pelagic stock includes demersal S. mentella east of the Faroe Islands and the deep pelagic stock includes demersal S. mentella west of the Faroe Islands.

Figure 18.2.1 Survey abundance indices of Sebastes spp. ($<17 \mathrm{~cm}$) for East and West Greenland from the German groundfish survey 1982-2016. No data were available in 2017-2020.

Figure 18.4.1Geographical distribution of the Icelandic catches of S. mentella 1991-2002. The colour scale indicates catches (tonnes per NM2). Not updated for 2019-2020.

Figure 18.4.1 cont. Geographical distribution of the Icelandic catches of S. mentella 2003-2018. The colour scale indicates catches (tonnes per NM ${ }^{2}$). Not updated for 2019-2020.

Figure 18.4.2 Distance-depth plot for Icelandic S. mentella catches, where distance (in NM) from a fixed position ($52^{\circ} \mathrm{N}$ $50^{\circ} \mathrm{W}$) is given. The contour lines indicate catches in a given area and distance. The coloured contours represent the fishery on pelagic S. mentella, the black contours indicate bottom trawl catches of demersal S. mentella, and the red contours represent catches of demersal S. mentella taken with pelagic trawls. Not updated for 2019-2020.

Figure 18.4.3 Depth-time plot for Icelandic S. mentella catches 1991-2016 where the y-axis is depth, the x-axis is day of the year and the colour indicates the catches. The coloured contours represent the fishery on pelagic S. mentella, the black contours indicate bottom trawl catches of demersal S. mentella, and the red contours represent catches of demersal S. mentella taken with pelagic trawls. Not updated for 2019-2020.

Figure 18.4.4 Length distributions from different Icelandic S. mentella fisheries, 1991-2018. The blue lines represent the fishery on pelagic S. mentella in the northeastern area, the red lines the pelagic fishery in the southwestern area, the black lines indicate bottom trawl catches of demersal S. mentella, and the green lines represent catches of demersal S. mentella taken with pelagic trawls. Not updated for 2019-2020.

Figure 18.7.1 Length distribution of demersal S. mentella from landings of the Faeroese fleet in Division 5.b 2000-2018. Not updated for 2019-2021.

Figure 18.7.2 Demersal S. mentella, CPUE (t/hour) and fishing effort (in thousands hours) from the Faeroese CUBA fleet 1991-2017 and where 70\% of the total catch was demersal S. mentella. Not updated for 2018-2021.

19 Golden redfish (Sebastes norvegicus) in subareas 5, 6 and 14

19.1 Stock description and management units

Golden redfish (Sebastes norvegicus) in ICES subareas 5 and 14 have been considered as one management unit. Catches in ICES Subarea 6 have traditionally been included in this report and the group continues to do so. Data from ICES Subarea 6 is, however, not used in the assessment.

19.2 Scientific data

This section describes results from various surveys conducted annually on the continental shelves and slopes of ICES subareas 5 and 14 .

19.2.1 Division 5.a

Two bottom trawl surveys are conducted in Icelandic waters, the Icelandic spring groundfish survey (spring survey) and the Icelandic autumn groundfish survey (autumn survey). The spring survey has been conducted annually in March since 1985 and the autumn survey has been conducted annually in October since 1996. The autumn survey was not conducted in 2011. Description of the Icelandic bottom trawl surveys and the calculation of the survey indices for golden redfish in ICES 5.a. are given in the Stock Annex (smr-5614 SA). The calculation of the survey indices includes length dependent diel vertical migration of the species.

Two survey indices are calculated from these surveys but only the index from the spring survey is used in the assessment of golden redfish. Length disaggregated indices from the spring survey are used in the Gadget model. Age-length keys from the autumn survey in 2 cm length groups are used in the Gadget model.

The total biomass of golden redfish as observed in the spring survey decreased from 1988 to a record low in 1995 (Figure 19.2.1 and Table 19.2.1). From 2000 to 2016 the biomass increased, with some fluctuation, to the highest value in the time-series. Since then, the index has decreased and was in 2019-2022 similar as in 2014 and 2015. The CV of the measurement error has been considerably higher after 2002.

The total biomass index from the autumn survey shows similar trend as in the spring survey when the index gradually increased from 2000 to the highest value in the time-series in 2014. The total biomass index in 2015-2019 fluctuated around the 2014 level but decreased sharply in 2020 and 2021 (Figure 19.2.1 and Table 19.2.1).

Length disaggregated indices from the spring survey shows that the peaks in length $4-11 \mathrm{~cm}$, which can be seen first in 1987 (the 1985 cohort) and then in 1991-1992 (the 1990 cohort), reached the fishable stock approximately 10 years later (Figure 19.2.2). The increase in the survey index between 1995 and 2005 reflects the recruitment of these two strong year classes. During the 1999-2008 period the abundance of small redfish was lower than in 1986-1990, highest in 20002003 (Figure 91.2.1). In 2009-2020, very little of small redfish has been observed in the spring survey but in recent two years the index increased (Figure 19.2.1). The recruitment index in 2022 was the highest value observed since 2000.

In recent years, the modes of the length distribution in both surveys have shifted to the right and is narrower. The abundance of golden redfish smaller than 30 cm has decreased since 2006 in both surveys and is now at the lowest level in the time-series (Figures 19.2.1, 19.2.2 and 19.2.3).

Age disaggregated abundance indices from the autumn survey are shown in Figure 19.2.4 and in Table 19.2.2. The sharp increase in the survey indices since 2005 reflects the recruitment of the year-classes from 1996-2007. The year classes 1996-2002 are gradually disappearing from the stock and the 2003-2008-year classes are now the most abundant year classes in the stock. The age disaggregated abundance indices indicate that all year classes since 2009 are small.

19.2.2 Division 5.b

In Division 5.b, CPUE of golden redfish were available from the Faeroes spring groundfish survey from 1994-2022 and the summer survey 1996-2021 (see smr-5614 SA). Both surveys show similar trends in the indices from 1998 onwards with sharp declines between 1998 and 1999 (Figure 19.2.5). CPUE in the spring survey since 2000 has been stable at low level. The CPUE index in the summer survey shows similar trend as in the spring survey and decreased gradually to the lowest level in 2020 but increased in 2021. The fish caught in the surveys in Division $5 . b$ is on the average larger than the fish caught in the Icelandic surveys and the survey conducted in East Greenland waters. The modes of the length distribution in both surveys in Faroes waters have shifted to the right towards larger fish, and very little of fish smaller than 35 cm is caught. This is the same trend as observed in Icelandic and East Greenland waters.

19.2.3 Subarea 14

The German groundfish survey has been conducted annually in the autumn from 1982 to 2017 and in 2019-2020 covering shelf areas and the continental slopes off West and East Greenland. Description of the survey and the re-stratification in 2013 is found in the Stock Annex (smr5614 SA). In 2017, sampling was only conducted in parts of East Greenland and one spot in NAFO 1F with a total of 46 stations. This is low compared to necessary coverage of $63-75$ stations in the respective area as done in the previous years. The survey was not conducted in 2018 and 2021 because of various factor such as research vessel breakdown, bad weather and the Covid19 pandemic.

Relative abundance and biomass indices for golden redfish (fish $>17 \mathrm{~cm}$) from the German groundfish survey are illustrated in Figure 19.2.8. After a severe depletion of the golden redfish stock on the traditional fishing grounds around East Greenland in the early 1990s, the survey estimates showed a significant increase from 2003, both in biomass and abundance (Figure 19.2.8). The survey indices in 2007-2017 were high but fluctuated. The biomass survey index in 2014-2016 were at the highest level in the time-series but decreased in 2017-2020 to similar level as in 2006 (Figure 19.2.8a). It should be noted that the CV for the indices is high and the increase is driven by few very large hauls. In 2010-2020, the biomass of pre-fishery recruits (17-30 cm) has decreased compared to previous five years and in 2017-2020 very little of 17-30 cm fish was observed (Figure 19.2.8c).

Abundance indices of redfish smaller than 18 cm from the German annual groundfish survey show that juveniles were abundant in 1993 and 1995-1998 (see Figure 18.2.1). Since 2008, the survey index has been very low and in recent years at the lowest value recorded since 1982. Juvenile redfish were only classified to the genus Sebastes spp., as species identification of small specimens is difficult due to very similar morphological features. The 1999-2020 survey results indicate low abundance and are like those observed in the late 1980s. The Greenland shrimp and fish shallow water survey 2008-2020 (no survey conducted 2017-2019 and 2021) also shows very little juvenile redfish ($<18 \mathrm{~cm}$, not classified to species) were present (see Figure 23.2.8).

19.3 Information from the fishing industry

19.3.1 Landings

Total landings of golden redfish decreased gradually by more than 70% in 1982-1994 or from 130429 t in 1982 to 43515 t in 1994 (Table 19.3.1 and Figure 19.3.1). Since then, the annual landings of the stock have varied between 33451 t and 59698 t . The total landings in 2021 were 43426 t , which is 2771 t less than in 2020. About $90-98 \%$ of the golden redfish catch has been taken in Icelandic Waters (ICES Division 5.a).

Landings of golden redfish in Division 5.a (Icelandic waters) declined from 97899 t in 1982 to 38669 t in 1994 (Table 19.3.1). Since then, landings have varied between 31686 t and 54041 t , highest in 2016. The annual landings since 2016 have decreased and were 39616 t in 2021, 1072 t less than in 2020. The landings for the 2020/2021 fishing year were 18% higher than allocated quota of 34379 t . The reasons for the implementation errors are related to the management system that allow for transfers of quota share between fishing years and conversion of TAC from one species to another. Detailed description of the Icelandic ITQ system is found in the Stock Annex for the species (smr-5614 SA).

Between $90-95 \%$ of the golden redfish catch in Division 5.a is taken by bottom trawlers targeting redfish. The remaining catches are caught as bycatch in the gillnet, long-line, and lobster fisheries. In 2021, as in previous years, most of the catches were taken along the shelf southwest, west, and northwest of Iceland (Figure 19.3.2). Higher proportion of the catches is now taken along the shelf northwest of Iceland and less south and southwest.

In Division 5.b (Faroese waters), annual landings decreased from 9194 tin 1985 to less than 700 t in the 2006-2016 period (Table 19.3.1). In 2017 landings increased to 1397 t , the highest landings since 2005. The landings in 2021 decreased to 178 t , 1126 t less than in 2020 and similar as in 2016. Most of the golden redfish caught in Division 5.b is taken by pair and single trawlers (vessels larger than 1000 HP).

In Subarea 14 (East Greenland waters), the landings of golden redfish reached a record high of 30962 t in 1982 but decreased drastically within the next three years and to 2117 t in 1985 (Figure 19.3.1 and Table 19.3.1). During the period 1985-1994, the annual landings varied between 687 and 4255 t . There was little or no direct fishery for golden redfish from 1995 to 2009 and landings were 200 t or less, mainly taken as bycatch in the shrimp fishery. In 2010, landings of golden redfish increased considerable and were 1650 t . This increase is mainly due to increased S. mentella fishery in the area. Annual landings 2010-2015 have been between 1000 t and 2700 t but increased to 5442 t in 2016 which is the highest landings since 1983. The landings in 2021 were $3532 \mathrm{t}, 573 \mathrm{t}$ less than in 2020.

Annual landings from Subarea 6 increased from 1978 to 1987 followed by a gradual decrease to 1992 (Table 19.3.1). From 1995 to 2004, annual landings have ranged between 400 and 800 t , but decreased to 137 t in 2005. Little or no landings of golden redfish were reported from Subarea 6 in 2006-2021 and were estimated to be 100 t in 2021.

19.3.2 Discard

Comparison of sea and port samples from the Icelandic discard sampling program does not indicate significant discarding due to high grading in recent years (Pálsson et al 2010), possibly due to area closures of important nursery grounds west off Iceland. Substantial discard of small redfish took place in the deep-water shrimp fishery from 1986 to 1992 when sorting grids became mandatory. Since then, the discard has been insignificant both due to the sorting grid and much less abundance of small redfish in the region.

Discard of redfish species in the shrimp fishery in ICES Division 14.b is currently considered insignificant (see Section 18).

19.3.3 Biological data from commercial fishery

The table below shows the fishery related sampling by gear type and ICES divisions in 2021.

Area	Nation	Gear	Landings (t)	Samples	No. length measured	No. Age read
5.a	Iceland	Bottom trawl	40688	65	9191	834
5.b	Faroe Islands	Bottom trawl	178			
14	Greenland	Bottom trawl	3532			

19.3.4 Landings by length and age

The length distributions from the Icelandic commercial trawler fleet in 1976-2021 show that most of the fish caught are between 30 and 45 cm (Figure 19.3.3). The modes of the length distributions range between 35 and 40 cm and has over the past decade shifted to the right. The length distributions in 2012-2021 are narrower than previously, with less than average of small fish ($<35 \mathrm{~cm}$) caught, and the mean length has increased by almost 5 cm .
Catch-at-age data from the Icelandic fishery in Division 5.a show that the 1985-year class dominated the catches from 1995-2002 (Figure 19.3.4 and Table 19.3.2). The strong 1990 cohort dominated the catch in 2003-2007 contributing between $25-30 \%$ of the total catch in weight. In 20072010 the 1996-1999 cohorts dominated in the catches but are now gradually decreasing. The 2004-2009 cohorts (ages 12-17) were the most dominant year classes in the fishery in 2021. There is a substantial decrease of $7-10$-year-old fish in the catch, compared to recent previous years, an additional indicator of low recruitment in recent year observed in all surveys conducted in East Greenland and Icelandic waters.

The average total mortality (Z), estimated from the 25 -year series of catch-at-age data (Figure 19.3.5) is about 0.20 for age 13 years and older.

Length distribution from the Faroese commercial catches 2001-2020 shows that the fish caught are on average larger than 40 cm with modes between 45 cm and 50 cm (Figure 19.3.6).

No length data from the catches in subareas 14 and 6 have been available for several years.

19.3.5 CPUE

The un-standardized CPUE index from the Icelandic bottom trawl fleet operating in Division 5.a has increased sharply from 2006 to the highest level in the time-series in 2017-2019. CPUE has in since then decreased although it remains high. Effort towards golden redfish has gradually decreased since 1986 and is now at the lowest level recorded (Figure 19.3.7). CPUE derived from logbooks is not considered indicative of stock trends however the information contained in the logbooks on effort, spatial and temporal distribution the fishery is of value.
CPUE from other areas are not available. This is because no separation of S. norvegicus/S. mentella is made in the catches.

19.4 Analytical assessment

The stock was benchmarked in January 2014 and a management plan evaluated and adopted (WKREDMP, ICES 2014). The benchmark group agreed to base the advice on in the Gadget framework (see http://www.hafro.is/gadget for further details). The settings of the model for golden redfish are described in the Stock Annex.

19.4.1 Gadget model

19.4.1.1 Data and model settings

Below is a brief description of the data used in the model and model settings is given. A more detailed description is given in the Stock annex.

Data used in the Gadget model are:

- Length disaggregated survey indices $19-54 \mathrm{~cm}$ in 2 cm length increments from the Icelandic groundfish survey in March 1985-2022 and the German survey in East Greenland 1984-2020. The German survey index in 2018 (survey not conducted) is based on the average of the 2017 and 2019 and the 2021 (survey not conducted) index is set as the same as in 2020.
- \quad Survey indices are combined (Figure 19.4.2) and the German survey gets half the weight compared to what is presented in Figure 19.2.6. This was done to avoid extrapolation to areas not surveyed, and hence reduce noise. By using the stratification used to calculate indices shown in Figure 19.2.6, each station in the German survey would get 2.5 times more weight compared to the Icelandic survey.
- Length distributions from the Icelandic (1972-2021), Faroe Islands (1980-2020) and East Greenland (1975-2004) commercial catches.
- Landings by 6-month period from Iceland, Faroe Islands and East Greenland.
- Age-length keys and mean length at age from the Icelandic groundfish survey in October 1996-2021.
- Age-length keys and mean length at age from the Icelandic commercial catch 1995-2020.

Model settings:

- The simulation period is from 1970 to 2027 using data until the first half of 2021 for estimation. Two time-steps are used each year. The ages used were 5 to 30 years, where the oldest age is treated as a plus group (fish 30 years and older).
- \quad Modelled length ranged between 19-54 cm.
- Commercial catches are split by country and implemented as separate fleets. Survey catch distribution data are modelled as a separate fleet.
- \quad Recruitment was set at age 5 .

Estimated parameters are:

- Number of fishes when the simulation starts (8 parameters).
- \quad Recruitment at age 5 each year (54 parameters).
- Length at recruitment (3 parameters).
- \quad Parameters in the growth equation; (2 parameters).
- Parameter β of the beta-binomial distribution controlling the spread of the length distribution.
- \quad Selection pattern of the three commercial fleets assuming logistic selection (S-shape) (3x2 parameters).
- \quad Selection pattern of the survey fleet assuming an Andersen selection curve (bell-shape) (3 parameters).

It should be noted that the length disaggregated indices are from the spring survey, but the age data are from the autumn survey conducted six months later. The surveys could have different catchability, but the age data are used as proportions within each 2 cm length group, so it should not have an impact on the results. Growth in between March and October is included in the model.

Assumptions done in the predictions:

- Recruitment at age 5 in 2023 and onwards was set as the average of the five smallest estimated year classes 1980-2007 or 39.5 million. The reason is an indication of poor recruitment in recent years, but estimated recruitment was even lower.
- Catches in 2022 were set as the sum of expected landings, accounting for interannual transfer from 2021.
- The estimated selection pattern from the Icelandic fleet was used for projections.

19.4.1.2 Results of the assessment model

Summary of the assessment is shown in Figure 19.4.3 and Table 19.4.1. The spawning stock increased 1995-2015 but has since then decreased and was om the beginning of 2022 estimated to be close to $\mathrm{B}_{\text {trigger. }}$. Fishing mortality has been low since 2010, but since the HCR was adopted in 2014, the fishing mortality has been above the target of 0.097 because the catches have exceeded the advice. Recruitment (at age 5) after 2013 is at record low levels for the time-series.

Assumptions about the cohorts after the 2015 one will not have much effect on the advice this year. This is because the average proportion of fish 10 years old and younger in the landings are only about 10%. Later advice will be affected as well as the development of the spawning stock in short and medium term and is expected to decrease further.
Although this year's assessment is consistent with previous assessments it shows a downward revision of SSB and an upward revision of fishing mortality compared to last year's assessment (Figures 19.4.4).

19.4.1.3 Mohn's rho

The analytical retrospective pattern (five-year peel) of the assessment is presented in Figure 19.4.5.The table below shows the Mohn's rho values for SSB, F and recruitment for five and ten year peels:

Variable	Value	
	Five-year peel	Ten-year peel
Fbar	-0.0141	-0.0442
SSB	0.00589	0.0231
Recruitment	0.704	0.268

The Mohn's rho values for $\mathrm{F}_{\mathrm{bar}}$ and SSB are low (-1.4% and 0.6% respectively) but indicates that fishing mortality has been underestimated and SSB been overestimated (Figure 19.4.5). Mohn's rho for recruitment is on the other hand high (70%) and indicates that recruitment has in previous assessments been overestimated. This value needs though to be taken with caution as recruitment estimates of the five-year peels is very low compared to previous years and any deviation from previous year may have relatively high impact. When extending the peel to 10 years the Mohn's rho value drops to 27%.

19.4.1.4 Diagnostics

Observed and predicted proportion by fleet: Trends in different likelihood components (Figure 19.4.6) shows how the fit to survey length distributions has become worse in recent years. This can also be seen in Figure 9.4 .7 where overall fit to the predicted proportional length distributions in the survey is smaller to the observed for medium sized fish ($30-40 \mathrm{~cm}$ fish).

Length distributions from the Icelandic commercial catch does usually show good fit except in the most recent period when the large fish is missing and the length distribution narrower (Figure 19.4.8).

The fit between predicted and observed age distributions is better than for the length distributions (Figures 19.4.9 and 19.4.10). The model uses the data as age-length keys in 2 cm intervals for tuning.

Model fit: In Figure 19.4.11 the length disaggregated indices are plotted against the predicted numbers in the stock as a time-series. This lack of fit between observed and predicted numbers between 33 and 40 cm is caused by data conflicts with survey indices of larger sizes and compositional data. There appears to be an internal conflict between indices of lengths of 42 cm and above and the large number of smaller fish that was observed in the survey few years earlier. The model results are therefore a compromise between different data sets, and it is not able to follow the amount of $30-40 \mathrm{~cm}$ redfish in recent years. The inability of the model to fit the survey biomass in recent years has some support in the characteristics of the survey. Since 2003 most of the biomass in the Icelandic survey has been observed to be aggregated in very dense schools west of Iceland, caught on 5-10 stations every year. The size distribution in those schools is narrow and fish larger than 40 cm were rare.

As the model converges slowly, predicted indices could change several years back when more data are added. However, it is not the magnitude of the residuals but rather the temporal pattern that is worrying (Figure 19.4.12). For $35-42 \mathrm{~cm}$ fish, the observed indices have been above predictions for 5-11 years. The indices for $41-50 \mathrm{~cm}$ fish do not show such temporal pattern although in recent years the observed indices have been below prediction. The correlation between observed and predicted is good for $19-34 \mathrm{~cm}$ fish. When looking at the temporal patterns, longevity of the fish must be considered. Positive residuals in size groups $33-38 \mathrm{~cm}$ in recent years but negative for most other size groups, especially for fish smaller than 30 cm , indicates narrower length distributions in the survey than predicted (Figure 19.4.12).

19.4.2 Advice for 2022 (Last year's advice)

The management plan is based on $\mathrm{F}_{9}-19=0.097$ reducing linearly if the spawning stock is estimated below 220000 t (Btrigger). Blim was proposed as 160000 t , lowest SSB in the 2012 run. The 2021 SSB was estimated at 260090 t , and according to the management plan the TAC advice for 2022 was 31855 t.

19.5 Reference points

Harvest control rule (HCR) was evaluated at WKREDMP in January 2014 (ICES, 2014) based on stochastic simulations using the Gadget model. Considering conflicting information by different data continuing for many consequent years (Section 19.4), the simulations were conducted using large assessment error with very high autocorrelation ($\mathrm{CV}=0.25$, $\mathrm{rho}=0.9$).

Yield-per-recruit analysis show that when average size at age 5 was allowed to change after year class 1996, F9-19, Max changed from 0.097 to 0.114 . The proposed fishing mortality of 0.097 is therefore around 85% of $\mathrm{Fmax}^{\text {with }}$ current settings. Stochastic simulations indicate that it leads to very
low probability of spawning stock going below $\mathrm{B}_{\text {trigger }}$ and $\mathrm{B}_{\mathrm{lim}}$, even with relatively large autocorrelated assessment error.

At WKREDMP 2014, $B_{l i m}=B_{l o s s}=160000 t$ was defined as the lowest SSB in the 2012 Gadget run. $B_{\text {trigger }}=B_{p a}$ was defined as $220000 t$ by adding a precautionary buffer to the proposed $B_{l i m}$ of $160000 \mathrm{t}: 160^{*} \exp \left(0.2^{*} 1.645\right)$. Recruitment in the stochastic simulations was the average of yearclasses 1975-2003 but those year-classes were the basis for the simulations at WKREDMP 2014.

The plot of the average spawning stock against fishing mortality show that $\mathrm{F}_{\mathrm{lim}}=0.226$ and F_{pa} is then $0.226 / \exp \left(1.645^{*} 0.2\right)=0.163$ (Figure 19.5.1). The spawning stock decreased considerably from early 1980s to mid-1990s or from 400000 t to 200000 t . The reduction in SSB was due to heavy fisheries but increased again gradually because of improved recruitment and lower F (Figure 19.5.1).

The probability of current $\mathrm{SSB}<\mathrm{B}_{\text {trigger }}$ is estimated 2.7%. For simplicity, the action of $\mathrm{B}_{\text {trigger }}$ is not included in the simulations since Gadget is not keeping track of "perceived spawning stock". Analysis of the stochastic prediction in R shows that if SSB is below Btrigger it will only be noted in $<15 \%$ of the cases. The reason is that the spawning stock is only likely to go below $\mathrm{B}_{\text {trigger }}$ in periods of severe overestimation of the stock that occur due to the assumed high autocorrelation in assessment error. This situation differs from that of the stock going below Btrigger due to poor recruitment (worse than observed in recent decades). In this case the spawning stock should still have a resilient age structure (as discussed above) and this could reduce the need to take further action below $\mathrm{B}_{\text {trigger. }}$
Figure 19.5.2 shows the development of F_{9-19} based on $\mathrm{F}_{9-19}=0.097$. F is expected to be within the range of the fifth and $95^{\text {th }}$ quantile and the $16^{\text {th }}$ and $84^{\text {th }}$ quantile.

19.6 State of the stock

The results from Gadget indicate that fishing mortality has been low since 2009 but above FMSY $^{\text {M }}$ (Figure 19.4.3). Total biomass and SSB has been decreasing since 2016 (Table 19.4.1) and the absence of any indications of incoming cohorts raises concerns about the future productivity of the stock.

Results from surveys in Iceland and East Greenland indicate that most recent year classes are poor. The accuracy of the surveys as an indicator of recruitment is not known but recruitment is expected to be poor.

19.7 Short-term forecast

The Gadget model is length based where growth is modelled based on estimated parameters. The only parameters needed for short term forecast are assumptions about size of those cohorts that have not been seen in the surveys. These year classes were assumed to be the average of five smallest year classes in 1980-2007 (Figure 19.4.3).
The results from the short-term simulations based on F9-19 is shown in Figure 19.4.3 and from short term prognosis with varying fishing mortality in 2022 and 2023 in Table 19.4.2. The results indicate that when fishing according to the management plan the SSB is expected to decrease further and to be below MSY B trigger in 2023 (Table 19.4.2).

19.8 Medium-term forecast

No medium-term forecast was carried out.

19.9 Uncertainties in assessment and forecast

Various factors regarding the uncertainty and modelling challenges are listed in the WKRED 2012 (ICES, 2012) and WKREDMP-2014 (ICES, 2014) reports. In addition, this subject is discussed in Section 19.4.

19.10 Basis for advice

Harvest control rule accepted at WKREDMP 2014 (ICES, 2014) and implemented by Icelandic and Greenland authorities in 2014.

19.11 Management consideration

In 2009 a fishery targeting redfish was initiated in Subarea 14 with annual catches of between 6000 and 8500 t in 2010-2020, highest in 2015 and lowest in 2018. The fishery does not distinguish between species, but based on survey information, golden redfish is estimated to be between 1000 and 2700 in 2010-2015 but increased to 3000-5400 t in 2016-2020.
Subarea 14 is an important nursery area for the entire resource. Measures to protect juvenile in Subarea 14 should be continued (sorting grids in the shrimp fishery).

No formal agreement on the management of S. norvegicus exists among the three coastal states, Greenland, Iceland, and the Faroe Islands. However, an agreement was made between Iceland and Greenland in October 2015 on the management of the golden redfish fishery based on the management plan applied in 2014. The agreement was from 2016 to the end of 2018. The agreement states that each year 90% of the TAC is allocated to Iceland and 10% is allocated to Greenland. Furthermore, 350 t are allocated each year to other areas. The plan has not been renewed so no management plan is effective although Iceland and Greenland still follow this plan.

In Greenland and Iceland, the fishery is regulated by a TAC and in the Faeroe Islands by effort limitation. The regulation schemes of those states have previously resulted in catches more than TACs advised by ICES.

Since 2009, surveys of redfish in the stock area have consistently shown very low abundance of young redfish ($<30 \mathrm{~cm}$). Biomass (SSB and the harvestable biomass) increased from 1995 to 2015 because of recruitment of several strong year-classes to the stock. Since then, the biomass has declined. The absence of any indications of any incoming cohorts raises concerns about the future productivity of the stock.

19.12 Ecosystem consideration

Not evaluated for this stock.

19.13 Regulation and their effects

In the late 1980s, Iceland introduced a sorting grid with a bar spacing of 22 mm in the shrimp fishery to reduce the bycatch of juveniles in the shrimp fishery north of Iceland. This was partly done to avoid redfish juveniles as a bycatch in the fishery, but also juveniles of other species. Since the large year classes of golden redfish disappeared out of the shrimp fishing area, there in the early 1990s, observers report small redfish as being negligible in the Icelandic shrimp fishery. If the sorting grids work where the abundance of redfish is high is a question but not a relevant problem now in $5 . \mathrm{b}$ as abundance of small redfish is low and shrimp fisheries limited.

There is no minimum landing size of golden redfish in Division 5.a. However, if more than 20% of a catch observed on board is below 33 cm a small area can be closed temporarily. A large area west and southwest of Iceland is closed for fishing to protect young golden redfish.

There is no regulation of the golden redfish in Division 5.b.
Since 2002 it has been mandatory in the shrimp fishery in Subarea 14 to use sorting grids to reduce bycatches of juvenile redfish in the shrimp fishery.

19.14 Changes in fishing technology and fishing patterns

There have been no changes in the fishing technology and the fishing pattern of golden redfish in ICES subareas 5 and 14.

19.15 Changes in the environment

No information available.

19.16 Benchmark

Benchmark meeting for golden redfish is scheduled in 2023.
Golden redfish was last benchmarked in 2014 and the group thinks that benchmarking the stock is of high importance. The proposed benchmark meeting will explore several issues of current assessment model. These include poor fit to survey indices for fish between $30-40 \mathrm{~cm}$; potential dome-shape in selectivity; uncertainty estimates are not available; investigate the appropriateness of the current growth and maturity model used in the assessment. In addition, the meeting will explore alternative assessment methods. Underutilized data sources from ICES 5.b and 14.b, mainly relevant sur- vey and commercial samples of age and length. Biological reference points will need to be redefined depending on the assessment method, especially in relation to the Fp 0.5 . Change in form of harvest control rule will also be explored, that is change the rule to proportion of biomass above certain size (i.e., 33 cm and bigger fish) from the F based rule that is used now.

19.17 References

ICES 2012. Report of the Benchmark Workshop on Redfish (WKRED 2012). ICES CM 2012/ACOM:48, 291 pp.

ICES 2014. Report of the Workshop on Redfish Management Plan Evaluation (WKREDMP). ICES CM 2014/ACOM:52, 269 pp.

Pálsson, Ó., Björnsson, H., Björnsson, E., Jóhannesson, G. and Ottesen P. 2010. Discards in demersal Icelandic fisheries 2009. Marine Research in Iceland 154.

19.18 Tables

Table 19.2.1 Survey indices and CV of golden redfish from the spring survey 1985-2022 and the autumn survey 19962021.

Year	Spring Survey		Autumn Survey	
	Biomass	CV	Biomass	CV
1985	307926	0.095		
1986	327765	0.120		
1987	322121	0.122		
1988	253559	0.095		
1989	281117	0.122		
1990	242450	0.223		
1991	199128	0.114		
1992	160545	0.088		
1993	179275	0.130		
1994	171135	0.097		
1995	146102	0.102		
1996	195697	0.164	199793	0.248
1997	212558	0.216	120628	0.279
1998	206461	0.136	186505	0.348
1999	297090	0.143	262691	0.310
2000	221279	0.176	141940	0.200
2001	192724	0.176	177456	0.155
2002	250420	0.173	192813	0.150
2003	333901	0.161	199450	0.159
2004	326868	0.236	220308	0.241
2005	310635	0.129	229013	0.240
2006	257010	0.157	279290	0.335
2007	339778	0.224	219951	0.252
2008	247895	0.154	288149	0.244
2009	302204	0.253	294028	0.282
2010	383407	0.245	227335	0.171

Year	Spring Survey		Autumn Survey	
	Biomass	CV	Biomass	CV
2011	401358	0.235		
2012	461921	0.204	343115	0.225
2013	457451	0.177	317325	0.156
2014	402773	0.174	431369	0.232
2015	406150	0.281	360722	0.173
2016	615712	0.313	401135	0.279
2017	507058	0.205	428351	0.187
2018	497092	0.210	342467	0.195
2019	410550	0.158	383532	0.233
2020	411320	0.206	244099	0.159
2021	441154	0.194	269053	0.199
2022	378907	0.177		

Table 19.2.2 Golden redfish in 5.a. Age disaggregated indices (in millions) from the autumn groundfish survey 1996-2021. The survey was not conducted in 2011.

Year/Age	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
1	0.3	1.0	3.6	3.3	0.8	0.4	0.1	0.0	0.0	0.1	0.2	0.1	0.0	0.1	0.0	
2	2.4	0.2	1.5	3.3	1.7	1.0	0.9	0.5	0.2	0.1	0.6	1.2	0.3	0.3	0.0	
3	0.7	2.2	0.9	3.3	1.4	1.9	1.5	1.1	1.0	0.2	0.7	1.2	2.5	0.4	1.7	
4	1.6	1.6	2.3	1.5	1.6	2.4	6.1	1.1	1.8	1.0	0.5	1.1	2.7	4.4	0.3	
5	8.3	2.2	0.9	4.7	1.2	5.4	5.8	12.3	3.3	4.2	5.0	2.1	4.1	12.0	4.3	
6	40.0	6.9	3.5	2.8	7.9	2.1	11.8	17.7	28.6	4.8	6.8	10.4	7.9	11.6	14.2	
7	11.3	22.5	16.6	10.5	6.7	10.8	3.3	38.2	36.7	39.7	15.6	26.0	39.2	13.9	15.1	
8	19.1	14.3	58.2	47.2	6.4	10.9	26.9	9.9	65.4	44.9	81.9	35.8	75.1	73.9	23.4	
9	15.1	13.0	22.4	99.9	26.2	7.1	11.2	48.5	21.0	62.7	81.5	76.6	67.9	96.4	54.4	
10	28.9	11.1	26.1	43.7	95.0	17.3	16.6	12.7	45.6	24.9	85.7	37.4	106.4	58.7	69.0	
11	102.7	17.6	18.9	20.7	11.5	111.2	32.0	17.0	19.3	44.2	26.3	36.1	63.2	100.9	32.5	
12	16.2	67.8	19.1	16.8	14.2	23.6	116.3	39.7	13.4	19.6	37.5	19.0	55.1	45.9	57.4	
13	10.1	6.2	104.5	20.8	7.9	23.6	20.0	111.3	26.6	15.4	18.0	23.8	13.5	42.9	28.6	
14	16.8	5.3	10.1	147.1	8.0	7.9	11.5	12.4	103.9	26.8	15.1	8.2	18.2	10.2	19.6	
15	33.9	7.2	7.6	6.0	51.4	9.2	9.8	10.8	13.6	82.1	18.3	6.8	9.1	18.3	9.1	
16	16.1	10.0	7.8	9.6	5.3	58.9	10.4	6.1	9.6	9.5	75.4	16.9	7.8	6.9	10.9	
17	1.9	6.9	14.1	10.9	2.5	4.3	45.4	7.5	6.0	6.7	8.7	49.4	13.1	6.4	4.7	
18	1.7	3.9	7.6	11.1	2.5	5.0	4.6	32.7	6.1	3.7	4.3	10.4	36.6	7.4	3.1	
19	4.3	2.0	0.5	8.4	4.6	3.6	3.0	4.5	21.6	5.0	2.8	4.5	6.2	28.4	6.6	
20	6.6	1.4	3.2	3.9	6.5	4.1	3.2	1.6	3.1	22.0	3.1	1.5	5.7	4.7	22.2	
21	1.1	0.8	2.3	2.8	1.0	3.7	3.9	1.1	1.8	2.5	17.8	4.0	2.1	2.1	3.1	
22	5.0	1.5	0.8	1.0	1.6	2.3	3.2	2.7	1.7	2.1	2.0	13.8	2.3	1.3	1.2	
23	3.9	2.4	2.2	2.1	0.4	0.3	0.8	1.1	2.5	2.4	1.7	1.3	11.0	2.0	1.6	
24	4.6	0.8	0.4	0.6	1.0	0.5	0.4	0.3	0.0	0.9	1.0	1.3	1.4	10.2	0.7	
25	3.9	2.7	1.4	2.8	0.8	0.3	0.5	0.3	1.2	1.2	1.7	0.2	0.8	0.8	5.7	
26	0.9	1.1	0.2	1.2	0.7	0.5	0.6	0.2	0.4	0.3	0.9	0.6	0.9	1.0	0.6	
27	0.9	0.2	0.9	2.9	0.5	0.8	0.3	0.3	0.0	0.1	0.9	0.3	1.2	1.3	0.4	
28	0.8	0.4	0.5	1.5	0.7	0.5	0.2	0.0	0.2	0.2	0.2	0.0	0.6	0.2	0.7	
29	0.1	0.0	0.5	1.2	0.5	0.2	0.7	0.1	0.2	0.0	0.4	0.4	0.8	1.6	0.4	
30+	0.8	1.4	3.0	1.1	1.3	2.3	1.7	1.5	1.6	2.1	1.0	0.9	1.5	1.7	2.0	
Total	360.0	214.6	341.6	492.7	271.8	322.1	352.7	393.2	436.4	429.4	515.6	391.3	557.2	565.9	393.5	

Year/Age	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0	0.4	0.3
2	0.0	0.0	0.2	0.1	0.0	0.3	0.2	0.1	0.2	0.2
3	0.1	0.0	0.3	0.6	0.0	0.3	0.4	0.4	1.0	0.2
4	1.4	0.2	0.1	0.3	1.8	0.2	0.1	0.8	0.7	0.6
5	4.1	1.0	0.8	0.1	0.3	1.6	0.2	1.5	1.3	1.3
6	3.1	4.1	1.8	1.2	0.8	1.3	3.0	0.9	0.8	2.5
7	23.5	3.0	12.8	7.6	3.9	1.6	2.5	15.3	0.7	1.3
8	70.3	41.8	24.6	28.3	29.1	10.4	2.0	7.8	10.9	1.6
9	60.6	84.8	96.9	33.1	63.8	38.1	5.9	7.4	3.9	12.4
10	62.9	56.3	151.8	86.4	48.1	93.8	36.7	20.3	7.4	7.0
11	103.8	41.3	90.8	100.7	87.5	56.9	72.1	46.8	18.4	9.0
12	74.2	68.6	69.7	52.9	97.2	95.7	58.4	91.5	41.0	30.4
13	43.3	47.5	67.5	47.6	54.3	87.8	65.7	58.7	39.1	35.9
14	39.1	26.5	50.4	41.7	45.3	41.9	54.9	62.7	24.3	48.7
15	19.6	31.7	27.0	40.3	35.8	27.4	27.3	45.4	39.0	14.9
16	16.7	18.7	26.6	21.1	31.9	28.8	20.2	36.1	25.7	36.4
17	6.1	12.8	17.1	20.0	20.3	35.6	21.9	18.7	10.5	23.2
18	5.9	7.2	12.3	10.0	22.1	17.8	21.1	21.7	12.1	13.1
19	3.9	5.2	6.0	10.0	16.1	14.7	12.9	22.1	12.0	10.3
20	3.9	4.5	5.9	9.9	8.9	16.8	11.3	13.7	11.1	10.8
21	3.5	4.8	4.8	3.3	3.0	11.5	6.0	14.7	6.9	12.4
22	18.3	2.4	3.6	2.5	3.9	4.8	10.3	12.3	4.6	9.2
23	2.9	18.2	3.4	2.1	3.7	6.1	6.9	7.2	4.1	8.4
24	2.0	2.6	12.7	1.1	2.8	4.8	2.8	3.7	3.3	5.6
25	1.2	1.2	1.5	13.1	3.4	2.9	2.6	1.3	2.5	4.4
26	1.7	1.1	0.9	1.5	15.0	2.6	2.9	2.0	1.8	2.7
27	7.5	0.8	0.9	1.4	1.0	13.9	2.6	1.3	1.9	1.5
28	0.4	8.7	0.5	1.6	1.0	1.7	11.5	1.7	0.8	0.8
29	0.4	0.5	3.3	1.0	0.9	1.8	1.5	10.4	1.3	2.7
30+	2.1	3.5	2.6	6.9	6.7	7.9	7.5	5.3	9.6	14.8
Total	582.5	499.2	696.9	546.3	608.9	629.0	472.0	531.8	297.4	322.6

Table 19.3.1 Official landings (in tonnes) of golden redfish, by area, 1978-2021 as officially reported to ICES. Landings statistics for 2021 are provisional.

Year	Area				Total
	5.a	5.b	6	14	
1978	31300	2039	313	15477	49129
1979	56616	4805	6	15787	77214
1980	62052	4920	2	22203	89177
1981	75828	2538	3	23608	101977
1982	97899	1810	28	30692	130429
1983	87412	3394	60	15636	106502
1984	84766	6228	86	5040	96120
1985	67312	9194	245	2117	78868
1986	67772	6300	288	2988	77348
1987	69212	6143	576	1196	77127
1988	80472	5020	533	3964	89989
1989	51852	4140	373	685	57050
1990	63156	2407	382	687	66632
1991	49677	2140	292	4255	56364
1992	51464	3460	40	746	55710
1993	45890	2621	101	1738	50350
1994	38669	2274	129	1443	42515
1995	41516	2581	606	62	44765
1996	33558	2316	664	59	36597
1997	36342	2839	542	37	39761
1998	36771	2565	379	109	39825
1999	39824	1436	773	7	42040
2000	41187	1498	776	89	43550
2001	35067	1631	535	93	37326
2002	48570	1941	392	189	51092
2003	36577	1459	968	215	39220
2004	31686	1139	519	107	33451

Year	Area				Total
	5.0	5.b	6	14	
2005	42593	2484	137	115	45329
2006	41521	656	0	34	42211
2007	38364	689	0	83	39134
2008	45538	569	64	80	46251
2009	38442	462	50	224	39177
2010	36155	620	220	1653	38648
2011	43773	493	83	1005	45354
2012	43089	491	41	2017	45633
2013	51330	372	92	1499	53279
2014	47769	202	60	2706	50743
2015	48769	270	44	2562	51645
2016	54036	179	50	5442	59707
2017	50119	1418	93	4501	56141
2018	48014	1129	80	4004	53227
2019	44746	1119	101	2665	48530
2020	40688	1304	100	4105	46197
2021 ${ }^{1)}$	39616	178	100	3532	43426

[^4]Table 19.3.2 Golden redfish in 5.a. Observed catch in weight (tonnes) by age and years in 1995-2021. It should be noted that the catch-at-age results for 1996 are only based on three samples, which explains that there are no specimens older than 23 years.

Year/Age	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
7	46	0	33	24	6	38	125	127	191	226	227	176	135	215	103	60	138	68	30	235
8	321	389	226	280	342	62	143	884	201	855	755	987	446	1057	936	359	558	612	555	475
9	1432	867	481	586	1592	825	402	736	1312	501	1877	2134	1727	2164	1689	2218	1626	1603	2197	1752
10	8598	3887	1039	1193	1252	4180	1653	808	1080	2107	1496	3605	2442	5006	3059	2725	4772	3444	3886	6176
11	2570	9575	2708	1118	1843	1843	7768	3192	1160	828	3093	2017	3319	3997	4964	2786	5699	6725	5952	6751
12	1286	2170	11609	3221	2521	2224	1810	10955	3863	989	1899	2789	1911	4682	4457	4921	4899	7345	9488	5807
13	3616	1354	2828	12425	2447	1665	1930	3012	9576	2017	1366	1624	3068	2297	3430	3895	6235	4021	6896	5809
14	5787	1523	1366	2068	15536	2329	1243	2548	2304	8612	3021	1275	1050	2819	1848	2740	3772	4721	4032	4776
15	6229	4293	3106	2020	1242	14598	826	1805	1932	2148	11840	2818	955	1546	2008	1378	2501	2668	4466	3061
16	1833	5033	3579	2394	1250	1752	11487	2998	1202	1656	2073	10318	2168	1067	1247	1201	1309	1525	3043	2538
17	912	954	2968	3404	1795	1170	515	11726	2231	870	1447	2074	9337	1804	681	820	981	820	1720	1921
18	395	372	869	2029	2619	1602	769	2054	6494	1381	1243	1191	1329	8188	1502	648	602	813	1205	1245
19	1244	252	616	1013	2194	2400	1025	1150	784	5065	1241	722	741	1503	6158	1086	691	492	764	464
20	1232	343	919	723	1237	2141	1684	622	390	1093	6387	956	717	966	970	4980	987	808	488	1202
21	549	1059	440	528	452	538	916	1360	585	342	387	5524	876	567	654	901	5052	627	510	438
22	674	698	534	397	211	438	386	982	840	464	456	552	4765	831	576	762	1056	3512	772	425
23	1521	790	641	426	326	283	399	697	788	599	758	226	732	4231	342	519	753	477	3298	486

Year/Age	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
24	695	0	567	660	215	63	155	352	426	528	591	396	113	382	2561	665	204	324	183	2929
25	777	0	703	536	810	408	119	270	307	239	417	457	599	254	98	2151	134	225	199	183
26	396	0	263	382	264	361	109	176	71	94	94	97	329	433	97	199	1336	237	171	195
27	372	0	135	432	592	220	265	80	74	187	253	254	345	337	199	348	77	1326	108	142
28	799	0	186	358	227	520	182	287	26	123	161	200	199	169	94	131	201	198	918	57
29	0	0	137	54	105	379	142	469	95	127	28	168	36	171	359	155	44	72	37	674
30+	230	0	388	501	745	1152	1015	1280	643	636	1484	962	1024	851	411	507	145	426	414	33
Total	41515	33558	36339	36771	39823	41188	35066	48569	36576	31688	42591	41520	38364	45537	38443	36156	43773	43088	51328	47768

Year/Age	2015	2016	2017	2018	2019	2020	2021
7	14	49	0	0	214	0	41
8	563	751	104	51	144	507	26
9	902	2717	949	212	64	288	1276
10	3154	3713	4503	2279	1227	575	766
11	7118	8111	3523	4890	4678	2185	373
12	7104	9393	7077	4812	6176	4928	2440
13	5553	6688	8748	6507	4028	4154	4056
14	5673	4705	5370	7779	5710	3148	4743
15	4774	4024	3790	4278	5127	8115	3794
16	3015	2629	3576	3243	4006	5032	5350
17	2651	2729	3012	2748	2607	2253	4801
18	1861	2013	1866	2614	2301	1545	2310
19	780	1724	1412	1282	1376	1329	1167
20	1192	663	1187	1347	1512	1564	1646
21	288	536	990	1211	1147	788	1261
22	275	350	438	629	508	970	768
23	196	223	489	496	518	522	942
24	424	241	313	277	161	600	799
25	1816	304	324	336	56	82	152
26	243	1335	148	167	184	45	443
27	214	176	1265	35	350	62	28
28	189	29	87	1663	103	122	186
29	87	25	192	26	1161	162	214
30+	682	907	756	1133	1387	1713	2030
Total	48770	54043	50117	48015	44745	40689	39616

Table 19.4.1 Results from the Gadget model of total biomass, spawning stock biomass, recruitment at age 5 (in thousands), catch and fishing mortality. All weights are in thousand tonnes.

Year	Biomass	SSB	$\mathbf{R}_{\text {(age5) }}$	Catches	F_{9-19}
1971	534085	338242	210.6	67880	0.115
1972	532312	326889	161.7	50890	0.089
1973	545411	331438	456.7	43719	0.076
1974	604345	347290	220.5	50598	0.083
1975	639480	362455	117.9	61920	0.097
1976	654476	373340	195.9	94420	0.145
1977	645558	361350	191.0	53753	0.087
1978	678240	389424	129.6	48736	0.071
1979	709833	425542	165.5	77212	0.106
1980	715593	439297	100.2	89143	0.120
1981	699854	441430	86.9	101966	0.142
1982	665192	429215	64.2	130322	0.193
1983	593378	386355	66.1	106050	0.171
1984	540066	357097	71.8	95288	0.163
1985	493226	330502	129.5	78531	0.138
1986	466558	312661	123.3	76908	0.146
1987	439463	291881	63.4	76559	0.158
1988	404205	266908	39.1	89804	0.212
1989	349457	226159	42.5	56645	0.150
1990	325284	211258	347.6	66314	0.199
1991	326320	187851	57.5	56015	0.186
1992	309854	172180	38.6	55826	0.206
1993	289910	156762	52.1	50179	0.205
1994	275205	147027	61.7	42520	0.183
1995	267797	144733	325.4	44263	0.195
1996	289841	143002	83.5	35595	0.155
1997	298610	149041	38.5	38996	0.165
1998	298230	152952	38.8	39694	0.165

Year	Biomass	SSB	$\mathbf{R}_{\text {(age5) }}$	Catches	$\mathbf{F 9 - 1 9}$
1999	295290	157102	76.5	42463	0.175
2000	291814	159403	47.5	42607	0.172
2001	283408	160947	103.2	36744	0.142
2002	290677	167273	111.8	50730	0.195
2003	285287	161447	163.6	38219	0.148
2004	301906	166336	101.6	32766	0.123
2005	316429	176691	154.3	46619	0.173
2006	326245	177413	151.7	42108	0.161
2007	347359	185875	98.4	39154	0.146
2008	362743	199321	119.8	46195	0.165
2009	375258	210288	184.1	39301	0.133
2010	408289	230741	155.3	38504	0.119
2011	439377	254843	83.2	45146	0.130
2012	450600	274185	123.6	45423	0.123
2013	468061	293834	76.1	53223	0.137
2014	467648	305377	36.3	50697	0.126
2015	459245	315360	11.0	51621	0.124
2016	440842	319575	13.3	59711	0.142
2017	409897	310673	35.9	56355	0.136
2018	382627	298542	4.5	53167	0.133
2019	349029	282338	8.2	48550	0.128
2020	317118	264207	19.1	46116	0.129
2021	286687	242926	26.2	43337	0.134
2022	258329	220056	47.2		

Table 19.4.2 Assumption and output from short term prognosis. All weights are in tonnes.

Biomass (2022)	SSB (2022)	$\mathrm{F}_{9-19}(2022)$	Landings (2022)	Biomass (2023)	SSB (2023)
258329	220056	0.128	37241	238910	200045
Basis	Total cat	223)	$\mathrm{F}_{9-19}(2023)$	Biomass 5+ (2024)	SSB (2024)
Management plan		545	0.097	229871	189588
Other catch options					
F_{0}		0	0	255771	213812
$\mathrm{F}_{\text {sq }}=\mathrm{F}_{2021}$		152	0.134	224183	184271

19.19 Figures

Figure 19.2.1 Indices of golden redfish in ICES Division 5.a (Icelandic waters) from the groundfish surveys in March 19852022 (blue line and shaded area) and October 1996-2021 (yellow lines and shaded areas). The shaded areas represent 95\% Cl.

Figure 19.2.2. Length disaggregated abundance indices (yellow area) of golden redfish from the bottom trawl survey in March 1985-2022 conducted in Icelandic waters. The blue line is the mean of total indices 1985-2022.

Figure 19.2.3. Length disaggregated abundance indices (yellow area) of golden redfish from the bottom trawl survey in October 1996-2021 conducted in Icelandic waters. The blue line is the mean of total indices 1996-2021. The survey was not conducted in 2011.

Figure 19.2.4 Age disaggregated abundance indices of golden redfish in the bottom trawl survey in October conducted in Icelandic waters 1996-2021. The survey was not conducted in 2011.

Figure 19.2.5 CPUE of golden redfish in the Faeroes spring groundfish survey 1994-2022 (blue line) and the summer groundfish survey 1996-2021 (red line) in ICES Division 5.b.

Figure 19.2.6 Length distribution (yellow area) of golden redfish in the Faeroes spring groundfish survey 1994-2022. The blue line is the mean for 1994-2022.

Figure 19.2.7 Length distribution (yellow area) of golden redfish in the Faeroes summer groundfish survey 1996-2021. The blue line is the mean for 1996-2021.

Figure 19.2.8 Golden redfish (> 17 cm). Survey abundance indices for East Greenland (ICES Subarea 14) from the German groundfish survey 1985-2020. a) Total biomass index, b) total abundance index, c) biomass index divided by size classes (17-30 cm and $>\mathbf{3 0} \mathrm{cm}$). The survey was not conducted in 2018 and 2021.

Figure 19.2.9 Golden redfish ($>17 \mathrm{~cm}$). Length frequencies for East Greenland (ICES Subarea 14) 1982-2020. The survey was not conducted in 2018 and 2021.

Figure 19.3.1 Nominal landings of golden redfish in tonnes by ICES Divisions 1978-2021. Landings statistics for 2021 are provisional.

Figure 19.3.2 Geographical distribution of golden redfish bottom trawl catches in Division 5.a 2010-2021.

Figure 19.3.3 Length distribution (grey shaded area) of golden redfish in Icelandic waters (ICES Division 5.a) in the commercial landings of the Icelandic bottom trawl fleet 1976-2021. The yellow line is the mean of the years 1976-2021.

Figure 19.3.4 Catch-at-age of golden redfish in numbers in ICES Division 5.a 1995-2021.

Figure 19.3.5 Catch curve of the 1981-2005 year-classes of golden redfish based on the catch-at-age data in ICES Division 5.a 1995-2020.

Figure 19.3.6 Length distribution of golden redfish from Faroese catches in ICES Division 5.b in 2001-2019.

Figure 19.3.7 CPUE of golden redfish from Icelandic trawlers 1978-2021 where golden redfish catch composed at least 50% of the total catch in each haul (black line), 80% of the total catch (red line) and in all tows where golden redfish was caught (blue line). The figure shows the raw CPUE index (sum(yield)/sum(effort)) and effort.

Figure 19.4.1 Stations in the German survey in East Greenland in 2020 with an area used to compile the indices for Gadget shown. This area corresponds to giving a weight of 0.5 to the results in Figure 19.2.7.

Figure 19.4.2 Biomass index from Iceland (blue) and Greenland (red), based on weighting the German survey data in Figure 19.2.7 by 0.5. In 2019, the survey index is based on the Icelandic survey and the average of the 2017 and 2019 values from the German survey in Greenland because it was not conducted in 2018. The survey was not conducted in 2021 in Greenland waters so the value for the German survey is the same as in 2020.

Figure 19.4.3. Summary from the assessment in 2022.

Figure 19.4.4. Comparison of the current assessment (red line) and the same assessment done in 2019-2021 for the total biomass, spawning stock biomass, fishing mortality and recruitment.

Figure 19.4.5. Analytical retrospective pattern of the base run. Recruitment is at age 5 and F shows the development of ages 9-19.

Figure 19.4.6. Development of component of the objective function with time.

Figure 19.4.7. Fitted proportions-at-length from the Gadget model (black lines) compared to observed proportions in the spring survey (grey lines).

Figure 19.4.8. Fitted proportions-at-length from the Gadget model (black lines) compared to observed proportions from the Icelandic commercial catches (grey lines).

Figure 19.4.9. Fitted proportions-at-age from the Gadget model (black lines) compared to observed proportions in the autumn survey (grey lines).

Figure 19.4.10. Fitted proportions-at-age from the Gadget model (black lines) compared to observed proportions from the Icelandic commercial catches (grey lines).

Figure 19.4.11 Gadget fit to indices from disaggregated abundance by length indices from the spring survey.

Figure 19.4.12. Residuals from the fit between model and survey indices. The red circles indicate positive residuals (survey results exceed model prediction). Largest residuals correspond to $\log (\mathrm{obs} / \mathrm{mod})=1$

Figure 19.5.1. Average SSB against average fishing mortality and defined reference points.

Figure 19.5.2. Development of F_{9-19} based on $\mathrm{F}_{9-19}=\mathbf{0 . 0 9 7}$. The light grey area shows fifth and $95^{\text {th }}$ quantile and the dark areas $16^{\text {th }}$ and $84^{\text {th }}$ quantile.

20 Icelandic slope Sebastes mentella in 5.a and 14

20.1 Stock description and management units

The stock structure of Sebastes mentella in the Irminger Sea and adjacent water is described in Chapter 18 and Stock Annex (smn-con SA). The S. mentella on the continental shelf and slope of Iceland (the Iceland Sea ecoregion, which is defined to be within the Icelandic 200 NM EEZ and includes 5.a and part of Subarea 14; see figure 20.1.1) is treated as separate biological stock and management unit. Only the fishable stock (mainly fish larger than 30 cm) of Icelandic slope S. mentella is found in Iceland Sea ecoregion. The East Greenland shelf is most likely a common nursery area for the three biological stocks described in Chapter 18, including the Icelandic slope one.

20.2 Scientific data

The Icelandic autumn survey (IS-SMH) on the continental shelf and slope in Icelandic waters covers depths down to 1500 m . Data for Icelandic slope S. mentella is available from 2000-2021. No survey was conducted in 2011. A description of the autumn survey is given in Stock Annex (smn-con SA).

The total biomass and abundance indices were highest in 2000 and 2001, declined in 2002 and have been at that level since then (Table 20.2.1 and Figure 20.2.1). The biomass index of fish 45 cm and larger shows different trend where the index increased from the lowest value in 2007 to the highest level in 2021 (Figure 20.2.1). The abundance index of fish 30 cm and smaller (recruits) has been at very low level since 2007 and no fish below 30 cm was observed in the 2021 survey (Figure 20.2.1).

The length of the Icelandic slope S. mentella in the autumn survey is between 25 cm and more than 50 cm . Since 2000, the mode of the length distribution has shifted to the right or from 3639 cm in 2000 to about $42-45 \mathrm{~cm}$ in 2012-2021 (Figure 20.2.2). During this period the mean length of the fish caught has increased from 37.4 cm to 43 cm in 2021 (Figure 20.2.2). This is a large increase in mean length for a species which annual growth is around $1-2 \mathrm{~cm}$ and where very few individuals larger than 50 cm are observed. This confirms the recruitment failure.

Otoliths from the autumn survey have been sampled since 2000 and otoliths from the 2000, 2006, 2009, 2010 and 2017-2019 surveys have been age read (Figure 20.2.3). The age reading shows that the stock consists of many cohorts and the age ranges from 5 to over 50 years. The 1985 and 1990 cohorts were large and were still relatively strong in the 2019 survey. In the 2017-2019 surveys the 2003-2004 cohorts (seen as 15- and 16-years old fish) were most abundant.

20.3 Information from the fishing industry

20.3.1 Landings

Total annual landings of Icelandic slope S. mentella from the Icelandic Sea ecoregion (ICES Division 5.a and Subarea 14 within the Icelandic EEZ) 1950-2021 are presented in Table 20.3.1 and Figure 20.3.1.

During the 1950-1977 period, before the extension of the Icelandic EEZ to 200 NM , Icelandic slope S. mentella was mainly fished by West-Germany. The catches peaked in 1953 to about 87000 t but
gradually decreased to about 23000 t in 1977. After the extension of the Icelandic EEZ in 1978 the fishery has almost exclusively been conducted by Icelandic vessels. Annual landings gradually decreased from 57000 t in 1994 to 17000 t in 2001. Landings in 2001-2010 fluctuated between 17000 and 20500 t except in 2003 and 2008 when annual landings were 28500 and 24000 t , respectively. Annual landings in 2011-2021 were between 8300 and 12000 t . The total catch in 2021 were 10588 t , a slight decrease from previous year.

20.3.2 Fisheries and fleets

The fishery for Icelandic slope S. mentella in Icelandic waters is a directed bottom trawl fishery along the shelf and slope west, southwest, and southeast of Iceland at depths between 500 and 800 m (Figure 20.3.2). The proportion of Icelandic slope S. mentella catches taken by pelagic trawls 1991-2000 varied between 10 and 44% of the total landings (Table 20.3.2). In 2001-2021, no pelagic fishery occurred, or it was negligible except in 2003 and 2007 (see Stock Annex).

20.3.3 Sampling from the commercial fishery

The table below shows the 2021 biological sampling from the catch and landings of Icelandic slope S. mentella in Icelandic waters. Number of samples and hence, number of fish length measured, have decreased in recent years. The reason is reduced sampling effort of onboard observers from the Directorate of Fisheries, but the Covid-19 pandemic also played part in decreased sampling effort.

Otoliths from the commercial catch have been collected, but no systematic age reading is done.

Division/ Subarea	Nation	Gear	Landings (t)	No. samples	No. length measured
$5 . a / 14$	Iceland	Bottom trawl	10588	23	4005

20.3.4 Length distribution from the commercial catch

Length distributions of Icelandic slope S. mentella from the bottom trawl fishery show an increase in the number of small fish in the catch in 1994 compared to previous years (Figure 20.3.3). The peak of about 32 cm in 1994 can be followed by approximately 1 cm annual growth in 1996-2002. The fish caught in 2004-2021 peaked around 39-42 cm. The length distribution of Icelandic slope S. mentella from the pelagic fishery, where available, showed that in most years the fish was on average bigger than taken in the bottom trawl fishery (Figure 20.3.3).

20.3.5 Catch per unit effort

Trends in non-standardized CPUE (kg/hour) and effort (thousand hours fished) are shown in Figure 20.3.4. The figure shows CPUE and effort in all bottom trawl tows where of Icelandic slope S. mentella was caught and were more than 50% and 80% of individual tows. CPUE of tows where more than 50% and 80% gradually decreased from 1978 to a record low in 1994 . Since then, CPUE has been steadily increasing and was in 2021 highest level in the time series. From 1991 to 1994, when CPUE decreased, the fishing effort increased drastically. Since then, effort has decreased and is now at similar level as in 1980.

20.3.6 Discard

Although no direct measurements are available on discards, it is believed that there are no significant discards of Icelandic slope S. mentella in the Icelandic redfish fishery.

20.4 Management

Ministry of Food, Agriculture and Fisheries (MFAF) in Iceland is responsible for management of the Icelandic fisheries, including the Icelandic slope beaked redfish fishery, and for the implementation of the legislation in the Icelandic Exclusive Economic Zone (EEZ). There is, however, no explicit management plan for the Icelandic slope beaked redfish.

The Ministry issues regulations for commercial fishing for each fishing year (1 September-31 August), including allocation of the TAC for each of the stocks subject to such limitations. Redfish (golden redfish (Chapter 19) and Icelandic slope S. mentella) has been within the ITQ system from the beginning. Icelandic authorities gave, however, until the 2010/2011 fishing year a joint quota for these two species, and Icelandic fishermen were not required to divide the redfish catch into species. MFRI has since 1994 provided a separate advice for the species. The separation of quotas was implemented in the fishing year that started 1 September 2010.

20.5 Methods

No analytical assessment was conducted on this stock.

20.6 Reference points

There are no reference points defined for the stock.

20.7 State of the stock

The Group concludes that the state of the stock is on a low level. With the information at hand, current exploitation rates cannot be evaluated for the Icelandic slope S. mentella in Icelandic waters.

The fishable biomass index of Icelandic slope S. mentella from the Icelandic autumn survey shows that the biomass index in the 2004-2021 period has been at the same level.

CPUE indices show a reduction from highs in the late 1980s, but there is an indication that the stock has started a slow recovery since the middle of 1990s, when CPUE was close to 50% of the maximum. The CPUE index gradually increased from 1995-2021 to the highest level in the time series. It is, however, not known to what extent CPUE series reflect change in stock status of Icelandic slope S. mentella. The nature of the redfish fishery is targeting schools of fish using advancing technology. The effect of technological advances is to increase CPUE but is unlikely to reflect biomass increase.

In 2000-2008, good recruitment was observed in the German survey on the East Greenland shelf (growth of about $2 \mathrm{~cm} / \mathrm{yr}$) which is assumed to contribute to both the Icelandic slope and pelagic stock at unknown shares. The German survey and the Greenland shrimp and fish shallow water survey both show no new recruits ($>18 \mathrm{~cm}$), and no juveniles are present $(<18 \mathrm{~cm})$. This suggests that the fishery in coming years will be based on the same cohorts.

20.8 Management considerations

S. mentella is a slow growing, late maturing deep-sea species and is therefore considered vulnerable to overexploitation and advice must be conservative.

The advice is given by calendar year, though the fishing year runs from 1 September to 31 August of the following year.

20.9 Basis for advice

Icelandic slope S. mentella is considered a data limited stock (DLS) and follows the ICES framework for such (Category 3.2; ICES 2012). Below is the description of the formulation of the advice.

Based on the North Western Working Group recommendation, the stock is treated as a stock with survey data, but no proxies for MSY $B_{\text {trigger }}$ or F values are known. The IS-SMH survey index was used as an indicator of stock development. The advice is based on a comparison of the two latest index values with the three preceding values, combined with the latest catch advice This means that the catch advice is based on the survey adjusted status quo catch equation:

$$
C_{y+1}=C_{y-1}\left(\frac{\sum_{i=y-x}^{y-1} I_{i} / x}{\sum_{i=y-z}^{y-x-1} I_{i} /(z-x)}\right)
$$

where I is the survey index, x is the number of years in the survey average, $\mathrm{z}>\mathrm{x}$, and $\mathrm{C}_{\mathrm{y}-1}$ is the advice last year. In this case, $x=2$, which is the average of the two latest index values, and $z=5$ the total number of survey values.

20.9.1 rfb rule

During the meeting the $r f b$ rule (part of Category 3 MSY advice rule), which is meant to replace the usual 2-over-3 rule, was explored for the stock. The method requires abundance index, in this case from the IS-SMH, and length information.

The $r f b$ rule:

$$
A_{y+1}=A_{y} * r * f * b * m
$$

where A_{y+1} is the advice for next year, A_{y} is the advice for current year, r is the 2-over-3 ratio from the survey, f is ratio of mean length relative to target reference length, b is the biomass safeguard adjustment, and m is a tuning parameter to ensure the $r f b$ rule precautionary. The table below describes how various parameter are defined and calculated.

Component	Definition	Description and use
A_{y}		The most recent year's advised catch.
A_{y+1}	$A_{y} \times r \times f \times b \times m$	The advised catch for next year $\mathrm{y}+1$ (set on a biennial basis).
r	$\frac{\sum_{i=y-2}^{y-1}\left(I_{i} / 2\right)}{\sum_{i=y-5}^{y-3}\left(I_{i} / 3\right)}$	The rate of change in the biomass index (I), based on the average of the two most recent years of data ($y-2$ to $y-1$) relative to the average of the three years prior to the most recent two ($y-3$ to $y-5$), and termed the " 2 over $3^{\prime \prime}$ rule. $\mathrm{y}=$ assessment (intermediate) year
f	$\frac{\bar{L}_{y-1}}{L_{F=M}}$	Fishing proxy is the mean length relative to MSY proxy length. The ratio of the mean length (\bar{L}_{y-1}) in the observed catch that is above the length of first capture relative to the target reference length (mean length/target reference length). The target reference length is $L_{F=M}=0.75 L_{c}+0.25 L_{\infty}$, where. L_{c} is defined as length at 50% of modal abundance (ICES, 2018b). Moves the stock towards MSY. Follows Beverton and Holt (1957), derived by Jardim et al. (2015). Assumes $M / k=1.5$
b	$\min \left\{1, \frac{I_{y-1}}{I_{\text {trigger }}}\right\}$	Biomass safeguard. Adjustment to reduce catch when the most recent index data I_{y-1} is less than $I_{\text {trigger }}=1.4 I_{\text {loss }}$ such that b is set equal to $I_{y-1} / I_{\text {trigger }}$. When the most recent index data I_{y-1} is greater than $I_{\text {trigger }}, b$ is set equal to 1. $I_{\text {loss }}$ is generally defined as the lowest observed index value for that stock. $I_{\text {trigger }}$ may need to be adapted if the stock has been exploited only heavily or lightly in the past. Ideally, $I_{\text {trigger }}$ should correspond to $\mathrm{MSY}_{\text {Brrigger }}$.
m	[0,1]	A tuning parameter to ensure that the rfb rule is precautionary (that risk does not exceed 5\%). It does not decrease advice continuously, it adjusts the advice to a target. m is linked to von Bertalanffy k and based on generic MSE simulations. Multiplier applied to the harvest control rule to maintain the probability of the biomass declining below B im to less than 5%. May range from 0 to 1.0.
Stability clause	$\min \left\{\max \left(0.7 C_{y}, A_{y+1}\right), A\right\}$	Asymmetric conditional uncertainty cap. Limits the amount the advised catch can change upwards or downwards between years. The recommended values are $+20 \%$ and -30%; i.e. the catch would be limited to a 20% increase or a 30% decrease relative to the previous year's advised catch. The stability clause does not apply when $\mathrm{b}<1$.

The table below shows the parameter values for the Icelandic slope beaked redfish:

Parameter	Description	Value
A_{y}	Advice for 2022	7926 t
I_{A}	Average survey index 2020-2021	110930
I_{B}	Average survey index 2017-2019	111020
k	Growth parameter from von Bertalanffy	0.142
r	Index ratio $\left(I_{A} / I_{B}\right)$	1
f	$\frac{\bar{L}_{y-1}}{L_{F=M}}$	1.101
b	$I_{y-1}>I_{\text {trigger }}$	1
m	$k<0.2$	0.95
L_{∞}	From von Bertalanffy	49 cm
L_{c}	Length at 50\% of modal abundance in the catch	34.5 cm
$L_{F=M}$	$0.75 L_{c}+0.25 L_{\infty}$	39.25 cm
\bar{L}_{y-1}	Mean length from the observed catch in 2021	43.23
$I_{\text {trigger }}$	$1.4 I_{\text {loss }} ;\left(I_{\text {loss }}=63188\right.$, lowest value in the survey $)$	88460
I_{y-1}	Survey index value for 2021	138489
A_{y+1}	Advice for 2023	8296 t

The advice for 2023 would then be:

$$
A_{2023}=7926 * 1 * 1.101 * 1 * 0.95=8296 t
$$

The increase in catch advice is driven by increased mean length (growth) in the catch as all other parameters pretty much fixed.

Issues:

1. Mean length in the commercial catch has been increasing (Figure 20.3.3) and this trend can also be seen in the survey (Figure 20.2.2).
2. The reason for this increase in mean length is that there is no incoming recruitment. Since 2010 recruitment (defined as fish $<30 \mathrm{~cm}$) has been at very low levels and in the 2021 survey no fish $<30 \mathrm{~cm}$ was observed (Figure 20.2.1).
3. The total biomass index has been relatively stable in the 2002-2021 period (Figure 20.2.1), resulting in the r value fluctuating around 1.
4. With the f ratio parameter increasing annually (increased mean length in the commercial catch) with all other parameters being constant will lead to an increase in the advice.
5. Results from exploratory analytical assessment indicate that the stock has been depleted to low levels and is most likely below any possible reference points (Figure 20.12.10).

Conclusion: This method is probably not precautionary for this stock (slow-growing and latematuring) as it does not incorporate the lack of recruitment (in this case for more than 10 years).

The NWWG group recommends that the current 2-over-3 rule should be used to give advice for 2023. The stock will be benchmarked in early 2023 (prior to the 2023 NWWG meeting, see Chapter 20.11).

20.10 Regulation and their effects

There are no explicit management for Icelandic slope S. mentella. The species is managed under the ITQ system. A general description of management and regulation of fish populations in Icelandic waters is given in the stock annex for the stock (smn-con SA) with emphasis on Icelandic slope S. mentella where applicable.

Icelandic authorities gave until the 2010/2011 fishing year a joint quota for golden redfish (S. norvegicus) and Icelandic slope S. mentella. The separation of quotas was implemented in the fishing year that started September 1, 2010.

20.11 Benchmark in 2023

The stock will be benchmarked in early 2023 (WKNORTH 2023). The aim of the benchmark is to apply an analytical assessment model (Gadget) and move the stock from category 3 to category 1. Furthermore, the aim is to define reference points for the stock. In Chapter 20.12, an exploratory analytical assessment model (Gadget) is presented. Below is a table indicating issues that will be discussed during the benchmark meeting.

Issue	Problem/Aim	Work needed $/$ possible direction of solution	Data needed to be able to do this: are these available / where should these come from
pert from			

Issue	Problem/Aim	Work needed / possible direction of solution	Data needed to be able to do this: are these available / where should these come from?	Responsible expert from WG	External expertise needed at benchmark type of expertise / proposed names
		from East Greenland and the deep pelagic beaked redfish stock in the Irminger Sea).			
Biological Reference Points	No biological reference points defined	Should be defined in accordance with a new model approach		Kristján Kristinsson	
				Bjarki Elvarsson	

Other

20.12 Exploratory analytical assessment with Gadget

No analytical assessment is conducted on this stock. In this chapter, preliminary run and analysis of a Gadget model is presented. The purpose is to explore assessment methods as a potential category 1 assessment. Current assessment (based on survey trends) is not considered to capture true state of the stock.

Model settings and results from a run that was done in 2020 are presented.

20.12.1 Data used and model settings

Beaked redfish is a long-lived species, and the maximum age is set at 50 years as a plus group. Simulation begins in 1970, but the fishery started in 1950. No biological data are available prior to 1970 . The immature stock matures at age 20 at the latest. Recruitment to the immature stock component occurs at age 3. The length range in the model ranged between 10 and 55 cm (with no mature individual $<18 \mathrm{~cm}$). An overview of the data sets and model parameters used in the model study is shown in Table 20.12.1.

Below is a brief description of the data used in the model and model settings is given.

Model settings:

- The simulation period is from 1970 to 2024 using data until the end of 2019 for estimation.
- Four time-steps (3-month period) are used each year.
- The ages used were 3 to 50 years, where the oldest age is treated as a plus group (fish 50 years and older).
- Modelled length ranged between 10-60 cm.
- The length increments in the survey were $10-20 \mathrm{~cm}, 21-25 \mathrm{~cm}, 26-30 \mathrm{~cm} \ldots 41-45 \mathrm{~cm}$ and $46-55 \mathrm{~cm}$. The survey vas not conducted in 2011.
- One commercial fleet (bottom trawl). Survey catch distribution data are modelled as a separate fleet.
- Recruitment was set at age 3 .

List of parameters in the Gadget model:

- Natural mortality, $M a$, fixed at 0.05 for all ages. The value chosen was based on settings in other redfish stocks.
- Length-based Von Bertalanffy growth function, k, L_{∞}, informed by age-length frequencies.
- Parameter β of the beta-binomial distribution controlling the spread of the length distribution.
- Logistic fleet selection, $b_{f,} l_{50, f}$; one set for each of the fleets (Autumn survey or Commercial).
- Initial abundance at ages 3-50 in 1970 by $\eta_{s a}$ and $a \in\left(3,50^{+}\right)$. σ_{a}^{2}, i.e. variance in initial length at age a was fixed and based on length distributions obtained in the autumn survey. Initial lengths at age were defined based on the growth function.
- Initial guess of the logistic maturity ogive, λ, l_{50}, was estimated from survey data.
- Length at recruitment, $l_{0,}$ or: mean length (at age 3) and std. deviation in length at recruitment.
- Number of recruits by year, R_{y}, and $\mathrm{y} \in(1970,2019)$.
- Length-weight relationship μ_{s}, ω_{k}, were fixed based on the means of log-linear regression of survey data.
- Scalars, $R_{c}, I_{c, s}, F_{0}$: recruitment scalar (multiplied against all R_{y} to help optimization), initial numbers at age scalars (by stock s, multiplied against all $\eta_{s a}$ to help optimization) and
initial fishing mortality (applied to all age groups and all years, steepens initial numbers at age distribution to reflect previous effects of fishing).

20.12.2 Diagnostics

Survey indices can be variable for Icelandic slope beaked redfish due to its tendency to be influenced by a few very large hauls. The index data used as input here are the total raw numbers of fish caught (within length slices) in the entire autumn survey. Although they are expected to represent the entire stock, they are also expected to be highly variable because no treatment or data pre-processing has been performed to reduce this variability. This variability is reflected in the model's fit to the survey index data (Figure 20.12.1). In general, the model appears to follow the stock trends historically except for the $25-30 \mathrm{~cm}$ and $30-35 \mathrm{~cm}$ length groups. In these length groups model underestimates the first three years. Furthermore, the terminal estimate is not seen to deviate substantially from the observed value for most length groups, except for the largest one, $45-55 \mathrm{~cm}$, with model overestimating the abundance.

Model fits to the age-length distribution data from the autumn survey show that the fit is not particularly good for the oldest ages (30+) where the model underestimates these ages (Figure 20.12.2). Furthermore, the model overestimates certain age classes which can be followed through years, first in 2009 as 12-19 years old fish and then again in 2017 and 2018 as 20-28-yearold fish.

The main portions of the length distributions appear to have a reasonable fit (Figure 20.12.3). In some years, the overall fit to the predicted proportional length distributions in the survey is smaller to the observed for fish with the greatest density within the fished population (ca. 40-45 cm fish).

Length distributions from the commercial catch does usually show good fit (Figure 20.12.5) the fit between predicted and observed age distributions is much worse and could be related to few age readings in each time step (Figures 20.12.4).
Residual plots generally show the same trends in fits to the length data of the commercial and survey data with an underestimation of the smallest fish (roughly $<20 \mathrm{~cm}$), good estimation of the sizes contributing most to the exploitable fishery (roughly $30-50 \mathrm{~cm}$), and an underestimation of the largest fish (roughly $>50 \mathrm{~cm}$ (Figures 20.12 .6 and 20.12.7). Because inter-age and interlength correlations are not included in Gadget, some blocks of similar residuals can be seen, and are more pronounced in the length bubble plot because of its finer resolution.

20.12.3 Retrospective plots

In Figure 20.12.8, the results of an analytical retrospective analysis are presented. The analysis indicates that there was an upward revision of biomass over the first 4 years of the 5 -year peel followed by a downward revision of biomass (SSB) over the last year, and subsequently a downward then upward revision of F. Estimates of recruitment are all over the place in the beginning but are since 2000 decently stable for the first 4 years of the 5-year peel. The last year is though strange.

Growth patterns predicted by the model does not follow closely to the data of fish 10 years old and younger (Figure 20.12.9).

20.12.4 Model results

Summary of the assessment is shown in Figure 20.12.10. The spawning stock has since 1990 decreased and has since 2010 been below $B_{\lim }$ (defined as the median SSB for 2000-2005). The total biomass has also decreased and is now at similar level as the SSB indicating very few immature fish in the stock. Fishing mortality has decreased substantially from highest level in the late 1990s. Fishing mortality were relatively stable around Flim in 2013-2019, but above Fmsy. Recruitment after 2010 is record low for the time series.

The relationship between spawning stock and recruitment at age 3 is shown, with a minimum spawning stock biomass in 2019 (Figure 20.12.11). Spawning stock biomass has decreased since the 1990 with correspondent decrease in recruitment.

20.12.5 Reference points

From the Gadget model it is possible to define reference points for this stock (Table 20.12.2 and Figure 20.12.13).

Stochastic simulations show that the $\mathrm{F}_{\mathrm{mSY}}=0.06$. Blim $=169200 \mathrm{t}$ is defined as the median of SSB in 2000-2005 when the stock was stable at low levels. B_{pa} was defined as 236880 t by adding precautionary buffer to the proposed $\mathrm{Blim}^{*} 1.4$ (approximation of $169000^{*} \exp \left(0.2^{*} 1.645\right)$. The plot of the average spawning stock against fishing mortality show that $\mathrm{F}_{\mathrm{lim}}=0.08$ and F_{pa} is then $0.08 / \exp \left(1.645^{*} 0.2\right)=0.058$ (Figure 20.12.13)

20.13 References

ICES. 2012. Implementation of Advice for Data-limited Stocks in 2012 in its 2012 Advice. ICES CM 2012/ACOM 68.

20.14 Tables

Table 20.2.1 Total biomass index (tonnes) of Icelandic slope S. mentella in the Icelandic Autumn Groundfish survey 20002021. No survey was conducted in 2011.

Year	Biomass	lower 5th percentile	upper 95th percentile
2000	135994	96811	175176
2001	161733	104040	219427
2002	95059	68975	121143
2003	63188	47459	78916
2004	96465	64134	128797
2005	109196	55690	162702
2006	123018	82993	163043
2007	82035	52610	111459
2008	80011	57899	102123
2009	93653	61714	125592
2010	77800	54317	101283
2011	-	-	-
2012	74604	53402	95806
2013	69935	48552	91319
2014	103051	64473	141629
2015	107423	70788	144059
2016	80855	61363	100348
2017	125611	83265	167957
2018	122292	72196	172387
2019	85157	61456	108858
2020	90371	64687	116054
2021	131489	92831	170147

Table 20.3.1 Nominal landings (in tonnes) of Icelandic slope S. mentella 1950-2021 from the Iceland Sea ecoregion (ICES Division 5.a and Subarea 14 within the Icelandic EEZ).

Year	Iceland	Others	Total
1950	1458	36269	37727
1951	1944	45825	47769
1952	885	55554	56439
1953	658	86011	86669
1954	577	75972	76459
1955	654	52784	53438
1956	674	40047	40721
1957	558	35993	36551
1958	409	43820	44229
1959	398	40175	40573
1960	407	38428	38836
1961	307	31534	31841
1962	264	35122	35386
1963	456	38338	38794
1964	362	45414	45776
1965	473	55930	56403
1966	332	47491	47823
1967	357	47313	47670
1968	494	50892	51386
1969	486	38358	39345
1970	500	35800	36300
1971	495	34376	34871
1972	593	39874	40468
1973	794	35251	36045
1974	806	32103	32909
1975	1404	29301	30705
1976	715	28632	29346
1977	590	22427	23018
1978	3693	209	3902
1979	7448	246	7694
1980	9849	348	10197
1981	19242	447	19689
1982	18279	213	18492
1983	36585	530	37115
1984	24271	222	24493
1985	24580	188	24768
1986	18750	148	18898
1987	19132	161	19293
1988	14177	113	14290

Year	Iceland	Others	Total
1989	40013	256	40269
1990	28214	215	28429
1991	47378	273	47651
1992	43414	0	43414
1993	51221	0	51221
1994	56674	46	56720
1995	48479	229	48708
1996	34508	233	34741
1997	37876	0	37876
1998	32841	284	33125
1999	27475	1115	28590
2000	30185	1208	31393
2001	15415	1815	17230
2002	17870	1175	19045
2003	26295	2183	28478
2004	16226	1338	17564
2005	19109	1454	20563
2006	16339	869	17208
2007	17091	282	17373
2008	24123	0	24123
2009	19430	0	19430
2010	17642	0	17642
2011	11738	0	11738
2012	11965	0	11965
2013	8761	0	8761
2014	9500	0	9500
2015	9311	0	9311
2016	9536	0	9536
2017	8371	0	8371
2018	9995	0	9995
2019	8716	0	8716
2020	11375	0	11375
2021 ${ }^{1 /}$	10588	0	10588

1) Provisional

Table 20.3.2 Proportion of the landings of Icelandic slope S. mentella taken in the Iceland Sea ecoregion (ICES Division 5.a and Subarea 14 within the Icelandic EEZ) by pelagic and bottom trawls 1991-2021.

Year	Pelagic trawl	Bottom trawl
1991	22\%	78\%
1992	27\%	73\%
1993	32\%	68\%
1994	44\%	56\%
1995	36\%	64\%
1996	31\%	69\%
1997	11\%	89\%
1998	37\%	63\%
1999	10\%	90\%
2000	24\%	76\%
2001	3\%	97\%
2002	3\%	97\%
2003	28\%	72\%
2004	0\%	100\%
2005	0\%	100\%
2006	0\%	100\%
2007	17\%	83\%
2008-2021	0\%	100\%

Table 20.12.1: Overview of the likelihood data used in the model. Survey indices are calculated from the length distributions and are disaggregated (sliced) into seven groups. Number of data-points refer to aggregated data used as inputs in the Gadget model and represent the original dataset. All data obtained from the Marine and Freshwater Research Institute, Iceland.

Component name	Qarters	Year range	N	Delta 1
aldist.aut	4	$2000-2019$	1 cm	Age- length distribution
aldist.comm	All quarters	$1998-2018$	1 cm	Age- length distribution
Idist.aut	4	$2000-2019$	1 cm	Length distribution
Idist.comm	All quarters	$1976-2019$	1 cm	Length-distribution
matp.aut	4	$2000-2019$		Ratio of immature:mature by length
si.10-20.aut	4	$2000-2019$	$10-20 \mathrm{~cm}$	Survey indices
si.20-25.aut	4	$2000-2019$	$20-25 \mathrm{~cm}$	Survey indices
si.25-30.aut	4	$2000-2019$	$25-30 \mathrm{~cm}$	Survey indices
si.30-35.aut	4	4	$2000-2019$	$30-35 \mathrm{~cm}$
si.35-40.aut	4	Survey indices		
si.40-45.aut	4	4	Survey indices	
si.45-55.aut	$40-40-2019$	cm	Survey indices	

Table 20.12.1: Reference points from stochastic simulations.

Framework	Reference points	Value	Technical basis
MSY approach	MSY $\mathrm{B}_{\text {trigger }}$	236880 t	B_{pa}
	$\mathrm{HR}_{\text {MSY }}$	0.06	$\mathrm{F}_{\text {MSY }}$
	$\mathrm{F}_{\text {MSY }}$	0.06	Stochastic simulations.
Precautionary approach	$\mathrm{Blim}^{\text {lim }}$	169200 t	Median SSB for 2000-2005
	B_{pa}	236880 t	$\mathrm{Blim}_{\text {lim }}$ * 1.4
	$\mathrm{HR}_{\text {lim }}$	0.08	$\mathrm{F}_{\text {lim }}$
	$\mathrm{F}_{\text {lim }}$	0.08	Equilibrium F that will maintain the stock above $\mathrm{B}_{\text {lim }}$ with a 50% probability
	F_{pa}	0.058	$\mathrm{F}_{\text {lim }} / \exp (0.2 * 1.645)$
	$\mathrm{HR}_{\text {pa }}$	0.055	F_{pa}

20.15 Figures

Figure 20.1.1 The Iceland Sea ecoregion (in yellow) as defined by ICES. The relevant ICES statistical areas are shown.

Figure 20.2.1 Survey indices of the Icelandic slope S. mentella in the autumn survey in Icelandic waters (ICES Division 5.a and part of Subarea 14) 2000-2021. No survey was conducted in 2011. The figure shows the total biomass index, total abundance index in millions of fish, biomass index of fish 45 cm and larger and abundance index of fish $\mathbf{3 0} \mathrm{cm}$ and smaller.

Figure 20.2.2 Length distribution of Icelandic slope S. mentella in the Autumn Groundfish Survey in October 2000-2021 in Icelandic waters (ICES Division 5.a and part of Subarea 14). No survey was conducted in 2011. The blue line is the mean of 2000-2021.

Figure 20.2.3 Age distribution of Icelandic slope S. mentella from the Autumn Survey in 2000 ($\mathrm{n}=1$ 405), 2006 ($\mathrm{n}=536$), 2009 ($n=1$ 205), 2010 ($n=1$ 099), 2017 ($n=1$ 298), 2018 ($n=1568$), and 2019 ($n=1$ 176). The age class 60 are the combined age-classes of 60 years and older.

Figure 20.3.1 Nominal landings (in tonnes) of Icelandic slope S. mentella from Icelandic waters (ICES Division 5.a and Subarea 14 within the Icelandic EEZ) 1950-2021.

Figure 20.3.2 Geographical location of the Icelandic slope S. mentella catches ($\mathrm{t} / \mathrm{nmi}^{2}$, coloured area) in Icelandic waters (ICES Division 5.a and Subarea 14 and within the Icelandic EEZ) 2010-2021 as reported in logbooks (rep. catch) of the Icelandic fleet using bottom trawl. The black solid line indicates the boundaries of the Icelandic EEZ.

Figure 20.3.3Length distributions of Icelandic slope S. mentella from the Icelandic landings taken with bottom trawl (blue line) and pelagic trawl (red line) in Icelandic waters (ICES Division 5.a and Subarea 14) 1991-2020.

Figure 20.3.4 Non-standardized CPUE (kg/hour) and effort (thousand hours fished) of Icelandic slope S. mentella from the Icelandic bottom trawl fishery in Icelandic waters (ICES Division 5.a and Subarea 14 within the Icelandic EEZ) 19782020. The black lines show CPUE/effort where more than the 50% of the catch in individual tows were Icelandic slope S. mentella, the red lines where more than 80% of the catch in individual tows were Icelandic slope S. mentella, and the blue lines all tows were Icelandic slope S. mentella was caught.

Figure 20.12.1. Icelandic slope beaked redfish. Autumn survey index number fits (lines) to data (points). The green line indicates the difference between model and data values in the last year.

Figure 20.12.2. Icelandic slope beaked redfish. Comparison of autumn survey age distribution fits between model fits (black) and data (grey). Labels indicate the year and step of data sampled and model comparison.

Figure 20.12.3. Icelandic slope beaked redfish. Comparison of autumn survey length distribution fits between model fits (black) and data (grey). Labels indicate the year and step of data sampled and model comparison.

Figure 20.12.4. Icelandic slope beaked redfish. Comparison of commercial sample age-length distribution fits between model fits (black) and data (grey). Labels indicate the year and step of data sampled and model comparison.

Figure 20.12.5. Icelandic slope beaked redfish. Comparison of commercial sample length distribution fits between model fits (black) and data (grey). Labels indicate the year and step of data sampled and model comparison.

Figure 20.12.6. Icelandic slope beaked redfish. Bubble plots illustrating age-length distribution residuals between model predictions and data. Red bubbles indicate positive residuals (underestimation); blue bubbles indicate negative residuals (overestimation).

Figure 20.12.7. Icelandic slope beaked redfish. Bubble plots illustrating length distribution residuals between model predictions and data. Red bubbles indicate positive residuals (underestimation); blue bubbles indicate negative residuals (overestimation).

Figure 20.12.8. Icelandic slope beaked redfish. Retrospective plots illustrating stability in model estimates over a 5-year 'peel' in data. Results of spawning stock biomass, fishing mortality F, and recruitment (age 3) are shown.

Figure 20.12.9. Icelandic slope beaked redfish. Growth estimations by fleet from the Gadget model. Yellow bands and the black line show where the mean and 95% confidence intervals of the of model predictions, whereas the points and error bars show the mean and 95% confidence intervals of the data.

Figure 20.12.10. Icelandic slope beaked redfish. Summary from the assessment 2020.

Figure 20.12.11. Icelandic slope beaked redfish. Plots of the estimated recruitment age 3 versus spawning stock biomass (lagged by 1 year).

Figure 20.12.12. Icelandic slope beaked redfish. Yield-per-recruit (left) and average SSB against average fishing mortality (right). Also shown are the defined reference points.

Figure 20.12.13. Icelandic slope beaked redfish. Proposed management plan.

21 Shallow Pelagic Sebastes mentella

This section was not updated during the NWWG meeting in May 2022 due to the temporary suspension, beginning 30 March 2022, on all Russian Federation delegates, members, and experts from participation in ICES activities.

Please see the NWWG 2021 report for most updated information on this stock:
ICES. 2021. Northwestern Working Group (NWWG). ICES Scientific Reports. 3:52. 766 pp. https://doi.org/10.17895/ices.pub. 8186

22 Deep Pelagic Sebastes mentella

This section was not updated during the NWWG meeting in May 2022 due to the temporary suspension, beginning 30 March 2022, on all Russian Federation delegates, members, and experts from participation in ICES activities.

Please see the NWWG 2021 report for most updated information on this stock:
ICES. 2021. Northwestern Working Group (NWWG). ICES Scientific Reports. 3:52. 766 pp. https://doi.org/10.17895/ices.pub. 8186

23 Beaked redfish (Sebastes mentella) in Division 14.b, demersal (Southeast Greenland)

23.1 Stock description and management units

See Section 18 for description of the stock structure of S. mentella in the Irminger Sea and adjacent waters. ICES has advised separately for S. mentella found demersal in ICES 14.b since 2011 and will do so until all available information on stock origin in this area is analysed and a new procedure is agreed upon.

23.2 Scientific data

Indices were available from three surveys in 14.b. A German survey directed towards cod in Greenlandic waters ($0-400 \mathrm{~m}$) (Fock et al., 2013), the Greenland deep-water survey ($400-1500 \mathrm{~m}$) targeting Greenland halibut and the Greenland shrimp and fish survey in shallow water ($0-$ 600 m), which has been conducted since 2008 (Christensen and Hedeholm, 2018). The Greenland shrimp and fish survey is used in the assessment but was not conducted in 2017, 2018, 2019 and 2021. The Greenland halibut survey has been conducted since 1998 but not since 2016 due to lack of research vessel. The German survey on the slope in 14.6 has since 1982 been covering the slopes in East Greenland waters but was not conducted in 2018 and 2021. This survey operates at depths of 400 m and shallower and does therefore not cover the full depth distribution of the species. The German survey was re-stratified in 2009 (see Stock Annex). Due to the lack of both Greenland and German survey, no new data was collected in 2021.

In the german survey, a large number of Sebastes spp. smaller than 17 cm was found from 19931998 (data not shown). This coincided with a large increase in the amount of $17-30 \mathrm{~cm}$ large S. mentella from 1995-1998 (Figure 23.2.1). From 1998 to 2003 the total biomass increased as a result of many small fish ($<17 \mathrm{~cm}$) in the German survey, followed by a few years of high biomass estimates for S. mentella from 2003-2009. This increase occurred in one particular stratum only (i.e. stratum 8.2). From 2009 onward, a declining trend in both biomass and abundance was observed, with 2020 representing the lowest biomass for the last 20 years (Figure 23.2.). Since 2013 and onwards, both biomass and abundance indices have been very low. In the same period, the amount of small fish $(17-30 \mathrm{~cm})$ has steadily declined causing an increase in the amount of larger fish (Figure 23.2.1) until the overall biomass declines in 2010 and 2011. The depletion of the small size group has led to a progressive decline in the juvenile biomass index to a current low level, and no new recruits have been seen in the survey since 2012. This pattern is also reflected in the abundance estimates (Figure 23.2.1). The modal size of the adult fish has increased from 25 cm in 2001 to around 37 cm in 2010 but declined slightly in 2011. The distribution has become flat with no clearly defined mode in 2013-2019 (Figure 23.2.2).
The Greenland deep-water survey has since 1998, except in 2001, surveyed the slopes of East Greenland from 400 to 1500 m with the majority of stations deeper than 600 meters targeting Greenland halibut. The biomass indices in the Greenland deep-water survey peaked in 2012 and has been at a relatively constant level since 2010 (Figure 23.2.3). The overall length distribution from the entire area in 2013 and 2014 shows a mode around 31 cm . In 2015 and 2016, the mode increased slightly (Figure 23.2.4). The survey was aborted in 2017 due to vessel breakdown and in 20182021, there was no available research vessel for the survey. Therefore, no new data is available since 2016. The survey has not been used for calculating biomass index as the depth range is outside the depths of the targeted fishery.

The Greenland shrimp and fish survey in shallow water in East Greenland started in 2007, and surveys the East Greenland shelf and shelf edge at depths between 0-600 m. However, 2007 was mostly exploratory and is not reported. In general, survey estimates of schooling fish are associated with large uncertainties due to their patchy distribution. This, in conjunction with the relatively short time-series, makes overall conclusions regarding stock trends based solely on this survey tentative. It is however the survey with the best coverage of redfish depth distribution. The 2016 biomass estimate for S. mentella increased from 61 kt to 164 kt from 2015 to 2016 (Figure 23.2.5). However, the estimate has large uncertainties since one haul accounted for 70% of the total biomass estimate. The haul was taken in area Q2 close to Icelandic waters. In 2017, 2018 and 2019, surveys have been missing but in 2020 a full survey revealed the lowest biomass indices $(18.4 \mathrm{kt})$ throughout the time series (Figure 23.2.5). The 2020 Greenland survey was carried out day and night, which is different from previous years where hauls were made only during daytime (08.00-20:00 UTC). In 2021, there was no survey due to lack of research vessel.

The German survey was in 2017 limited due to bad weather and only 46 out of an average of 75 stations were covered on the Greenland East coast. However, the most important Redfish strata were surveyed with a reasonable coverage, why the result is expected to be valid. In 2017 and 2019, the declining trend documented in the earlier years continues. The accuracy of the surveys as an indicator of recruitment is not known but recruitment is expected to be poor, and the abundance of juveniles is at the lowest level in the 30-year time-series. An experimental fishery in 2019 partly focusing on juvenile redfish confirmed that the abundance of juvenile redfish continues to be at a very low level (Christensen, 2020b). However, in 2020, juveniles are more abundant in the Greenland survey than they have been for nearly a decade (Figure 23.2.5).

23.2.1 Landings

From the Greenland and German surveys, it is certain that the demersal redfish found on the Greenland slope is a mixture of S. norvegicus and S. mentella. Only negligible amounts are considered to be Sebastes viviparous. Before 2016, S. mentella dominated the catches, but the proportion started to decline in 2014 (Figure 23.3.1.1) and in 2016, the split changed and for the first time S. norvegicus was dominating (Figure 23.3.1.1). In 2019, S. mentella was again dominating the catches estimated from the logbooks. In 2020, the proportion shifted back again and S. norvegicus dominated. The shift was supported by Greenland shallow water survey (79:31), logbooks ($60: 40$) as well as samples from the commercial fishery (71:29) analysed at Greenland Institute of Natural Resources. In 2021, no survey data was available for evaluating and neither was samples from the commercial fishery available for analysis at the Greenland Institute of Natural Resources. Like previous year, the proportion according to logbooks in 2021 was that S. norvegicus dominated S. mentella (78:22). Prior to 1974, all catches were reported as S. norvegicus and the split was determined by working groups on a yearly basis.

Catch depth has in the later years declined compared to earlier. In 2016, the catches were taken at a depth of 300-400 m. In 2017 and 2018 it declined even further and in 2019 an in-creasing part of the catch was taken down to 300 m . In 2011-2012 were caught at 350-400 m (Figure 23.3.1.2).

Total annual landings of demersal S. mentella from Division $14 . \mathrm{b}$ since 1974 are presented in Table 23.3.1.1. From 1976-1994 annual landings were at a relatively high level with landings ranging between 2000 and 20000 tonnes with a very high peak at nearly 60000 t in 1976. This fishery was ended abruptly in 1995, due to large amounts of very small redfish in the catches. From 1998-2002 the landings ranged from 1000 to 2000 tonnes and from 2003 to 2008 landings remained at lower levels (<500 tonnes). In 2009, an exploratory fishery landed 895 tonnes of S. mentella. This was a large increase compared to 2008 and for the first time in ten years the fishery was limited by a TAC. Over the past 10 years, there has been a decreasing trend in landings of demersal S. mentella with the lowest level of 1302 tonnes being reached in 2021.

In 2010, a quota on 5000 tonnes demersal redfish (mixed S. mentella and S. norvegicus) was initially given and of these, 400 tonnes were allocated to the Norwegian fleet. After this amount was fished, a research quota of 1000 tonnes were given to a Greenland vessel. Since 2010, the catches have been around 8300 tonnes (S. mentella and S. norvegicus combined) (Figure 23.3.1.3). In 2017, total catches decreased to 7568 tonnes and in 2018 the catch de-creased further to 5976 tonnes. However, in 2019 a notable increase in the catches occurred and the total catch was 6663 tonnes (Figure 23.3.1.3), while it dropped to 5782 tonnes and 4825 tonnes in 2020 and 2021, respectively. Since 2011 the mixed TAC has been 8500 tonnes until 2017 where the TAC started to decrease. In 2019, the mixed TAC was 5274 tonnes and in 2020 it was 5271 tonnes.

In 2010, there was no jurisdiction that clearly delimited the pelagic stocks from the redfish found on the shelf. A few vessels benefitted from this by fishing their pelagic quota on the shelf (2179 tonnes) making catches on the shelf exceed the TAC. This led to the introduction of a "redfish line" that separates the demersal slope stock from the pelagic stocks (see stock annex).

23.2.2 CPUE and bycatch CPUE

A redfish bycatch CPUE was introduced at the redfish 2012 benchmark (WKRED). This is based on catches from the Greenland halibut directed fishery and include both S. mentella and S. norvegicus (Christensen 2020a), which covers redfish distribution better than data from the redfish directed fishery and covers a longer period (1999-2019). The Greenland halibut fishery is not as spatially restricted as the redfish fishery; thus, it will not be as sensitive to local changes as the redfish directed CPUE. The CPUE has very low values in the initial two years of the time-series, but following an increase in 2001, values have remained at the same level until 2006 after which a decline followed. Since 2011, the CPUE have been relatively stable with minor fluctuations (Figure 23.3.2.1). The increase in CPUE in 2016 and the decline in 2017 is reflected in the biomass index estimated based on the shallow water surveys in the same years (German).

The CPUE from the redfish directed fishery showed a decline from 2010 to 2021 (Figure 23.3.2.2). Until 2015, the fishery takes place in a geographically limited area between $63.5^{\circ} \mathrm{N}$ and $65^{\circ} \mathrm{N}$, where approximately 90% of the catches are taken. Thereafter it also include more southern areas (Figure 23.3.3.1). Accordingly, the CPUE series can only be used as an index on local stock development. Both the Greenland shallow water survey ($0-600 \mathrm{~m}$) and the German survey $(0-400 \mathrm{~m})$ show that the main fishing area coincides with the area of highest overall abundance.

23.2.3 Fisheries and fleets

The fishery for S. mentella on the slopes in $14 . b$ is mainly conducted with bottom trawl, only about 1% were caught with longlines. The area where S. mentella is caught, is closely related to the area where fishery for Greenland halibut and cod takes place (Figure 23.3.3.1). The majority of the catches are taken at depths from 300 m to 400 m (Figure 23.3.1.2).

The directed fishery was stopped in 1995, but in 1998 Germany restarted a directed fishery for redfish with annual landings of approximately 1000 tonnes in 1998-2001 increasing to 2100 tonnes in 2002 (Bernreuther et al., 2013). Samples taken from the German fleet indicated that substantial quantities of the redfish caught, especially in 2002, were juveniles, i.e. fish less than 30 cm . There was very little demersal redfish fishery in 14.b in 2003-2004 (less than 500 tonnes). This continued in 2005-2008 and most S. mentella were caught as bycatch in the Greenland halibut fishery.

After the German fleet stopped fishing in 2002 the majority of the catches have been taken by the British, Faroese, Norwegian and Greenland fleet. The British fishery took place from 2001-2005
and since 2006 only Greenland, Norway and Germany have had any significant catches (Table 23.3.3.2).

In 2009, three Greenland vessels started a fishery targeting demersal redfish. Each was given an explorative quota of 250 tonnes. This fishery was very successful and led to an increased fishery in 2010 (seven boats), 2011 (15 boats) and 2012 (21 boats). However, in 2012, 95% of the catch was taken by six vessels and 97% by five vessels in 2013.

On the steep slopes very little horizontal distance separates the distribution of cod, redfish and Greenland halibut (Figure 23.3.3.2). The part of the fleet with both quotas for redfish and Greenland halibut takes advantage of this by shifting between very short hauls targeting redfish and long hauls directed to Greenland halibut. Thereby avoiding time where the vessel is not fishing due to processing of the catch.

23.2.4 Bycatch/discard in the shrimp fishery

To minimize bycatch of fish species in the fishery for shrimp the trawls have since 2002 been equipped with grid separators (G.H., 2001). However, the 22 mm spacing between the bars in the separator allows small fish to enter the codend. In a study on the amount of bycatch in the shrimp fishery the mean length of the redfish that entered the codend was $13-14 \mathrm{~cm}$. The same study also documented that redfish by weight accounted for less than 1% of the amount of shrimp that were caught (Sünksen, 2007). Coincident with the introduction of these separator grids the amount of juvenile redfish caught by the shrimp fishery dropped from annual 100200 tonnes to a lower level near 100 tonnes. Since 2006, limited shrimp fishery has taken place in ICES 14.b and the current level of bycatch must be considered negligible and have for the last two years been zero (Table 23.3.4.1). From 1999-2009, the fishery started in April-May due to poor winter conditions such as ice and wind that prevents fishing. Only in 2000 and 2002, the fishery started already in February (Table 23.3.4.2). Since 2010, the fishery has started already in January and in 2018 February was the month with the highest landings. In 2019, the fishery was relatively high already in March, but most of the catch was fished in May and June. In earlier year, June and July were the most important months today only catches in July are at the same level as earlier in the year (Table 23.3.4.2). The depth distribution of cod and redfish overlap (Figure 23.3.3.2) and therefore the fishery for redfish led to a bycatch of cod on 96 tonnes in 2013. The vessels are allowed a 10% bycatch of cod.

23.3 Methods

No analytical assessment was conducted.

23.4 Reference points

As described in Section 1.3, MSY proxy reference points needs to be defined for the Greenlandic S. mentella demersal stock. ICES suggested four methods for this purpose, and all methods were tested on the stock. The conclusion was that based on the caveats listed below and the declines seen in surveys, especially on recruitment over the past decade, the determination of the stock status in relation to reference points should not be based solely on any of the indicators presented here, but rather a holistic view combining surveys and expert judgment with the results presented in Hedeholm and Christensen (2017).

The caveats to consider in relation to the Greenlandic S. mentella demersal stock when concluding on the length-based indicators and the SPiCT model.

- If there are few year classes in the fishery, which is current for the present stock, the effect of overfishing the stock is more likely observed on biomass rather than length, especially on a slow growing species. There is no ageing done in this stock, why it is not possible to see if this is the case.
- Sebastes mentella is a slow growing species, thus the effect of the fishery on length may be very subtle. The relatively short time-series on length distributions available for this analysis and the limited number of samples per year entails that any effect is easily missed.
- The schooling behaviour of S. mentella in connection with the points made above means that the fishery can target a diminishing stock in a small area without seeing any effect on the length distribution. Indeed, the fishery is conducted with limited spatial extent.
- Several redfish stocks are present on the East Greenland slope, but in unknown quantities. Any changes in length could just as well be related to migration, timing of sampling, and latitude of sampling as to actual stock changes.
- Based on the three length-based methods the exploitation pattern appears reasonable. However, results from all three methods should be interpreted with some caution due to lack of knowledge of important input parameters (Linf, M and k) for the specific stock (values from Fishbase are used).

23.5 State of the stock

The Greenland shrimp and fish survey in shallow waters and the German groundfish survey are the two main data sources for biomass indices of S. mentella. In addition, the Greenland deep water survey aimed for Greenland halibut is available for the deeper part of S. mentella distribution. The different survey's time series suffer from periods with no surveys (i.e. the Greenland survey) and insufficient depth coverage of the species distribution (i.e. German survey). CPUEs from the fishery is also available and shows relatively stable trends. CPUE are however considered less reliable as biomass indicator since the species tends to have a schooling behaviour, which enables the fishery to keep constant catch rates even when stock biomass is decreasing.

The shallow Greenland and German surveys show a decline in the S. mentella biomass since 2010 to record low levels in recent years (figures 23.2.1 and 23.2.5). In both surveys, there have been an absence of recruits (Sebastes spp.) since 2013 although signs of improved recruitment were detected in 2020 in the Greenland survey. Also, the CPUE in the redfish directed fishery has vaguely declined since 2010. Length distributions of survey and from samples of the commercial fishery confirm the low abundance of incoming fish to the fishery in coming years.

The signals from surveys and the fishery suggest a low stock and also that recruitment has been low for several years. Given the slow growth and late maturation of this species, the present exploitation is of concern. A complete cease of the fishery is therefore the only measure in order to evaluate any stock rebuilding in the coming years. A rebuilding will require more incoming year-classes to the stock.

The advice for demersal S. mentella in east Greenland has is based on the ICES category 3, Data Limited Stock approach (DLS) including biomass indices from the Greenland shrimp and fish survey. Due to the lack of a survey estimate from the Greenland Shallow Water survey in 20172019, the advice for 2020 was given based on a category 5 approach. In 2021 and 2022, the advice follows the ICES framework for category 3 stocks with extremely low biomass (method 3.1.4), wherefore the advice is 0 catch in 2023. The stock will be benchmarked in 2024.

23.6 Management considerations

S. mentella is a slow growing, late maturing deep-sea species and is therefore considered vulnerable to overexploitation and advice must be conservative. The fact that the fishery is targeting a localized aggregation of fish is cause for concern as is the absence of juveniles in the area. Given the biology of the species and the uncertainty in the biomass trend, any advice should consider this a hot spot fishery as it is potentially detrimental to this local and potentially important aggregation of larger fish. The fishery should still be at a low level involving few vessels. This should be maintained until the effect of the fishery can be clarified.

23.7 References

Bernreuther, M., Stransky, C. and Fock, H. 2013. German commercial catches of demersal redfish (Sebastes mentella and Sebastes marinus) on the East Greenland shelf (ICES Division XIVb) up to 2012. ICES NWWG WD\#11, 10 pp.

Christensen H.T. and Hedeholm R. 2018. Greenland Shrimp and Fish Survey Results for Redfish in East Greenland Offshore Waters in 2017. ICES NWWG WD\#11.

Christensen H.T. 2020a. The fishery for demersal Redfish (S. mentella) in ICES Div. 14.b in 2019. ICES NWWG WD\#08.

Christensen H.T. 2020b. Forsøgsfiskeri efter rødfisk i Østgrønland 2019 (in Danish). Report from Greenland Institute of Natural Resources.

Fock, H., C. Stransky and M. Bernreuther. 2013. Abundance and length composition for Sebastes marinus L., deep sea S. mentella and juvenile redfish (Sebastes spp.) off Greenland-based on groundfish surveys 1985-2012. ICES NWWG WD\#30.
G.H. 2001. Hjemmestyrets bekendtgørelse nr. 39 af 6 . december 2001 om regulering af fiskeri ved tekniske bevaringsforanstaltninger. Http://www.nanoq.gl/gh.gllove/dk/2001/bkg/bkg_nr_39-2001_dk.htm

Sünksen, K. 2007. Discarded bycatch in shrimp fisheries in Greenlandic offshore waters 2006-2007. NAFO SCR doc. 07/88.

23.8 Tables

Table 23.3.1.1 Nominal landings (tonnes) of demersal S. mentella 1974-2021 ICES division 14.b.

Demersal S. mentella			
1974	0	2013	6761
1975	4400	2014	4608
1976	59700	2015	5977
1977	0	2016	3061
1978	5403	2017	3027
1979	5131	2018	1972
1980	10406	2019	3998
1981	19391	2020	1677
1982	12140	2021	1302
1983	15207		
1984	9126		
1985	9376		
1986	12138		
1987	6407		
1988	6065		
1989	2284		
1990	6097		
1991	7057		
1992	7022		
1993	14828		
1994	19305		
1995	819		
1996	730		
1997	199		
1998	1376		
1999	853		
2000	982		
2001	901		

Table 23.3.3.2 Landings (tonnes) of demersal redfish (S. mentella and S. norvegicus) caught in ICES 14.b by nation.

Year	DEU	ESP	EU	FRO	GBR	GRL	ISL	NOR	POL	RUS	UNK	Sum
1999											853	853
2000	884		11			19		65			3	982
2001	782				11	9		99				901
2002	1703			48	16	246	29	32		36		2109
2003	3	2	2	20	155	232		32				446
2004	5	1	79	12	221	93		68	3			482
2005	2		4	38	96	72		56				267
2006	1					152		48				202
2007	7		15	138		35		30				226
2008	1		8	50	5	5		23				92
2009				203		822		93				1118
2010	10		12	381		5672		2190		1		8266
2011	1262		26	2		6757		334		1		8381
2012	1810		5	32		5964	1	403		1		8216
2013	1957			32	30	5863		356		8		8246
2014	1973		0.2	13		4611	98	613		5		7314

| Year | DEU | ESP | EU | FRO | GBR | GRL | ISL | NOR | POL | RUS | UNK |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Sum

Table 23.3.4.1 Discarded bycatch (tonnes) of Sebastes sp. from the shrimp fishery in ICES 14.b.

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Sum
1999	6	16	17	5	1	13	2	48	22	30	40	33	234
2000	10	3	31	17	15	4	21	78	28	18	9	6	239
2001	7	9	10	16	9	11	4	5	3	3	28	6	111
2002	3	11	9	6	1	0	0	5	4	8	3	5	55
2003	5	6	8	5	5	8	8	15	2	10	12	4	88
2004	7	10	17	13	4	2	27	20	7	2	9	0	118
2005	7	14	16	8	7	5	6	21	14	4	5	20	126
2006	6	2	4	1	3	5	2	4	4	0	0	4	35
2007	7	3	2	1	0	0	0	0	0	0	0	0	14
2008	0	2	2	0	0	1	0	0	0	0	0	1	7
2009	1	2	11	1	0	0	0	0	0	0	0	0	16
2010	1	2	2	1	1	0	1	0	0	0	0	2	10
2011	0	0	0	0	1	0	0	0	0	0	0	0	3
2012	0	0	1	1	1	0	0	0	0	0	0	0	4
2013	0	1	1	0	0	0	0	0	0	0	0	0	2
2014	0	0	0	0	0	0	0	0	0	0	0	0	0
2015	0	0	0	0	0	0	0	0	0	0	0	0	0
2016	0	0	0	0	0	0	0	0	0	0	0	0	0
2017	0	0	0	0	0	0	0	0	0	0	0	0	0
2018	0	0	0	0	0	0	0	0	0	0	0	0	0
2019	0	0	0	0	0	0	0	0	0	0	0	0	0
2020	0	0	0	0	0	0	0	0	0	0	0	0	0
2021	0	0	0	0	0	0	0	0	0	0	0	0	0
Sum	60	81	131	75	48	49	71	196	84	75	106	81	1056

Table 23.3.4.2 Landings (tonnes) of demersal redfish (S. mentella and S. norvegicus) caught in ICES 14.b. by month.

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Sum
1999		10		108		4	42	10	15	34	481	149	853
2000	18	238	286	260	10	4	79	72	13	0	3		982
2001			1				108	2		184	369	236	901
2002		183	445	354	390	50	472	35	44	59	77		2109
2003			9	4	26	27	135	195	20	16	12		446
2004				35	41	63	75	48	64	96	25	35	482
2005			1	15	66	24	80	29	13	18	19		267
2006		3	7	50	14	39	20	61	2	1	1	2	202
2007	6	13	8	8	14	42	4	106	16	7	1	1	226
2008	4	3	1	6	12	11	31	12	10	2			92
2009				1	84	346	148	105	128		288	17	1118
2010	799	786	708	1058	2149	2100	108	134	88	301	36		8266
2011	419	1396	1661	1017	268	250	236	598	255	583	1223	475	8381
2012	899	2197	628	852	577	699	966	143	44	23	474	712	8215
2013			709	1290	925	1423	1218	1086	723	227	119	527	8246
2014	10	421	206	1210	1187	1709	231	401	376	448	632	479	7314
2015	543	786	1016	451	507	1611	1160	1024	504	393	74	467	8539
2016	306	214	1130	1185	1426	1864	1298	559	466	38	14	1	8501
2017	373	1977	1368	751	308	513	1111	249	38	651	102	124	7568
2018	798	1273	819	779	367	189	1049	22	176	234	225	45	5976
2019	23	211	1102	653	1359	1316	601	520	365	379	36	98	6663
2020	22	354	510	17	129	2189	731	705	439	309	310	67	5782
2021	113	164	369	275	284	1090	846	1184	235	10	127	124	4825
Sum	4333	10229	10985	10379	10143	15563	10750	7300	4033	4013	4648	3559	95954

23.9 Figures

Figure 23.2.1. Indices from the German East Greenland survey of S. mentella larger than 17 cm . Biomass (A), abundance (B), and biomass split on length (C). On figure (C) the grey bars represent the biomass of S. mentella larger than $\mathbf{3 0} \mathbf{~ c m}$ and the dark bars biomass in fish from 17-30 cm. No survey was conducted in 2018.

Figure 23.2.2. Length distributions from the German East Greenland survey 1985-2019. In 2018, the survey was not conducted due to break down of the German research vessel. Not updated for 2020.

Figure 23.2.3. Biomass of S. mentella and Sebastes spp. derived from the Greenland deepwater survey. Bars indicate 2SE of the biomass of S. mentella including Sebastes spp. No survey in 2001. In 2004, 2005 and 2007 a large proportion of the redfish were not determined to species and only reported as "Sebastes spp". Considering the depth these are most likely S. mentella. In 2017, the survey was aborted due to vessel break down. In 2018 and 2019, no research vessel was available.

Figure 23.2.4. Overall length distribution of Sebastes mentella (number per $\mathrm{km}^{\mathbf{2}}$) from the deep Greenland survey. In 2017, the survey was aborted due to vessel break down. In 2018 and 2019, no research vessel was available and in 2020, only Greenland shallow survey was carried out. Therefore, no new data is available.

Figure 23.2.5: Biomass ($\mathrm{kg}^{*} 10^{6}, \mathrm{kt}$) (\pm CV\%) indices for S. mentella (top) and Sebastes sp . ($<\mathbf{1 8 \mathrm { cm } \text {) (bottom) off East Green- }}$ land in 2008-2016 and in 2020 from the Greenlandic shallow water survey. All surveyed areas are combined (Q1-Q6). In 2017, the survey was aborted due to vessel break down. In 2018 and 2019, no research vessel was available. In 2020, a full survey was carried out.

Figure 23.2.6. Overall length distributions for S. mentella (left) and Sebastes spp. $<18 \mathrm{~cm}$ (right) from the Greenland shallow water survey. All surveyed areas combined (Q1-Q6). In 2017, the survey was aborted due to vessel break down and in 2018 and 2019, no research vessel was available. In 2020, a full survey was conducted.

Figure 23.3.1.1. Development in split of S. mentella (REB) and S. norvegicus (REG) in the fisheries on the Greenland slope.

Figure 23.3.1.2 Development in catch depth of Sebastes (S. mentella and S. norvegicus combined). Not updated for 2020.

Figure 23.3.1.3 Landings of redfish (mixed) in subarea 14.b. Landings of S. mentella have been estimated based on split, which is made annually from either survey or commercial catches (logbooks).

Figure 23.3.2.1 Standardized redfish bycatch CPUE in the directed fishery for Greenland halibut in ICES 14.b as a function of year. CPUE was estimated from the GLM model: InCPUE = year + ICES Subdivision + depth. Bars represent standard error. Only hauls made below 1000 m were used in the analyses.

Figure 23.3.2.2 Standardized redfish CPUE in the redfish directed fishery ICES 14.b as a function of year. CPUE was estimated from the GLM model: InCPUE = year + ICES Subdivision + depth. Dashed lines represent standard error.

Figure 23.3.3.1 Distribution of catches of demersal redfish (S. mentella and S. norvegicus) between 2009 and 2021 in ICES 14.b.

Figure 23.3.3.2. Lines represent the share of the total commercial catch caught at a given depth from 1999-2011 in G. morhua, demersal redfish (mixed S. mentella and S. norvegicus) and R. hippoglossoides.

Figure 23.3.5.1: Length distribution of 672 redfish analysed by the Greenland Institute of Natural Resources in 2020 separated into S. mentella ($\mathrm{N}=273$) and S. norvegicus ($\mathrm{N}=399$).

24 Icelandic plaice in 5.a

24.1 General information

Icelandic plaice (Pleuronectes platessa) is found on the continental shelf around Iceland with the highest abundance in the southwest and west of the island. It is mainly found on a sandy or muddy substrate, occurring at depths ranging from the coast down to 200 meters, sometimes even deeper (Jónsson and Pálsson, 2013).

Sexual dimorphism occurs in plaice, as females grow larger than males and mature at larger size. Only a small proportion of males become longer than 45 cm , but about the same proportion of females grow larger than 55 cm . Size at sexual maturity differs between the sexes, whereas at the length of 33 cm about half the males have reached maturity, but females reach that level at 38 cm length. Spawning occurs mostly at $50-100 \mathrm{~m}$ depth in the relatively warm waters south and west of Iceland, but there is small-scale spawning off the northwest and north coast (Sigurðsson, 1989 and Sólmundsson et al., 2005). After metamorphosis, the 0 -group juveniles seek bottom in shallow waters and spend the first summer just below the tidemark (Pálsson and Hjörleifsson, 2001).

Genetic studies (Le Moan et al., 2021, Hoarau et al., 2004) suggest that plaice found on the Icelandic and Faroese shelf areas are genetically different from plaice found elsewhere. Aðalsteinn Sigurðsson (1982) observed long distance migrations to the Barents Sea. Similar migrations were not observed in recent tagging studies in Icelandic waters (Sólmundsson et al., 2005) and the validity of these older observations are considered questionable (Sigurdsson pers. comm). Furthermore, the older observations are in conflict with the results from (Le Moan et al., 2021).

Tagging data suggests considerable movement within Icelandic waters, this is in accordance with the observed distributional shifts between the spring and autumn surveys, and suggests that sub-stock structure for plaice in Icelandic waters is negligible.

24.2 Fishery

Main fishing grounds for plaice are in the west and southwest of Iceland, with smaller fishing areas in the southeast and several fjords in the north (Figure 24.2.1 and Figure 24.2.2). Seiners dominate the coastal plaice fishery, but trawlers catch them deeper and further offshore. Plaice is caught in relatively shallow water, with most of the catch ($60-80 \%$) taken at depths of $21-80 \mathrm{~m}$ (Figure 24.2.3). Plaice fishing grounds in 2013-2021 in 5a, as reported by mandatory logbooks, are shown in Figure 24.2.1.

Catch (t/nm2)
$(0,3]$
$(3,6]$
$(6,9]$
$(9,12]$
$(12,15]$
$(15,18]$
$(18,30]$
$(30,60]$

Figure 24.2.1. Plaice in 5a. Spatial distribution of the catch according to Icelandic logbooks.

Figure 24.2.2: Plaice in 5.a. Changes in spatial distribution of plaice catches as recorded in Icelandic logbooks.

Figure 24.2.3: Plaice in 5.a. Depth distribution of plaice catches from bottom trawl and demersal seine according to Icelandic logbooks.

24.2.1 Landing trends

The plaice fishery in 5 .a has been entirely Icelandic since the expansion of the Icelandic EEZ in 1975. Plaice in 5a. is mainly caught in mixed seine fisheries where the target species are predominantly flatfish species, plaice in particular. Fishery has been considered stable in last two decades regarding landings and annual landed catch has been between 5 and 8 thous. tonnes (Figure 24.2.4. and Figure 24.2.5). Landings in 2021 exceeded the numbers observed in last two decades and are estimated to have been 8677 tonnes, about 1170 t more than in previous year see Figure 24.2.4 and Table 24.1.1. Landings in 5.a. reached highest levels in mid-1980s with approximately 14.5 thous. tonnes landed in 1985.

Demersal seine is the main fishing gear for plaice (65-71\% since 2011) in 5.a. followed by demersal trawl (23-30\%), while a small proportion of the catch is taken in gillnets and longline (Figure 24.2.4).

Landings by foreign vessels were considerable before 1975, afterwards landings were primarily by the Icelandic fleet. Foreign vessels were the most significant with regards to landed plaice before WW2, but during the war period the Icelandic fleet picked up and took over the majority of fisheries in Icelandic waters. Through years 1946-1973 the landings were divided between both foreign and Icelandic fleets.

Since 2000, the number of vessels reporting annual catches over 1000 kg of plaice in total has decreased, whereas total catches have been increasing in the past few years. This decrease is most noticeable in the demersal seiner fleet, where the number dropped from 92 vessels in 2004, to 35 in 2021. The number of trawlers has remained relatively stable since 2010 (Table 24.1.1).

Figure 24.2.4: Plaice in Division 5.a. Landings in kilotonnes and percent of total by gear and year.

Figure 24.2.5: Plaice in Division 5.a. Recorded landings 1903-2021.

Figure 24.2.6. Plaice in 5a. Number of vessels (all gear types) accounting for 95\% of the total catch annually since 1994. Left: Plotted against year. Right: Plotted against total catch. Data from the Directorate of Fisheries.

24.3 Data available

Sampling of biological data from main gears (demersal seine and bottom trawl) in commercial catches is considered good in general. The sampling does cover the spatial distribution of catches to a satisfactory extent. The sampling coverage by gear in 2021 is shown in Figure 24.3.1.

Figure 24.3.1: Plaice in 5.a. Fishing grounds in 2021 as reported in logbooks (colours) and positions of samples taken from landings (asterisks) by main gear types.

24.3.1 Landings and discards

All landings in 5.a before 1982 are derived from the STATLANT database, and also all foreign landings in 5.a to 2005. The years between 1982 and 1993 landings by Icelandic vessels were collected by the Fisheries Association of Iceland (Fiskifélagið). Landings after 1994 by Icelandic vessels are given by the Icelandic Directorate of Fisheries. Landings of foreign vessels (mainly Norwegian and Faroese vessels) are given by the Icelandic Coast Guard prior to 2014 but after 2014 this are also recorded by the Directorate (Figure 24.2.1). Discarding is banned by law in the

Icelandic demersal fishery. According to Pálsson et al. (2004), the discard rate for plaice caught in demersal seine was high, 7.11% of the landed catch and involved mainly fish under 40 cm length. However, following discards measurements show no discards of plaice caught in demersal seine (Pálsson et al., 2007). Discards are therefore assumed to be negligible, or at least consistent between years.

Measures in the management system such as converting quota share from one species to another are used by the fleet to a large extent and this is thought to discourage discarding in mixed fisheries. In addition to prevent high grading and quota mismatch the fisheries are allowed to land fish that will not be accounted for in the allotted quota, provided that the proceedings when the landed catch is sold will go to the Fisheries Project Fund (Verkefnasjóður sjávarútvegsins). A more detailed description of the management system can be found on https://www.responsiblefisher-ies.is/seafood-industry/fisheries-management/statement-on-responsible-fisheries.

24.3.2 Length compositions

An overview of available length measurements from 5.a is given in Table 24.1.2. Most of the measurements are from the two main fleet segments, i.e. trawls and demersal seine.
Length distributions from the main fleet segments are shown in Figure 24.2.2. Plaice caught by bottom trawl and demersal seine appears to be fairly stable, range between 35 and 55 cm , with visible shift towards larger fish in both gears in the last decade. As a result, the average length in the samples taken from commercial catch has increased from 35 cm in 1991 to 44 cm in 2021.

Figure 24.3.2: Plaice in 5.a. Commercial length distributions by gear and year.

24.3.3 Age compositions

Table 24.1.3 gives an overview of otolith sampling intensity by gear types in 5.a. In 2002-2005 the majority of the catch was 4-7 years old plaice, or about 60% of landings in terms of estimated numbers (Figure 24.3.3). The proportion of these age classes in the catch then decreased and for the last years it has been $40-45 \%$. Plaice in the catch have gradually become older, and in recent years the largest cohorts have been 6-8-year-old fish. The catches in 2021 are mainly composed of the 2014-2016 and older year classes.

Figure 24.3.3: Plaice in 5.a. Estimated age distribution of landed catch based on landings and otoliths collected from landed catch.

24.3.4 Weight-at-age

Mean weight at age in the catch is shown in Figure 24.3.4. Those data are obtained from the commercial catches. Mean weight-at-age has been increasing in all age groups.

Figure 24.3.4: Plaice in 5a. Weight at age from the commercial catch.

24.3.5 Catch, effort and research vessel data

24.3.5.1 Catch per unit of effort (CPUE) from commercial fisheries

CPUE estimates of plaice in Icelandic waters are not considered representative of stock abundance as changes in fleet composition and technical improvements have not been accounted for when estimating CPUE. Since 2000 CPUE both for both gears increased rapidly and are at the highest levels (Figure 24.3.5).

Figure 24.3.5: Plaice in 5a. Non-standardised estimates of CPUE from demersal trawl (left) and demersal seine (right).

24.3.5.2 Icelandic survey data

Information on abundance and biological parameters from plaice in $5 . a$ is available from two surveys, the Icelandic groundfish spring survey and the Icelandic groundfish autumn survey.

The Icelandic spring groundfish survey, which has been conducted annually in March since 1985, covers the most important distribution area of the plaice fishery. In addition, the Icelandic autumn groundfish survey was commenced in 1996. The autumn survey was not conducted in 2011. The spring survey is considered to measure changes in abundance/biomass better than the autumn survey. It does not, however, adequately cover the main recruitment grounds for plaice, as recruitment takes place in shallow water in habitats unsuitable for demersal trawling. In addition to these two major surveys, there is a designated flatfish survey with beam trawl, conducted annually in July/August since 2016, with the aim to cover most of the recruitment grounds of plaice and other flatfish species (see stock annex). The plan is to incorporate this survey in the stock assessment for plaice in the future.

Figure 24.3.6 shows trends in various biomass indices and a recruitment index based on abundance of plaice smaller than 30 cm . Survey length-disaggregated abundance indices are shown in Figure 24.3 .7 and 24.3.8, and abundance and changes in spatial distribution in Figures 24.3.924.3.11.

Total biomass index of plaice and plaice larger than 30 cm (harvestable part of the stock) from spring survey, decreased rapidly in the first years of the spring survey and was at the lowest level in 1997-2002. Since 2001, the biomass index increased and has been stable since with minor fluctuations. This year's spring survey biomass index is in correspondence with the biomass from early 1990. The index of plaice larger than 47 cm in the spring survey also decreased to lowest levels in 1997-2002 but has increased and has been in recent years at similar level as in the beginning of the time-series. The index of juvenile abundance $(<20 \mathrm{~cm})$ has maintained at the low level since 1998 with occasional small peaks. Trends in the autumn survey are similar to those observed from the spring survey. However, in the last 8 years autumn survey indices for total and harvestable biomass indices are well above the spring survey but standard deviations in the measurements are also very high indicating that they are few stations with large catch in the autumn survey.

Figure 24.3.6. Plaice in 5a. Indices in the Spring Survey (March) from 1985 and onwards (black line shaded area) and the autumn survey 1996 and onwards (points ranges).

Figure 24.3.7. Plaice in 5a. Length disaggregated abundance indices from the spring survey (March) 1985 and onwards.

Figure 24.3.8. Plaice in 5a: Length disaggregated abundance indices from the autumn survey (October) 1996 and onwards, except 2011.

Figure 24.3.9. Plaice in 5a. Changes in geographical distribution of the survey biomass.

Figure 24.3.10. Plaice in 5a. Location of plaice in the spring survey, bubble sizes are relative to catch sizes.

Figure 24.3.11. Plaice in 5a. Location of plaice in the autumn survey, bubble sizes are relative to catch sizes.

24.3.6 Stock weights

Mean weight at age in the stock is shown in Figure 24.3.12. This data is obtained from the groundfish survey in March. Stock weights are also used as mean weight at age in the spawning stock. The weights are approximated from lengths. For stock weights for age 9 are smoothed using a running 3-year average. Prior to 1985 the stock weights are assumed fixed at 1985 levels.

Figure 24.3.12. Plaice in 5a. Weight at age observed in the spring survey.

24.3.7 Maturity-at-age

Maturity-at-age data are given in Figure 24.3.13. Those data are obtained from the groundfish survey in March. Based on guidelines from PGCCDBS it was decided to use mature females as the basis for maturity at age. Prior to 1985 the proportion mature is assumed fixed at 1985 levels. Maturity at age is estimated from yearly maturity at length ogives estimated using logistic regression treating individuals as fixed effects. Maturity-at-age was smoothed with a 3-year running average.

Figure 24.3.13: Plaice in 5a. Proportion mature females at age from spring survey.

24.3.8 Natural mortality

No information is available on natural mortality. For assessment and advisory purpose, the natural mortality is set to 0.15 for all age groups.

24.4 Data analysis

24.4.1 Analytical assessment

Assessment on plaice in Icelandic waters using SAM

Plaice in 5.a is new to ICES where it became a part of the ICES assessment process after an MoU between Iceland and ICES was signed on December 1st, 2019.

During the benchmark in April 2022, a SAM model (State-space stock assessment model) was agreed for use in the assessment.

24.4.1.1 Data used by the assessment and model settings

The new assessment model is a statistical catch at age model based on:

- commercial catch-at-age and landings data from 1979 onwards
- the Icelandic spring groundfish survey from 1985
- Recruitment at age 3 every year.

Model setup and settings are described in the Stock Annex.

Figure 24.4.1. Plaice in 5.a. Estimated numbers of 3-12-year-old fish in the commercial catch (1980-2021) and age-disaggregated survey indices from the spring survey (1985-2022). Input data for the stock assessment.

24.4.1.2 Model fit

The model fit to survey indices and catch-at-age data are shown in figures 24.4.2 and 24.4.3. Generally, the model closely follows the catch-at-age and spring survey data, which are in good agreeance.

Figure 24.4.2. Plaice in 5a. Illustration of the model fit to the survey data by age. Points indicate the log observation while the solid lines the model fit.

Figure 24.4.3. Plaice in 5a. Illustration of the model fit to the catch data by age. Points indicate the log observation while the solid lines the model fit.

24.4.1.3 Model results

Model results have shown spawning stock biomass gradually decline prior to 2000, historical low was reached then. Steep increase followed in period 2001-2015 in SSB which has levelled in most recent years. Excluding biomass values earlier than 1985, which are highly uncertain because spring survey data begin in 1985, current total biomass levels are at historical highest. Fishing mortality decreased gradually after 1999 and remained stable in most recent years. Recruitment displays two productivity regimes, high in the 1980s with rapid drop in mid-1990s and stable period since. Therefore, with stable recruitment and moderate fishing levels spawning stock biomass is expected to remain at current levels.

Figure 24.4.4. Plaice in 5.a. Summary from the assessment 2022. Estimates of catch, fishing mortality (Fbar5-10), recruitment (age 3) and spawning stock (SSB) are shown. Black line represents the point estimates as the blue ribbon the 95% confidence intervals.

24.4.1.4 Retrospective analysis

The results of an analytical retrospective analysis are presented (Figure 24.4.5). The analysis indicates generally consistent model results over the 5 -year peel. Mohn's rho was estimated to be -0.0773 for SSB, 0.0675 for F, and -0.0231 for recruitment.

The proposed model had low Mohn's ρ statistic values for spawning stock biomass, fishing mortality, and recruitment. Analytical retrospective plots do not indicate any substantial deviations in assessment (Figure 24.4.5). These Mohn's ρ values are well within the acceptable ranges (Carvalho et al., 2021).

Figure 24.4.5. Plaice in 5.a. Analytical retrospective estimates illustrating stability in model estimates over a 5-year 'peel' in data. Results of catch, fishing mortality (Fbar5-10), recruitment (age 3) and spawning stock (SSB) are shown. Mohns rho is indicated in the bottom right corner.

Observation and process $\log (N)$ and $\log (F)$ residuals show no concerning patterns, shown in Figure 24.4.6 and 24.4.7, respectively.

Figure 24.4 .8 shows the estimated model parameters. Observation variances are lowest for the spring survey and commercial catches for ages 5 to 8 and 7 to 8 respectively, with the highest variances at either ends of the age range. Survey variances are in general higher than that of the commercial catches. Strong positive correlations were estimated between ages for the commercial catches, less for survey catches. Process variances were fixed across all ages for both $\log (N)$ and $\log (F)$, with populations variances estimated at 0.06 .

Survey catchability showed an increasing trend with age, peaking at the age of 10, while slightly lower at 11 and 12.

Figure 24.4.6. Plaice in 5.a. Residuals of the model fit to spring survey indices and catch data by age. Red circles indicate where the model estimates are lower than the observed while blue indicate model estimates lower that the observed.

Figure 24.4.7. Plaice in 5a. Process residuals from the assessment model.

Figure 24.4.8. Plaice in 5a. Illustration of estimated model parameters.

24.4.1.5 Reference points

As part of the WKICEMP 2022, HCR evaluations requested by Iceland the following reference points were defined for the stock.

Framework	Reference points	Value	Technical basis	Source
MSY approach	MSY B trigger	12400	B_{pa}	ICES (2022b)
	$\mathrm{F}_{\text {MSY }}$	0.41	Fishing mortality that leads to MSY. Estimated using stochastic simulations.	
Precautionary approach	Blim	10000	Lowest SSB (1990) where large recruitment was observed.	
	B_{pa}	12400	$\mathrm{B}_{\text {lim }} \times \mathrm{e}^{1.645}{ }^{*} \mathrm{\sigma BB}^{\text {b }}$, using $\sigma_{\mathrm{B}}=0.12$	
	Flim	0.57	Fishing mortality that in stochastic equilibrium will result in median SSB at $\mathrm{B}_{\text {lim }}$.	
	F_{pa}	0.46	$\mathrm{F}_{\mathrm{p} 05}$, maximum F at which the probability of SSB falling below $\mathrm{B}_{\text {lim }}$ is $<5 \%$	
Management plan	MGT B ${ }_{\text {trigger }}$	12400	MSY $\mathrm{B}_{\text {trigger }}$	

The management plan proposed by Iceland was:
The proposed HCR for the plaice fishery in Iceland, which sets a TAC for the fishing year $y / y+1$ (1 September of year y to 31 August of year $\mathrm{y}+1$) based on a fishing mortality $F_{m g t}$ of 0.3 applied to ages 5 to 10 modified by the ratio $\mathrm{SSB}_{y} / \mathrm{MGT} \mathrm{B}_{\text {trigger }}$ when $\mathrm{SSB}_{y}<\mathrm{MGT}_{\text {trigger }}$, maintains a high yield while being precautionary as it results in lower than 5% probability of SSB $<B_{\text {lim }}$ in the medium and long term. WKICEMSE 2022 concluded that the HCR was precautionary and in conformity with the ICES MSY approach.

24.5 Management considerations

All the signals from commercial catch and survey data indicate that plaice in $5 . a$ is at present in a good state. This is also confirmed in the assessment. Considerable uncertainty is present in the model due to limited information on recruitment from spring survey. However, the information on recruitment pulses is present from Icelandic coastal beam trawl survey, which is specially
designed to target young plaice, but series is still too short to include in the assessment (Stock Annex).

24.6 Management

The Ministry of Food, Agriculture and Fisheries is responsible for management of the Icelandic fisheries and implementation of legislation. The Ministry issues regulations for commercial fishing for each fishing year (1. September - 31. August), including an allocation of the TAC for each stock subject to such limitations. Plaice was included in the ITQ system in the 1991/1992 quota year and as such subjected to TAC limitations. For the first six years, the TAC was set higher than recommended by Marine Research Institute (MRI), but this practice stopped in the 2010/2011 quota year (Table 24.1.4). One reason for this practice was that no formal harvest rule existed for this stock. The landings have been fluctuating between the over- or undershoot the set TAC and this is related to the management system that allows for transfers of quota share between fishing years and conversion of TAC from one species to another (species transformation). The effect of these species transformations and quota transfers is illustrated in Figure 24.6.1. Regulations regarding protection of spawning plaice are also in place in area 5.a, where specific spawning grounds in the west and southwest of Iceland are closed to fishing during spawning period in April.

Figure 24.6.1. Plaice in 5.a. An overview of the net transfers of quota between years and species transformations in the fishery in 5.a.

Table 24.1.1. Plaice in 5.a. Number of Icelandic vessels landing catch of 1000 kg or more and all landed catch by fleet segment participating in the plaice fishery in 5.a.

Year	Number of vessels			Catches (Tonnes)			
	Trawlers	Seiners	Other	Demersal trawl	Demersal seine	Other	Sum
2000	89	81	78	1759	3052	409	5220
2001	77	87	106	1393	2906	610	4909
2002	67	87	86	1257	3420	465	5142
2003	71	90	65	1288	3602	342	5232
2004	60	92	73	1368	4015	309	5692
2005	67	81	63	1637	3894	261	5792
2006	70	75	44	2443	3704	223	6370
2007	74	68	59	2242	3282	292	5816
2008	66	67	52	2600	3828	290	6718
2009	62	65	57	2121	3872	323	6316
2010	57	55	66	2033	3639	311	5983
2011	42	52	65	1658	3020	265	4943
2012	44	48	85	1402	4075	453	5930
2013	45	48	65	1559	4041	379	5979
2014	40	43	61	1374	4235	313	5922
2015	55	45	66	2001	4404	363	6768
2016	52	41	71	2118	4893	432	7443
2017	52	43	64	1762	4578	354	6694
2018	53	41	59	2436	5578	327	8341
2019	49	41	59	2231	4287	316	6834
2020	52	41	51	2475	4681	350	7505
2021	55	35	52	3603	4719	358	8677

Table 24.1.2. Plaice in 5.a. Number of available length measurements and samples from Icelandic commercial catches.

Year	Bottom Trawl	Danish Seine	Long Line
2000	4261/33	7185/49	0/0
2001	1003/9	7517/51	234/4
2002	2392/18	11263/69	3/1
2003	3278/21	13804/96	3/1
2004	3834/28	21216/150	0/0
2005	5251/35	20583/139	$33 / 1$
2006	8102/60	19222/135	108/1
2007	6837/49	17073/124	83/1
2008	11359/77	17471/129	0/0
2009	7201/50	19106/136	100/1
2010	9608/62	17387/126	0/0
2011	7609/55	16857/110	99/1
2012	5723/39	18329/129	0/0
2013	4688/31	16647/115	150/1
2014	2531/21	7271/53	217/1
2015	4142/33	5997/44	0/0
2016	4757/32	8075/58	0/0
2017	3527/28	6231/52	0/0
2018	3506/27	5666/46	0/0
2019	4838/36	5990/47	0/0
2020	2788/27	3031/24	0/0
2021	6922/53	5067/42	0/0

Table 24.1.3: Plaice in 5.a. Number of available age measurements and samples from Icelandic commercial catches.

Year	Bottom Trawl	Danish Seine	Long Line
2000	1507/33	2400/49	0/0
2001	350/9	2250/51	50/4
2002	599/18	2424/69	0/1
2003	550/21	3149/96	0/1
2004	820/28	3701/150	0/0
2005	1000/35	3036/139	0/1
2006	1450/60	3200/135	0/1
2007	1500/49	3199/124	0/1
2008	1850/77	3099/129	0/0
2009	1250/50	3180/136	0/1
2010	2016/62	3951/126	0/0
2011	2452/55	4200/110	0/1
2012	1835/39	5199/129	0/0
2013	1350/31	5010/115	50/1
2014	575/21	900/53	0/1
2015	670/33	800/44	0/0
2016	573/32	1125/58	0/0
2017	550/28	974/52	0/0
2018	400/27	880/46	0/0
2019	476/36	750/47	0/0
2020*	550/27	550/24	0/0
2021	1225/49	900/36	0/0

*Few samples taken due to COVID-19 pandemic.

Table 24.1.4. Plaice in 5a. Age disaggregated survey indices from the groundfish survey in March.

Year	3	4	5	6	7	8	9	10	11	12
1985	1.068	4.484	7.367	7.873	7.216	6.719	4.047	2.972	1.437	1.032
1986	0.537	2.595	5.490	6.499	6.059	5.827	3.437	2.653	1.280	0.913
1987	0.732	2.189	3.846	4.460	4.180	4.062	2.524	2.076	0.998	0.817
1988	1.113	3.584	5.225	5.695	5.075	4.770	2.981	2.276	1.048	0.801
1989	0.677	2.166	3.013	3.058	2.764	2.543	1.623	1.230	0.558	0.434
1990	0.482	2.016	3.401	3.337	3.010	2.618	1.564	1.109	0.511	0.381
1991	0.053	2.458	4.471	4.507	3.875	2.672	1.271	1.155	0.591	0.923
1992	0.935	2.735	7.620	5.248	3.935	1.617	0.914	0.194	0.128	0.085
1993	0.269	2.598	3.596	5.179	1.588	1.387	1.185	0.880	0.462	1.033
1994	0.365	2.684	5.332	3.049	2.552	0.907	0.857	0.411	0.040	0.225
1995	0.244	1.115	4.694	2.861	0.979	0.812	0.222	0.145	0.022	0.000
1996	0.313	1.462	2.249	4.580	1.754	1.051	0.387	0.056	0.020	0.000
1997	0.320	0.865	0.937	1.243	1.505	1.175	0.402	0.178	0.095	0.250
1998	0.074	0.620	1.313	2.136	1.032	1.111	0.635	0.260	0.072	0.209
1999	0.081	2.235	2.265	1.604	1.306	0.686	0.900	0.266	0.159	0.115
2000	0.033	0.169	0.378	0.883	0.888	0.922	0.641	0.389	0.332	0.270
2001	0.166	0.724	0.353	1.131	0.785	0.874	0.346	0.310	0.226	0.157
2002	0.038	1.041	2.295	1.198	1.217	1.017	0.620	0.203	0.135	0.024
2003	0.000	1.589	2.961	1.962	1.289	1.139	0.601	0.265	0.079	0.039
2004	0.084	0.759	4.314	4.925	1.805	1.213	0.849	0.616	0.164	0.065
2005	0.107	0.247	1.395	3.154	2.060	1.342	0.838	0.321	0.187	0.016
2006	0.178	1.004	2.223	3.257	2.266	1.815	0.739	0.489	0.159	0.154
2007	0.147	1.487	2.272	2.283	2.247	1.250	0.589	0.202	0.074	0.000
2008	0.363	0.679	1.771	1.754	0.892	0.806	0.562	0.235	0.166	0.318
2009	0.367	0.958	1.845	1.808	1.227	0.714	0.421	0.223	0.112	0.066
2010	1.457	3.376	3.103	2.661	2.078	1.470	0.666	0.478	0.203	0.226
2011	0.196	1.197	2.036	1.852	1.350	0.872	0.412	0.266	0.144	0.460
2012	0.500	0.595	2.243	1.933	0.997	0.710	0.357	0.386	0.238	0.407
2013	0.636	1.776	1.510	2.371	2.644	1.029	0.421	0.371	0.344	0.502

Year	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
2014	0.355	1.738	1.590	1.985	1.915	1.512	0.604	0.420	0.384	0.317
2015	0.175	0.483	1.056	1.157	1.179	0.961	0.782	0.443	0.188	0.382
2016	0.323	0.706	1.845	2.189	1.942	1.139	1.056	0.310	0.171	0.432
2017	0.767	1.300	1.850	2.703	2.280	1.968	1.288	0.888	0.460	0.434
2018	0.389	0.819	1.652	1.980	2.631	2.009	1.154	0.932	0.374	0.561
2019	0.323	1.467	1.082	1.179	1.396	1.127	0.677	0.553	0.428	0.497
2020	0.233	0.760	1.511	1.574	1.229	1.026	0.686	0.528	0.252	0.394
2021	0.295	0.818	2.211	2.644	1.779	1.067	1.008	0.983	0.462	0.724

Table 14.1.5. Plaice in 5a. Catch-at-age in numbers from the commercial fishery in Icelandic waters.

Year	3	4	5	6	7	8	9	10	11	12
1980	149.464	1011.728	2313.331	1721.177	1462.224	976.030	543.776	394.754	159.958	154.703
1981	133.418	855.562	1828.714	1286.903	1074.210	690.655	380.976	259.031	101.657	97.430
1982	104.515	703.175	6059.506	1338.680	1139.529	750.690	442.429	330.723	145.754	172.176
1983	214.605	1380.094	3138.501	2392.462	2065.807	1439.442	944.389	687.372	260.526	386.299
1984	429.164	2364.212	5030.730	3855.846	3060.968	1833.236	1243.149	764.881	293.850	409.059
1985	280.382	1273.490	16897.202	3197.237	2246.930	1447.229	1039.030	696.901	249.198	377.556
1986	267.338	1453.169	16941.591	2706.363	2051.388	1122.290	845.320	372.823	143.057	261.111
1987	706.602	3166.969	5674.413	3693.818	3051.974	1858.001	1041.205	693.828	280.689	267.659
1988	796.672	4292.376	8750.645	6736.507	4266.312	1950.406	1543.614	576.748	228.481	241.829
1989	202.934	1283.528	10465.978	2468.554	2017.078	1201.020	1114.659	528.852	217.285	595.671
1990	937.044	4527.312	7479.365	4286.015	3473.653	1816.802	966.196	452.163	210.076	155.756
1991	480.059	2642.321	5416.260	4621.942	3481.372	1603.411	1194.585	548.624	220.438	305.229
1992	686.067	3310.932	5836.780	3649.154	3011.859	1747.796	947.029	561.679	235.768	183.561
1993	485.580	2619.432	5425.593	4559.032	3637.684	1913.357	1621.864	868.026	300.257	583.452
1994	621.623	3222.215	6098.515	4747.634	3633.101	1719.485	1484.903	648.931	231.392	506.486
1995	789.612	2106.097	6688.957	4407.089	2425.547	1509.587	524.553	217.972	299.019	429.863
1996	334.364	1478.096	2355.935	5725.390	3695.972	1979.024	1024.004	387.699	306.948	610.405
1997	290.272	1797.004	3908.333	2310.695	4420.401	2136.322	853.553	393.522	169.836	596.335
1998	983.070	1050.173	2955.049	2687.439	1412.184	1505.975	792.216	162.783	114.456	106.624
1999	237.779	1050.320	1606.903	2145.965	1837.076	1186.630	1254.960	368.798	172.378	193.959
2000	362.925	246.924	807.196	1243.453	1480.203	1118.783	691.577	511.783	287.883	155.046
2001	383.967	953.696	896.085	1375.741	1130.466	891.234	631.746	296.412	172.463	172.910
2002	102.976	1247.683	1943.370	1151.160	1068.919	797.625	560.452	297.343	159.323	109.961
2003	62.600	659.733	1899.622	1954.968	1118.559	726.507	477.463	289.956	180.318	143.802
2004	76.060	768.141	1844.523	2327.818	1387.925	661.149	389.701	229.551	109.595	88.268
2005	63.277	726.032	2075.960	2051.117	1640.552	879.934	463.181	180.663	85.359	17.938
2006	449.586	1414.543	1145.483	1714.954	1580.350	1220.233	585.981	404.572	177.283	192.525
2007	381.158	1288.200	1816.533	1262.451	1299.189	945.458	548.773	258.658	133.526	201.799
2008	410.770	727.977	1701.895	1945.821	1112.148	1142.599	679.954	445.486	208.311	432.233

Year	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	10	11	12
2009	387.971	891.757	1280.102	1890.872	1491.145	799.172	602.237	371.721	194.296	227.032
2010	190.620	663.770	1141.456	1312.367	1372.685	1049.893	547.576	430.875	258.650	363.991
2011	134.505	607.843	1381.465	1315.847	950.912	806.256	477.351	269.311	239.902	269.290
2012	294.126	370.572	1028.346	1693.184	1256.173	774.341	664.134	412.371	194.049	382.024
2013	334.869	537.726	744.734	1405.653	1603.326	921.519	504.880	393.112	216.329	234.692
2014	164.879	519.504	988.763	1192.688	1474.539	1212.172	576.440	249.364	257.662	248.023
2015	224.963	533.700	1343.142	1532.331	1221.570	1207.304	781.593	264.723	189.406	176.895
2016	69.285	629.153	1065.311	1506.874	1350.799	1010.811	1036.057	595.351	296.607	315.235
2017	138.608	357.564	1171.957	1542.513	1364.078	797.517	691.541	665.557	318.305	327.904
2018	270.309	715.378	1057.055	1562.077	1614.588	1246.512	1031.835	604.471	422.082	501.242
2019	372.330	1037.511	1295.557	1103.959	1040.788	941.623	692.479	562.476	258.258	382.345
2020	169.480	1104.460	2402.214	1794.130	1059.398	747.501	698.203	399.588	288.527	231.546

Table 24.1.6. Plaice in 5 a. Catch weights at age from the commercial fishery in Icelandic waters.

Year	3	4	5	6	7	8	9	10	11	12
1980	423	463	528	590	616	704	777	1028	950	1046
1981	410	448	506	563	585	676	751	1024	926	1070
1982	415	465	460	597	627	711	797	1098	1122	1060
1983	408	453	528	601	634	751	894	1069	1003	1141
1984	368	424	489	550	592	693	791	994	928	1097
1985	354	458	432	540	633	738	826	1020	981	1097
1986	366	434	429	538	578	643	754	823	779	1003
1987	340	396	468	536	560	665	724	1025	952	1061
1988	321	388	440	487	516	572	566	732	694	855
1989	389	437	447	539	620	711	921	917	1041	1289
1990	358	393	429	469	482	548	585	878	820	994
1991	357	408	463	523	554	606	654	785	707	844
1992	357	402	458	520	540	633	671	951	846	1011
1993	351	402	467	539	601	700	799	905	835	1080
1994	349	394	443	503	549	623	749	831	786	1115

Year	3	4	5	6	7	8	9	10	11	12
1995	360	410	451	519	665	775	928	888	1100	946
1996	343	420	503	572	642	771	889	881	921	1083
1997	390	458	512	583	653	724	862	944	999	1057
1998	347	423	544	604	731	817	876	1090	1137	1302
1999	394	484	532	642	706	776	930	1110	1223	1315
2000	312	389	543	650	783	868	890	993	1121	1307
2001	328	457	539	673	755	871	930	1017	1171	1290
2002	372	453	546	658	742	876	955	1082	1276	1492
2003	354	438	521	635	769	856	956	1023	1284	1480
2004	355	456	589	675	793	930	1014	1181	1379	1490
2005	337	448	566	709	777	878	1000	1080	1157	1043
2006	410	496	586	674	796	860	915	940	996	1196
2007	381	464	578	678	786	906	982	1134	1142	1154
2008	389	487	576	688	797	905	1018	1075	1090	1180
2009	394	492	590	680	793	945	1148	1258	1357	1244
2010	424	484	576	673	790	952	1035	1207	1344	1363
2011	430	486	577	680	789	889	1011	1078	1130	1358
2012	434	536	606	712	835	950	1075	1154	1231	1337
2013	446	547	623	718	868	1004	1164	1239	1412	1506
2014	413	477	627	725	853	1008	1103	1055	1351	1471
2015	537	512	643	793	882	1062	1245	1365	1507	1595
2016	470	508	644	743	914	1056	1144	1399	1442	1604
2017	452	543	646	730	812	977	1141	1254	1452	1635
2018	457	546	651	760	859	957	1136	1315	1366	1541
2019	414	558	626	783	863	1056	1159	1276	1446	1520
2020	458	570	649	759	857	986	1157	1333	1582	1761

Table 24.1.7. Plaice in 5.a. Stock weights-at-age from the March survey in Icelandic waters. The survey started in 1985, thus for the years 1980-1984 the same weights at age as in the 1985 survey are assumed.

Year	3	4	5	6	7	8	9	10	11	12
1980	245	325	426	522	587	663	731	882	902	1144
1981	245	325	426	522	587	663	731	882	902	1144
1982	245	325	426	522	587	663	731	882	902	1144
1983	245	325	426	522	587	663	731	882	902	1144
1984	245	325	426	522	587	663	731	882	902	1144
1985	245	325	426	522	587	663	731	882	902	1144
1986	243	356	454	546	606	673	755	885	903	1145
1987	197	320	440	543	619	692	790	904	924	1159
1988	215	299	415	521	594	672	750	918	934	1167
1989	214	303	410	511	588	672	746	930	939	1165
1990	235	332	418	503	559	635	722	927	939	1164
1991	251	268	355	494	584	659	740	897	896	1172
1992	172	276	395	513	621	684	893	967	980	1180
1993	166	265	386	495	605	678	649	921	1033	1157
1994	187	277	336	507	563	717	816	921	1115	1182
1995	151	261	361	471	713	814	949	962	1336	1159
1996	206	255	372	436	587	722	916	995	1321	1143
1997	193	290	403	512	639	618	826	1018	1307	1186
1998	243	291	424	454	547	630	660	976	1187	1148
1999	308	310	403	642	619	674	807	915	981	1076
2000	105	265	374	496	600	700	786	803	899	1113
2001	303	347	461	572	670	700	810	805	881	1050
2002	248	315	429	566	686	764	819	907	991	1063
2003	245	327	428	552	686	691	869	954	1075	1187
2004	520	338	445	507	670	776	910	1025	1130	1284
2005	193	326	503	564	711	822	997	1087	1197	1258
2006	290	360	437	555	650	768	856	1066	1166	1400
2007	246	337	482	634	764	859	1027	1167	1292	1349

Year	3	4	5	6	7	8	9	10	11	12
2008	251	382	512	646	755	834	949	1132	1317	1192
2009	266	360	502	683	790	924	1009	1155	1295	1355
2010	172	305	459	613	697	807	996	1213	1323	1305
2011	187	308	454	591	716	838	974	1176	1213	1318
2012	227	342	468	598	796	843	1060	1187	1210	1368
2013	233	286	415	588	691	930	1053	1154	1212	1246
2014	243	299	479	649	781	921	1085	1123	1211	1166
2015	267	384	520	707	778	945	1104	1137	1222	1241
2016	273	395	469	602	771	888	1119	1167	1241	1290
2017	240	325	522	663	806	904	1012	1229	1306	1449
2018	262	383	496	654	763	882	1038	1247	1319	1463
2019	249	326	533	653	776	929	1039	1210	1295	1422
2020	215	353	519	702	789	912	1169	1233	1300	1453

Table 24.1.8. Plaice in 5a. Sexual maturity-at-age in the stock (from the March survey). The survey started in 1985, thus for the years 1980-1984 the same maturity at age as in the 1985 survey are assumed.

Year	3	4	5	6	7	8	9	10	11	12
1980	0.048	0.114	0.236	0.368	0.467	0.538	0.613	0.692	0.745	0.790
1981	0.048	0.114	0.236	0.368	0.467	0.538	0.613	0.692	0.745	0.790
1982	0.048	0.114	0.236	0.368	0.467	0.538	0.613	0.692	0.745	0.790
1983	0.048	0.114	0.236	0.368	0.467	0.538	0.613	0.692	0.745	0.790
1984	0.048	0.114	0.236	0.368	0.467	0.538	0.613	0.692	0.745	0.790
1985	0.045	0.106	0.222	0.349	0.441	0.514	0.585	0.673	0.717	0.784
1986	0.042	0.103	0.213	0.335	0.418	0.491	0.560	0.656	0.690	0.779
1987	0.037	0.096	0.202	0.320	0.396	0.471	0.540	0.646	0.671	0.779
1988	0.031	0.083	0.180	0.290	0.358	0.434	0.500	0.619	0.631	0.765
1989	0.023	0.066	0.148	0.246	0.306	0.380	0.443	0.574	0.574	0.731
1990	0.019	0.057	0.127	0.213	0.269	0.336	0.401	0.528	0.527	0.687
1991	0.014	0.041	0.100	0.181	0.239	0.304	0.367	0.487	0.482	0.670
1992	0.010	0.028	0.075	0.147	0.207	0.265	0.344	0.483	0.465	0.632
1993	0.008	0.025	0.067	0.138	0.205	0.261	0.325	0.451	0.490	0.613
1994	0.008	0.028	0.068	0.153	0.220	0.288	0.353	0.469	0.560	0.651
1995	0.006	0.029	0.079	0.174	0.279	0.354	0.421	0.514	0.670	0.700
1996	0.006	0.029	0.087	0.174	0.290	0.377	0.468	0.595	0.747	0.722
1997	0.007	0.030	0.087	0.172	0.290	0.365	0.454	0.538	0.738	0.718
1998	0.010	0.035	0.099	0.175	0.288	0.368	0.464	0.540	0.699	0.739
1999	0.017	0.041	0.105	0.198	0.295	0.359	0.466	0.523	0.644	0.693
2000	0.017	0.039	0.098	0.189	0.260	0.327	0.435	0.510	0.563	0.687
2001	0.030	0.059	0.129	0.240	0.306	0.354	0.450	0.477	0.560	0.679
2002	0.033	0.069	0.151	0.279	0.354	0.421	0.497	0.557	0.617	0.720
2003	0.039	0.075	0.159	0.306	0.395	0.446	0.550	0.613	0.687	0.730
2004	0.084	0.079	0.176	0.292	0.421	0.484	0.582	0.680	0.738	0.802
2005	0.086	0.083	0.197	0.306	0.443	0.504	0.611	0.705	0.785	0.758
2006	0.081	0.082	0.185	0.293	0.430	0.506	0.609	0.720	0.785	0.796
2007	0.099	0.125	0.257	0.373	0.508	0.573	0.676	0.764	0.817	0.796

Year	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
2008	0.118	0.180	0.332	0.452	0.573	0.647	0.725	0.803	0.836	0.823
2009	0.094	0.223	0.401	0.547	0.645	0.709	0.774	0.830	0.868	0.831
2010	0.096	0.236	0.425	0.597	0.682	0.744	0.810	0.867	0.890	0.905
2011	0.091	0.235	0.441	0.622	0.713	0.772	0.834	0.893	0.910	0.893
2012	0.082	0.217	0.413	0.589	0.694	0.752	0.823	0.869	0.894	0.917
2013	0.071	0.178	0.370	0.556	0.665	0.748	0.814	0.860	0.890	0.897
2014	0.055	0.147	0.338	0.524	0.638	0.729	0.800	0.845	0.877	0.877
2015	0.071	0.169	0.358	0.553	0.660	0.750	0.810	0.849	0.886	0.877
2016	0.085	0.204	0.378	0.570	0.685	0.768	0.831	0.857	0.901	0.877
2017	0.081	0.190	0.376	0.568	0.672	0.763	0.814	0.865	0.906	0.885
2018	0.075	0.186	0.360	0.546	0.654	0.726	0.796	0.853	0.886	0.881
20069	0.057	0.164	0.339	0.508	0.629	0.706	0.782	0.841	0.862	0.878

Table 24.1.9: Plaice in 5.a. Recommended TAC, national TAC set by the Ministry and official landings. All weights are in tonnes.

Fishing year	Rec. TAC	National TAC	Catch
1991/92	10000	11000	10200
1992/93	10000	13000	12400
1993/94	10000	13000	12300
1994/95	10000	13000	11100
1995/96	10000	13000	11000
1996/97	10000	12000	10345
1997/98	9000	9000	8083
1998/99	7000	7000	7452
1999/00	4000	4000	4907
2000/01	4000	4000	4921
2001/02	4000	5000	4402
2002/03	4000	5000	5402
2003/04	4000	4500	5844

Fishing year	Rec. TAC	National TAC	Catch
2004/05	4000	5000	6184
2005/06	4000	5000	5647
2006/07	5000	6000	6149
2007/08	5000	6500	6620
2008/09	5000	6500	6361
2009/10	5000	6500	6389
2010/11	6500	6500	4843
2011/12	6500	6500	5822
2012/13	6500	6500	5932
2013/14	6500	6500	6030
2014/15	7000	7000	6237
2015/16	6500	6500	7619
2016/17	7330	7330	6369
2017/18	7103	7103	8208
2018/19	7132	7132	7096
2019/20	6985	6985	7177
2020/21	7037	7037	9082
2021/22	7805	7805	
2022/23	7587		

24.7 References

Carvalho, F., et al. "A cookbook for using model diagnostics in integrated stock assessments". In: Fisheries Research 240 (2021), p. 105959.

Hoarau, G., et al. "Population structure of plaice (Pleuronectes platessa L.) in northern Europe: a comparison of resolving power between microsatellites and mitochondrial DNA data". In: Journal of Sea Research 51.3-4 (2004), pp. 183-190.

Jónsson, G., \& Pálsson, J. (2013). Íslenskir fiskar (2nd ed., p. 493). Mál og menning.
Le Moan, A., Bekkevold, D. and Hemmer-Hansen, J. (2021) "Evolution at two time frames: ancient structural variants involved in post-glacial divergence of the European plaice (Pleuronectes platessa)". In: Heredity 126.4 (2021), pp. 668-683.

Pálsson, J., \& Hjörleifsson, E. (2001). Skarkoli á fyrsta aldursári rannsakaður. Hafrannsóknir, 56, 86-89.
Pálsson Ó. K., et al. "Brottkast og meðafli 2004 Mælingar á brottkasti botnfiska og meðafli í kolmunnaveiðum 2004". In: Hafrannsóknastofnunin. Fjölrit nr. 116116 (2004), pp. 3-35.

Pálsson Ó. K., et al. "Mælingar á brottkasti botnfiska 2006". In: Hafrannsóknastofnunin. Fjölrit nr. 134134 (2007), pp. 2-18.

Sigurdsson, A. (1982). "Long distance migration of plaice (Pleuronectes platessa L.)" In: Rit Fiskideildar 4 (1982), pp. 27-31.

Sigurðsson, A. (1989). Skarkolamerkingar við Ísland árin 1953-1965. Hafrannsóknir, 39, 5-24.
Solmundsson, J., Palsson, J., \& Karlsson, H. (2005). Fidelity of mature Icelandic plaice () to spawning and feeding grounds. ICES Journal of Marine Science, 62(2), 189-200.

Please note: This report will be published in parts. Estimated publication dates for the various sections and for the full report are outlined below.

15 June 2022

- Section i

Executive summary

- Section 1

Introduction

- Section 7

Overview on ecosystem, fisheries and their management in Icelandic waters

- Section 8

Icelandic saithe

- Section 9
- Section 10
- Section 11

Icelandic cod in 5.a
Haddock in 5.a
Icelandic summer spawning herring

- Section 12

Capelin in the Iceland-East Greenland-Jan Mayen Area

- Section 13 Overview on ecosystem, fisheries and their management in Greenland waters
- Section 14

Cod (Gadus morhua) in NAFO Subdivisions 1A-1E (Offshore West Green-
land)

- Section 1
- Section 16

Cod (Gadus morhua) in NAFO Subarea 1, inshore (West Greenland cod)
Cod (Gadus morhua) in ICES Subarea 14 and NAFO Division 1.F
(East Greenland, South Greenland)

- Section 17 Greenland Halibut in Subareas 5, 6, 12, and 14
- Section 18 Redfish in subareas 5, 6, 12 and 14
- Section 19 Golden redfish (Sebastes norvegicus) in subareas 5, 6 and 14
- Section 20 Icelandic slope Sebastes mentella
- Section 21 Shallow Pelagic Sebastes mentella
- Section 22 Deep Pelagic Sebastes mentella
- Section 23 Beaked redfish (Sebastes mentella) in Division 14.b, demersal (Southeast Greenland)
- Section $24 \quad$ Icelandic plaice in 5.a
- Annex 1 List of Participants
- Annex 2 Resolutions
- Annex 3 List of Working Documents
- Annex 4 List of Stock Annexes
- Annex 5 Audit reports

29 November 2022

- Section 2
- Section 3
- Section 4 Faroe Plateau cod
- Section 5 Faroe haddock
- Section 6 Faroe saithe

Faroe Bank cod

- Full report

Demersal stocks in the Faroe area (Division 5.b and Subdivision 2.a4)

Annex 1: List of participants

Northwestern Working Group 2-7 May 2022

Name	Institute	Country	Email
Anja Retzel	Greenland Institute for Natural Resources	Greenland	AnRe@natur.gl
Birkir Bardarson	Marine and Freshwater Research Institute	Iceland	birkir.bardarson@hafogvatn.is
Bjarki Thor Elvarsson	Marine and Freshwater Research Institute	Iceland	bjarki.elvarsson@hafogvatn.is
Einar Hjörleifsson	Marine and Freshwater Research Institute	Iceland	einar.hjorleifsson@hafogvatn.is
Elzbieta Baranowska	Marine and Freshwater Research Institute	Iceland	elzbieta.baranowska@hafogvatn.is
Frank Fars \varnothing Riget	Greenland Institute for Natural Resources	Greenland	frri@natur.gl
Helga Bára Mohr Vang	Faroe Marine Research Institute	Faroe Islands	helgab@hav.fo
Höskuldur Björnsson	Marine and Freshwater Research Institute	Iceland	hoskuldur.bjornsson@hafogvatn.is
Jesper Boje	The National Institute of Aquatic Resources Sec- tion for Fisheries Advice	Denmark	jbo@aqua.dtu.dk
Julius Nielsen	Greenland Institute for Natural Resources	Greenland	juni@natur.gl
Karl-Michael Werner	Johann Heinrich von Thünen Institute, Institute for Sea Fisheries	Germany	karl-michael.werner@thuenen.de
Karolin Adorf	Johann Heinrich von Thünen-Institute, Institute for Sea Fisheries	Germany	kadorf@uni-bremen.de
Kristján Kristinsson	Marine and Freshwater Research Institute	Iceland	kristjan.kristinsson@hafogvatn.is
Lísa Anne Libungan	Marine and Freshwater Research Institute	Iceland	lisa.libungan@hafogvatn.is
Petur Steingrund	Faroe Marine Research Institute	Faroe Islands	peturs@hav.fo
Ruth Fernandez	ICES Secretariat	Denmark	ruth.fernandez@ices.dk
Søren Post	Greenland Institute for Natural Resources	Greenland	sopo@natur.gl
Tanja B Buch	Greenland Institute for Natural Resources	Greenland	tabb@natur.gl
Teunis Jansen (Chair)	Greenland Institute for Natural Resources and DTU AQUA	Greenland	tej@aqua.dtu.dk

Annex 2: Resolutions

NWWG - North-Western Working Group

2021/2/FRSG05 The North-Western Working Group (NWWG), chaired by Teunis Jansen, Denmark, will meet in ICES HQ, Copenhagen, Denmark 2-7 May 2022 to:
a) Address generic ToRs for Regional and Species Working Groups for all stocks, except stocks mentioned in ToRs c)
b) Compile and review available data and information on plaice in Division 5.a and prepare a road map and issue list for a future benchmark
and on 24-27 October 2022 to:
c) Address generic ToRs for Regional and Species Working Groups for Capelin (Mallotus villosus) in subareas 5 and 14 and Division 2.a west of $5^{\circ} \mathrm{W}$, Cod (Gadus morhua) in Subdivision 5.b. 1 (Faroe Plateau), Cod in Subdivision 5.b. 2 (Faroe Bank,) Haddock (Melanogrammus aeglefinus) in Division 5.b (Faroes grounds) and Saithe (Pollachius virens) in Division 5.b (Faroes grounds).

The assessments will be carried out on the basis of the stock annex. The assessments must be available for audit on the first day of the meeting.

Material and data relevant for the meeting must be available to the group on the dates specified in the 2022 ICES data call.

NWWG will report by 19 May and 10 November 2022 for the attention of ACOM.
Only experts appointed by national Delegates or appointed in consultation with the national Delegates of the expert's country can attend this Expert Group

Annex 3: List of Working Documents

WD01: The fishery for Greenland halibut in ICES Div. 14b in 2021. J. Boje
WD02: Greenland commercial data for Atlantic cod in Greenland inshore waters for 2021. Anja Retzel
WD03: West Greenland inshore survey results for Atlantic cod in 2021. Anja Retzel
WD04: SAM assessment of the West Greenland Inshore cod stock (cod.21.1). Tanja B. Buch, Frank Rigét and Anja Retzel
WD05: Greenland commercial data for Atlantic cod in East Greenland offshore waters for 2021. Anja Retzel

WD06: Cod East Greenland SAM assessment. Frank Rigét, Anja Retzel, Jesper Boje and Tanja B. Buch
WD07: Greenland commercial data for Atlantic cod in West Greenland offshore waters for 2021. Anja Retzel
WD08: The fishery for demersal Redfish (S. mentella) in ICES Div. 14b in 2021. Julius Nielsen

WD09: Greenland halibut CPUE for the research vessel operating on the slope on the Faroe Plateau in May-June 1995-2021. Petur Steingrund
WD10: Greenland halibut CPUE for commercial trawlers operating on the slope on the Faroe Plateau 1991-2021. Petur Steingrund
WD11: Mean length and length at age comparison for cod caught in German and Greenlandic surveys. Frederik Bjare
WD12: Note on age at length for genetically differentiated Greenland cod stocks. Frederik Bjare
WD13: DNA split of Atlantic cod (Gadus morhua) stocks in Greenland waters. An overview of data. Tanja B. Buch, Anja Retzel, Frank Rigét, Teunis Jansen, Jesper Boje, Casper Berg, Frederik Bjare
WD14: Bardarson, B., Jonsson, S., Bjarnason, S., Heilmann, L., and Jansen, T. Preliminary cruise report: Acoustic assessment of the Iceland-East Greenland-Jan Mayen capelin stock in autumn 2021 (Ad hoc). ICES Scientific Reports. 3:105. 10 pp. https://doi.org/10.17895/ices.pub. 9244

Annex 4: List of stock annexes

The table below provides an overview of the NWWG Stock Annexes. Stock Annexes for other stocks are available on the ICES website library under the content type Stock Annexes. Enter the stock code, year, ecoregion, species, and/or acronym of the relevant ICES expert group into the search box, and sort by Publication date to see the results. Follow the need help? link for searching tips.

Stock ID	Stock name	Last updated	Link
cap 27.2a5.14_SA	Capelin in the Iceland-East Greenland-Jan Mayen area)	January 2015	cap-icel SA.pdf
cod.21.1_SA	Cod (Gadus morhua) in NAFO Subarea 1, inshore (West Greenland cod)	May 2021	cod.21.1 SA.pdf
cod.2127.1f14_SA	Cod (Gadus morhua) in ICES Subarea 14 and NAFO Division 1F (East Greenland, South Greenland)	February 2018	cod.2127.1f14 SA.pdf
cod.27.5b2_SA	Cod (Gadus morhua) in subdivision 5.b.2 (Faroe Bank)	April 2013	cod-farb SA.pdf
cod.27.5b1_SA	Cod (Gadus morhua) in subdivision 5.b. 1 (Faroe Plateau)	May 2017	cod-farp SA.pdf
cod.27.5a_SA	Icelandic cod	April 2021	cod.27.5a SA.pdf
cod.21.1a-e_SA	Cod (Gadus morhua) in NAFO divisions 1A-1E, offshore (West Greenland)	May 2016	cod-wgr SA.pdf
ghl.27.561214_SA	Greenland halibut (Reinhardtius hippoglossoides) in Subareas 5,6,12 and 14 (Iceland and Faroes grounds, West of Scotland, North of Azores, East of Greenland)	December 2013	ghl-grn SA.pdf
had.27.5b_SA	Haddock (Melanogrammus aeglefinus) in Division 5.b (Faroes grounds)	November 2021	had.27.5b SA.pdf
had.27.5a_SA	Haddock (Melanogrammus aeglefinus) in Division 5.a (Iceland)	June 2021	had.27.5a SA.pdf
her.27.5a_SA	Herring (Clupea harengus) in Division 5.a, summerspawning herring (Iceland grounds)	April 2019	her.27.5a SA.pdf
ple.27.5a_SA	Plaice (Pleuronectes platessa) in Division 5.a (Iceland grounds)	May 2022	ple.27.5a_SA
pok.275b_SA	Saithe (Pollachius virens) in Division 5.b (Faroes grounds)	November 2020	pok.27.5b SA.pdf
pok.275a_SA	Saithe (Pollachius virens) in Division 5.a (Iceland grounds)	April 2019	pok.27.5a SA.pdf
reb.27.14b_SA	Beaked redfish (Sebastes mentella) in Division 14.b, demersal (Southeast Greenland)	May 2017	reb 27.14b SA.pdf
reb.27.5a14_SA	Icelandic slope beaked redfish (Sebastes mentella) in Divisions 5.a and 14.b	May 2013	smn-con SA.pdf

Stock ID	Stock name	Last updated	Link
reb.2127.dp_SA	Deep Pelagic beaked redfish (Sebastes mentella) in ICES	May 2012	smn-dp SA.pdf
reb.27.14b_SA	Beaked redfish (Sebastes mentella) in Division 14.b (Demersal) (Southest Greenland)	May 2016	smn-grl SA.pdf
reb.2127.sp_SA	Shallow pelagic Beaked redfish (Sebastes mentella)	May 2012	smn-sp SA.pdf
reg.27.561214_SA	Golden redfish in Subareas 5,6 12 and 14 (Iceland and Faroes grounds, West of Scotland, North of Azores, East of Greenland)	April 2019	reg.27.561214 SA.pdf

Annex 5: Audit reports

Her.27.5a

Review of ICES Scientific Report, NWWG 2022 2-7 May.
Reviewers: Höskuldur Björnsson
Expert group Chair: Teunis Jansen
Secretariat representative: Ruth Fernandez

General

The assessment of Icelandic herring is challenging due to variable spatial distribution, and in last 15 years Ichthyophonus epidemic. Surveys covering age one herring have not been conducted on regular enough basis to be used in the assessment but they might be useful. The assessment has shown considerable bias (overestimation) in last 30 years, but has been doing well in last 5 years and Mohns rho of ssb is -0.11 . The management plan for herring was evaluated in 2017 and changed to a plan where the TAC next fishing year is based on B4+ in the beginning of the assessment year. The harvest rate is low to take into account observed bias and possible future infections. The form of the HCR is selected so the TAC does not require short term prediction of infection.

For single-stock summary sheet advice

Icelandic herring

Short description of the assessment as follows:

1. Assessment type: Update
2. Assessment: Accepted
3. Forecast: Accepted
4. Assessment model: NFT adapt.
5. Consistency: Good in last 5 years but over longer time period considerable bias.
6. Stock status: $\mathrm{B}>\mathrm{Blim}$ and $\mathrm{B}>\mathrm{MSYB}$ trigger for a while; $\mathrm{HR}<\mathrm{HRlim}$ and $\mathrm{HR}<\mathrm{HRmsy}$; good recruitment in recent years
7. Management plan: The Icelandic ministry has a management for herring in order to provide long-term maximum sustainable yield and keep the SSB $>$ Blim with high probability, even in periods of Ichthyophonus infection. The harvest rate according to the management plan is 0.14 and the reference biomass $4+$.

Conclusions:

The assessment has been performed according to the stock annex. Some points requiring corrections were found in the report and the main assessor informed.

Cod.27.5a

Review of ICES Scientific Report, NWWG 2022 2-7 May.
Reviewers: Anja Retzel 17 May 2022
Expert group Chair: Teunis Jansen
Secretariat representative: Ruth Fernandez

General

- The stock has been assessed in agreement with the stock annex.
- Mean weight at age in the catches for the assessment year needs to be predicted and are based on the spring survey weight measurement using the slope and the intercept from a linear relationship between survey and catch weights of ages 3-9 in preceding years The result is high mean catch weight for age 3 and 4 because prediction for these age groups are also based on older age groups. At the NWWG a slightly altered method was presented where estimates of the slope and intercept were based on weight at age within each age group 3 to 9 . NWWG concluded that this was an improvement, but due to the prospect of setting up an interim benchmark for this minor change the group decided to remain with the original predictions. Advice for the altered method would have deviated with -1%.

For single stock summary sheet advice:

8. Assessment type: update
9. Assessment: analytical
10. Forecast: presented
11. Assessment model:

Separable statistical catch at age model (MUPPET) - landings and catch-at-age composition since 1955 and indices from two standardized bottom trawl surveys. The spring survey (SMB) was instigated in 1985, the fall survey (SMH) in 1996.
12. Data issues: All data is available as described in the Stock Annex
13. Consistency: This is a highly consistent assessment.
14. Stock status: SSB $_{\text {trigger }}$ is 220 kt and SSB in 2022 is estimated at 356.697 kt . Reference biomass (B4+) was estimated at 976.590 t in 2022. Harvest rate in 2021 is 0.23 . Hence the stock is well above limits and is fished at the management target.
15. Management Plan: The advice follows the outline defined in the management plan. Because SSB> SSB ${ }_{\text {trigger, }}$ the $\mathrm{TAC}_{2022 / 2023}$ is set as $\left(\mathrm{TAC}_{2021 / 2022}+0.2^{*} \mathrm{~B}_{\text {B4 } 4,2022}\right) / 2$. In accordance with this plan, the proposed TAC for 2022/23 is 209.028 kt .

General comments

This was a well-documented, well ordered and considered section. It was easy to follow and interpret.

Technical comments

None

Conclusions

The assessment has been performed in accordance with the Stock annex and the results can be used as basis for advice.

Reb.27.14b

Review of ICES Scientific Report, NWWG 2022 2-7 May.
Reviewers: Bjarki Pór Elvarsson
Expert group Chair: Teunis Jansen

General

Recommendations, general remarks for expert groups, etc. (use bullet points and subheadings if needed)

For single-stock summary sheet advice

Stock

Beaked redfish (Sebastes mentella) in Division 14.b, demersal (Southeast Greenland)
Short description of the assessment as follows:

1. Assessment type: Update assessment
2. Assessment: accepted
3. Forecast: not presented
4. Assessment model: DLS (cat 5), no recent survey data were presented
5. Consistency: Advice for 0 catch is consistent with previous advice.
6. Stock status: All signs suggest that the stock is in poor conditions and recent survey estimates are the lowest in the time series
7. Management plan: N/A

General comments

Survey information is generally lacking, a new survey is planned to start this year.

Technical comments

None

Conclusions

Cap.27.2a514

Review of ICES Scientific Report, NWWG, 2022, 2-7 May.
Reviewer: Lísa Anne Libungan
Expert group Chair: Teunis Jansen
Secretariat representative: Ruth Fernandez, Jette Fredslund

Stock

Capelin in the Iceland-East Greenland area

General

None
For single-stock summary sheet advice
No advice sheet. Preliminary advice in autumn, final advice outside ICES umbrella and issued by the Marine and Freshwater Research Institute (MFRI) in Iceland.

General comments

Comments were added to the technical report and stock assessor was informed.

Technical comments

None

Conclusions

The assessment is expected to be performed correctly and since the final advice is outside ICES review procedure no further scrutinization can be performed in this assessment.

Had.27.5a

Review of ICES Scientific Report, NWWG, 2022, 2-7 May.
Reviewers: Tanja Buch
Expert group Chair: Teunis Jansen
Secretariat representative: Jette Fredslund, Ruth Fernandez

General

- The stock underwent a benchmark in 2019 and at the same meeting management strategy evaluation were carried out, which resulted in new reference points.
- There was reduced sampling effort for the commercial fisheries in 2020 due to the COVID outbreak. In 2021 more sampling were carried out but not at the same level as prior to 2020. However, the reduced number of samples are considered sufficiently representative of the fishing operations.
- The stock assessment was conducted in accordance with the Stock annex.

For single-stock summary sheet advice

Stock: Haddock in Division 5.a (Iceland ground).

Short description of the assessment as follows:

1. Assessment type: Category 1, Statistical catch-at-age model.
2. Assessment: accepted
3. Forecast: accepted
4. Assessment model: Muppet (Statistical catch-at-age model). Using catch-at-age and two survey indices for tuning.
5. Consistency: The model from the 2019 benchmark have been used in 2019-2022. No advice was issues in 2020 due to the COVID outbreak. The TAC set for the fishing year 2020/2021 was produced by MFRI following benchmark procedures.
6. Stock status: Spawning size is above MSY Btrigger, BPa and Blim. Fishing pressure is above both HRmsy and HRpa and below HRblim.
7. Management plan: Management plan is consistent with both precautionary approach and the ICES MSY approach. The advice follows the management plan, the advice for 2021/2022 is 62219 tonnes which is an increase from the three previous years.

General comments

- The total landings are above the agreed TAC in recent years, this is due to transfer of TAC between years and between species.
- The fishing year starts at 1. September and advice TAC is for the period 1.9.2022 to 30.8.23.
- The TAC for the 2020/2021 fishing year was increased by 8000t by the Government of Iceland, this increase has been subtracted from the 2021/2022 TAC. This, combined with transfer from other species, means that the 2020/2021 landings were well above the set TAC for the period.

Technical comments

The report and advice sheet are in accordance with the stock annex.

Conclusions

The assessment has been performed correctly and in accordance with stock annex.

Pok.27.5a

Review of ICES Scientific Report, NWWG, 2022, 2-7 May.
Reviewers: Petur Steingrund/Helga Bára Mohr Vang
Expert group Chair: Teunis Jansen
Secretariat representative: Ruth Fernandez

General

The assessment of Icelandic saithe has its challenges and is relatively uncertain, this year's assessment results in a considerable downward revision of the SSB, Mohn Rho $=25 \%$. This is mostly due to uncertainty in survey indices, caused by saithe's schooling behaviour and being semi-pelagic. The indices in 2022 are low but comparable with indices the most recent years and it can be speculated that the assessment model is somehow slow to react to the indices. It may be expected that the model now has caught up with the tendency in the indices as judged by the catch residuals and survey residuals (they are not so negative/positive compared with other years).

The management plan is though designed to include these uncertainties. The stock status is good, it has been above all reference points since beginning of assessment. However, the fleet has for many years not fished the whole TAC and this could though indicate that the stock size is overestimated. Despite that, Icelandic saithe is not considered threatened by overfishing, partly due to a low market price and high cost to catch it.

For single-stock summary sheet advice

Stock: Icelandic saithe
Short description of the assessment as follows:

1. Assessment type: Update
2. Assessment: Accepted
3. Forecast: Accepted
4. Assessment model: Separable statistical catch-at-age model.
5. Consistency: Last year's assessment accepted
 good recruitment in recent years
6. Management plan: The Icelandic ministry has a management plan on saithe in order to provide long-term maximum sustainable yield. The harvest rate according to the management plan is 0.2 .

Conclusions:

The assessment has been performed according to the stock annex.

[^0]: ICES INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA CIEM CONSEIL INTERNATIONAL POUR L'EXPLORATION DE LA MER

[^1]: * Based on prevalence of infection estimates and acoustic measurements (Minfected multiplied by 0.3 and added to 0.1; Óskarsson et al., 2018b).
 ** Based on prevalence of infection estimates in the winter 2021/22 (multiplied by 0.3 and added to 0.1) and should by applied in the prognosis in the 2022 assessment.

[^2]: * Derived from both the landings (WF5-10~0.209) and the herring that died in the mass mortality (0.148) in the winter 2012/13 in Kolgrafafjörður (Óskarsson et al., 2018a). WF5-10 without the mass mortality was 0.214 .

[^3]: Provisional data
 WG estimate includes additional catches as described in working Group reports for each year and in the report from 2001.

[^4]: ${ }^{1)}$ Provisional

